COMMERCE @[3

SOX Tutorial

Table of Contents

TADIE OF CONTENTS ...t et b e et b ettt b et et b et et sbe et s b et et nb e 2
N | 014 oo [0 o3 o] o OSSOSO 3
2 An Introduction to SOX Schemas and INSTANCEScceiiiiiiiiii e e 3
2.1 The BasiCs 0f @ SOX SCNEIMAiiuiiiiiiieiiie ettt st b et be et ae e e 3
2.2 The Basics 0f an INStanCe DOCUMENTcuiiiiiiiiie ittt st see s 3

3 Document TYPe DECIAIATIONS........ccuiiiiiiieiiiee ettt ettt b bbb e e e 4
3.1 XML Version and DOCTYPE DeCIarationcccccoiieiiiiniiiieie e 4
3.2 The Instance SOXtYPE DECIAIALIONcoiitiiiiiiieeiee it et 4

4 The BaSiC SOX SCREMAcviiiiiiciiece e ettt ettt 4
4.1 The SChema EIBMENTcvoiiieicic bbbttt 4
4.2 Elementtype DefiNItiONSccociiiiiicieicie et 5
4.2.1 Empty Content IMOGE]eieeieeeere sttt snesre e enee e 5
4.2.2 String CoNteNt MOUEL..... ..ottt sne e e e e ee e 6
4.2.3 Element CoNtent MOGETcooiiieiieice e e e 7
4.2.4 Sequence Content MOTEN ..o 8
425 Choice CONENE IMOGEI ..o bbb 10
426 OICCUIS .ttt ettt etttk b e btk e e et he e bt e eh e e bt e a bt e ab e e b b e eb e e ek e e ke e nbeeheesbeenbeeebeeabeanbeens 11
4.2.6.1 7 OCCUITEICEeeeeiitientieuteeitesieestee s tee bt e ste e b e se e sas e ebe e skt e be e s be e s besheesbeesbe e abeeabeanbeenbesanenbeanbeen 11
4.2.6.2 F OCCUIMEICEeeetett et et eete st e bt e skt esbe e ste e b e aeeeae e ebe e et e e bt aabeesbeseeesheesbeeebeeabeenbeanbeannanbeenbeens 12
4.2.6.3 T OCCUITEICE ...veviteetieteeeest etttk bttt b ekt b bbb nb e bt b e e bt e s e e b e e nb e abenb e ebeeseenenenrea 14
4.2.6.4 N,V OCCUITEINCE. ... itttk ettt b ettt b bbbt e neear e b bt e b e e e ennenne 15

4.2.7 AITTOULES. bbbttt e b s 16

L T B T v- I oL) T T3S 19
4.3.1 Enumeration Datatype Definitioncccoieiiie i 19
4.3.2 Scalar Datatype DefinitioNcococvieiiiiei e 20
4.3.3 Varchar Datatype Definitionccoooiiiiiiiiiiee e 21
4.3.4 Anonymous Datatype Definitions.........cccooiiiiiiiiiiee s 21

4.4 Complete SOX SCHEMA .. .ottt e bbb bbb e e 23

I\ F- 0 4 (1] 0T o= T PO P U P TSR URUPRUPRO 25
5.1 IMPOItiNG SOX SCNEIMAScviiiiiiiiiieieee e bbbttt e b e bbb e e 26
5.2 Using Elementtypes and Datatypes from Imported SChemascccccoooeieiinieiiiiiicie e 26
LT B |V [V | IV =Y I oo SRS 28
5.4 Using a Default Namespace in an INSTANCEcccevviirieieeieieeere e eneas 33

(T 101 0 T=T 1 e ot OO P TR 34
6.1 Extending an EXisting EIEMENL..........cccooiiiiiiiiicc e 34
6.2 Extending an Element from a Different Namespace..........cccvvvvvrvriviieeienene e siesesneeereeniese e 37

A =0 Y 42 T0]]] . S 41
7.1 Using Polymorphic Elements from the same NameSPaCe.........cccocerererieieeneie s 41
7.2 Using Polymorphic Elements from Different NamesSpaces..........ccoovreririeeieieiese e 43
7.3 Using Polymorphic Elements that are Not Accessible from the Current Namespace................... 45
AppPendiX Az INTFINSIC DATATYPESeiviiieiiieiieeee ettt be bbbttt e e et e be e sne e e e sbesae s 47
APPENAIX B2 GIOSSAIY ...ttt et b et b bttt e e e b e sbeeb e s b e e bt e b e e e e besbesbesbeeneaneeneenbesaens 49

Commerce One 2 SOX Tutorial

1 Introduction

This document covers most of the basic and advanced features in the SOX language, including
namespaces, inheritance and polymorphism. It contains explanations of SOX features, advice on writing
schemas and instances, as well as sample schemas and instances, and is intended to serve as help in
developing schemas. It provides enough information about the language to enable a reader to write SOX
schemas, and instances of schemas.

The pre-requisite for this document is some familiarity with XML. Familiarity with SOX is optional. The
current version of XML is described in the XML 1.0 specification. The current version of SOX is
described in the SOX 2.0 specification. The specification documents can be found at:

http://www.w3.0rg/TR/REC-xml
http://www.w3.0rg/TR/INOTE-SOX/

This document is intended both for novice and experienced schema authors who want to learn more about
the features of the language. For more detailed information about all the available SOX features, please see
the SOX specification, titled Schema for Object-Oriented XML 2.0.

2 An Introduction to SOX Schemas and Instances

Two concepts are vital to the SOX language, a SOX schema and an instance document:

e SOX schema - defines structure rules in the form of elementtype definitions and datatype
definitions. The schema is written in XML format and conforms to a DTD called
"schema.dtd". The schema must be a valid instance of the DTD. It will have only one root
element, which is of type schema. In the schema element, elementtype definitions and
datatype definitions can take place.

» Instance document - an XML instance of a SOX schema. The instance is written in XML
format and must conform to a schema or a set of schemas. It may only have one root
element, and that element must be defined in a schema that the instance has access to. That
root element, and all of its valid content, must in turn conform to their specific structure rules.

2.1 The Basics of a SOX schema

A schema provides a way to do a lot of the basic declarations possible in XML, but makes the declarations
easier to both read and write. A SOX schema is expressed in XML format, which means it must be both
well-formed XML, and valid XML according the schema DTD. The declarations contained in a schema
enable a structured way of containing data.

A SOX schema provides the basic XML datatypes, as well as an added number of SOX datatypes. It
adds the possibility of using these datatypes in element content in addition to attributes. That means that
any value of intrinsic type appearing anywhere in a document can be type checked. In addition, SOX
provides a means for user-defined datatypes, which extend the intrinsic, pre-defined datatypes. This means
that a SOX schema writer can put additional constrains on datatypes to suit his or her needs.

2.2 The Basics of an Instance Document

An instance document must conform to structure rules set up in one or several schemas. This set of rules
makes the XML instance document very useful for data storage, since content must be present exactly in
the order as stated in the schema, and with all required data present, in order for the document to be valid.
A SOX parser such as cxp can tell if the document is a valid instance or not. In addition, the data
undergoes validity checks for type and constraints, saving a developer of a data-consuming application a lot
of work.

Commerce One 3 SOX Tutorial

http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/NOTE-SOX/

3 Document Type Declarations

All SOX documents, and the XML document instances, must start with identifying information, that states
what type of document will follow. This information tells a receiving application the kind of documnt it is
receiving, and also enables the application to verify that the document is, in fact, one that it can process.

A SOX schema must have an XML version tag, as well as a DOCTYPE declaration.
An instance document must have a soxtype declaration.

3.1 XML Version and DOCTYPE Declaration

A SOX schema is described in XML format, and is a valid XML document that conforms to the schema
DTD. The SOX schema should therefore always begin with the XML version tag. A DOCTYPE
declaration should immediately follow the XML version. The declaration describes the type of the
document that, in the case of SOX schemas, is schema. It also gives the location of the DTD to which the
schema conforms, preceded by the SYSTEM keyword. These two lines look the same in all Commerce
One SOX schemas:

Example 3.1:

<?xm version="1.0"?>
<! DOCTYPE schema SYSTEM "ur n: x- conmer ceone: docunent : com commer ceone: xdk: xn : schema. dt d$1. 0" >

As reflected in this example, the current version of XML is 1.0.

3.2 The Instance soxtype Declaration

Just as the SOX schema needs a DOCTYPE declaration to specify what DTD it conforms to, the instance
that conforms to a schema needs a soxtype declaration to specify what schema it is instantiating. The
format for the soxtype tag is very simple:

Example 3.2:

<?soxtype urn:x-conmer ceone: docunent : sanpl e: xdk: sox: sanpl e. sox$1. 0?>

The tag contains the keyword soxtype, which signals to a SOX processor, such as cxp, that this is an
instance of a SOX schema. Next follows the URI of the schema that has been instantiated. It must
correspond to the URI attribute of the schema element, as described in 4.1. See the URI working draft for
more information on the format of URI's.

4 The Basic SOX Schema

Any SOX schema will, aside from an XML version and a DOCTYPE declaration, contain one root
element: the schema element. The schema element start and end tags will be the wrapper of all other
definitions in the document.

4.1 The Schema Element

The schema start tag must always contain a URI attribute. The URI attribute defines the namespace of the
schema, and is expressed in a URI format. See the URI working draft for more information on the format of
URI's.

The namespace is a unique identifier of the schema, which may also be used in determining the schema's
physical location. Here is an example of how the schema element would be used:

Example 4.1:

<schema uri ="urn: x- conmer ceone: docunent : sanpl e: xdk: sox: sanpl e. sox$1. 0" >

</ schena>

http://www.w3.org/Addressing/URL/URI_Overview.html
http://www.w3.org/Addressing/URL/URI_Overview.html

The ellipsis, "...", symbolizes the content of the schema element.

Commerce One Implementation specific note:

Since the Commerce One implementation uses the URI of the schema to determine the physical
location of the schema, a strict formula has to be followed in constructing the URI, if the schema
is to be used with Commerce One tools or software:

1. The URI must always start with "ur n: x- conmer ceone: docunent : ".

2. Determine what the root of your schema tree is. This is a location in the file hierarchy that all
the schemas are located underneath. The root is represented as (ROOT) in the examples
below.

3. From the root, determine the path to the file itself. That path will be the next part in the URI,
with the file separator replaced with a colon ":". In example 4.1, the path to the file is
"(ROOT) / sampl e/ xdk/ sox/ ". Note that an extra level is added to the physical path of
the file, which is not reflected here. See step 5.

4. The next part of the URI, separated from the path by a colon, ":", is the name of the file. In the
example above, the name of the file is "sanpl e. sox".

5. The last part of the URI is the version. The version is separated from the rest of the URI by a
"$". In example 4.1, the version is 1.0. Currently, the implementation only allows version 1.0.

The version is represented in the physical location of the schema, as an extra directory level in
the path. This directory is the last directory in the path, and is effectively the directory the
schema is located in. That is, the schema must be physically located in a directory
representing the version. The version is modified before being used in the path, by adding an
"n" before the version, and substituting the period, ".", with an underscore, " _". Version 1.0
would therefore become "n1_0" in the physical path of the file. The version part of the path is
not reflected in the part of the URI that is derived from the path, see step 3. In the example

above, the schema would be located in "(ROOT) / sanpl e/ xdk/ sox/ nl1_0".
The complete physical path to the file represented by the URI above would therefore be:

(ROOT) / sampl e/ xdk/ sox/ nl1_0/ sanpl e. sox

4.2 Elementtype Definitions

In your schema element, you can specify elementtype definitions. They are definitions of structures in your
document. Any elementtype that has been specified in a schema can be instantiated as a root element in an
instance of that schema. An elementtype can have five different kinds of content models: empty, string,
element, sequence or choice.

4.2.1 Empty Content Model

An empty content model means that the element can contain no data or elements. It is useful when the
presence of an element is optional and the element’s presence is significant. See section 4.2.6: Occurrence.
An empty content model can also be useful when all of the data is contained in attributes. See section 4.2.7:
Attributes.

Example 4.2:

Commerce One 5 SOX Tutorial

<el enent t ype nane="NoContent" >

<enpty/ >
</ el ement type>

Note the naming convention of the element in example 4.2. It is generally a good idea to hame your objects
in Camel Case style, where the name begins with an upper case letter, and each new word in the name also
begins with an upper case letter. This makes the hames easy to read.

