CHAPTER 3

Miscellaneous Tagging

In This Chapter:
e Language Settings 59
e Space Handling 65
e Date and Time Representation 68

Several text properties are common to all types of XML documents, regardless of their
final purpose. These characteristics occur so frequently that the various XML standards
often include special provisions for them.

These properties cover the following challenges:

e How to identify the language of the content—For example, how to distinguish
a paragraph in German from one in Czech.

e How to handle white spaces—Basically, how to note the difference between
spaces that are meant to make the structure of the document more readable
(spaces such as indentations and empty lines), and the ones that are meaningful.

e How to represent date and time information—In our case especially, how to
display this information both from locale-specific and from locale-neutral
viewpoints.

Language Settings

To address language identification, XML provides a default attribute to specify the
language of any element: xm1: 1ang. In many respects this attribute can also be seen as
a locale.

A locale is, roughly, the combination of a language and a region. The classic example
is the difference between French, the language, and the two locales: French for France,
and Canadian French (Québécois). Many other examples exist: the various flavors of
Spanish, Brazilian versus Portuguese, and so forth.

In addition to linguistic differences, the locale also often indicates possible variations
on how to process data: Currency, numbers, date/time formatting, sorting, and
character uppercasing and lowercasing are some of the locale-specific areas.

60 Chapter 3

Sometimes the locale even goes beyond and points to deeper differences such as the
type of writing system (for example, Classical Mongolian versus Cyrillic Mongolian,
or Azerbaijani Arabic versus Azerbaijani Cyrillic).

NOTE: A good example of a language where differences are clear between
locales is Spanish.

Spanish is spoken in many countries and therefore comes in many different
varieties. When localizing for a specific market you must decide which flavor you
need.

For example, Spaniards use “utilidades” for “utility programs,” Argentines use
“utilitiarios,” and Mexicans use “utilerias.” Another example is the term
“computer.” Spaniards use the word “ordenador” but all Latin Americans use
“computadora’ instead. Such discrepancies cause a few dilemmas when you
want to have only one Spanish translation for all markets.

To reduce costs, companies often try to use a “neutral” or “international”
Spanish. This is an artificial creation, as is “Latin American Spanish.”

Finally, to avoid confusion, you might want to refer to the Spanish spoken in
Spain as “Iberian Spanish” rather than “Castilian Spanish,” the term “Castellano’
being often used in South America to refer to the Spanish spoken there.

J

When defining your own XML vocabulary, you should use xm1: 1ang as your attribute
to specify the locale information, rather than come up with your own attribute. There
are a couple of good reasons for this.

First, xm1: 1ang will be understood immediately by any XML user. And second, it will
allow you to take advantage of interoperability among the various XML-related
technologies such as XSL or CSS.

If you use a DTD to specify your format, xm1 : 1ang must still be declared, just as with
any other attribute. For example:

<!ATTLIST p
xml:lang NMTOKEN #IMPLIED >

Language Codes

The values of the xm1 : 1ang attribute should conform to the language tags defined in
the XML specifications, as shown in Listing 3.1.

Miscellaneous Tagging 61

LISTING 3.1

Definition of the Value for the xm1 : 1ang Attribute

LangValue ::= Langcode ('-' Subcode)*

Langcode ::= IS0639Code | IanaCode | UserCode
ISO639Code ::= ([la-z] | [A-Z]) ([a-z] | [A-Z])
IanaCode ti= ('i' | 'T') '=' (la-z] | [A-Z]1)+
UserCode = (x| 'X'Y) '"=' (la-z] | [A-Z])+
Subcode 1= ([la-z] | [A-Z])+

In addition, according to RFC1766, the part on the right of the '-' can be up to 8
characters long.

Currently the language codes use ISO 639 2-letter codes, but as of January 2001,
RFC1766 has been superseded by RFC3066, which introduces the use of ISO 639
3-letter codes.

According to this last RFC, if a language can be identified with both types of code, the
2-letter code must be used. The 3-letter codes should be used only for representing
languages that do not have 2-letter codes. For example, the code for Korean must
always be ko and never kor.

