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Abstract

Component-Based Software Engineering depends on reli-
able, robust components, since it may omit a unit test phase
wholly or partially from the devel opment cycle. This paper
describes a tool that allows a component developer to de-
sign and run verification tests. In developing components
for our library, we found it necessary to provide multiple
mechanismsfor identifying and capturing tests to overcome
the limitations of any single mechanism. Once specified,
test specifications and test results are stored in XML docu-
ments, providing a standard, portable form of storing, re-
trieving and updating test histories. One module of our
component test bench, the test pattern verifier, has been de-
signed to be general, lightweight and portable, so that it
can be packaged with a component and its test specifica-
tions. Thisallows a component user to verify a component’s
compliance with specificationsin a target environment.

1. Introduction

Component-Based Software Engineering (CBSE) is an
emerging methodology for software development that aims
to compose applications with plug and play software
components (custom-built or Commercial Off-the-Shelf
(COTYS)) in a framework. This paradigm is becoming in-
creasingly important owing to the maturity of several un-
derlying technologies that support building components and
developing applications from sets of these components.
Changes in the business and organisational context in which
these applications are being developed[4] are also driving
CBSE forward. Three component infrastructure technolo-
gies - OMG’s CORBA[19], Microsoft’s Component Ob-

ject Model (COM) and Distributed COM (DCOM)[3] and
Sun’s JavaBeans and Enterprise JavaBeans[22] - have ma-
tured and have become somewhat standardised. These tech-
nologies provide the communication and coordination that
are required to construct applications from components.
Recent developments in the business and organisational
context that are promoting CBSE include[4]:

e the shift in style and architecture of applications away
from centralised mainframe-based applications to dis-
tributed applications remotely accessible from a vari-
ety of client machines,

o the need for business to maintain some stability in the
technology supporting its core business and its inter-
nal structure in the face of rapid development in these
technology areas and

e organisations have already invested significant re-
sources in their existing applications and would prefer
to reuse their existing investment in developing new
applications quickly and reliably.

CBSE differs from conventional reuse of components in a
number of ways. First, components are required to have
plug and play capabilities. Second, components hide their
implementation details and thus their interfaces should be
separated from their implementations. Lastly, in order to
promote interoperability, components are usually designed
on a pre-defined architecture.

The CBSE process has two phases: component develop-
ment and component integration. The component-based en-
terprise software process model[1] for application develop-
ment consists of the following sequential stages:

e Analysis and Component Acquisition,



e Component-Oriented Design,
e Component Composition,

e Integration Test,

e System Test.

Note the absence of a unit testing phase in this methodol-
ogy. A corner-stone of the CBSE approach is the benefit
of using pre-existing, assumed reliable components. This
permits faster construction of complex systems with better,
i.e. more reliable, outcomes. Also, developers often do not
have access to the source code and can only work with com-
ponents as black boxes and are thus limited to identifying
faults. On the other hand, the development of components
themselves follows a more conventional approach which in-
cludes unit testing - the objective of the tool described in
this paper.

Integration is an error-prone process, it is necessary to con-
sider the unavailability of complete and correct behavioural
specifications for the components, the high level of volatil-
ity of components and the mismatch between components
for various reasons[12]. The specifications provided for
COTS components may not always be complete or correct.
In addition, commercial components are often upgraded and
this may lead to cases where the upgrades do not have the
required capability, retain old bugs and introduce new ones.
A major contribution of our work to this process is the cou-
pling of components and test certificates - enabling rapid
verification that components do have the required capabil-
ities and that upgrades have not affected correct functions.
We define a test descriptor in XML - a simple, portable doc-
ument standard - which permits test specifications to be read
and interpreted on a wide variety of platforms. The tool we
describe here contains a test pattern verifier - a light-weight,
general and portable module which will run as a stand-alone
package. Thus it can be packaged with a component and its
test specification - enabling a component user to confirm
correct functioning of the component in any target environ-
ment.

Many organisations are considering developing large indus-
trial systems that have very high reliability and availability
requirements using components [16, 17]. In one reported
case, to ensure that the signalling systems that they were
developing for the rail transport industry will operate in a
fail-safe manner, Profdeta et al.[17] used formal methods
in their design. This approach can deal with the issues
mentioned above to ensure a reliable system but it is not
a silver bullet. Despite some reported successes, formal
methods are not widely used in industry for a number of
reasons[13]. Among these are the needs for standards as
well as tools. Wileden[25] suggested that a significant in-
vestment in formal methods tools is required for industrial
applications just as the significant investment in compiler

technology resulted in the widespread take-up of high level
languages by the industry. Another approach involves test-
ing the components for each new environment so that devel-
opers and users can be confident of the expected behaviour
and performance[24]. This approach is not generally feasi-
ble as it may incur significant cost.