Commerce One Implementation specific note:

In addition to making the names easier to read, this naming convention also creates class names
and method names with good Java style in the java beans that the SOX compiler generates from
the SOX schemas.

An instance of an elementtype with an empty content model can be expressed in two ways, with an open
tag and close tag with no content in between, or an empty tag. Note that in the following examples, a
forward slash signifies the end, or closure, of an element. Also note the difference in use of the forward
slash in the following examples:

Example 4.3:

<NoCont ent ></ NoCont ent >

In this element instance of NoCont ent , there is first an opening tag, immediately followed by a closing
tag. The closing tag has the exact same name as the opening tag, but has a forward slash before the name,
to signify that it is a closing tag. The lack of content between the tags means that this is an empty element.
The same effect can be achieved with the empty tag:

Example 4.4:

<NoCont ent/ >

The empty tag is different from the start and end tags, in that it has the forward slash indicating closure, but
it is appended to the tag name instead of preceding it. The empty tag functions as both a start tag and an end
tag combined. It accomplishes exactly the same thing as the two tags in example 4.3.

4.2.2 String Content Model

The string content model essentially means that the element can only contain data, and no elements. The
string itself can be of a specific datatype, which can be intrinsic or user-defined. See Appendix A: Intrinsic
Datatypes for more information on the intrinsic datatypes available. This approach is useful when you have
a very simple structure, which will only contain one piece of text data.

Example 4.5:
<el enenttype nane="Stri ngContent">
<nodel >
<string/>
</ model >

</ el ementtype>

Example 4.5 creates an element with a string content model with a datatype of string. If no datatype has
been provided the type will always default to string. Some possible instances of this elementtype would be:

Example 4.6:

<StringContent>This is nerely string content</StringContent>

Commerce One 6 SOX Tutorial

Example 4.7:

<StringCont ent ></ Stri ngCont ent >

With a string datatype, such as string, NMTOKEN or NMTOKENS, it is possible to have an instance like
the one in example 4.7, where no value has been provided. In fact, you could even have an instance that has
an empty tag. This might look odd, but it is the same thing as a string with a length of 0 characters, and is
completely valid.

Here is an example of how to set the datatype of the string content model:

Example 4.8:
<el enentt ype nane="Int eger Stri ngContent" >
<nmodel >
<string datatype="int"/>
</ model >

</ el ement type>

A sample instance of this elementtype could look like:

Example 4.9:

<l nt eger St ri naCont ent >123</ | nt eqer St ri naCont ent >

In this case, you can not create an instance with no content, which would not be a valid integer. In example
4.7, a string of 0 characters is perfectly valid; but in example 4.9, the datatype has been set to be integer,
and an integer must always have a value. The same is true for most of the intrinsic datatypes.

4.2.3 Element Content Model

An element content model means that the content of the defined element is restricted to be only one type
of element. Any content model that is not empty must be contained within a model tag. The type of the
element can either be an intrinsic datatype, (see Appendix A: Intrinsic Datatypes), user defined datatype
or another elementtype. If the type is a datatype, then the element must also have a name, if the type is an
elementtype the name is optional:

Example 4.10:
<el enent t ype nane="El enent Content" >
<nmodel >
<el enent type="string" nane="StringContent"/>
</ nodel >

</ el enenttype>

An instance of the above elementtype could look like this:

Example 4.11:

<El enent Cont ent >
<StringContent>This is ny string content</StringContent>
</ El enent Cont ent >

Commerce One 7 SOX Tutorial

Notice the difference between example 4.11 and example 4.6. In 4.11we get two levels of tags before we
reach the text data. This is because the El erent Cont ent element only has element content, and it is that
element content that in turn has string content. Because the content is of type string, St r i ngCont ent
could have empty content, just as the element in example 4.7.

Next let's create an element content model with content that consists of another defined elementtype. Let's
use the NoCont ent element from example 4.2:

Examnle 4 12

<el enent t ype nane="El enent Cont ent Two" >
<nodel >
<el enent type="NoContent"/>
</ model >
</ el ementtype>

An instance of this elementtype could look like this:

Example 4.13:

<El enent Cont ent Two>
<NoCont ent/ >
</ El enent Cont ent Two>

As suspected, example 4.13 looks just like example 4.11, except that the inner element can not have any
content. Just like that example, we have one element being contained inside the other. As stated above,
when the type is another elementtype, the name value is optional. In this case we did not rename the
contained elementtype, but happens if we do?

Example 4.14:
<el enentt ype nane="El enent Cont ent Three" >
<nmodel >
<el enent type="El enment Content" nane="El emrent Nane"/ >
</ nodel >

</ el ementtype>

The elementtype in example 4.14 differs from the elementtype in example 4.12 because, it has a name
value set. How will the instances differ from each other?

Example 4.15:

<El enment Cont ent Thr ee>
<El enment Nanme>
<El ement Cont ent >Here i s anot her string</El enent Content >
</ El enent Nane>
</ El enent Cont ent Thr ee>

In example 4.15 we can see that if the type is another elementtype, and a different name is assigned to it,
the element in question gets two surrounding tags instead of one. The outer tag is the new name that has
been assigned to the elementtype, and the inner tag is the actual type of the elementtype. This approach
enables polymorphism, which is discussed in section 7: Polymorphism.

4.2.4 Sequence Content Model

The sequence content model can express a sequence in which a number of elements should appear in the
instance. The content of the sequence can be elements or nested sequences or nested choices. There

Commerce One 8 SOX Tutorial

always has to be at least two content items in a sequence. The simplest sequence only contains two element
elements:
Example 4.16:

<el enent t ype nane="SequenceCont ent" >
<nmodel >
<sequence>
<el enent type="string" nane="StringContent"/>
<el enent type="int" nane="IntegerContent"/>
</ sequence>
</ model >
</ el ement t ype>

A valid instance of the elementtype in example 4.16 could look like this:

Example 4.17:

<SequenceCont ent >
<StringContent>This is a string in a sequence</StringContent>
<l nt eger Cont ent >123</ | nt eger Cont ent >

</ SequenceCont ent >

In the instance of a sequence content model, the elements have to appear exactly in the order they were
declared in the elementtype sequence. They must not appear out of order. The sequence model is a way to
guarantee that the data appear exactly in the order it was specified.

Note that the sequence tags are not reflected in the instance. They are only a way to describe the structure
of a document.

A more complex model can for example contain nested sequences:

Example 4.18:
<el enent t ype nane="SequenceCont ent Too" >
<nmodel >
<sequence>
<el enent type="bool ean" nane="Bool eanContent"/>
<sequence>

<el enent type="float" nane="Fl oat Content"/>
<el enent type="date" nane="DateContent"/>
</ sequence>
</ sequence>
</ nodel >
</ el ement t ype>

Example 4.18 introduces three new intrinsic datatypes, boolean, float and date. Refer to Appendix A:
Intrinsic Datatypes for more information on these and other available intrinsic types. A valid instance of the
elementtype in example 4.18 would look like this:

Example 4.19:

<SequenceCont ent Too>
<Bool eanCont ent >t r ue</ Bool eanCont ent >
<Fl oat Cont ent >123. 123</ Fl oat Cont ent >
<Dat eCont ent >19990101</ Dat eCont ent >
</ SeaquenceCont ent Too>

Again, note that the sequence tags are not reflected in the instance, not even the nested sequence. This does
not mean they are not useful; in fact, the ability to nest sequences and choices can be extremely useful for
creating very precise complex content rules.

Commerce One 9 SOX Tutorial

4.2.5 Choice Content Model

A choice content model is similar to the sequence in that it lists a number of elements, sequences or
choices. Instead of describing a structure, they outline what options are allowed in the instance. In the
actual instance, only one of the specified options is selected. As with a sequence, the choice must contain at
least two items that can be elements, nested sequences or nested choices. Again, the simplest model is
one with just two elements:

Example 4.20:
<el enentt ype nane=" Choi ceCont ent" >
<nmodel >
<choi ce>
<el enent type="string" nane="StringContent"/>
<el enent type="int" nanme="IntegerContent"/>
</ choi ce>
</ nodel >

</ el enent t ype>

One valid instance of the elementtype in example 4.20 could be:

Example 4.21:

<Choi ceCont ent >
<StringContent>This is a string in a choice</ StringContent>
</ Choi ceCont ent >

In the instance in example 4.21, the St r i ngCont ent element has been chosen. Since only one element
can be chosen, it would not be valid to have more than one element from the choice. Now let's try choosing
the I nt eger Cont ent element instead:

Example 4.22:

<Choi ceCont ent >
<l nt eger Cont ent >123</ | nt eger Cont ent >
</ Choi ceCont ent >

Next let's try and make a more complex choice content model, by using a nested sequence as one of the
options:

Example 4.23:
<el enent t ype nane=" Choi ceCont ent Too" >
<nodel >
<choi ce>
<el enent type="bool ean" name="Bool eanContent"/>
<sequence>
<el enent type="float" nanme="Fl oat Content"/>
<el enent type="date" nane="DateContent"/>
</ sequence>
</ choi ce>
</ model >

</ el ementtype>

In example 4.23, we have the option between choosing either the Bool eanCont ent element, or the
sequence containing the FlI oat Cont ent and Dat eCont ent elements. First, let's try the simpler
instance case:

Commerce One 10 SOX Tutorial

Example 4.24:

<Choi ceCont ent Too>
<Bool eanCont ent >t r ue</ Bool eanCont ent >
</ Choi ceCont ent Too>

Example 4.24 is just as straightforward as in example 4.21 and 4.22. Now let's try the other instance case:

Example 4.25:

<Choi ceCont ent Too>
<Fl oat Cont ent >123. 123</ Fl oat Cont ent >
<Dat eCont ent >19990101</ Dat eCont ent >
</ Choi ceCont ent Too>

Note that in the case of example 4.25, both elements in the sequence have been selected. That is because
the sequence they were contained in was the selected option, not the elements themselves. Only the
outermost structures contained in the choice can be selected when creating an instance. Fl oat Cont ent
by itself would not have been a valid choice since Dat eCont ent would be missing from the selected
sequence.

4.2.6 Occurs

Elements, nested sequences or nested choices can have occurrence specifications. String elements may not
have an occurrence, because they do not define any named tags. Therefore there would be no way to tell
where one string ends and another starts. This does not apply to elements of type string, which have an
enclosing tag and can have multiple occurrences, just as any other element.

Another disallowed case is an outermost sequence or choice, that is, a sequence or choice contained
directly in the model tag. These content models may not have an occurrence at the present time.

An occurrence specification can specify that a certain object can be optional, and/or can be allowed more
than once. There are four different ways of specifying an occurrence: ?, +, * or N,M. The default
occurrence is 1. That is, if no occurrence value has been specified, as has been the case with all of our
examples so far, then the object must be present, and may only occur once.

4.2.6.1 ? Occurrence

An occurs value of "?" specifies that an element, nested sequence or nested choice is optional, and that it
may or may not appear once. First let's try the simplest case, that of an element content model (see section
4.2.3):

Example 4.26:
<el enentt ype nane="Cpti onal Content" >
<nodel >
<el enent type="string" nanme="StringContent" occurs="?"/>
</ model >

</ el enenttype>

In example 4.26 we specify that the element St ri ngCont ent may or may not appear inside the element
Opt i onal Cont ent . First, let's try with the element present:

Example 4.27:

<Opt i onal Cont ent >
<StringContent>This el enent is optional </StringContent>
</ Opti onal Content >

Commerce One 11 SOX Tutorial

Example 4.28:

<Opt i onal Cont ent >
</ Opt i onal Cont ent >

What we end up with in example 4.28 is an empty element. In fact, we can use an empty tag, and that is
legal.