In addition, there are 2 types of 3-letter codes: Terminology and Bibliography.
Currently none of the languages that should be using a 3-letter code have a discrepancy
between the Terminology form and the Bibliography form. If such a conflict occurs in
the future, the Terminology code should be used.

Finally, if a language has both an ISO code and an IANA code, the ISO code must be
used.

TABLE 3.1

Use of ISO Codes

Languages 639-1 639-2/T 639-2/B xml:lang
French fr fra fre fr

German de deu ger de
Manipuri mni mni mni

Navajo nv nav nav nv

62 Chapter 3

NOTE: Normally, attribute values in XML are case sensitive. However, for
simplification purposes and to match the RFC3066 standard, the values of the
xml : 1ang attribute are not case sensitive. For example, the four values “pt-BRr’,
“pT-BR’, “pt-br”, and “pT-br” (Brazilian Portuguese) are considered identical.
Usually the language code is represented in lowercase and the country code in
uppercase, but this is not a rule.

User-Defined Codes

In some cases the list of variant codes you can build from the predefined language and
region codes is not enough.

For instance, as we have seen already, you might have to localize a document in two
types of Spanish: one for the audience in Spain (Iberian Spanish) and the other for the
Latin American market. The first should be coded “es-ES”, or simply “es” because
Spain is the default country for Spanish. For the second, however, no country code
corresponds to “Latin America.” To solve this you can create your own locale codes as
defined by UserCode in Listing 3.1. For example, you could use something such as
“x-es-LatAm” for your Latin-American Spanish document.

A special kind of user-defined code exists: the one registered to the IANA. Most of
them start with the prefix i-. The list of these language tags is updated regularly and
you can find itat http: //www. iana.org/assignments/languages.

NOTE: Be aware that some localization tools might be programmed to handle
only 4-letter codes, and might not be able to process IANA or user-defined
codes correctly.

For a detailed list of language codes, see Appendix D.

Multilingual Documents

As you saw in Chapter 2, “Character Representation,” one characteristic of XML is its
capability to handle content in different languages when necessary.

For example, as shown in Listing 3.2, a SOAP data file could store description of an
item in several languages.

Miscellaneous Tagging 63

LISTING 3.2

Soapl.xm1—SOAP Envelope with Multilingual Entries

<!-- SOAP excerpt -->
<Envelope
xmlns="http://schemas.xmlsoap.org/soap/envelope/"
encodingStyle="http://schemas.xmlsoap.org/soap/envelope/">
<Body>
<d:GetItem xmlns:d="uri:myData" xml:lang="en">
<d:PartNum>NCD-67543</d:PartNum>
<d:InStock>5</d:InStock>
<d:Desc>Manual water pump</d:Desc>
<d:Desc xml:lang="fr">Pompe a eau manuelle</d:Desc>
<d:Desc xml:lang="ja">F I+ —4— K> TF</d:Desc>
</d:GetItem>
</Body>
</Envelope>

The default language from the <d:GetItem> element level is set to en (English). The
child elements inherit the property, so the first <d: Desc> element does not need to
repeat the attribute. However, because the second one contains the description in
French, you need to override the default xm1: 1ang attribute.

Always keep in mind that XML element and attribute names can have non-ASCII
characters as well. In such occurrences, the language specifications work the same.
Listing 3.3 shows the same SOAP envelope, but this time with the user data marked up
with a Russian vocabulary. The data are identical and the xm1 : 1ang mechanism is
expected to behave the same: It applies to the content, not to the tags.