One important alternative to a method based completely on
formal methods is use of a visual modelling language (such
as UML) to firstly capture the component requirements,
and then to design the component classes and interfaces to
meet those requirements[2]. This provides two advantages
over the development of components as isolated packages
of code to then be verified by a test procedure developed af-
ter coding. Firstly, the requirements specification (defined
as use cases) can drive the development of test cases and
secondly, the provision of a requirements and design model
with a component provides the developer using it with a
more complete representation of the components capabili-
ties and limitations. It also allows for easier integration into
larger design models using the component.

CBSE will not be effectively used until it can be em-
ployed within the context of well-understood methods for
designing, assembling and maintaining component-based
systems[12]. Many of the issues raised here are the sub-
ject of current research. A common theme seen in various
component-based workshops[14] and research projects[23]
is the need for component-based development tools and
techniques that can help developers to evaluate and experi-
ment with components.

The component test bench (CTB) described in this paper
addresses testing tools; it provides a means for developers
to generate tests in the first place, for users to verify that
components function correctly in some target environment
and for both developers and users to run regression tests
when components are updated. It provides a mixture of
techniques - manual, computer-assisted and automatic - for
the generation of tests. This allows techniques such as sym-
bolic execution (see also section 5.1), which is very pow-
erful for some cases, but difficult to apply in others, to be
used when appropriate. The CTB avoids the need to write
code for test harnesses: it provides a generic test harness
in the test pattern verifier module: developers specify tests
which are stored in standard XML documents and run by
the test pattern verifier. By using XML for the test spec-
ification and Java for the test pattern verifier, we ensure a
high degree of portability - compared to systems based on
special-purpose scripting languages, such as Buwalda’s Ac-
tion Word method[6] - and provide a lightweight verifier
that can be packaged with small components. By integrat-
ing test generation (manual, semi-automatic and automated)
with test execution, the CTB enables them to both use the
specification to create basic test cases and allows analysis
of written code to identify further tests.



1.1. Outline

In section 2, we define the types of components that CTB
will handle. Section 3 defines a key concept - the test oper-
ation or sequence of calls that make up a single test. This
section also describes the test specification that we devel-
oped and its use in initial and regression testing (section 6).
Section 4 discusses the instrumented run-time system - a
core software component of CTB. Section 5.1 describes the
symbolic execution sub-system and how its output guides
the selection of necessary tests. The key area of manage-
ment of regression testing is described in section 6. Finally,
section 7 discusses our experience with the CTB to date.

2. Scope

Our definition of a component is intentionally broad; it cov-
ers the spectrum from ”pure” dataflow functions to compo-
nents with all the capabilities associated with the term[5].
As long as there is a clearly defined interface to a compo-
nent, a test specification may be assembled with the CTB.
Further, the CTB handles situations where a component
may have multiple implementations, e.g. one in Java and
one in C, that perform functions that are logically identical.
It also allows an implementation to supply multiple inter-
faces to a user: this might happen when some specification
detail changes but backward compatibility is needed so that
existing software does not need to be changed. Different
interfaces might also provide subsets or views of a compo-
nent’s full capabilities that are appropriate to a particular
application domain.

3. Test Operations
3.1. Definition

The CTB requires a test specification to be prepared which
describes implementations of a component, interfaces pro-
vided by each implementation and test sets that are appro-
priate to an interface. Test specifications are stored in XML
files - portable, structured documents that may be easily
read and processed by other systems.

The key element of a test set is an test operation - a sequence
of steps necessary to carry out an invidual test.

Test operations will normally "target” a method in a compo-
nent. However, in general, it isn’t possible to test a method
in isolation, so a test operation is a sequence of method
calls. In contrast to Doong and Frankl[9], who define se-
quences of messages sent to pairs of objects to bring them
into equivalent states, we do not restrict calls to methods
of the component under test. A full definition of the test
descriptor is available[20].