Next, let's try a slightly more complex elementtype:

Example 4.29:

<el enent t ype nane="Opti onal SequenceCont ent ">
<nmodel >
<sequence>
<el enent type="bool ean" nane="Bool eanContent"/>
<seguence occurs="?">
<el enent type="float" name="Fl oat Content"/>
<el enent type="date" nane="DateContent"/>
</ sequence>
</ sequence>
</ nodel >
</ el ement type>

In example 4.29, the Bool eanCont ent element is required, but the sequence that follows it is optional.
First, let's try with all elements present:

Example 4.30:

<Opt i onal SequenceCont ent >
<Bool eanCont ent >
<Fl oat Cont ent >123. 321</ Fl oat Cont ent >
<Dat eCont ent >19991231</ Dat eCont ent >
</ Ont i onal SeauenceCont ent >

Next, let's omit the optional sequence:

Example 4.31:

<Opt i onal SequenceCont ent >
<Bool eanCont ent >
</ Opt i onal SequenceCont ent >

4.2.6.2 + Occurrence

An occurs value of "+" specifies that an element, nested sequence or nested choice may be present more
than once, but always have to appear at least once. This gives you the option of having more than one of the
same element, but still enforce that it appears in an instance. First let's try a simple case, with only one
repeatable element:

Example 4.32:
<el enent t ype nanme=" Repeat abl eCont ent " >
<nodel >
<el ement type="string" name="StringContent" occurs="+"/>
</ nodel >

</ el ement type>

Commerce One 12 SOX Tutorial

Even though the elementtype in example 4.32 has a single element content, a valid instance can now
contain many elements, as long as they are all of St ri ngCont ent type:

Example 4.33:

<Repeat abl eCont ent >
<StringContent>This is the first occurrence</ StringContent>
<StringContent>This is the second</StringContent>
<StringContent>l can have as many as | |ike</StringContent>
<StringContent>But | think this is enough</StringContent>
</ Repeat abl eCont ent

Having only one content element is still perfectly valid:

Example 4.34:

<Repeat abl eCont ent >
<Stri ngCont ent >Havi ng only one is fine</StringContent>
</ Repeat abl eCont ent >

A more complex case involves having repeatable nested sequences or choices:

Example 4.35:
<el enent t ype nane="Repeat abl eSequenceCont ent " >
<nodel >
<seguence>

<el enent type="bool ean" nane="Bool eanContent"/>
<sequence occurs="+">
<el enent type="float" nane="Fl oat Content"/>
<el enent type="date" nane="DateContent"/>
</ sequence>
</ sequence>
</ model >
</ el ementtype>

An instance of the elementtype in example 4.35 must contain one, and only one of the Bool eanCont ent
element, but it can contain the nested sequence once or repeated several times:

Example 4.36:

<Repeat abl eSequenceCont ent >
<Bool eanCont ent >f al se</ Bool eanCont ent >
<Fl oat Cont ent >123. 0</ Fl oat Cont ent >
<Dat eCont ent >19950228</ Dat eCont ent >
<Fl oat Cont ent >0. 0</ Fl oat Cont ent >
<Dat eCont ent >18971225</ Dat eCont ent >
<Fl oat Cont ent >5729. 0001</ Fl oat Cont ent >
<Dat eCont ent >20000101</ Dat eCont ent >

</ Repeat abl eSequenceCont ent >

Note that, in example 4.36, the nested sequence must always have all of its content present, and in the right
order, but can be repeated any number of times.

Commerce One 13 SOX Tutorial

4.2.6.3 *Occurrence

An occurs value of "*" specifies that an element, nested sequence or nested choice is optional, but may
appear multiple times. This is useful when an element's presence isn't required, but you would like it to be
able to appear any number of times:

Example 4.37:
<el enent t ype nane="Cptional Mul ti pl eContent" >
<nodel >
<el enent type="string" nanme="StringContent" occurs="*"/>
</ model >

</ el ementtype>

An instance of the elementtype in example 4.37 could have any number of the St ri ngCont ent element:

Example 4.38:

<Opti onal Mul ti pl eCont ent >
<StringContent>O you can have many</ StringCont ent >
<StringContent >As many as you |ike</StringContent>
<Stri ngCont ent >Any anount you feel |ike<StringContent>
<StringContent>Or none at all </StringContent>

</ Optional Mul ti pl eCont ent >

At the same time, a perfectly valid instance of the elementtype in example 4.37 could have no
St ri ngCont ent content elements at all:

Example 4.39:

<Optional Mul tipl eContent/>

In this case, we have even made the Opt i onal Mul ti pl eCont ent element an empty tag. Since it does
not contain any content, this is valid.

Let's create a more complex example where we use a "*" occurrence in a nested choice:

Example 4.40:

<el enent t ype nane="Opti onal Mul ti pl eChoi ceCont ent ">
<nmodel >
<sequence>
<el enent type="bool ean" nanme="Bool eanContent"/>
<choi ce occurs="*">
<el enent type="float" name="Fl oat Content"/>
<el enent type="date" nane="DateContent"/>
</ sequence>
</ sequence>
</ nodel >
</ el ement type>

This schema allows an instance to choose from the available options, any number of times, from zero to an
infinite number. As usual, Bool eanCont ent is a required element.

Commerce One 14 SOX Tutorial

Let's create a valid instance of this elementtype:

Example 4.41:

<Opti onal Mul ti pl eChoi ceCont ent >
<Bool eanCont ent >f al se</ Bool eanCont ent >
<Dat eCont ent >19770717</ Dat eCont ent >
<Dat eCont ent >19721219</ Dat eCont ent >
<Fl oat Cont ent >5729. 0001</ Fl oat Cont ent >
<Dat eCont ent >20010101</ Dat eCont ent >

</ Opti onal Mul ti pl eChoi ceCont ent >

Compare the instance in example 4.41 to example 4.36, which contains a nested sequence. In 4.36, the
sequence can appear any number of times, but the sequence must always be complete. Example 4.41 is
much less restricted, since any of the elements can be chosen each time. A valid instance can contain only
FI oat Cont ent elements, or only Dat eCont ent elements, in addition to the required

Bool eanCont ent element.

Another valid use would be to omit the choice completely, since it has an occurs of "*"":

Example 4.42:

<Opti onal Mul ti pl eChoi ceCont ent >
<Bool eanCont ent >t r ue</ Bool eanCont ent >
</ Opti onal Mul ti pl eChoi ceCont ent >

4.2.6.4 N,M occurrence

An occurs value of N,M, (where N and M specifies numeric values), specifies an occurrence range of an
element, nested sequence or nested choice. This is useful when you want multiple occurrences, but still
want to limit how many objects are allowed, or when you want a multiple minimum occurrence, or a
specific number of one specific object. First, let us try setting a range for an elements’ occurrence:

Example 4.43:

<el enentt ype nane="OneToThr eeCont ent" >
<nmodel >
<el enent type="string" nane="StringContent" occurs="1, 3"/>
</ model >
</ el ementtype>

Example 4.43 specifies that a valid instance of OneToThr eeCont ent can contain between one and three
instances of the St ri ngCont ent element. Let's try to have two:

Example 4.44:

<OneToThr eeCont ent >
<StringContent>String one</StringContent>
<StringContent>String two</StringContent>
</ OneToThr eeCont ent >

You can also specify an unlimited maximum occurrence using the "*" specifier as the second value:

Commerce One 15 SOX Tutorial

Example 4.45:

<el enent t ype nane="TwoToManyCont ent " >
<nmodel >
<el enent type="int" name="IntContent" occurs="2,*"/>
</ nodel >
</ el ementtype>

In example 4.45, we have specified that TwoToMany Cont ent must contain at least two, and up to any
number, of instances of the | nt Cont ent element. Here is a possible instance of the elementtype:

Example 4.46:

<TwoToManyCont ent >
<| nt Cont ent >1</ | nt Cont ent >
<| nt Cont ent >2</ | nt Cont ent >
<| nt Cont ent >3</ | nt Cont ent >
<| nt Cont ent >4</ | nt Cont ent >
</ TwonToManvCont ent >

Next let's try to use the N,M occurrence to specify a specific number of valid occurrences:

Example 4.47:

<el enent t ype nane="Four Cont ent ">
<nodel >
<el enent type="bool ean" name="Bool eanCont ent"
occurs="4,4"/>
</ model >
</ el ementtype>

A valid instance of Four Cont ent in example 4.47 must contain four, and only four, instances of
Bool eanCont ent . This way we can very easily constrain a multiple occurrence of an element, or a
nested sequence or choice for that matter.

A valid instance would look like this:

Example 4.48:

<Four Cont ent >
<Bool eanCont ent >t r ue</ Bool eanCont ent >
<Bool eanCont ent >t r ue</ Bool eanCont ent >
<Bool eanCont ent >f al se</ Bool eanCont ent >
<Bool eanCont ent >t r ue</ Bool eanCont ent >
</ Four Cont ent >

Commerce One Implementation specific note:

The Commerce One implementation of the SOX parser currently does not reinforce the exact
values in an N,M occurrence, but will treat a 0,M as an occurrence of * and an N,M as an
occurrence of +.

4.2.7 Attributes

In addition to putting data as content in tags, you can also specify attributes, just as you can in XML.
Attributes are contained in the start tag, and consist of a name, and equal sign, and a quoted value. An
attribute's type can be of an intrinsic datatype or a user defined datatype, but never an elementtype. An
element can have multiple attributes.

Commerce One 16 SOX Tutorial

Often an attribute is used to describe an element, or the content of the element. There are no strict
guidelines as to when to use attributes and when to use elements. Generally the attribute is thought to have
an "is-a" relation to the element, as opposed to the "has-a" relation of the element content. For example, a
Per son element could have Age and Nat i onal i t y attributes, whereas it could contain Cl ot hi ng and
Car elements. In this case the person is of a certain nationality and age, something that relates to who that
person is, whereas the items that person owns are less tied to that specific person, and are probably better
suited to be full fledged elements of their own, with their own attributes and content.

Another good rule is if the data is relatively small, such as a few characters long, it can often make sense to
use an attribute to cut down the size of the instance considerably.

In addition, a major advantage of attributes is that you can specify an attribute to have a fixed or a default
value, which is not possible for data in an element.

An attribute definition should contain a presence specification element, which specifies the presence
information for the attribute. Four different presence modes exist: required, implied, default, fixed:

Required - the attribute must be present in the instance.

Implied - The attribute is optional in the instance.

Default - The attribute has a default value. If no value is specified in the instance, then the parsing
application behaves as if the attribute was specified, with the default value provided in the schema.

Fixed - It is an error for the attribute to have any other value in the instance than the one specified
in the schema. The attribute does not have to be explicitly present in the instance, but the parsing
application will behave as if the value is present, with the fixed value.

If you do not provide a presence mode, the attribute presence will default to implied.

Let's create an elementtype with a few attributes:

Example 4.49:
<el enenttype nane="Person">
<nmodel >
<el enent dat at ype="NMIOKENS" name="Nane"/ >
</ nodel >

<attdef nane="age" datatype="int">
<requi red/ >

</ attdef>

<att def nane="occupation" datatype="string">
<inplied >

</ attdef>

<attdef nanme="| anguage" dat at ype="NMICKEN" >
<def aul t >Engl i sh</ def aul t >
</ attdef >
<attdef nane="species" datatype="string">
<fi xed>human</fi xed>
</ attdef>
</ el ementtype>

Example 4.49 uses all four different presence modes. The datatypes NMTOKEN and NMTOKENS are
intrinsic datatypes. See Appendix A: Intrinsic Datatypes. Here is a valid instance of the above elementtype:

Example 4.50:

<Per son age="28" occupation="engi neer" | anguage="Chi nese" speci es="human">
<Name>John F. Smi t h</ Name>
</ Per son>

Commerce One 17 SOX Tutorial

In example 4.50 four attributes are specified. Note that attribute values must always be quoted. Also note
that the value of the attribute species conforms to the fixed value specified in example 4.46. Any other
value would make this instance invalid. Now let's try and omit those attributes that are not required:

Example 4.51:

<Per son age="43">
<Name>Dori s Baungart ner </ Name>
</ Per son>

In example 4.51, only the required attribute age is provided. This means that Doris does not have an
occupation, and her language will default to English. Her species will always be fixed to human, whether it

is provided or not.

Commerce One 18 SOX Tutorial

4.3 Data Type Definitions

The SOX schema syntax provides you with the ability to define your own datatypes. This is very useful
when you want to put restrictions on the allowable values for an attribute or element. Datatypes can never
be instantiated by themselves, but have to be used as types for elements or attributes.

There are three ways to define a datatype, as an enumeration, a scalar or a varchar.