LISTING 3.3

Soap?2 .xm1—SOAP Envelope with Multilingual Entries and Some Non-ASCII
Elements

<!-- SOAP excerpt -->
<Envelope
xmlns="http://schemas.xmlsoap.org/soap/envelope/"
encodingStyle="http://schemas.xmlsoap.org/soap/envelope/">
<Body>
<pm:JocTareO00BEKT
= xmlns:g="uri:%$D0%9C%D0%BE%D0%B8%D0%94%D0%B0%$D0%BD%$D0%BD%$D1%8B%$D0%B5"
=xml:lang="en">

64 Chapter 3

LISTING 3.3 CONTINUED

<pn:HoMepO6bekTa>NCD-67543</xn:HoMepOOBeKTa>
<n:BHannuuwn>5</n:BHanuunnu>
<p:Ommcanme>Manual water pump</n:OnmucanHue>
<p:Ommcanme xml:lang="fr">Pompe & eau manuelle</n:Onmucanme>
<pm:Ommucanme xml:lang="ja">FEV A+ —Z—: K27 '</n:0mucanne>
</m:IJocrars00BEeRT>

</Body>

</Envelope>

Note the value of the xm1ns attribute: The namespace prefix n is associated to a URI
reference (Monllauuse), but here the URI has already been coded into its UTF-
8/escaped form as described in Chapter 2.

The 1ang Attribute in XHTML

For historical reasons, in addition to xml : 1ang, XHTML also allows the attribute
lang to specify language switch. Both have exactly the same significance.

In case the same element has both xm1 : 1ang and 1ang with two different values,
xml: lang takes precedence over lang.

NOTE: Using xml:1ang or 1ang has no direct impact on the way the text is
rendered. For example, specifying a paragraph as Arabic does not trigger right-
to-left display. You must use the style sheets and the various internationalization
elements and attributes such as <bdo>, <dir>, and <ruby> for XHTML to
indicate to the user-agent how the text should be displayed.

However, take into account that language is important in some cases: for
example, to select an appropriate font. If a document is encoded in UTF-8 or
UTF-16, there is no easy way to distinguish Chinese from Japanese, because
most ideographs have been unified.

The 1ang () Function in XPath

XPath is the language used in various XML applications to specify a “path notation”
that allows you to navigate through the hierarchical structure of any XML document. It
is also used to test whether the node of a document instance matches a given pattern.
XPath is used, for example, in conjunction with XPointer and XSLT.

XPath designers have wisely provided a function to match languages: lang ().

Miscellaneous Tagging 65

The function uses the xm1 : 1ang attribute to match a given parameter. This is very
useful because, following the XML specifications, the function is not case sensitive
and allows you to match a language value very simply.

When you specify only a language code rather than a locale code (for example, en
versus en-GB), the function returns true for any attributes where the first part of its
value matches the argument. The separator between both parts of the value is ‘-’.
Consider the following XSL statement:

<xsl:for-each select="lang('es')">

When this command is used on the XML document shown in Listing 3.4, it will return
true for all the following elements:

<p xml:lang="es">Spanish text</p>
<p xml:lang="ES">Spanish text</p>
<p xml:lang="es-ES">Iberian Spanish text</p>

<p xml:lang='es-mx'>Mexican Spanish text</p>

LISTING 3.4

Spanish.xml— Multilingual Document with Different Spanish Flavors

<?xml version="1.0" 2>

<document>

<p xml:lang="es">Spanish text</p>

<p xml:lang="fr">French text</p>

<p xml:lang="ES">Spanish text</p>

<p xml:lang="CA-es">Catalan text</p>

<p xml:lang="es-ES">Iberian Spanish text</p>
<p xml:lang="es-mx">Mexican Spanish text</p>
</document>

Keep in mind that not all XSL processors support all XSL features yet. The lang ()
function is not supported in all browsers, for example.

Space Handling

Although internationalization is often about separating the presentation information
from the content, a few instances exist where the presentation parameters must be
known by the tools for a more efficient translation. One of them is the information
about how to handle white spaces.

66 Chapter 3

White spaces are defined as spaces, tabs, carriage returns, and line-feeds:
WS ::= (#x20 | #x9 | #xD | #xA)+

You will notice that other “space”-like characters such as NO-BREAK SPACE
(U+00A0), IDEOGRAPHIC SPACE (U+3000), EM SPACE (U+2003), THIN SPACE
(U+2009), EN QUAD (U+2000), and so forth are not included in the white space list.
They are treated just like regular characters as far as XML processors are concerned.

