'RightOrder Incorporated

San Jose, CA 95134 USA

1.

A Fast Index for Semistructured Data

3850 N. First St.

Brian F. Coopelr?, Neal Sampl&? Michael J. Frankliiy®, Gisli R. Hjaltasoh Moshe Shadmdn

’Department of Computer Science *Computer Science Division
Stanford University
Stanford, CA 94305 USA

University of California
Berkeley, CA 94720 USA

{cooperb,nsample}@db.stanford.edu, franklin@cs.berkeley.edu,
{gislih,moshes}@rightorder.com

Abstract

Queries navigate semistructured data via path
expressions, and can be accelerated using an
index. Our solution encodes paths as strings, and
inserts those strings into a special index that is
highly optimized for long and complex keys. We
describe the Index Fabric, an indexing structure
that provides the efficiency and flexibility we
need. We discuss how "raw paths" are used to
optimize ad hoc queries over semistructured
data, and how "refined paths" optimize specific
access paths. Although we can use knowledge
about the queries and structure of the data to
create refined paths, no such knowledge is
needed for raw paths. A performance study
shows that our techniques, when implemented on
top of a commercial relational database system,
outperform the more traditional approach of
using the commercial system’s indexing
mechanisms to query the XML.

Introduction

structure takes the place of a schema in traditional,

structured database systems. Evaluating queries over
semistructured data involves navigating paths through this
relationship structure, examining both the data elements
and the self-describing element names along the paths.
Typically, indexes are constructed for efficient access.

One option for managing semistructured data is to
store and query it with a relational database. The data
must be converted into a set of tuples and stored in tables;
for example, using tools provided with Oracle 8i/9i [25].
This process requires a schema for the data. Moreover,
the translation is not trivial, and it is difficult to efficiently
evaluate queries without extensions to the relational
model [26]. If no schema exists, the data can be stored as
a set of data elements and parent-child nesting
relationships [17]. Querying this representation is
expensive, even with indexes. The STORED system [12]
uses data mining to extract a partial schema. Data that
does not fit the schema well must be stored and queried in
its native form.

An alternative option is to build a specialized data
manager that contains a semistructured data repository at
its core. Projects such as Lore [24] and industrial products
such as Tamino [28] and XYZFind [29] take this

Database management systems are increasingly beingyyroach. It is difficult to achieve high query performance

called upon to managsemistructurediata: data with an sing semistructured data repositories, since queries are
iregular or changing ~organization. An example 4qain answered by traversing many individual element to
application for such data is a busness—to-busmess produgqemem links, requiring multiple index lookups [23].
catalog, where data from multiple suppliers (each withyjoregver, semistructured data management systems do
their own schema) must be integrated so that buyers cafo; have the benefit of the extensive experience gained
query it. _Semlstructured data is often represented as &ith relational systems over the past few decades.

graph, with a set of data elements connected by labeled Tq solve this problem, we have developed a different
relationships, and this self-describing relat|onsh|papproach that leverages existing relational database
Permission to copy without fee all or part of this material is granted teChUOIOgy but provides much better performance _than
provided that the copies are not made or distributed for direct Previous approaches. Our method encodes paths in the
commercial advantage, the VLDB copyright notice and the title of thedata as strings, and inserts these strings into an index that
publication and its date appear, and notice is given that copying is byjg highly optimized for string searching. The index blocks

permission of the Very Large Data Base Endowment. To copy, . . -
otherwise, or to republish, requires a fee and/or special permission fromand semistructured data are both stored in a conventional

the Endowment
Proceedings of the 27th VLDB Conference,
Roma, Italy, 2001

relational database system. Evaluating queries involves
encoding the desired path traversal as a search key string,
and performing a lookup in our index to find the path.

A fast index for semistructured data

There are several advantages to this approach. First, there
is no need fora priori knowledge of the schema of the
data, since the paths we encode are extracted from the
data itself. Second, our approach has high performance
even when the structure of the data is changing, variable
or irregular. Third, the same index can accelerate queries
along many different, complex access paths. This is
because our indexing mechanism scales gracefully with
the number of keys inserted, and is not affected by long or Figure 1. A Patricia trie.

complex keys (representing long or complex paths). raw paths, while the relational index utilized an edge
_ Our indexing mechanism, called thadex Fabric manping as well as a schema extracted by the STORED
utilizes the aggressive key compression inherent in &17] system. Both refined and raw paths are significantly
Patricia trie [21] to index a large number of strings in @faster than the DBMS’s native indexing mechanism,
compact and efficient structure. Moreover, the IndeXgometimes by an order of magnitude or more. The
Fabric is inherently balanced, so that all accesses to thgifference is particularly striking for data with irregular

index require the same small number of I/Os. As a resultgyctyre, or queries that must navigate multiple paths.
we can index a large, complex, irregularly-structured,