4.3.1 Enumeration Datatype Definition

An enumeration is a way to give an enumeration of allowable values of any intrinsic or user defined
datatype. A list of options is provided in the datatype definition:

Example 4.52:

<dat at ype nane="Col or" >
<enumner ati on dat at ype="NMICKEN' >
<opti on>Red</ opti on>
<opti on>Bl ue</ opti on>
<opti on>Gr een</ opti on>
<option>Yel | ow</ opti on>
<opti on>Or ange</ opti on>
<opti on>Pur pl e</ opti on>
<opti on>Bl ack</ opti on>
<opti on>Wi t e</ opti on>
<opti on>Grey</opti on>
</ enuner ati on>
</ dat at ype>

<dat at ype nane="TrafficLi ght Col or" >
<enuner ati on dat at ype="Col or" >
<opt i on>Red</ opti on>
<opti on>G een</ opti on>
<opti on>Yel | ow</ opti on>
</ enuner ati on>
</ dat at ype>

<el enenttype nane="TrafficLi ght">
<nmodel >
<el enent nane="State" type="TrafficLightColor"/>
</ model >
<at t def nanme="Casi ngCol or" dat at ype="Col or" >
<requi red/ >
</ att def >
</ el ementtype>

In the first datatype we define an enumeration of NMTOKENS called Col or . The enumeration lists a
number of allowed values in option tags. These values are the only valid ones in the instance. The second
datatype is a specialized subset of the first enumeration called Tr af f i cLi ght Col or . It puts further
constraints on the Col or datatype. It cannot add a value that does not exist in Col or , since that would not
be a valid color value. Next, since a datatype can not be instantiated, we create an elementtype called

Traf fi cLi ght that uses both of these datatypes. One of the datatypes is used in an element, and the
other in an attribute. A valid instance of the elementtype would look like this:

Example 4.53:

<TrafficLi ght CasingCol or="Gey">
<St at e>G een</ St at e>
</ TrafficLight>

Commerce One 19 SOX Tutorial

As you can see, enumerations can be very useful, because you can specify a very specific set of values that
you will accept as being valid for an element or an attribute. Unless the values provided in an instance
conforms to that set of values, it will not be valid.

4.3.2 Scalar Datatype Definition

A scalar is useful when you want to use a numeric value, but want to restrict the range, number of decimals
and/or number of digits. A scalar has to be of type number, float, int, byte, long, double or any subtype
thereof. That means its type can be another scalar that is of one of those types.

Example 4.54:

<dat at ype nane="Price">
<scal ar datatype="float" deci mal s="2"/>
</ dat at ype>

<dat at ype nane="Movi eTi cket Pri ce">
<scal ar datatype="Price" digits="1" naxval ue="8.50"
m nval ue="1. 50" maxexcl usi ve="fal se"
m nexcl usi ve="fal se"/ >
</ dat at ype>

<el enenttype nane="Movi eTi cket" >
<nodel >
<el enent name="Movi eTitl e" type="string"/>
</ nodel >
<attdef nane="Ti cketPrice" datatype="MovieTicketPrice">
<requi red/ >
</ attdef >
</ el ement type>

In example 4.54 we have defined a scalar that can be used to express a generic price. The only restriction it
has is that of the number of decimals, so we can express any price that deals with a whole humber of cents.

Next, a subtype of price is defined, called Movi eTi cket Pri ce. It is defined specifically to express the
price of a movie ticket. It always has to be more restrictive than its type, in this case Pri ce. It will inherit
any restrictions from its supertype, and is therefore not allowed to loosen up the supertype restrictions. This
means that in this case, Movi eTi cket Pri ce is not allowed to have a deci mal s value that is higher
than that of the same value in Pri ce, which is Movi eTi cket Pri ce's supertype.

In this case we do not try to change the decimals value. However, we add restrictions to the new datatype.
We specify that the value may only have one digit with the digits attribute (not including the decimals). We
also set minvalue and maxvalue to constrain the scalar to be a value between 1.50 and 8.50. Finally, we
define that the minimum and maximum values are both valid values, by setting both minexclusive and
maxexclusive to false. This means that we are not excluding those values from being valid. It should be
noted that Movi eTi cket Pri ce uses all the possible constraints available for a scalar. decimals is used
indirectly, through inheritance from Pr i ce, and the rest are used directly by Movi eTi cket Pri ce.

In example 4.54, we have also defined an elementtype called Movi eTi cket that uses the
Movi eTi cket Pri ce datatype. A valid instance could look like this:

Example 4.55:

<Movi eTi cket TicketPrice="6.50">
<Movi eTitl e>Gone Wth the W nd</MvieTitle>
</ Movi eTi cket >

Commerce One 20 SOX Tutorial

4.3.3 Varchar Datatype Definition

A varchar datatype restricts string types to have a maximum length. Varchars can be of type string,
NMTOKEN, NMTOKENS, ID, IDREF, IDREFS or another varchar, and must specify the maxlength
attribute. Any instance of the datatype is not allowed to exceed the specified maximum length.

Example 4.56:

<dat at ype nane="Lim tedString">
<var char max| engt h="50" dat atype="string"/>
</ dat at ype>

<dat atype nane="Titl eString">
<var char max| engt h="25" datatype="LinitedString"/>
</ dat at ype>

<dat at ype nane="PhoneString">
<var char max| engt h="16" dat atype="LinitedString"/>
</ dat at ype>

<el enentt ype nane="Busi nessCard" >
<nodel >
<sequence>
<el ement nane="Nanme" type="string"/>
<el enment nanme="Title" type="TitleString"/>
<el enent nane="Phone" type="PhoneString"/>
<el enent nane="Mdtto" type="LimtedString"/>
</ sequence>
</ nodel >
</ el enenttype>

In example 4.56, we have decided to create a SOX schema as a template for the information that goes on a
business card. We define three varchars, two of which derive from the first varchar. The first is called
[imtedString. Itisused for those employees who wish to put a motto on their card, but in order to be
able to fit the motto on the card, we have the constraint that a motto can have a maximum length of 50
characters. We also limit the length of the title they can put on their card. The phone number has a limit to
its length, which corresponds to the length of a normally formatted phone number. Now we can ensure that
the employee information will fit onto the card.

An instance could look like this:

Example 4.57:

<Busi nessCar d>

<Nane>Har ol d Hodgenei er </ Nane>

<Titl e>Regi onal Coordinator</Title>

<Phone>1 (800) 123-4567</Phone>

<Mbtt 0o>To bol dly go where no man has gone before...</Mtto>
</ Busi nessCar d>

4.3.4 Anonymous Datatype Definitions

In addition to defining enumerations, scalars and varchars as reusable datatypes, you can also make an
anonymous definition inside of an attribute definition. The datatype can then only be used for that attribute,
and cannot be reused, as opposed to regularly defined datatypes. It is important to note that if a datatype is
defined in the attribute definition, then the attribute definition itself may not specify its datatype attribute.

Commerce One 21 SOX Tutorial

This would serve no purpose, and would probably contradict what is being specified inside the attribute
definition.

Here is an example of anonymously defined datatypes:

Example 4.58:

<el enent type nane="Car">
<enpty/ >
<att def nane="Col or" >
<enuner ati on dat at ype="NMICKEN' >
<opti on>Red</ opti on>
<opti on>Bl ue</ opti on>
<option>Silver</option>
<opti on>Bl ack</ opti on>
<opti on>Whi t e</ opti on>
<opti on>Br own</ opti on>
<opti on>Gr een</ opti on>
</ enuner ati on>
<requi red/ >
</ attdef >
<attdef nane="Regi stration">
<var char maxl| engt h="7" datatype="string"/>
<inplied >
</ att def >
<attdef nanme="M | eage>
<scal ar dat at ype="doubl e" digits="6" deci nal s="1"
m nval ue="0"/>
<requi red/ >
</ att def >
</ el ement t ype>

In example 4.58 we have defined an anonymous enumeration, scalar and varchar, each in its own attribute
definition in an elementtype. An instance could look like this:

Example 4.59:

<Car color="Blue" registration="My CAR' m | eage="72881.0"/>

As you can see in example 4.59, the attributes are used just as if the anonymous datatypes had been
specified as regular datatypes.

Commerce One 22 SOX Tutorial

4.4 Complete SOX Schema

Now let’s create a complete SOX schema. This example shows the structure for information about a film.
Don't forget the XML version and DOCTYPE declaration at the top of the schema!

Example 4.60:

<?xm version="1.0"?>
<! DOCTYPE schema SYSTEM
"urn: x- commer ceone: docunent : com commer ceone: xdk: xnl : schena. dt d$1. 0" >

<schema uri ="urn: x- cormer ceone: docunent : sanpl e: xdk: sox: Fi | m sox$1. 0" >

<el enenttype nane="Fil nf'>
<nmodel >
<sequence>
<el enent nanme="Director" type="Crew' occurs="?"/>
<el enent nane="Actor" type="Crew' occurs="*"/>
</ sequence>
</ model >
<attdef nane="Nanme" datatype="string">
<requi red/ >
</ attdef>
<attdef name="Genre" datatype="Fil nGenre">
<requi red/ >
</ att def >
<attdef nanme="Length" datatype="int">
<requi red/ >
</ attdef>
<attdef nanme="Rel easeYear" dat atype="Year">
<inplied >
</ attdef >
</ el ementtype>

<el enenttype nane="Crew'>
<nodel >
<el enent nanme="Previ ousFi | ' type="Fil nSummary"
occurs="*"/>
</ model >
<attdef nanme="Nane" datatype="string">
<requi red/ >
</ att def >
<attdef nanme="GCender">
<enuner ati on dat at ype="NMIOKEN' >
<opti on>mal e</ opti on>
<opti on>f enal e</ opti on>
</ enuner ati on>
<requi red/ >
</ attdef>
</ el ementtype>

Continued on next page...

Commerce One 23 SOX Tutorial

Example 4.60 continued:

<el enenttype nane="Fi | nSummary" >
<enpty/ >
<attdef nanme="Nane" datatype="string">
<requi red/ >
</ att def >
<attdef nane="Rel easeYear" dat atype="Year">
<requi red/ >
</ attdef>
</ el ement type>

<dat at ype nane="Fi | nGenre" >
<enuner ati on datatype="string">
<opt i on>Conedy</ opti on>
<opti on>Dr ama</ opti on>
<opti on>Sci -fi </ option>
<option>Thriller</option>
<option>Acti on</option>
<opti on>West er n</ opti on>
</ enuner ati on>
</ dat at ype>

<dat at ype nane="Year">
<scal ar datatype="int" digits="4" m nval ue="1880"/>
</ dat at ype>
</ schem>

Commerce One 24 SOX Tutorial

Here is a sample instance of the Film Schema. Don't forget the soxtype declaration at the top of the
instance!

Example 4.61:

<?soxtype urn: x-conmer ceone: docunent : sanpl e: xdk: sox: Fi | m sox$1. 07>

<Fi | m Name="CGone Wth the Wnd" Genre="Drama" Length="222"
Rel easeYear =" 1939" >
<Direct or >
<Crew Nanme="Vi ctor Flem ng" Gender="nal e">
<Previ ousFi | m>
<Fi | nBummary Nane="W zard of Oz" Rel easeYear="1939"/>
</ Previ ousFi | n>
<Previ ousFi | m>
<Fi | nBunmary Nane="Treasure |sl and"
Rel easeYear ="1934"/ >
</ Previ ousFi | n>

</ Cr ew>
</Director>
<Act or >
<Crew Nane="Cl ark Gabl e" Gender ="mal e" >
<Pr evi ousFi | n»
<Fi | nBummary Nane="M sfits" Rel easeYear="1961"/>
</ Previ ousFi | n»
<Pr evi ousFi | m»
<Fi | nSunmary Nane="It Happened One Ni ght"
Rel easeYear =" 1961"/ >
</ Previ ousFi | n»
</ Cr ew>
</ Act or>
<Act or >
<Crew Name="Vivien Lei gh" Gender="fenal e">
<Pr evi ousFi | m»
<Fi | nBummary Nane="A streetcar naned Desire"
Rel easeYear =" 1951"/ >
</ Pr evi ousFi | n>
</ Crew>
</ Act or>
</Filnp

5 Namespaces

A schema exists in a namespace, defined by the URI attribute on the schema element of that schema. To
use definitions from another schema, you should import that schema's namespace into the current schema.
This is very similar to importing java classes. It enables you to reuse elementtypes or datatypes, and it
promotes modular schema writing. If you intend to create complex or reusable schemas and definitions, it
is highly recommended that you use namespace imports.