<?xml version="1.0"?>
<!DOCTYPE Component SYSTEM "component.dtd" >
<Component Name="RedBlackTree">
<DocHeader Name="rbtree.xml">
<Author Name="John Morris" Org="CIIPS"/>
<Copyright>2000, CIIPS</Copyrights>
<Created Date="15-05-2000" Ver="1.0"/>
</DocHeader>

<Implementation Name="Java" Environ="any java"
Lang="java">
<Source>RedBlackTree.java</Source>
<IntName>RedBlackTree</IntName>
</Implementations>
<Implementation Name="C" Environ="any C"
Lang="ANSI C">
<Sources>RedBlackTree.c</Source>
<IntName>RedBlackTree</IntName>
</Implementations>

<Interface Name="RedBlackTree">
<TestSetName>general test</TestSetNamex>
<TestSetName>add_tests</TestSetName>
<TestSetName>delete tests</TestSetName>
</Interfaces>

<TestSet Name="general test">... </TestSet>
<TestSet Name="add tests">... </TestSet>
<TestSet Name="delete_ tests">... </TestSet>
<ResultSets>

</ResultSets>
</Component >

Figure 1. Overall structure of atest descriptor.
Ellipses in this diagram indicate sections which
have been omitted here for clarity. See figure 2
for the detail of the <TestSet> element. Sim-
ilarly details of the <ResultSet> element are
shown in figure 7.

A typical example is shown in figures 1-4. By using the
XML standard for the test specification, we aim to pro-
vide a standard interchange format for test specifications:
hitherto, test specifications have usually taken the form of
scripts that are specific to a single tool. Developers using
CBSE approaches need to be able to verify the reliability
of a component in a target environment, so a standard in-
terchange format for test specifications is needed. XML
provides that - our tool can use any third party SAX[15]
parser to parse the test specification; users can use gener-
ally available XML editors and processors to read, interpret
and modify the test data sets. In this example, the compo-
nent being tested is a red-black tree[7]. It has a constructor
which accepts a list of items which are to be stored in the
tree. To construct this list, we use a ‘helper’ class - a simple
utility class designed to assist testing - which holds a list of
integers, IntList. One of IntList’s constructors ac-
cepts a string and parses it to extract a list of integers. Thus
the test operation starts with an invocation of the IntList
constructor which is passed the string in the <arg> element
of the test descriptor (cf. figure 2). The list constructed is



then passed to the RedBlackTree constructor. For the
red-black tree, checking the internal structure of the object
produced is not practical: it would involve constructing a
tree manually - a time consuming and error-prone process.
It is much easier to add a method to the class, Integrity,
which checks the rules for a red-black tree (see Cormen et
al [7]) and returns true if the tree has all the required prop-
erties. This approach depends on the correctness of the In-
tegrity method and thus might be seen as a weak one:
but the Integrity method is relatively simple to write
and the approach is really checking the consistency of the
Integrity method and other code - a tester will not stop
until all methods are returning the expected results. As a
further check that items are added to the tree, we also call
the FindKey method to verify that the value 8" is able
to be found: FindKey should return true in this case (cf.
figures 2-4).

This example shows that, in general, other methods will be
needed in a test operation to

e construct objects which are needed to test the target
method and

o verify the correct operation of the target method.

As reported by Binder and others[2], we also found that we
would often use a sequence of method calls such as those
in figure 2 as a predecessor to other tests, e.g. in the Red-
BlackTree, that sequence could be used to create a struc-
ture to test deletion methods. To avoid multiple repetitions
of such sequences, a test operation may contain a <Pre>
element, e.g.

<Pre Name="add in order"/>

which specifies another test operation which should be run
as a predecessor to this one. This enables common prede-
cessor test operations to be specified once and used many
times in subsequent testing.

Test operations are labelled with the version of the specifi-
cation for which they were generated. This provides cross-
references between test descriptors and design documenta-
tion. Expected results which were generated are linked to
an actual implementation and are marked with the imple-
mentation’s version number.