dis_k?residen_t sgmistructured _data set while providing; 1 Paper overview
efficient navigation over paths in the data. _ . :
We manage two types of paths for semistructureo‘nth's paper, we describe the structl_Jre_ of the Index Fabric
data. First, we can index paths that exist in the raw datgnd _ how it can be used to optimize searches over
(calledraw pathg to accelerate any ad hoc query. We Cansem|s.tructured. d{:ltabfalses. Specifically, we make the
also reorganize portions of the data, to cresséined following contributions: N
paths in order to better optimize particular queries. Both® We discuss how to utilize the Index Fabric’s support
kinds of paths are encoded as strings and inserted into the Or 1ong and complex keys to index semistructured
Index Fabric. Because the index grows so slowly as we data paths encoded as strings. _
add new keys, we can create many refined paths and this We eéxamine a simple encoding of trew pathsin a
optimize many access patterns, even complex patterns Semistructured document, and discuss how to answer
that traditional techniques cannot easily handle. As a complex path queries over data with irregular
result, we can answer general queries efficiently using Structure using raw paths.
raw paths, even as we further optimize certain queries ~We presentefined pathsa method for aggressively
using refined paths. Maintaining all of the paths in the Optimizing frequently occurring and important access
same index structure reduces the resource contention that Patterns. Refined paths support answering
occurs with multiple indexes, and provides a uniform complicated queries using a single index lookup.
mechanism that can be tuned for different needs. * We report the results of a performance study which
Although our implementation of the Index Fabric shows that a semistructured index based on the Index
uses a commercial relational DBMS, our techniques do Fabric can be an order of magnitude faster than
not dictate a particular storage architecture. In fact, the traditional indexing schemes.
fabric can be used as an index over a wide variety of This paper is organized as follows. In Section 2 we
storage engines, including a set of text files or a nativdntroduce the Index Fabric and discuss searches and
semistructured database. The index provides a flexibleypdates. Next, in Section 3, we present refined paths and
uniform and efficient mechanism to access data, whilgaw paths and examine how they are used to optimize
utilizing a stable storage manager to provide propertieglueries. In Section 4 we present the results of our
such as concurrency, fault tolerance, or security. performance experiments. In Section 5 we examine
A popular syntax for semistructured data is XML related work, and in Section 6 we discuss our conclusions.
[30], and in this paper we focus on using the Index Fabric
to index XML-encoded data. XML encodes information 2. The Index Fabric

as data elements surrounded by tags, and tags can Bege |hdex Fabric is a structure that scales gracefully to
nested within other tags. This nesting structure can b rge numbers of keys, and is insensitive to the length or

viewed as a tr_ee, and raw paths represent root-to-lc_a ontent of inserted strings. These features are necessary to
traversals of this tree. Refined paths represent traversing, o+ semistructured data paths as strings

the tree in some other way (e.g. from sibling to sibling). The Index Fabric is based dratricia tries [21]. An

We have implemented the Index Fabric as an index,, o e Patricia trie is shown in Figure 1. The nodes are
on top of a popular comr_nermal relational DBMS. T_O labeled with theirdepth the character position in the key
evaluate performance, we indexed an XML data set usingsqresented by the node. The size of the Patricia trie does

both the Index _Fabric and the DBMS’s native B-t.rees. INhot depend on the length of inserted keys. Rather, each
the Index Fabric, we have constructed both refined and

A fast index for semistructured data 2

Figure 2. A layered index.

new key adds at most a single link and node to the indexThus, in Figure 2, the node labeled “3” in layer 1
even if the key is long. Patricia tries grow slowly even ascorresponds to the prefix “cas” and is connected to a
large numbers of strings are inserted because of theubtrie (rooted at a node representing “cas” and also
aggressive (lossy) compression inherent in the structure. labeled “3”) in layer 0 using an unlabeled direct link.
Patricia tries are unbalanced, main memory structures
that are rarely used for disk-based data. The Index Fabrig.1. Searching
is a structure that has the graceful scaling properties ofpe search process begins in the root node of the block in
Patricia tries, but that is balanced and optimized for diskthe |eftmost horizontal layer. Within a particular block
based access like B-trees. The fabric uses a novel, layergge search proceeds normally, comparing characters in the
approach:.extra layers of Patrlma trles allow a search tQearch key to edge labels, and following those edges. If
proceed directly to a block-sized portion of the index thatihe |apeled edge is a far link, the search proceeds
can answer a query. Every query accesses the samg i ontally to a different block in the next layer to the
number of layers, providing balanced access to the indexyigh. |f no labeled edge matches the appropriate character
~More specifically, the basic Patricia trie string index of the search key, the search follows a direct (unlabeled)
is divided into block-sized subtries, and these blocks argdge horizontally to a new block in the next layer. The
indexed by a second trie, stored in its own block. We cargearch proceeds from layer to layer until the lowest layer
represent this second trie as a new horizontal layergaver 0) is reached and the desired data is found. During
complementing the vertical structure of the original trie. If {he search in layer 0, if no labeled edge matches the
the new horizontal layer is too large to fit in a single disk 5rnropriate character of the search key, this indicates that
block, it is split into two blocks, and indexed by a third he key does not exist, and the search terminates.
horizontal layer. An example is shown in Figure 2. The oiherwise, the path is followed to the data. It is necessary

trie in layer 1 is an index over the common prefixes of they, erify that the found data matches the search key, due
blocks in layer 0, where a common prefix is the prefix i the lossy compression of the Patricia trie.

represented by the root node of the subtrie within a block. The gearch process examines one block per layer

In Figure 2, the common prefix for each block is shown in 3nq always examines the same number of layers. If the
“quotes”. Similarly, layer 2 indexes the common prefixesyjocks correspond to disk blocks, this means that the
of layer 1. The index can have as many layers asearch could require one 1/0 per layer, unless the needed

necessary; the leftmost layer always contains one block. piock is in the cache. One benefit of using the Patricia
There are two kinds of links from layeérto layeri-1.:

labeled far links{#) and unlabeled direct linksse).
Far links are like normal edges in a trie, except that a far
link connects a node in one layer to a subtrie in the nex refixes in the non-leaf layers. This phenomenon is unique to

Ia_yer' A direct link Con,neCtS anode in One_layer toa bIOCkthe multi-layer Patricia trie structure. In practice, such mistakes
with a node representing the same prefix in the next layerare rare in a well-populated tree. See [10,19].