After you import the definitions into your schema, they still retain their own namespace, and must always
be referred to with a prefix associated with that namespace. The prefix enables you to redefine the same
name in different schemas, and still be able to reuse the definitions without name collisions.

Commerce One 25 SOX Tutorial

5.1 Importing SOX Schemas

In order to be able to use definitions in a schema, you first need to import the schema that you want to use.
This is done with the namespace element. The namespace element associates a prefix with a namespace.

Example 5.1:

<namespace prefix="pre"
nanespace="ur n: x- comer ceone: docunent : sanpl e: xdk: sox: sanpl e. sox$1. 0"/ >

5.2 Using Elementtypes and Datatypes from Imported Schemas

Now that a prefix has been associated with a namespace, the definitions from the imported namespace can
be used freely, as long as they are used with the defined prefix. First we define a schema that has generic
definitions:

Example 5.2:

<?xm version="1.0"7?>
<! DOCTYPE schema SYSTEM
"urn: x- comer ceone: docunent : com commer ceone: xdk: xnl : schenma. dt d$1. 0" >
<schema uri =
"ur n: x- comrer ceone: docunent : sanpl e: xdk: sox: Cont ai ner. sox$1. 0" >

<el ement t ype nane="Al um nunCan" >

<enpty/ >
</ el ementtype>

<el enenttype nane="d assBottle">

<enpty/ >
</ el ement type>

<el enent t ype nane="Paper Cup" >
<nodel >
<sequence>
<el enent type="Lid" occurs="?"/>
<el enent type="Straw' occurs="?"/>
</ sequence>
</ nodel >
</ el ement type>

<el enenttype nane="Lid">

<enpty/ >
</ el emrent type>

<el ementtype nane="Straw'>
<enpty/>
<attdef name="Striped" datatype="bool ean">
<def aul t >f al se</ def aul t >
</ attdef >
</ el ement type>

</ schema>

Commerce One 26 SOX Tutorial

Next we define a schema that imports and reuses elements from the Container schema:

Example 5.3:

<?xm version="1.0"7?>
<! DOCTYPE schema SYSTEM

"urn: x- comer ceone: docunent : com commer ceone: xdk: xnl : schena. dt d$1. 0" >
<schenma uri ="urn: x- conmer ceone: docunent : sanpl e: xdk: sox: Bever age. sox$1. 0" >

<nanespace prefix="contai ners" nanespace=
"urn: x- comrer ceone: docunent : sanpl e: xdk: sox: Cont ai ner. sox$1. 0"/ >

<el enent t ype nane="Beverage" >

<nmodel >
<sequence>
<el ement nane="Nanme" type="string"/>
<choi ce>
<el enent nane="Can" type="Al um nuntCan"
prefix="contai ners"/>
<el enent type="d assBottle" prefix="containers"/>
<el enent type="Paper Cup" prefix="containers"/>
</ choi ce>
</ sequence>
</ model >

<attdef nane="Vol unme" datatype="float">
<requi red/ >

</ att def >

<attdef name="Vol unmeUnit" datatype="Unit">
<def aul t >f | ui d ounces</def aul t >

</ attdef>

<attdef nanme="Price" datatype="float">
<requi red/ >

</ attdef>

<at t def nane="Car bonat ed" dat at ype="bool ean">

<def aul t >t rue</ def aul t >
</ attdef >
</ el ement type>

<dat at ype nane="Unit">
<enuner ati on dat at ype=" NMIOKENS" >
<option>fluid ounces</option>
<option>milliliters</option>
<option>centiliters</option>
<option>liters</option>
</ enuner ati on>
</ dat at ype>

</ schema>

Importing and using the elements from Cont ai ner . sox is pretty obvious. A prefix is given in an
attribute for any types defined in a different schema, and that prefix is defined in the namespace import tag.

Commerce One 27 SOX Tutorial

The interesting part comes when we try to make an instance of a schema that uses namespaces. How does
this look?

Example 5.4:

<?soxt ype urn: x-comer ceone: docunent : sanpl e: xdk: sox: Bever age. sox$1. 0?>

<Bever age Vol ume="12" Price="0.99" Carbonated="true">
<Nanme>Coca Col a</ Nanme>
<ot her: Paper Cup xm ns: ot her =
"urn: x- comrer ceone: docunent : sanpl e: xdk: sox: Cont ai ner. sox$1. 0" >
<ot her: Lid/ >
<ot her: Straw Stri ped="true"></other: Straw>
</ ot her: Paper Cup>
</ Bever age>

In example 5.4, the Beverage element has been defined in the current namespace, that is, the namespace
that is given in the soxtype definition at the top of the instance. Therefore, anything that is defined in the
Bever age schema, can be used without namespaces, as usual. The Paper Cup element has been defined
in the Container namespace however, so its namespace must first be defined in attribute format, where the
name is the xmins keyword, followed by a colon ":" and the prefix. In this case we have chosen the prefix
"other". The prefix does not have to be the same as that defined in the schema. The value of the

xm ns: ot her attribute is the namespace that the prefix maps to. Any elements that have been defined in
the Container namespace must now be used with the "other" prefix and a colon, pre-pended to the element
name. This is true for both opening and closing tags.

But what if an imported elementtype is given a new name in the content model in the importing schema?
The definition of the element is still in the imported schema, but the new name has been defined in the
current namespace. Let's take a look at an example:

Example 5.5:

<?soxt ype urn: x-comer ceone: docunent : sanpl e: xdk: sox: Bever age. sox$1. 07>

<Bever age Vol unme="8" Price="0.45" Carbonated="true" xm ns:other=
"urn: x- comrer ceone: docunent : sanpl e: xdk: sox: Cont ai ner. sox$1. 0" >
<Nane>Tab</ Nane>
<Can>
<ot her: Al um nuntan/ >
</ Can>
</ Bever age>

The answer is that while Al unmi nuntCan needs to have the prefix of the namespace it has been defined in,
the new name Can is defined in the current namespace, and therefore should not have a prefix.

In example 5.5, the definition of the prefix has been placed in the root element, which is perfectly legal.
The prefix-namespace association will still be valid for throughout the current namespace, that is, the
current schema. If an instance contains many namespace definitions, it can be a good idea to place them all
inside the Root element, because it makes them easier to find, and it makes the instance easier to read.

5.3 Multi-Level Imports

The previous namespace examples were fairly straight forward, but what if we import from multiple
namespaces, and some of those namespaces in turn have imported other namespaces? Let's add a hew
schema:

Commerce One 28 SOX Tutorial

Example 5.6:

<?xm version="1.0"?>
<! DOCTYPE schena SYSTEM

"ur n: x- commer ceone: docunent : com commer ceone: xdk: xnl : schena. dt d$1. 0" >
<schema uri ="urn: x- comrer ceone: docunent : sanpl e: xdk: sox: Snack. sox$1. 0" >

<el enentt ype nane="Snack" >
<nmodel >
<choi ce>
<el enent type="PopCorn"/>
<el enent nanme="Candy" type="Chocol ateBar"/>
<el enent nane="Fruit" type="FruitEnuni/>
</ choi ce>
</ model >
</ el ement type>

<el enentt ype nane="PopCorn" >
<enpty/>
<attdef nane="LowFat" dat atype="bool ean">
<inplied >
</ attdef>
</ el ementtype>

<el enentt ype nane=" Chocol at eBar" >
<nodel >
<el ement nane="Nanme" type="string"/>
</ model >
</ el ementtype>

<dat at ype nane="Frui t Enum' >
<enumner ati on dat at ype="NMICKEN' >
<opti on>Appl e</ opti on><opti on>Banana</ opti on>
<opti on>or ange</ opti on><opti on>nmango</ opti on>
<opti on>grapes</ opti on><opti on>nel on</ opti on>
</ enuner ati on>
</ dat at ype>

</ schema>

The schema in example 5.6 defines a Snack element, which in turn will contain one out a number of
choices of specific snacks.

Commerce One 29 SOX Tutorial

Next we define a Ref r eshnent Or der which imports both the Snack schema and Bever age schema
(which in turn imports the Cont ai ner schema):

Example 5.7:

<?xm version="1.0""?>
<! DOCTYPE schema SYSTEM
"urn: x- comer ceone: docunent : com commer ceone: xdk: xnl : schena. dt d$1. 0" >

<schema uri =
"urn: x- commrer ceone: docunent : sanpl e: xdk: sox: Ref reshnent Or der. sox$1. 0" >

<nanespace prefix="bev" nanmespace=
"urn: x- comrer ceone: docunent : sanpl e: xdk: sox: Bever age. sox$1. 0"/ >

<nanespace prefix="snack" nanespace=
"urn: x- commrer ceone: docunent : sanpl e: xdk: sox: Snack. sox$1. 0"/ >

<el enent type nane="Refreshnment Or der" >
<nodel >
<sequence>
<el enent type="BeverageOrder" occurs="*"/>
<el enent type="SnackOrder" occurs="*"/>
</ sequence>
</ nodel >
<attdef nanme="Charge">
<enumer ati on datatype="string">
<opti on>cash</ opti on>
<opti on>check</ opti on>
<opti on>credit</option>
</ enuner ati on>
<requi red/ >
</ attdef>
</ el ementtype>

<el enentt ype nane="BeverageOr der" >
<nmodel >
<el enent nane="BeverageSpec" prefix="bev" type="Beverage"/>
</ model >
<attdef nanme="Quantity" datatype="int">
<requi red/ >
</ attdef>
</ el enmenttype>

<el enentt ype nane="SnhackOrder" >
<nodel >
<el enent prefix="snack" type="Snack"/>
</ model >
<attdef nane="Quantity" datatype="int">
<requi red/ >
</ att def >
</ el ementtype>
</ schema>

A namespace import made in one schema is not visible in any other schema. Although
Ref reshrment Or der . sox imports Bever age. sox, it does not have access to any definitions in
Cont ai ner. sox, without explicitly importing that schema itself

Commerce One 30 SOX Tutorial

An instance of the Ref r eshnment Or der schema could look like this:

Example 5.8:

<?soxt ype
ur n: x- conmer ceone: docunent : sanpl e: xdk: sox: Refreshnent Or der. sox$1.0 ?>

<Refreshment Order Charge="credit"
xm ns: bev="ur n: x- conmer ceone: docunent : sanpl e: xdk: sox: Bever age. sox$1. 0"

xm ns:cnt =
"urn: x- comrer ceone: docunent : sanpl e: xdk: sox: Cont ai ner. sox$1. 0"

xm ns: snk="ur n: x- conmer ceone: docunent : sanpl e: xdk: sox: Snack. sox$1. 0" >

<Bever ageOrder Quantity="100">
<Bever ageSpec>
<bev: Bever age Vol ume="355" VolumeUnit="mlliliters"
Price="1.29">
<bev: Nane>Jui ce Squeeze Ruby Grapefruit</bev: Nane>
<cnt: d assBottl e/ >
</ bev: Bever age>
</ Bever ageSpec>
</ Bever ageOr der >
<Bever ageOrder Quantity="250">
<Bever ageSpec>
<bev: Bever age Vol unme="12" Price="0.65">
<bev: Nane>Coca Col a</ bev: Nane>
<bev: Can>
<cnt : Al um nuntCan/ >
</ bev: Can>
</ bev: Bever age>
</ Bever ageSpec>
</ Bever ageOr der >
<SnackOrder Quantity="50">
<snk: Snack>
<snk: Frui t >Appl e</ snk: Frui t >
</ snk: Snack>
</ SnackOr der >
<SnackOrder Quantity="125">
<snk: Snack>
<snk: Candy>
<snk: Chocol at eBar >
<snk: Nane>Al nrond Joy</ snk: Name>
</ snk: Chocol at eBar >
</ snk: Candy>
</ snk: Snack>
</ SnackOr der >
<SnackOrder Quantity="25">
<snk: Snack>
<snk: PopCorn LowFat ="fal se"/>
</ snk: Snack>
</ SnackOr der >
</ Ref reshment Or der >

In example 5.8 you can see that all elements have a prefix pointing to the namespace they were defined in.
The only exception are the elements that were defined in the current namespace, which do not need to have
a prefix.

Commerce One 31 SOX Tutorial

Note that none of the attributes has a prefix. They do not need prefixes, as they can only be in the same
namespace as the element they are contained in. Only element names have prefixes, and always the prefix
corresponding to the namespace they were defined in.