Using XML for the test descriptor files provides portabil-
ity and allows component users to gain more information
about the component’s specification by either reading the
test descriptor files directly or by using suitable XML tools
(which understand the structure of the document) to walk
through the tests. The test descriptor files are updated with
test results as the CTB runs (cf. figure 7) so they may be
used in regression testing also - providing a means of high-
lighting any differences in function between an original and
updated version of a component. The structured nature of
XML documents makes them more suitable for capturing

<TestSet Name="general test">
<TestGroup Name="add tests">
<Operation Name="add in order'"s>
<Constructor Name="IntList">
<Arg DataType="String">2 5 8 12</Arg>
<Result Name="test list"></Result>
</Constructors
<Constructor Name="RedBlackTree">
<Arg DataType="IntList"
source="test list">
</Arg>
<Result Name=rbtree></Result>
</Constructors>
<MethodCall Name="Integrity"
Target="rbtree">
<Result Name="valid" DataType=boolean
Save="y">
<Exp>true</Exp>
</Result>
</MethodCalls>
<MethodCall Name="FindKey"
Target="rbtree">
<Arg DataType="String">8</Arg>
<Result Name="found" DataType="boolean"
Save="y">
<Exp>true</Exp>
</Result>
</MethodCall>
</Operation>
</TestGroup>
</TestSet>

Figure 2. Detail of a <TestSet> element from
an XML test descriptor file. See figure 1 for
the overall document structure.

test procedures and test results than the test scripts (with a
unique syntax) employed by other tools[11].

3.2. Hierarchiesof Tests

For convenience in management, test operations in test
sets may be organised into test groups. This is particu-
larly useful when running regression tests. A programmer
who changes, say the addition function in a lookup table
or database, may quickly choose a test group consisting of
test operations which exercise an add method for a test run.
This will rapidly either provide a strong indication that the
changes have not affected correctness or identify a prob-
lem. If the test groups related to the change do not iden-
tify problems, the programmer is able to make a reasonable
presumption that the changes are correct and run the full
test set needed for the changed component with lower pri-
ority - in the background or at a time more convenient for
long processing runs such as at night. This is an important
consideration for large components where full verification
runs may involve thousands or millions of test operations
- most of which are unlikely to be affected by the change,
but where the complete set must nevertheless be run to en-
sure no unexpected side effects have been introduced by the



"25812"
IntList

RedBlackTree

n 8Il
Integrity FindKey
true true

Figure 3. Dataflow representation of a test
operation. Data flow is top-to-bottom: con-
stants above the bars are inputs, constants be-
low them are expected results which are checked
and stored. Note that this example makes use of
the normal dataflow firing rule in that methods
Integrity and FindKey can fire as soon as
their data is available and thus in any order.

change.
3.3. Definition of Test Operations

Tests vary in their structure, style and complexity: thus one
input ”style” will not suit all. So we allow test operations to
be defined in a number of ways:

1. the XML descriptors can written directly with a text
editor,

2. an XML editor can use a schema to guide data entry,
3. aconventional GUI with input boxes for each element,
4. adataflow visual editor (see figure 3) and

5. a program fragment(using a subset of Java, see figure
4) is written using a text editor.

In addition, the symbolic execution system (see section 5.1)
can generate or suggest test cases.

IntList t list =

new IntList( "2 5 8 12" );
RedBlackTree rbtree =

new RedBlackTree( t_list );
boolean valid = rbtree.Integrity() ;

expect ( valid == true );
boolean found = rbtree.FindKey ("8");
expect ( found == true );

Figure 4. Text representation of the test in fig-
ure 3. The syntax is a subset of Java: the ex-
pect function is rather like a C assert, but it
also triggers the checking and storage of the re-
sult in the <ResultSet > element for regression
testing.

Test operations define the context for a test by creating a
set of objects which constitute the environment in which
the target method runs. For example, in figure 4, an en-
vironment is created which contains variables with names:
t_list, rbtree, wvalidand found. In the dataflow
diagram in figure 3, the system assigns names to each arc.

3.4. Test Operation Results

Results expected from test operations may be derived in var-
ious ways:

e the result is part of the specification or directly deriv-
able from it by independent calculation,

e the result is computed using either the IRTS, a Java
virtual machine or by running a C or C++ program.

Test inputs are also derived in various ways:
e a part of the specification calls for a specific test,

o the developer performs an informal or formal equiva-
lence class analysis on either the specification or the
code or

e symbolic execution suggests a set of inputs, e.g. in fig-
ure 6 a value of arg1l in (3,5] is being suggested.