It is possible for the search procedure to enter the wrong block,
nd then have to backtrack, due to the lossy compression of

A fast index for semistructured data 3

Doc 1: <invoice> Doc 2: <invoice>
<buyer> <buyer>
<name>ABC Corp</name> <name>Oracle Inc</name>
<address>1 Industrial Way</address> <phone>555-1212</phone>
</buyer> </buyer>
<seller> <seller>
<name>Acme Inc</name> <name>|BM Corp</name>
<address>2 Acme Rd.</address> </seller>
</seller> <item>
<item count=3>saw</item> <count>4</count>
<item count=2>drill</item> <name>nail</name>
<finvoice> <fitem>
</invoice>

Figure 3. Sample XML.

structure is that keys are stored very compactly, and manfabric, and how to use path lookups to evaluate queries.
keys can be indexed per block. Thus, blocks have a venAs a running example, we will use the XML in Figure 3.
high out-degree (number of far and direct links referring

to the next layer to the right.) Consequently, the vast3.1. Designators

majority of space required by the index is at the rightmostye encode data paths usingesignators: special
layer, and the layers to the left (layer 1,29)..are characters or character strings. A unique designator is
significantly smaller. In practice, this means that an 'ndexassigned to each tag that appears in the XML. For
storing a large number of keys (e.g. a billion) requiresexamme, for the XML in Figure 3, we can chookéor
three layers; layer 0 must be stored on disk but layers 1, gice> B for <buyer> , N for <name>, and so
and 2 can reside in main memory. Key_ Iookup_s require at,, (For illustration, here we will represent designators as
most one /O, for the leaf index layer (in addition to data boldface characters.) Then, the strin@NABC Corp”

I/0s). In the present context, this means that foIIowinghas the same meaning as the XML fragment
any indexed path through the semistructured data, no . jnyoice>

matter how |0ng, requires at most one index 1/0O. <buyer><name>ABC Corp</name></buyer>
</invoice>
2.2. Updates The designator-encoded XML string is inserted into the

Updates, insertions, and deletions, like searches, can gayered Patricia trie of the Index Fabric, which treats
performed very efficiently. An update is a key deletion designators the same way as normal characters, though
followed by a key insertion. Inserting a key into a Patricia conceptually they are from different alphabets.
trie involves either adding a single new node or addingan N order to interpret these designators (and
edge to an existing node. The insertion requires a changgonsequently to form and interpret queries) we maintain a
to a single block in layer 0. The horizontal index is Mapping betyvgen designators and element tags called the
searched to locate the block to be updated. If this blocki€signator dictionaryWhen an XML document is parsed
overflows, it must be split, requiring a new node at Iayerfqr |_ndexmg, each tag is matched to a designator using the
1. This change is also confined to one block. Spmsdlctlonary. New designators are generated _automatlcally
propagate left in the horizontal layers if at each layerfor new tags. The tag names from queries are also
blocks overflow, and one block per layer is affected. translated into designators using the d|ct|on_ary, to form a
Splits are rare, and the insertion process is efficient. If theS€@rch key over the Index Fabric. (See Section 3.5.)
block in the leftmost horizontal layer (the root block)
must be split, a new horizontal layer is created. 3.2. Raw paths

To delete a key, the fabric is searched using the keyRaw paths index the hierarchical structure of the XML by
to find the block to be updated, and the edge pointing teencoding root-to-leaf paths as strings. Simple path
the leaf for the deleted key is removed from the trie. It iSexpressions that start at the root require a single index
possible to perform block recombination if block storagelookup. Other path expressions may require several
is underutilized, although this is not necessary for thelookups, or post-processing the result set. In this section,
correctness of the index. Due to space restrictions, we dwe focus on the encoding of raw paths. Raw paths build
not present insertion, deletion and split algorithms hereon previous work in path indexing. (See Section 5).

The interested reader is referred to [10,19]. Tagged data elements are represented as designator-
encoded strings. We can regard all data elements as
3. Indexing XML with the Index Fabric leaves in the XML tree. For example, the XML fragment

. . <A>alphabeta<C>gamma</C>
Because the Index Fabric can efficiently manage large .)
X can be represented as a tree with three root-to-leaf paths:
numbers of complex keys, we can use it to search many

complex paths through the XML. In this section, we <A>alpha , <A>heta and <A><C>gamma f

discuss encoding XML paths as keys for insertion into the/V¢ @SSIgnA, B and C as the designators forA>,

A fast index for semistructured data 4

(@) <invoice> =I (b) Document 1 Document 2
<buyer> =B 1B N ABC Corp I B N Oracle Inc
<name>=N I B A 1 Industrial Way I B P 555-1212
<address> =A I'S N Acme Inc I'S N IBM Corp
<seller> =S I'S A 2 Acme Rd. ITC4
<ittem> =T | T drill I T N nail
<phone> =P ITC 2
<count> =C , I T saw
count (attribute) = C ITC 3

Designator

A Normal character data

IBA 1
Industrial
Way: Doc 1

I'S N IBM

Acme Inc: Corp:
1 2
| B N ABC BN Doc Doc
Corp: Oracle
Doc 1 Inc: Doc 2

(c)
Figure 4. Raw paths.