Observe the difference between a Bever ageOr der and SnackOr der . The Bever ageOr der has
assigned a new name to the Bever age element, and therefore gets an additional tag level in the current
namespace. Each element belongs to the namespace it was defined in. The Bever ageOr der s are
especially interesting, as their content stems from three different namespaces, the current namespace, the
Bever age namespace, and the Cont ai ner namespace.

If the prefixes are made descriptive enough, and in addition are sufficiently different from each other, it is
quite easy to tell the origin of an element.

Commerce One 32 SOX Tutorial

5.4 Using a Default Namespace in an Instance

As you have probably noticed, using namespaces can seem quite cumbersome if most of the elements you
are using have been imported from other schemas. For example, if you import and use large elements, a
good alternative is to use a default namespace declaration in the instance. A default namespace is used
with an element, to declare which namespace that element, and all of its content, will default to. That
means that the element with the default namespace declaration, and all of its content elements, will be
assumed to be from the declared namespace. These elements now no longer need a prefix, unless they stem
from a different namespace than the default namespace.

The default namespace is declared by using an attribute called xmlIns, which is used in the element you
want to associate the default namespace with. You will recognize this keyword from previous examples,
but notice that in this case there is no colon, and no prefix attached to it. The value of the xmins attribute is
the namespace that should be default for the element you are using it with. Let's try this with a trimmed
down version of the instance of Ref r eshnment Or der from example 5.8:

Example 5.9:

<?soxt ype
ur n: x- conmer ceone: docunent : sanpl e: xdk: sox: Refreshnment Or der. sox$1.0 ?>

<Refreshment Order Charge="credit"
xm ns: cnt =
"urn: x- conmmer ceone: docunent : sanpl e: xdk: sox: Cont ai ner. sox$1. 0" >

<Bever ageOrder Quantity="250">
<Bever ageSpec>
<Bever age Vol unme="12" Price="0.65" xm ns=
"urn: x- conmer ceone: docunent : sanpl e: xdk: sox: Bever age. sox$1. 0" >
<Name>Coca Col a</ Name>
<Can>
<cnt : Al um nuntCan/ >
</ Can>
</ Bever age>
</ Bever ageSpec>
</ Bever ageOr der >
<SnackOrder Quantity="125">
<Snack xml ns=
"urn: x- commer ceone: docunent : sanpl e: xdk: sox: Snack. sox$1. 0" >

<Candy>
<Chocol at eBar >
<Nanme>Al nrond Joy</ Name>
</ Chocol at eBar >
</ Candy>
</ Snack>
</ SnackOr der >
</ Ref reshnment Or der >

Snack instances each declare a default namespace for themselves and all of their content. Note the
beverage container Al urmi nuntan in the Bever age Instance. It still needs to have a prefix, because it
does not belong to the default namespace declared for Bever age. If you would like to use an element
from the current namespace, then it also would have to be used with a prefix, and that prefix would have to
be associated with the namespace of the current schema.

Commerce One 33 SOX Tutorial

6 Inheritance

The SOX inheritance feature allows you to define elementtypes that inherit structure from other
elementtypes. With inheritance, a previously defined elementtype, the parent elementtype can be extended
by another elementtype, the child elementtype. This enables you to create new elementtypes by extending
existing elementtypes in order to add additional structures or attributes.

Instances of the extended elements can also be used polymorphically, that is, as if they were instances of
the original elements that were extended. This will be discussed further in section 7: Polymorphism.

6.1 Extending an Existing Element

Only elementtypes that have sequence content models may be extended. The reason for this is that the
extending element is essentially appending new content to the end of the existing. A string content model
does not provide any structure to add to, as its model means that only a text string will be contained in the
element. A choice in turn does not have an ideal structure either, since its content model means that only
one of the elements in the model will actually be used. Adding structure to such a model would violate the
model itself. The element content model is considered to be a sequence content model with one element in
the sequence, and the empty content model is considered to be a sequence of 0 elements, so it is perfectly
legal to extend both of these content models. They are both considered to be special cases of a sequence.

Example 6.1:

<?xm version="1.0"?>
<! DOCTYPE schema SYSTEM
"urn: x- conmer ceone: docunent : com conmer ceone: xdk: xm : schema. dt d$1. 0" >

<schema uri ="urn: x- conmer ceone: docunent : sanpl e: xdk: sox: Roons. sox$1. 0" >
<el enent t ype name="Rooni >
<nodel >
<sequence>
<el ement nanme="Wdth" type="int"/>
<el enent nane="Length" type="int"/>
<el ement nanme="Hei ght" type="int"/>
<choi ce occurs="*">
<el enent type="Carpet"/>
<el enent type="W ndow'/>
<el enent type="Door"/>
</ choi ce>
</ sequence>
</ nodel >
</ el enenttype>
<el ement t ype nane="Car pet" >
<enpty/ >
<attdef nanme="Length">
<enuner ati on datatype="string">
<opti on>short </ opti on>
<opti on>nedi unx/ opti on>
<opti on>| ong</ opti on>
</ enuner ati on>
</ attdef >
</ el ementtype>

Continued on next page...

Commerce One 34 SOX Tutorial

Example 6.1 continued:

<el enent type name="COpeni ng">
<enpty/ >
<attdef name="Direction">
<enuner ati on dat at ype=" NMICKEN" >
<opt i on>sout h</ opti on>
<opti on>nort h</opti on>
<opti on>west </ opti on>
<opti on>east </ opti on>
</ enuner ati on>
</ attdef >
</ el enenttype>
<el enent t ype nanme="W ndow' >
<ext ends type="Qpeni ng">
<append>
<el ement nanme="W ndowType" type="Cpeni ngType"/ >
</ append>
<attdef name="MosquitoNet" datatype="bool ean">
<def aul t >t rue</ defaul t >
</ attdef>
<attdef nanme="Blinds" datatype="bool ean">
<def aul t >t rue</ def aul t >
</ attdef>
</ ext ends>
</ el enenttype>
<dat at ype nane="Openi ngType" >
<enuner ati on datatype="string">
<option>sli di ng</option>
<opt i on>openi ng</ opti on>
</ enumer ati on>
</ dat at ype>
<el enent t ype nane="Door" >
<ext ends type="Qpeni ng">
<attdef nane="Door Type" >
<enuner ati on dat at ype="NMIOCKEN' >
<opti on>si ngl e</ opti on>
<opt i on>doubl e</ opti on>
</ enumer ati on>
<def aul t >si ngl e</ def aul t >
</ attdef>
</ ext ends>
</ el enenttype>
<el ement t ype nane="BedRooni >
<ext ends type="Rooni >
<append>
<el ement type="C oset" occurs="*"/>
</ append>
</ ext ends>
</ el enenttype>
<el enenttype name="C oset">
<empty/ >
<attdef name="Wal kl n* dat at ype="bool ean" >
<inplied/ >
</ at t def >
</ el enenttype>
<el ement t ype nane="Li vi ngRoon' >
<ext ends type="Roont'/>
</ el enenttype>

</ schena>

Commerce One 35 SOX Tutorial

In the schema in example 6.1, two different elementtypes are extended. The elementtype Qpeni ng is
extended by both W ndow, that adds elements and attribute definitions to the empty content model of
Openi ng, and Door , that only adds an attribute. The element Roomis extended by the element
BedRoom which appends an element to the sequence content model. The Cl oset element will be
appended at the end, after the choice in Room Roomis also extended by the elementtype Li vi ngRoom
which does not add any content structure to the Roomelementtype, but is perfectly valid. This is a way to
create an elementtype that is distinctly different from Room even though it does not add anything to it.

An instance of Li vi ngRoomcould look like this:

Example 6.2:

<?soxtype urn:x-commer ceone: docunent : sanpl e: xdk: sox: Roons. sox$1l. 07>

<Li vi ngRoon®
<W dt h>12</ W dt h>
<Lengt h>15</ Lengt h>
<Hei ght >9</ Hei ght >
<Car pet Length="rmedi un'/>
<W ndow Di rection="south" Blinds="fal se">
<W ndowType>sl i di ng</ W ndowType>
</ W ndow>
<W ndow Direction="east" Blinds="true" MsquitoNet="fal se">
<W ndowType>openi ng</ W ndowType>
</ W ndow>
<Door Direction="west" Door Type="doubl e" ></ Door >
</ Li vi ngRoomn®

In example 6.2, the elements that extended OQpeni ng now have Qpeni ng's attribute, as well as some
attributes of their own. The attributes from both elementtypes work just the same way, regardless of where
they were defined.

Next let's look at an instance of BedRoomwhich adds to elementtypes to Room

Example 6.3:

<?soxtype urn:x-commer ceone: docunent : sanpl e: xdk: sox: Roons. sox$1. 0?>

<BedRoon®
<W dt h>9</ W dt h>
<Lengt h>12</ Lengt h>
<Hei ght >8</ Hei ght >
<Car pet Length="1ong"/>
<W ndow Di recti on="east">
<W ndowType>sl i di ng</ W ndowType>
</ W ndow>
<Door Direction="west" Door Type="single"/>
<Cl oset V&l kln="true"/>
<Cl oset />
</ BedRoon®

When creating extended elementtypes, keep in mind that an elementtype can only extend one other
elementtype, but that elementtype may in turn be extending other elementtypes.

Commerce One 36 SOX Tutorial

6.2 Extending an Element from a Different Namespace

It is also possible to extend elementtypes from other namespaces than the current. In this example we first
define an element in one namespace:

Example 6.4:

<?xm version="1.0"?>
<! DOCTYPE schema SYSTEM
"ur n: x- comer ceone: docunent : com commer ceone: xdk: xnl : schenma. dt d$1. 0" >

<schema uri ="urn: x- comrer ceone: docunent : sanpl e: xdk: sox: Ti cket . sox$1. 0" >

<el ement type nane="Ti cket">
<nmodel >
<sequence>
<el enent name="Price" type="TicketPrice"/>
<el ement nane="Ti ne" type="datetine"/>
<el enent nane="Location" type="string"/>
</ sequence>
</ model >
<att def nanme="PrePai d' dat at ype="bool ean">
<requi red/ >
</ attdef>
</ el ementtype>

<dat at ype name="Ti cket Price">
<scal ar datatype="float" deci mal s="2" m nval ue="0"/>
</ dat at ype>

</ schema>

Note the use of the SOX datatype datetime in example 6.4. See Appendix A: Intrinsic Datatypes for further
reference on this and other intrinsic datatypes.

Commerce One 37 SOX Tutorial

Next we extend the first elementtype in two other namespaces. First we use it in a schema called
Movi eTi cket :

Example 6.5:

<?xm version="1.0"7?>
<! DOCTYPE schema SYSTEM
"ur n: x- comer ceone: docunent : com commer ceone: xdk: xnl : schenma. dt d$1. 0" >

<schema uri=
"urn: x- commer ceone: docunent : sanpl e: xdk: sox: Movi eTi cket . sox$1. 0" >

<nanespace prefix="tick"
namespace="ur n: x- conmer ceone: docunent : sanpl e: xdk: sox: Ti cket. sox$1. 0"/ >

<el enentt ype nane="Movi eTi cket ">
<extends prefix="tick" type="Ticket">
<append>
<el enent nane="Title" type="string"/>
<el ement nane="Screen" type="int"/>
</ append>
<attdef name="Di scount">
<enuner ati on dat at ype="NMIOKEN' >
<opti on>St udent </ opti on>
<opt i on>Seni or </ opti on>
<opti on>Mati nee</ opti on>
<opti on>chil d</opti on>
</ enuner ati on>
</ attdef>
</ ext ends>
</ el ement t ype>

</ schema>

Commerce One 38 SOX Tutorial

Let us use the same Ticket schema in a different schema called Concert Ti cket :
Example 6.6:

<?xm version="1.0"?7>
<! DOCTYPE schenma SYSTEM
"urn: x- conmer ceone: docunent : com comrer ceone: xdk: xm : schena. dt d$1. 0" >

<schema uri=
"urn; x- commer ceone: docunent ;: sanpl e: xdk: sox: Concert Ti cket. sox$1l. 0" >

<nanmespace prefix="nsl"
nanmespace="ur n: x- conmer ceone: docunent : sanpl e: xdk: sox: Ti cket . sox$1. 0"/ >

<el ementt ype name="Concert Ti cket" >
<ext ends prefix="nsl" type="Ticket">
<append>
<el enent name="Band" type="string"/>
<el ement nanme="Qpeni ngAct" type="string" occurs="*"/>
</ append>
<attdef nanme="Seating">
<enuner ati on dat at ype="NMICKEN' >
<opti on>Cener al </ opti on>
<opti on>Reser ved</ opti on>
<opt i on>Box</ opti on>
</ enuner ati on>
<required/ >
</ attdef>
<at t def nanme="Seat Nunber" dat atype="string">
<inplied/>
</ attdef>
</ ext ends>
</ el enenttype>

Let's see what the use of different namespaces do to the Movi eTi cket instance:
Example 6.8:

<?soxtype
ur n: x- commer ceone: docunent : sanpl e: xdk: sox: Movi eTi cket . sox$1. 07>

<Mbvi eTi cket Di scount="Student" PrePai d="fal se"
xm ns: gen="ur n: x- conmer ceone: docunent : sanpl e: xdk: sox: Ti cket. sox$1. 0" >
<gen: Pri ce>4. 50</ gen: Pri ce>
<gen: Ti ne>19990726T19: 30: 00</ gen: Ti ne>
<gen: Locat i on>AMC Mer cado</ gen: Locat i on>
<Title>Matrix</Title>
<Screen>11</ Scr een>
</ Movi eTi cket >

Just as with the previous namespace examples, elements have the prefix of the namespace where they are
defined. The attributes are of special interest here, because one was defined in the parent, and one in the
child, but neither has a prefix. Attributes never have a prefix, regardless of where they were defined.