As for the language, XML defines a special attribute to indicate how white spaces
should be handled in a given element set: xm1: space.

The attribute can have two values: default or preserve. The first one lets the XML
processor behave as its default mechanism is set, whereas the second one indicates that
all white spaces must be preserved and passed without transformation.

If you use a DTD to specify your format, xm1: space must be declared, just as any
other attribute:

<!ATTLIST SourceCode
xml:space (default|preserve) 'preserve' >

or

<!ATTLIST pre
xml:space (preserve) #FIXED 'preserve'>

Always keep in mind that xml : space is an indicator for the parser, not the rendering
engine, although some rendering engines are taking it into consideration (such as
Adobe’s SVG viewer).

Localization tools should take into account the presence of xm1 : space when
extracting content. It is the best indicator to specify whether the white spaces of a run
of text should be left alone. This information should be carried during the translation.

Listing 3.5 shows an XML file where the element <cmd1ine> contains preformatted
text, while the multiple spaces in the <p> element should be reduced to a single blank.

LISTING 3.5

Spaces1.xml—Usage of the xm1 : space Attribute

<?xml version="1.0" 2>

<doc>

<cmdline id="1" xml:space="preserve">Command line:
-x run the tool with option x

-f[name] specify [name] for font</cmdline>

Miscellaneous Tagging 67

LISTING 3.5 CONTINUED

<p id="2">Text where
any set of white spaces 1is reduced to 1.</p>
</doc>

XHTML

The XHTML specifications add a few clauses to the handling of white spaces.

In addition to line-breaks, tabulations, and space, the characters FORM FEED (U+000C)
and ZERO WIDTH SPACE (U+200B) must also be treated as white spaces.

Leading and trailing white spaces in block elements should be removed unless the
xml: space attribute is set to preserve. In other words, the following XHTML
fragments are identical to one another.

<p> This 1is an example </p>
<p>

This is an

example

</p>

<p>This is an example</p>

CSS

When rendering is involved, you can use the white-space property of CSS to specify
how the preformatting should be handled. The values available are normal, pre,

nowrap, and inherit.

If you take the document shown in Listing 3.5 and apply to it the style sheet displayed
in Listing 3.6, you can see in Figure 3.1 that the rendering of the <cmd1line> is done
correctly.

LISTING 3.6

Spaces3.css—Style Sheet used to Display Figure 3.1

doc {

display: block;

margin-top: 10px; margin-left: 10px;
}

68 Chapter 3

LISTING 3.6 CONTINUED

p {
display: block;
margin-bottom: 10px;
}

cmdline {

display: block;

margin-bottom: 10px;

white-space: pre; font-family: "Courier New";
}

[Netscape 6 {Build ID: 2000092908} M= E3

7| Fie Edt View Sesch [Go Bookmatks Tasks Help

¥]

Command line:
-x run the teool with option =
—f[name] specify [name] for font

Text where any set of white spaces is reduced to 1

B | Document Done =i

FIGURE 3.1
Rendering of white spaces with the white-space CSS attribute in Navigator 6.

Note that the same example would not work with Internet Explorer 5.5, which does not
support the white-space property correctly yet (version 5.5.4522.1800, with SP1).

Date and Time Representation

As is true for any software application, XML documents should store date and time
information in a locale-independent manner or with enough information about what
locale was used to format it.

Time stamps will become more and more important as distributed applications across
several time zones will increase the complexity of synchronizing tasks.

One challenge with XML is that documents can be used for a wide range of
applications and can serve many different purposes. Ideally, storing date/time
information as a number would be the best way to proceed: The correct formatting

Miscellaneous Tagging 69

could be applied at rendering time. However, this is practical only if you process the
documents with your own application, such as SOAP.

In many cases, you will have XML documents in which the user will interact directly
with the file, without the benefit of a reformatting of the content. In such occurrences,
the date/time must be directly readable by the user.