and <C> respectively, then we can encode the paths inXML document. We have developed a system of alternate
this XML fragment as A alpha”, “A B beta” and “A B designators to encode order, but do not have space to
C gamma.” This is aprefix encodingof the paths: the discuss those techniques here.

designators, representing the nested tag structure, appear

at the beginning of the key, followed by the data element3.2.1. Raw path example

at the leaf of the path This enCOding does not require a’he XML of Figure 3 can be encoded as a set of raw
pre-existing, regular or static schema for the data. paths. First, we assign designators to tags, as shown in
The alternative isinfix encoding in which data Figure 4(a). Next, we encode the root-to-leaf paths to
elements are nodes along the path. An infix encoding oproduce the keys shown in Figure 4(b). Finally, we insert
the above fragment would be A"alpha B beta C these keys in the Index Fabric to generate the trie shown

gamma.” Here, for clarity, we will follow the convention in Figure 4(c). For clarity, this figure omits the horizontal
of previous work, which is to treat data elements asjayers and some parts of the trie.

leaves, and we will focus on the prefix encoding.
Tags can contain attributes (name/value pairs.) W& 3 Refined paths

treat attributes ~ like tagged children; ~e.g<A Refined paths are specialized paths through the XML that

B="alpha’>... is treated as if it werecA>alpha optimize frequently occurring access patterns. Refined
.... The result is that attributes 6fA> appear as paihs can support queries that have wildcards, alternates
siblings of the other tags nested withitA>. The label 5nd different constants.
“B” is assigned different designators when it appears asa For example, we can create a refined path that is
tag and an attribute (e.8~tag,B’=attribute). tuned for a frequently occurring query over the XML in
Atany time, a new document can be added to the ravrigure 3, such as “find the invoices where compaxiy
indexed documents. The root-to-leaf paths in thefinging <puyer> tags that are siblings of aseller>
document are encoded as raw path keys, and inserted infgq yithin the samecinvoice> tag. First, we assign a
the fabric. New tags that did not exist in the index designator, such asZ* to the path. (Recall that
previously can be assigned new designators “on-the-fly’yosionators are just special characters or strings shown

as the document is being indexed. Currently, this ProceSfare in boldface for clarity.) Next, we encode the
does not preserve the sequential ordering of tags in the ' '

A fast index for semistructured data 5

information indexed by this refined path in an Index Raw paths can also be used to accelegaaeral
Fabric key. If “Acme Inc” sold items to “ABC Corp,” we path expressionswhich are vital for dealing with data
would create a key of the formzZ* ABC Corp Acme that has irregular or changing structure because they
Inc.” Finally, we insert the keys we have created into theallow for alternates, optional tags and wildcards. We
fabric. The keys refer to the XML fragments or expand the query into multiple simple path expressions,
documents that answer the query. (See Section 3.4.) and evaluate each using separate key lookup operators.

This encoding scheme is similar to that used for rawThus, the path expressioi.(B {|B,).C results in
paths, with designators and data elements in the same kegearches foA.B;.C and A.B,.C. This means multiple
In a sense, we are overloading the metaphor of encodingaversals but each traversal is a simple, efficient lookup.
paths as strings to support optimizing specific queries by |f the query contains wildcards, then it expands to an
encoding specialized paths. Raw and refined paths amgfinite set. For exampleA.(%)*.C means find every
kept in the same index and accessed using string l00kups<C> that has an ancestesA>. To answer this query, we

Adding new documents to the refined path index isstart by using gprefix key lookupoperator to search for
accomplished in two steps. First, the new documents arg,o «a prefix, and then follow every child of the A"
parsed to extract information. m_atching .the access pattegreﬁx node to see if there is aC® somewhere down
of the refined .path. Then., this qurmatlon. is encoded a elow. Because we “prefix-encode” all of the raw paths,
an Index Fabric key and |nse.rteq into the index. Changea/e can prune branches deeper than the designators (e.g.
to refined paths are reflegtgd in S|mple.key updgtes. , d";tfter we see the first non-designator character.)

The database _admlnlstrat_or deC|d_es Wh'Ch refine We can further prune the traversal using another
paths are appropriate. As with any indexing SCherm:“structure that summarizes the XML hierarchy. For
creating a New access path Teq“"_es s_canning_the datab ample, Fernandez and Suciu [15] describe tecﬁniques
and extracting the keys for insertion into t_he index. Ourfor utilizing partial knowledge of a graph structure to
structure grows slowly as new keys are inserted. Thus rune or rewrite general path expressions.
unlike previous indexing schemes, we can pre-optimize Queries that correspond to refined paths can be

great many queries WIthOU.t worrying about reSOUrcesrther optimized. The query processor identifies the
contention between different indexes. query as corresponding to a refined path, and translates
o ,) the query into a search key. For example, a query “Find
3.4. Combining the index with a storage manager all invoices where ABC Corp bought from Acme Inc”
Because the Index Fabric is an index, it does not dictate decomes Z ABC Corp Acme Inc.” The index is
particular architecture for the storage manager of thesearched using the key find the relevant XML. The search
database system. The storage manager can take a numhges the horizontal layers and is very efficient; even if
of forms. The indexed keys can be associated withthere are many millions of indexed elements, the answer
pointers that refer to flat text files, tuples in a relational can be found using at most a single index 1/O.
system, or objects in a native XML database. In any case,
searching the fabric proceeds as described, and thg Experimental results

returned pointers are interpreted appropriately by the)
database system. In our implementation, both the indey/e have conducted performance experiments of our

blocks and the actual XML data are stored in a relationaf"d€Xing mechanism. We stored an XML-encoded data
database system. Thus, we leverage the maturity of the®t In & popular commercial relational database system