Commerce One 39 SOX Tutorial

As an added example, here follows an instance of Concert Ti cket :
Example 6.9:

<?soxt ype
ur n: x- comrer ceone: docunent : sanpl e: xdk: sox: Concert Ti cket . sox$1. 0?>

<Concert Ti cket Seating="Reserved" Seat Nunber="A35" PrePai d="true"
xm ns: par ent =" ur n: x- conmer ceone: docunent : sanpl e: xdk: sox: Ti cket . sox$1. 0" >
<parent: Price>39. 50</parent: Price>
<parent: Ti nre>19990802T21: 00: 00</ par ent : Ti ne>
<par ent: Locati on>Shorel i ne Anphitheatre</parent:Location>
<Band>B- 52s</ Band>
<Openi ngAct >The Nobodys</ Openi ngAct >
</ Concert Ti cket >

So as you can see, the generic structure of Ti cket can now easily be reused for two very different ticket
types. If inheritance is used the right way, it can save a lot of work and mark-up, and it can also help
describe relationships between elementtypes.

Commerce One 40 SOX Tutorial

7 Polymorphism

The SOX language supports polymorphism, which means that when an elementtype specifies a specific
elementtype in its content model, a subtype of this elementtype may be used instead in the instance. The
subtype will always contain all the content that the parent type must have, regardless of what additional
content it might add.

7.1 Using Polymorphic Elements from the same Namespace

The simplest form of polymorphism is when a supertype and a subtype exist in the same namespace. In a
content model, the supertype is specified, but in the actual instance, the sub type can be used instead:

Example 7.1:

<?xm version="1.0"7?>
<! DOCTYPE schema SYSTEM
"urn: x- conmer ceone: docunent : com conmer ceone: xdk: xnml : schema. dt d$1. 0" >

<schema uri =
"urn: x- conmer ceone: docunent : sanpl e: xdk: sox: Frui t Sal ad. sox$1. 0" >

<el enent t ype nanme="Fruit Sal ad" >
<nodel >
<sequence>
<el ement name="BaseFruit" type="Fruit"/>
<el ement type="Fruit" occurs="+"/>
</ sequence>
</ nmodel >
</ el enenttype>
<el enenttype nanme="Fruit">
<nodel >
<el enrent nane="Nane" type="string"/>
</ nodel >
<attdef nane="Presentation">
<enuner ati on datatype="string">
<option>sliced</option>
<opti on>di ced</ opti on>
<opt i on>peel ed</ opti on>
<opti on>whol e</ opti on>
</ enuner ati on>
</ attdef >
</ el enenttype>
<el enent t ype nane="Appl e" >
<extends type="Fruit">
<append>
<el enent nane="Col or" type="string"/>
</ append>
</ ext ends>
</ el enenttype>
<el enent type name="Banana">
<extends type="Fruit">
<attdef name="Ri peness">
<enuner ati on dat at ype=" NMIOKEN" >
<opt i on>gr een</ opti on>
<option>yel | ow</ opti on>
<opt i on>speckl ed</ opti on>
<opti on>br own</ opti on>
</ enunerati on>
</ attdef>
</ ext ends>
</ el enenttype>
</ schema>

Commerce One 41 SOX Tutorial

Let's look at how a polymorphic instance of the schema in example 7.1 might look:

Example 7.2:

<?soxtype urn:x-commer ceone: docunent : sanpl e: xdk: sox: Frui t Sal ad. sox$1. 07>

<Frui t Sal ad>
<BaseFruit>
<Appl e Presentati on="di ced">
<Name>G anny Smi t h</ Name>
<Col or >G een</ Col or >
</ Appl e>
</ BaseFruit>
<Banana Ri peness="yell ow' Presentation="sliced">
<Nane>P| ant ai n</ Nane>
</ Banana>
<Fruit Presentation="diced">
<Nane>Mango</ Nane>
</Fruit>
<Fruit Presentation="whol e">
<Nane>Cherri es</ Nane>
</Fruit>
<Appl e Presentation="sliced">
<Nanme>Fuj i </ Name>
<Col or >Yel | ow</ Col or >

</ Appl e>
</ Frui t Sal ad>

In example 7.2, note the case of the first element in the content model, BaseFr ui t . Even though the
content is a polymorphic element, the new name assignment is still used. In the case of every polymorphic
fruit above, the sub type is used as if it was a Fruit element, which it essentially is.

Commerce One 42 SOX Tutorial

7.2 Using Polymorphic Elements from Different Namespaces

Now let's define a schema that uses the rooms from example 6.1, to create a description of a house. As one
might suspect a house consists of a number of rooms. In addition to the rooms we have already defined in
the Roomns schema, let's add another type of room, a Bat hRoom

Example 7.3:

<?xm version="1.0"7?>
<! DOCTYPE schema SYSTEM
"urn: x- comer ceone: docunent : com commer ceone: xdk: xnl : schena. dt d$1. 0" >

<schenma uri ="urn: x- conmer ceone: docunent : sanpl e: xdk: sox: House. sox$1. 0" >

<nanespace prefix="roon’' nanespace=
"urn: x- conmer ceone: docunent : sanpl e: xdk: sox: Roons. sox$1. 0"/ >

<el enentt ype nane="House" >
<nodel >
<el enent prefix="roont type="Room' occurs="2,*"/>
</ nodel >
</ el ement type>

<el enent t ype nane="Bat hRooni >
<extends prefix="roont type="Rooni>
<append>
<el enent name="Facility" type="WaterFacility" occurs="+"/>
</ append>
</ ext ends>
</ el ementtype>

<dat at ype nane="WaterFacility">
<enuner ati on datatype="string">
<option>Toi |l et </ option>
<opti on>Shower </ opti on>
<opti on>Si nk</ opti on>
<opt i on>Bat ht ub</ opti on>
</ enuner ati on>
</ dat at ype>

</ schema>

Commerce One 43 SOX Tutorial

Now let's create an instance of a House that uses rooms from two namespaces polymorphically:

Example 7.4:

<?soxtype urn:x-comer ceone: docunent : sanpl e: xdk: sox: House. sox$1. 0?>

<House xm ns:roomF
"urn: x- conmer ceone: docunent : sanpl e: xdk: sox: Roons. sox$1. 0" >
<r oom BedRoon»
<room W dt h>20</r oom W dt h>
<room Lengt h>12</room Lengt h>
<room Hei ght >12</r oom Hei ght >
<room Car pet Length="nedi unt/>
<room W ndow Di recti on="west" >
<room W ndowType>sl i di ng</r oom W ndowType>
</ room W ndow>
<room W ndow Di rection="north">
<r oom W ndowType>sl i di ng</room W ndowType>
</ room W ndow>
<room Door Direction="south" DoorType="single"/>
<room Door Direction="east" Door Type="single"/>
<room C oset/ >
<room Cl oset/ >
</ room BedRoomn
<room Li vi ngRoon®
<room W dt h>20</r oom W dt h>
<room Lengt h>18</room Lengt h>
<room Hei ght >12</r oom Hei ght >
<room W ndow Di rection="sout h" MysquitoNet="fal se">
<room W ndowType>openi ng</r oom W ndowType>
</ room W ndow>
<room W ndow Direction="south" MoysquitoNet="fal se">
<r oom W ndowType>openi ng</r oom W ndowType>
</ room W ndow>
<room W ndow Direction="east" MsquitoNet="fal se">
<room W ndowType>openi ng</r oom W ndowType>
</ room W ndow>
<room Door Direction="west" Door Type="doubl e"></room Door >
<room Door Direction="north" DoorType="doubl e"></room Door >
</ room Li vi ngRoon®
<Bat hRoomn>
<room W dt h>20</r oom W dt h>
<room Lengt h>18</room Lengt h>
<room Hei ght >12</r oom Hei ght >
<room Door Direction="west" Door Type="singl e"/>
<Facility>Toilet</Facility>
<Facility>Si nk</Facility>
<Faci | i ty>Bat ht ub</ Faci l i ty>
</ Bat hRoon®
</ House>

As you can see in example 7.4, the Room objects from the two different namespaces, can mingle freely.
The only thing that matters is that all present elements are valid, in that they directly or indirectly extend
the specified element.

Commerce One 44 SOX Tutorial

7.3 Using Polymorphic Elements that are Not Accessible from the Current
Namespace

A more complicated, but by no means unusual, scenario for polymorphism, is when the polymorphic
elementtypes that are used in the instance, are not defined in, nor imported to, the schema that is defined in
the soxtype element. One reason why this would happen is when you use an existing schema, but want to
extend an elementtype that is contained in the content model of that schema. Your extended element is not
defined in the root schema, nor is it imported into it, but you still want to use the extended element
polymorphically. In order to be able to do so, you have to import the schema with the extended definition
into the instance, so that the software can access your new definition. This is done with the import element,
which must come before the root of your schema:

Example 7.5:

<?i nmport urn: x-commer ceone: docunent : sanpl e: xdk: sox: Sanpl e. sox$1. 07>

To demonstrate the use of the import element, let's use the Ticket schemas from the previous section to
create a Ticket Purchase Order:

Example 7.6:

<?xm version="1.0"?>
<! DOCTYPE schema SYSTEM
"urn: x- comer ceone: docunent : com commer ceone: xdk: xnl : schena. dt d$1. 0" >

<schema uri=
"urn: x- conmer ceone: docunent : sanpl e: xdk: sox: Ti cket Pur chase. sox$1. 0" >

<namespace prefix="tick" nanmespace=
"urn: x- conmer ceone: docunent : sanpl e: xdk: sox: Ti cket . sox$1. 0"/ >

<el enent t ype nane="Ti cket Pur chase" >
<nodel >
<el enent type="Ticket" prefix="tick" occurs="+"/>
</ model >
</ el ementtype>

</ schema>

Now we have defined a schema that can take a number of Ticket instances, but since Ti cket is hardly
very useful in itself in a purchase order, we will want to use extended versions of Ticket that actually
provide more detailed information as to what kind of Ti cket is ordered.