ISO Format

As always, the best way to implement locale-specific information is to use existing
standards when possible. ISO offers a wide palette of standardized representations for
date, time, duration, and intervals in the ISO 8601:1988 specifications.

Each application can have different requirements and you should pick the format that
best fits the type of information you need to represent.

As an example, you can look at the TMX format. This XML standard for translation
memory exchange uses several attributes related to date/time information:
changedate, creationdate, and lastusagedate. All three of them use the same
format:

YYYYMMDDThhmmssZ

For instance, the string 20000811T1334027 represents August 11, 2000 at 1:34 p.m. 2
seconds, in UTC.

Listing 3.8 presents a short TMX document (just one entry: a software string in English
and Esperanto) generated by a translation memory utility that demonstrates how the
different attributes are used.

LISTING 3.8

Date Time.tmx—TMX Document with the Three Date/Time Attributes

<?xml version="1.0" 2>

<!DOCTYPE tmx SYSTEM "tmxl2.dtd">

<tmx xmlns="http://www.lisa.org/tmx" version="1.2">

<header creationtool="Rainbow"
creationtoolversion="2.00-1"
datatype="PlainText"
segtype="sentence"
adminlang="en-uUs"
srclang="en-Us"
o-tmf="Rainbow"
creationdate="20000101T163812Z"

creationid="YvesS"

70 Chapter 3

LISTING 3.8 CONTINUED

changedate="20000314T023401z"
changeid="Amity"
o-encoding="is0-8859-3">
</header>
<body>
<tu tuid="0001"
datatype="Text"
usagecount="2"
lastusagedate="20000314T023401z">
<tuv lang="EN"
creationdate="20000212T153400Z">
<seg>Search for PATTERN in each FILE or standard input.</seg>
</tuv>
<tuv lang="EO"
creationdate="20000309T021145z"
changedate="20000314T023401z">
<seg>Seréi pri SABLONO en éiu DOSIERO ali la normala enigo.</seg>
</tuv>
</tu>
</body>
</tmx>

When developing a new schema or porting an XML DTD to a schema definition, you
might want to take advantage of the predefined types for date and time. The XML
Schema offers a collection of predefined types for date, time, duration, and intervals.

For example, the three date/time-related attributes we have seen in TMX would be of
the type timeInstant, as in the excerpt below:

<attribute name='lastusagedate' type='timeInstant' use='optional'/>
<attribute name='creationdate' type='timeInstant' use='optional'/>
<attribute name='changedate' type='timeInstant' use='optional'/>

Summary

In this chapter we have seen three types of information often encountered in XML
documents. Make sure you address them when developing your own XML schema or
when writing localization tools.

First, use xm1: lang to indicate the different locales within your documents.

Miscellaneous Tagging 71

Second, make sure preformatted blocks of text are clearly indicated to the XML parser,
so that tools can carry on that information during translation and avoid unnecessary
reformatting. The attribute xm1: space is a good way to do this.

Third, for any date or time related attribute, use one of the forms of the ISO 8601:1988
standard, or a locale-independent raw numerical value if no human is meant to read the
XML document.

References

The following is a list of some online reference documents. Make sure you get the
latest information.

ISO 639-2, Language Codes (Library of Congress Network Development &
MARC Standards Office): http://lcweb.loc.gov/standards/is0639-2

ISO 3166 country codes (ISO 3166 Maintenance Agency): http://

www.din.de/gremien/nas/nabd/iso3166ma/index.html
IANA Language Tags: http://www.ilana.org/assignments/languages

RFC1766, Tags for the Identification of Languages: http://www.ietf.org/
rfc/rfcl766.txt

RFC3066, Tags for the Identification of Languages: http://www.ietf.org/
rfc/rfc3066.txt

White spaces in XML: http://www.w3.0rg/TR/

REC-xml#sec-white-space
White spaces in XHTML: http://www.w3.0rg/TR/xhtml1/#uaconf
XML Schema Part 2: Datatypes: http: //www.w3.0rg/TR/xmlschema-2

ISO 9801:1988 Date and Time Formats (International Organization for
Standardization): http://www.iso.ch