RDBMS, including concurrency and recovery features. and compared the performance of queries using the
DBMS’ native B-tree index versus using the Index Fabric

3.5. Accelerating queries using the Index Fabric implemented on top of the same database system. Our
erformance results thus represent an “apples to apples”

Path_ expressions are a central component _OEomparison using the same storage manager.
semistructured query languages (e.g. Lorel [2] or Quilt

[6]). We focus orselectionusing path expressions, that is, 4.1. Experimental setu
choosing which XML documents or fragments answer the_ ™ P P

query, since that is the purpose of an index. We assumghe data s.et we _used was the DBLP, th? popular
that an XML database system could use a standargomputer science bibliography [11]. The DBLP is a set of

approach, such as XSLT [31], to perfoprojection X_ML-Iike dpcu_ments; each document corresponds to a
A simple path expressigpecifies a sequence of tags SINgle publication. There are over 180,000 documents,
starting from the root of the XML. For example, the query ©t&ling 72 Mb of data, grouped into eight classes (journal
“Find invoices where the buyer is ABC Corp” asks for article, book, etc.) A dqcument _contams mfor_mafuon
XML documents that contain the root-to-leaf path about the type of publication, the title of the publication,
“invoice.buyer.name.”ABC Corp’ . We use a
key lookup operatorto search for the raw path key
corresponding to the simple path expression.

2 The license agreement prohibits publishing the name of the
DBMS with performance data. We refer to it as “the RDBMS.”
Our system can interoperate with any SQL DBMS.

A fast index for semistructured data 6

<article key="Codd70"> Query Description
<author>E. F. Codd</author>, A Find books by publisher
<title>A Relational Model of Data for Large B Find f b h
Shared Data Banks.</title>, Ind conterence papers y author
<pages>377-387</pages>, C Find all publications by author
D
E

<year>1970</year>, Find all publications by co-authors

<volume>13</volume>, Find all publications by author and year
<journal>CACMc</journal>,

<number>6</number>, Table 1. Queries.
<url>db/journals/cacm/cacm13.html#Codd70</url> Conference and journal paper information that does not fit
<ee>db/journals/cacm/Codd70.htmi</ee> . . .
<cdrom>CACMs1/CACM13/P377.pdf</cdrom> into the SM tables is stored in overflow buckets along
</article> with other types of publications (such as books.)
Figure 5. Sample DBLP document. To evaluate a query over the STORED mapping, the

) _query processor may have to examine the SM tables, the
the authors, and so on. A sample document is shown iyerflow buckets, or both. We created the following key-
Figure 5. Although the data is somewhat regular (e.gcompressed B-tree indexes:

every publication has a title) the structure varies from, An index on each of theauthor attributes in the
document to document: the number of authors varies, inproceedingsndarticles SM tables.

some fields are omitted, and soon. _ « An index on thebooktitle attribute (e.g., conference
_ We used tW(? dlffgren_t met_hods of mde_xmg the XML name) in thénproceedingsable.

via the RDBMS' native indexing mechanism. The first , Ap jndex on theid attribute of each SM table; thd

method, thebasic edge-mappingreats the XML as a set joins withroots(id)in the overflow buckets.

of nodes and edges, where a tag or atomic data eleme&tor both the edge and STORED mapping it was necessary

corresponds to a node and a nested relationshi[)0 hand tune the
query plans generated by the RDBMS,
corresponds to an edge. The database has two tablesﬁnce the plans that were automatically tended to us

roots(id,label) a_nd edges(parentid,childid label) .The inefficient join algorithms. We were able to significantly
rootstable contains a tuple for every document, withicin improve the performance (e.g. reducing the time to
for the document, and label, Whlch is the root tag of the execute thousands of queries from days to hours).
document. Theedgestable contains a tuple for every The Index Fabric contained both raw paths and

nesting relationship. For nested tagarentidis the 1D of refined paths for the DBLP documents. The fabric blocks

fhg FI)‘.aer[Et ntOdeCI?'ld'ld Is the (;Dt of ﬁhe ch![Id nodteaan_?h_ were stored in an RDBMS table. All of the index schemes
abelis the tag. For leaves (data elements nested wi Nve studied index the document IDs. Thus, a query

tags), childid is NULL, and |abel is the text of the data processor will use an index to find relevant documents,

element. For example, the XML fragment retrieve the complete documents, and then use a post-

<book><author>Jane Doe</author></book> rocessing step (e.g. with XSLT) to transform the found
is represented by the tuple (0,bookygotsand the tuples P g step (e.9.
documents into presentable query results. Here, we focus

(0,1,author) and (NULL,Jane Doe) iredges (Keeping on the index look arformance
the leaves as part of thedgestable offered better index fookup p j : .
All experiments used the same installation of the

performance than breaking them into a separate tableFlDBMS running on an 866 MHz Pentium Ill machine

We created the following key-compressed B-tree indexes; .. "s15 b of RAM. For our experiments, we set the
* Anindex onroots(id) and an index omoots(label)