Commerce One 45 SOX Tutorial

Let's create a Ti cket Pur chase instance that uses Movi eTi cket s and Concert Ti cket s
polymorphically. Since the Ti cket Pur chase schema only knows about the Ti cket schema, we will
have to import the other two schemas in order to be able to access the definitions of the extended tickets:

Example 7.7:

<?soxtype
ur n: x- comer ceone: docunent : sanpl e: xdk: sox: Ti cket Pur chase. sox$1. 0?>

<?i mport urn: x-conmer ceone: docunent : sanpl e: xdk: sox: Movi eTi cket . sox$1. 0?>
<?i mport
ur n: x- comer ceone: docunent : sanpl e: xdk: sox: Concert Ti cket . sox$1l. 07>

<Ti cket Pur chase xm ns: nov=
"urn: x- conmer ceone: docunent : sanpl e: xdk: sox: Movi eTi cket . sox$1. 0"
xm ns: con=
"urn: x- conmer ceone: docunent : sanpl e: xdk: sox: Concert Ti cket. sox$1. 0"
xm ns: tic="urn: x- conmer ceone: docunent : sanpl e: xdk: sox: Ti cket. sox$1l. 0" >

<con: Concert Ti cket PrePai d="fal se" Seating="General ">
<tic:Price>22.50</tic:Price>
<tic:Tine>19991231T18: 00: 00</tic: Ti me>
<tic:Location>Ti mes Square</tic:Location>
<con: Band>Rol | i ng St ones</con: Band>
<con: Openi ngAct >W I |y Nel son</ con: Qpeni ngAct >

</ con: Concert Ti cket >

<nov: Movi eTi cket PrePai d="fal se">
<tic:Price>6.50</tic:Price>
<tic:Tinme>19990811T14: 15: 00</ti c: Ti ne>
<tic:Location>Century 23</tic:Location>
<nmov: Title>Mystery Men</nmov: Title>
<npv: Scr een>2</ nov: Scr een>

</ nmov: Movi eTi cket >

</ Ti cket Pur chase>

As example 7.7 shows, you still have to assign a prefix for each namespace with an xmins attribute. Even
though you have explicitly imported the namespace, you still have to declare what namespace an element
was declared in.

Commerce One 46 SOX Tutorial

Appendix A: Intrinsic Datatypes

These are all of the intrinsic datatypes defined in SOX. Some have been defined in XML, and some have
been added in SOX. They can be used as datatypes for attributes or elements, or be used in user defined

datatypes.

boolean
string

URI

number

float

double

int
long
byte

ID

IDREF

IDREFS

NMTOKEN

NMTOKENS

date

A binary datatype. The valid values are either "true" or "false"
A text string with any number of characters.

A Universal Resource Identifier which is essentially an address to some resource. Can
for example be mapped to a file in the local file system, a URL on the internet.

For more information on URI's, see the URI working draft:
http://www.w3.0rg/Addressing/lURL/URI_Overview.html

An infinite precision number which may be preceded by a "-" or "+", and which may
contain one decimal point.

A single precision floating point number in the range -3.40282347*10E38 to
3.40282347*10E38.

A double precision floating point number in the range -1.17549435*10E308 to
1.17549435*10E308.

An integer in the range -2,147,483,648 to 2,147,483,647.
An integer in the range -9,223,372,036,854,775,808 to 9,223,372,036,854,775,807.
An integer in the range -128 to 127.

An ID is a way to give an object a unique identification in an instance. This means
that an ID value in an instance cannot be equal to any other ID value in that instance.
ID's are referred to by an IDREF or IDREFS object. See the XML 1.0 spec for more
information.

AN IDREf is used to refer to an ID object. An instance of an IDREF object have to
contain a value that is identical to an ID value that exists in the same instance as the
IDREF object.

One or several IDREF values separated by white space.

An NMTOKEN is a text string that has a limited set of allowed characters. Digits and
letters are allowed, as well as period, ".", dash, "-", colon, ":", underscore, " ", as well
as some other special characters. See the XML 1.0 specification for more information.

One or several NMTOKEN values separated by white space.

A date in the format of: YYYYMMDD. This means that the year comes first,
specified with 4 digits, then a two-digit month, and last a two-digit day. This means
that if the month or day only has one digit, then that digit should be preceded by a
zero, "0", to make the value take up two digits.

For example, 4/1/99, that is, the first of April 1999, would be expressed as:
19990401.

Commerce One

47 SOX Tutorial

http://www.w3.org/Addressing/URL/URI_Overview.html

time A time, specified with hours, minutes and seconds in the format HH:MM:SS. HH is
the hours, expressed in two digits, MM is the minutes expressed in two digits, and SS
is the seconds, expressed in two digits.
The hours are specified in the range of 0-23, which means that the time is expressed
in "military hours", tat is without am or pm. 9:07 am would be expressed as 09:07:00,
whereas 9:07 pm would be 21:07:00.
The time datatype also has the option of specifying an offset from GMT, in which
case the format is HH:MM:SS(+/-)HH:MM. For example, if the time 5:03 pm is
specified, being 4 hours ahead of GMT, then the value would be:
17:03:00+04:00

datetime A date and time combined. The format is: YYYYMMDDTHH:MM:SS. First comes a
date datatype value, next the character "T", which separates the date from the time,
and then follows a time datatype value.

As an example, 12:43:27 noon on the last of December 1999 would be expressed as:
19991231T12:43:27

As with the time datatype, an offset from GMT can be specified, in which case the
format is: YYYYMMDDTHH:MM:SS(+/-)HH:MM. The previous example, 7 hours
behind GMT, would be:

19991231T12:43:27-07:00

Commerce One 48 SOX Tutorial

? occurrence

* occurrence

+ occurrence

camel case

choice content
model

current
namespace

CXp

datatype
definition

decimals
default
default
namespace
digits
DOCTYPE
declaration
DTD
elementtype
element content
model

element element

empty content
model

Appendix B: Glossary

An element, nested sequence or nested choice specifying an occurs value of "?" is
optional and may appear once, or not at all.

An element, nested sequence or nested choice specifying an occurs value of "*" is
optional and may appear multiple times.

An element, nested sequence or nested choice specifying an occurs value of "+" must
appear, but may appear more than once.

A naming style from java and C++, where a name will contain of one or several
words. Each new word is started with a capital letter. An example would be:
ThislsACamelCasedName. It is a recommended naming style for SOX elements and
datatypes.

A content model of an elementtype that specifies a number of elements, one of which
may appear in an instance of the elementtype.

The namespace of the current schema.

Commerce One's SOX schema and XML parser

An element in a schema that defines a user-defined datatype. The datatype can be
used in attribute definitions or element definitions.

An attribute used in scalar to specify the maximum number of allowed decimals

A presence specified for an attribute that has a default value. If the attribute is not
present in the instance, the default value will be used instead.

A namespace declared for an element in an instance, which defines the namespace for
that element and all of its contents. This enables a user to avoid prefixes in cases
where large elements are not in the current namespace.

An attribute used in scalar to specify the maximum number of allowed digits (not
including decimals)

A tag identifies the document type of the current document. Must be present in all
SOX schemas containing the keyword schema and the URI to the current schema.dtd

Document Type Definition. Defines a set of structures for XML documents.

An element in a schema that defines an element structure to be used in an instance
document.

A content model of an elementtype that specifies that only one type of element may
be present in the instance of the elementtype.

An element used in a content model to specify a content element. The type attribute
on element specifies what type the element should be of in the instance, and can be of
a datatype or element type.

A content model of an elementtype that specifies that no content may be present in
the instance of the elementtype.

Commerce One

49 SOX Tutorial

enumeration

fixed

implied
inheritance
instance
document
maxlength

maxexclusive

maxvalue
minvalue

minexclusive

namespace

nested choice

nested sequence

N,M occurrence

option

parser

polymorphism

prefix

required
root element

An element that specifies a user defined datatype that consist of an enumeration of
valid values.

A presence specified for an attribute that has a fixed value. No other value may be
specified in the instance.

A presence specified for an attribute that is optional in the instance.

A feature of SOX allowing an elementtype to derive structure from a previously
defined elementtype.

An XML instance of a SOX schema. The instance is written in XML format and must
conform to a schema or a set of schemas. It may only have one root element.

An attribute used in varchar to specify the maximum length of a string in the instance.

An attribute used in scalar to specify if the maximum value specified is or is not
allowed in the instance.

An attribute used in scalar to specify the maximum value allowed in the instance.
An attribute used in scalar to specify the minimum value allowed in the instance.

An attribute used in scalar to specify if the minimum value specified is or is not
allowed in the instance.

A unique identifier of a schema. Since all schemas reside in their own namespace that
is separate from all other namespaces, they can refer to other namespaces without any
name collisions.

A choice element that is nested inside another sequence or choice element.
A sequence element that is nested inside another sequence or choice element.

An element, nested sequence or nested choice specifying an occurs value of N,M
specifies the valid range of occurrences of that object.

An element used in an enumeration element to specify a valid value for the
enumeration.

A processor that parses documents.

Subtypes of elements can appear in an instance whenever the presence of their
supertype is specified.

A name associated with a namespace, used with an object in a schema or an instance
to specify that that object is from the associated namespace. In the schema the prefix
is used as the value for the prefix attribute, in the instance the prefix is pre-pended to
the name of an element, separated from the element with a colon, ":".

A presence specified for an attribute that must appear in the instance.

The outermost set of tags in an XML document that contains all other tags. There may
only be one root element in each document, except for any version and document type
elements.

Commerce One

50 SOX Tutorial

scalar

schema.dtd

schema element

sequence content
model

SOX

SOX 2.0

specification

SOX schema

soxtype
declaration

string content
model

occurs

URI

valid

varchar

well-formed

XML

An element that specifies a user defined datatype that defines a number type datatype
with various constraints.

A DTD that all SOX schemas must conform to.

The root element inside a SOX schema that defines that schema's namespace, as well
as wraps all definitions in that schema.

A content model of an elementtype that constrains the content of the elementtype's
instance to the specified sequence. The elements must appear in the correct sequence,
with all required elements present.

A schema language expressed in XML format that provides a more powerful way of
defining an XML structure than a DTD. Some of the features that make it more
advantageous are: a large number of datatypes that can be used both in attributes and
element content, inheritance and polymorphism.

A language specification of the current version of the SOX language. Can be found
at:
http://www.w3.0rg/TR/NOTE-SOX/

Defines structure rules in the form of elementtype definitions and datatype
definitions. The schema is written in XML format and conforms to a DTD called
"schema.dtd".

A tag that must be present in all XML instances of SOX schemas. It consists of a
processing instruction that identifies the document as being an instance of a SOX
schema.

A content model of an elementtype that specifies that only text content may be
present in the instance of the elementtype.

A way to specify how many times an element, nested sequence or nested choice may
appear in a content model.

Uniform Resource ldentifier. Consists of an address to a resource. How that address
is resolved depends on the specific scheme. See the current URI working draft for
more information:

http://www.w3.org/Addressing/URL/URI_Overview.html

Meaning that the document is conforms to the constraints specified in the document it
claims to conform to. That document could for example be a DTD or a SOX schema.
See the XML 1.0 specification or the SOX 2.0 specification for more details on
validity.

An element that specifies a user defined datatype that specifies a string datatype with
a maximum length.

Meaning that an XML document conforms to the well-formedness constraints set
forth in the XML 1.0 specification.

Extensible Mark-up Language. A mark-up language ideal for storing data in a human
readable form. Provides means to define tags and structures which enables a highly
customizable way of storing data.

Commerce One

51 SOX Tutorial

http://www.w3.org/TR/NOTE-SOX/
http://www.w3.org/Addressing/URL/URI_Overview.html

XML 1.0 A language specification of the current version of the XML language. Can be found
specification at:

http://www.w3.0org/TR/REC-xml

XML versiontag A tag that identifies the current version of XML. Sample format is:
<?xm version="1.0"7?>
This tag must be present in all documents that consist of XML content that should be
parseable by an XML processor. It must be present in SOX schemas.

Commerce One 52 SOX Tutorial

http://www.w3.org/TR/REC-xml

	Introduction
	An Introduction to SOX Schemas and Instances
	The Basics of a SOX schema
	The Basics of an Instance Document

	Document Type Declarations
	XML Version and DOCTYPE Declaration
	The Instance soxtype Declaration

	The Basic SOX Schema
	The Schema Element
	Elementtype Definitions
	Empty Content Model
	String Content Model
	Element Content Model
	Sequence Content Model
	Choice Content Model
	Occurs
	? Occurrence
	+ Occurrence
	* Occurrence
	N,M occurrence

	Attributes

	Data Type Definitions
	Enumeration Datatype Definition
	Scalar Datatype Definition
	Varchar Datatype Definition
	Anonymous Datatype Definitions

	Complete SOX Schema

	Namespaces
	Importing SOX Schemas
	Using Elementtypes and Datatypes from Imported Schemas
	Multi-Level Imports
	Using a Default Namespace in an Instance

	Inheritance
	Extending an Existing Element
	Extending an Element from a Different Namespace

	Polymorphism
	Using Polymorphic Elements from the same Namespace
	Using Polymorphic Elements from Different Namespaces
	Using Polymorphic Elements that are Not Accessible from the Current Namespace