) . ; cache size to ten percent of the data set size. For the edge-
© AN mde_x _on edggs(parenud), an index on mapping and STORED mapping schemes, the whole
edges(childid)and an |nde>_< oedges(label) . cache was devoted to the RDBMS, while in the Index
The se_cond methoq of _mdexmg XML “using the Eapric scheme, half of the cache was given to the fabric
DBMS’ native mechanism is to use the relational

; and half was given to the RDBMS. In all cases,
mapping generated by the STORED [12] system to creat was g

a set of tables, and to build a set of B-trees over the tables‘%Xperiments were run on a cold cache. The default
T - . DBMS logging was used both for queries over the
We refer to this scheme as th8TORED mapping gging d

- relational mappings and queries over the Index Fabric.
STORED uses data mining to extract schemas from the We evaluated a series of five queries (Table 1) over

data based on frequently occurring structures. Thqh DBLP data. We ran each query multiple times with
extracted schemas are used to create “storage-mappkerent constants; for example, with query B, we tried

tables” (SM tables). Most of the data can be mapped int07,000 different authors. In each case, 20 percent of the

tuples and stored in the SM tables, while more irregularlyquery set represented queries that returned no result

structured data mL_lst be storedowverflow bucketssimilar because the key was not in the data set.

:)Obgﬁ] :éj?‘fomiﬂzmsgf gg%écaigstifogté?: [Sll\3/|] taTbhlgsSvl\\//las The experimental results are summarized in Table 2.

tables identified for the DBLP data a?lq:)roceediﬁgsfor (TheA column is speed-up versus edge mapping.) In each
case, our index is more efficient than the RDBMS alone,

conference papers, andrticles for journal papers. with more than an order of magnitude speedup in some

A fast index for semistructured data 7

I/O - Blocks Time - Seconds

Edge Map STORED Raw path Refined path Edge Map PBTORED |Raw path Réfined path

value A | value A | value A | value A value A |value A |value A [value A
A 416 1.0 370 1.1 13 32.0 - - 6 1.0 4 15| 083 | 7.2 - -
B 68788 |1.0] 26490 |2.6] 6950 9.9 - - 1017 |1.0] 293 |3.5| 81 |12.6 - -
C 69925 |1.0| 61272 |1.1] 34305 | 2.0 | 20545 | 3.4 1056 |1.0| 649 |1.6| 397 | 2.7 | 236 | 45
D | 353612 |1.0| 171712 |2.1]| 89248 | 4.0 | 17337 | 20.4 5293 (1.0 2067 |2.6| 975 | 5.4 | 208 |25.4
E | 327279 |1.0| 138386 |2.4| 113439 | 2.9 | 16529 | 19.8 4835 [1.0] 1382 |3.5] 1209 | 4.0 | 202 |23.9

Table 2. Experimental results.
instances. We discuss the queries and results next. conference papers represent 57 percent of the DBLP
publications. We chose this query because it uses a single

4.2. Query A: Find books by publisher SM table in the STORED mapping. The SM table

Query A accesses a small portion of the DBLP databaséJeénerated by STORED for conference papers has three
since out of over 180,000 documents, only 43eauthor attributes, and overflow buckets contain any

correspond to books. This query is also quite simple,additiof‘al authors. In fz_ict, th_e query processor must take
since it looks for document IDs based on a single root-to{h€ union of two queries: first, find document IDs by
leaf path, book.publisher. X' for a particular X. authpr in themproceedlngeSM table, and s_econd, query
Since it can be answered using a single lookup in the rayiy inproceedings.author. X paths in theroots
path index, we have not created a refined path. The quergndedgesoverflow tables. Both queries are supported by
can be answered using the basic edge-mapping b -trees. The edge mapping uses a similar query to the
selecting “book” tuples from theoots table, joining the overflow buckets.. The query is answered with one raw
results with “publisher” tuples from thedgestable, and ~ Path lookup (forinproceedings.author. X) and
joining again with the edges table to find data elementgVe did not create a refined path. o
“X". The query cannot be answered from the storage The results in Table 2 are for queries with 7,000
mapped tables (SM tables) in the STORED mapping_dlﬁelrent a.uthor names. Raw_ paths are much more
Because books represent less than one percent of tigdficient, with an order of magnitude less time and 1/0’s
DBLP data, they are considered “overflow” by STORED than the edge mapping, and 74 percent fewer I/Os and 72
and stored in the overflow buckets. percent less time than the STORED mapping. We have
The results for query A are shown in Table 2, andplotted the I/Os in Figure 7 with the block reads for index
represent looking for 48 different publishers. The rawPlocks and for data blocks (to retrieve document IDs)
path index is much faster than the edge mapping, with #roken out; the data reads for the Index Fabric include the
97 percent reduction in block reads and an 86 percenfiesult verification step for the Patricia trie. For the
reduction in total time. The raw path index is also fasterSTORED mapping, Figures 6 and 7 separate I/Os to the
than accessing the STORED overflow buckets, with 968dge-mapped overflow buckets and 1/Os to the SM tables.
percent fewer I/Os and 79 percent less time. Note that the Although SM tables can be accessed efficiently (via a
overflow buckets require less time and 1/Os than the edg&-trees on theauthor attributes), the need to go to the
mapping because the overflow buckets do not contain th@verflow buckets to complete the query adds significant
information stored in the SM tables, while the edge©overhead. The performance of the edge mapping, which is
mapping contains all of the DBLP information and @n order of magnitude slower than the raw paths,
requires larger indexes. confirms that this process is expensive. This result
These results indicate that it can be quite expensivdlustrates that when some of the data is irregularly
to query semistructured data stored as edges angfructured (even if a large amount fits in the SM tables),
attributes. This is because multiple joins are requiredhen the performance of the relational mappings (edge
between theoots and edgestable. Even though indexes and STORED) suffers.
support these joins, multiple index lookups are required,
and these increase the time to answer the query}.4. Other queries
Moreover, the DBLP data is relatively shallow, in that the Query C (find all document IDs of publications by
path length from root to leaf is only two edges. Deeperauthor X) contains a wildcard, since it searches for the
XML data, with longer path lengths, would require even path ‘(%)*.author. X" The results in Table 2
more joins and thus more index lookups. In contrast, &epresent queries for 10,000 different author names.

single index lookup is required for the raw paths. Query D seeks IDs of publications co-authored by
author “X” and author 'Y.” This is a “sibling” query that
4.3. Query B: Find conference papers by author looks for two tags nested within the same parent tag. The

This query accesses a large portion of the DBLP, agesults in Table 2 are for queries on 10,000 different pairs

A fast index for semistructured data 8

Query B 1/0Os Query D I/Os
80000 400000
70000 350000
60000 — 300000
50000 I 250000
& 40000 - & 200000
= 30000 I ~ 150000
20000 I 100000
10000 — 50000 .
o H | 0l == _
Raw paths STORED Edge mapping Refined Raw paths STORED Edge
mapping paths mapping mapping
mindex VO data VO mindex VO - edge [data IO - edge W index /O data /O [index /O - edge [data /O - edge
Figure 6. Query B: find conference paper by author. Figure 7. Query D: Find publications by co-authors.
of authors, and the I/Os are shown in Figure 7. [27], precomputes joins so that at query time, specific

Query E (find IDs of publications by authofin year queries are very efficient. This idea is similar in spirit to
Y) also seeks a sibling relationship, this time betweerour raw and refined paths. However, a separate join index
<author> and <year> . The difference is that while must be built for each access path. Moreover, a join index
<author> is very selective (with over 100,000 unique is sensitive to key length, and is usually only used for a
authors), there are only 58 different years (including itemssingle join, not a whole path.
such as “1989/1990"). Consequently, there are a large Path navigation has been studied in object oriented
number of documents for each year. The results in Tabl¢OO) databases. OO databases use sequences [4,22] or
2 are for 10,000 author/year pairs. hierarchies of path indexes [32] to support long paths,

The results shown in Table 2 illustrate that irregularly requiring multiple index lookups per path. Our
structured data is a significant obstacle to managingnechanism supports following paths with a single index
semistructured data in a relational system. For thdookup. Also, OO indexes support linear paths, requiring
STORED mapping, the SM tables can be accessethultiple indexes to evaluate “branchy” queries. Our
efficiently, but the queries cannot be fully answeredstructure provides a single index for all queries, and one
without costly access to the overflow buckets. The edgdookup to evaluate the query using a refined path. Third,
mapping (which treats all data as irregularly structured) issemistructured data requires generalized path expressions
even less efficient, since every query must be evaluateth order to navigate irregular structure. Although
using expensive self-joins. Thus, even though there ar&hristophides et al. [8] have studied this problem, their
multiple raw path lookups for queries C, D and E, the rawwork focuses on query rewriting and not indexes, and our
paths outperform the relational mappings in each casenechanism could utilize their techniques (or those of
Moreover, the refined paths offer a significant [15]) to better optimize generalized path expressions over

optimization, especially for complex queries. raw paths. Finally, OO indexes must deal with class
inheritance [7], while XML indexes do not.
5. Related work Text indexing has been studied extensively in both

structured and unstructured databases. Suffix arrays and

The_ problem —of storing, ir_1dexin_g and_ Searcmn_gcompressed suffix arrays [16], based on Patricia tries,
semistructured data has gained increasing attent'OBrovide partial-match searching rather than path

[1,5,6,23]. ~Shanmugasundaram et al [26] have,, ijation. Several data and query models for structured

investigated using DTD's to map the XML data into a5 hegides XML have been studied [3]; our techniques

relational tables. The STORED system extracts e, pe adapted for these other models. Others have
schema from the data itself using data mining [12]. Botheytended text indexes and multidimensional indexes to

[26] and [12] note that it is difficult to deal with data that ye, yith structured data [20]; our structural encoding is

Eas wregu:]ar or V?”ag'e §truc):zllaﬁ.. Floge[s)cBuMSandneW’ and we deal with all of the structure in one index.
ossmann have examined storing Inan 8S The Index Fabric is a balanced structure like a B-tree

a set of attributes and edges, using little or no knowledgeEQ], but unlike the B-tree, scales well to large numbers of
of the document structure [17], for example, the edg€qys ang is insensitive to the length or complexity of
mapping we examine here. Other systems store the dajg, s piwan et al have examined taking general graph
natively” using a semistructured data model [24’28'29]'structures and providing balanced, disk based access [14].

Evaluating path expressions in these systems usuall,. gy crure is optimized specifically for Patricia tries.
requires multiple index lookups [23]. Raw paths are

conceptually similar to DataGuides [18].
A join index, such as that proposed by Valduriez

A fast index for semistructured data 9

6. Conclusions

We have investigated encoding paths throughl1l]
semistructured data as simple strings, and performing
string lookups to answer queries. We have investigatedi2]
two options: raw paths, which assume reo priori
knowledge of queries or structure, and refined paths,
which take advantage of such knowledge to achievgig)
further optimization. Our techniques rely on the Index

. : : (14]
Fabric for high performance string lookups over a large
set of non-uniform, long, and complex strings. While the
indexing mechanisms of an RDBMS or semistructured[15]
data repository can provide some optimization, they have
difficulty achieving the high performance possible with [16]
our techniques. Our experimental results confirm that
implementing our techniques on top of an RDBMS offers ;7
a significant improvement over using the RDBMS’s
native indexes for semistructured data. This is especially
true if the query is complex or branchy, or accesseg g
“irregular” portions of the data (that must be stored in
overflow buckets). Clearly, the Index Fabric represents an
effective way to manage semistructured data. [19]

Acknowledgements (20]

The authors would like to thank Alin Deutsch, Mary
Fernandez and Dan Suciu for the use of their STORED[Zl]
results for the DBLP data. We also want to thank Donald
Kossmann for helpful comments on a draft of this paper.

22

References [22]
[1] S. Abiteboul. Querying semi-structured data. Rroc.

ICDT, 1997. [23]

[2] S. Abiteboul et al. The Lorel query language for
semistructured datdnt. J. on Digital Libraries1(1): 68-

88, 1997.

R. Baeza-Yates and G. Navarro. Integrating contents and
structure in text traversaBIGMOD Record25(1): 67-79,

(24]

(3]

1996. [25]
[4] E. Bertino. Index configuration in object-oriented [26]
databased/LDB Journal3(3): 355-399, 1994.
[5] P. Buneman et al. A query language and optimization
techniques for unstructured data.Rmoc. SIGMOD 1996. [27]
[6] D. Chamberlain, J. Robie and D. Florescu. Quilt: An 28]
XML query language for heterogeneous data sources. Ir{
Proc. WebDB Workshg2000.
. . . . 2
[7] S. Choenni et al. On the selection of optimal index [29]
configuration in OO databases. Rroc. ICDE, 1994. [30]
[8] V. Christophides, S. Cluet and G. Moerkottke. Evaluating
qgueries with generalized path expressions. Mnoc.
SIGMOD pages 413-422, 1996. [31]
[9] D. Comer. The ubiquitous B-treeComputing Surveys
11(2): 121-137, 1979.
[10] B. Cooper and M. Shadmon. The Index Fabric: A [32]

mechanism for indexing and querying the same data in
many different ways. Technical Report, 2000. Available

at http://www.rightorder.com/technology/overview.pdf.

DBLP Computer Science Bibliography. At http://mwww.-
informatik.uni-trier.de/~ley/db/.

A. Deutsch, M. Fernandez and D. Suciu. Storing
semistructured data with STORED. Proc. SIGMOD
1999.

Alin Deutsch. Personal communication, January 24, 2001.

A. A. Diwan et al. Clustering techniques for minimizing
external path length. IRroc. 229 VLDB, 1996.

M. Fernandez and D. Suciu. Optimizing regular path
expressions using graph schemadPtac. ICDE, 1998.

P. Ferragina and G. Manzini. An experimental study of a
compressed index. IRroc. ACM-SIAM SODA2001.

D. Florescu and D. Kossmann. A performance evaluation
of alternative mapping schemes for storing XML data in a
relational database. INRIA Technical Report 3684, 1999.

R. Goldman and J. Widom. DataGuides: enabling query
formulation and optimization in semistructured databases.
In Proc. 23° VLDB, pages 436-445, 1997.

Alon Itai. The JS Data Structure. Technical report, 1999.

H. V. Jagadish, N. Koudas and D. Srivastava. On effective
multi-dimensional indexing for strings. InProc.
SIGMOD, 2000.

Donald Knuth.The Art of Computer Programming, Vol.
Ill, Sorting and Searching, Third EditionAddison
Wesley, Reading, MA, 1998.

W. C. Lee and D. L. Lee. Path Dictionary: A New
Approach to Query Processing in Object-Oriented
DatabasedEEE TKDE 10(3): 371-388, May/June 1998.

Jason McHugh and Jennifer Widom. Query Optimization
for XML. In Proc. 28" VLDB, 1999.

J. McHugh et al. Lore: A Database Management System
for Semistructured Dat&5IGMOD Record26(3): 54-66,
1997.

Oracle Corp.Oracle 9i database http://www.oracle.-
com/ip/deploy/database/9i/index.html.

J. Shanmugasundaram et al. Relational databases for
querying XML documents: Limitations and opportunities.
In Proc. 28" VLDB, 1999.

P. Valduriez. Join Indice§.0DS12(2): 218-246, 1987.

Software AG. Tamino XML database http://www.-
softwareag.com/tamino/.

XYZFind. XML Databasehttp://www.xyzfind.com.

W3C. Extensible Markup Language (XML) 1.0 (Second
Edition). W3C Recommendation, October 6, 2000. See
http://lwww.w3.0rg/TR/2000/REC-xmI-20001006.

W3C. XSL Transformations (XSLT) 1.0 W3C
Recommendation, November 16, 1999.
http://www.w3.0rg/TR/1999/REC-xslt-19991116.

Z. Xie and J. Han. Join index hierarchies for supporting
efficient navigations in object-oriented database$?roc.
VLDB, 1994.

See

A fast index for semistructured data

10

For more information, please visit our website, www.rightorder.com, or send email to technology@rightorder.com.

Rightrder

A fast index for semistructured data 11