This leads to a classification of expected results from
method calls within test operations:

1. Specified (strongest, user input, considered part of the
specification, equivalent to a UML use case),

2. Strong accept (input from symbolic execution, result
computed, user has marked it correct, i.e. has indepen-
dently verified that the result conforms to the specifi-
cation),



3. Weak accept (input from symbolic execution, result
computed, user has marked it acceptable, but has pre-
sumably skipped a perhaps long and detailed calcula-
tion to verify conformation with the specification),

4. Pending (input from symbolic execution, result com-
puted but not checked, assumed correct),

5. Intermediate (needed for a subsequent method call
but not checked) and

6. Unknown (input from symbolic execution, result not
computed yet)

Note that our system allows incremental development, e.g.
it allows testers to use the symbolic executor to generate
test operation data and store it without running test oper-
ations (which may take a considerable time and therefore
ideally be deferred). ”Strong accept” and “specified” are
essentially equivalent, but we retain the distinction to iden-
tify the original source of the test.

4. Instrumented Run-Time System (IRTYS)

Once a test operation has been defined, it can be "run” in
two ways:

1. onthe CTB’s internal Instrumented Run-Time System
(IRTS)

2. on one of the ’standard’ virtual machines (for Java) or
by compiling and executing (C, C++)

The IRTS is a Java execution environment® designed
specifically for testing software components. It has the fol-
lowing capabilities:

e It is able to precisely profile execution of methods.
Conventional profilers operate by periodically sam-
pling the program counter. This only gives a statistical
sample of the statements executed rather than a precise
set. When testing systems are used to create statement
coverage metrics they need to know with absolute cer-
tainty whether a specific statement was visited (or path
was followed) for a particular test case.

e Itis able to support different execution models. Tradi-
tional VMs provide literal execution in that they allow
actual values to propagate through their dataflow paths.
To analyse the operation of certain algorithms it is of-
ten more appropriate to execute symbolically allowing
algebraic values to propagate. These capabilities are
described in the following section.

LCurrently we have only built an IRTS for Java; other languages are
planned.

e It is able to test additional execution conditions. With-
out including extra instructions within the execution
sequence, it is impossible with a conventional VM to
monitor certain aspects of program behaviour. For in-
stance, many automatic test pattern generation mech-
anisms need to be able to obtain the values and func-
tional form of the conditions that control the flow of
execution[10]. The instrumentation capability of the
IRT S allows it to collect information about the imple-
mentation under test during execution.

e It is able to track data flow during execution. Much
dataflow analysis can be performed statically. How-
ever the polymorphism features in object oriented lan-
guages sometimes make it impossible to reliably as-
certain dataflow across method boundaries: event han-
dlers commonly cause this problem. Use of anony-
mous inner classes in Java applications also means it is
often only possible to determine dataflow during exe-
cution.

e It is able to provide tester feedback during execution.
The system needs to be able to operate rather like a
symbolic debugger by providing single step capabili-
ties, allowing the user to monitor the value of specific
variables during operation. This provides direct feed-
back to the tester showing how failing tests execute.
This is particularly useful for testing boundary condi-
tions.

In light of these requirements it was decided to implement
the IRTS as a Java source interpreter. The approach fol-
lowed was to create a source parser/interpreter. This clearly
affects performance, since it bypasses the compiled byte-
codes altogether. It also assumes that the compiler that
will be used before the application can run is equivalent
to our parser and will faithfully translate the source into
byte codes. However, basing the IRTS on the byte codes
was rejected because the compilation process in Java fre-
quently acts to obfuscate the original structure of the pro-
gram, whereas source execution allows the IRT Sto directly
analyse the structure of the program using its original lexi-
cal expression.

Since the interpreter system is itself implemented in Java, it
has the option of calling through to the underlying VM at
any point to efficiently run methods that belong to trusted
classes, e.g. the Java standard APIs would be “trusted’. Per-
formance is only lost on those methods of the component
which are currently under test. Running the interpreter
within a Java VM also ensures that its behaviour is authen-
tic since many interpreted operations can be passed through
to the underlying VM to ensure that they behave correctly.



5. Symbolic Execution

Choice of the necessary test cases is a difficult and time-
consuming task: in even moderately complex components
the number of cases will be quite daunting.

Symbolic execution has a useful role to play in auto-
matic test pattern generation, when combined with a path
generation algorithm such as one based on definition-use
criteria[18]. It has received little attention because of dif-
ficulties in the symbolic execution of code in a number of
widely used languages. Java’s strict regulation of the way
pointers are used alleviates some of these difficulties and
suggests that symbolic execution should be revisited. Sym-
bolic execution allows the direct creation of equivalence
classes of test patterns by analysis of the conditional struc-
ture of the code. For each path followed through a particu-
lar method, the symbolic executor will produce an algebraic
description of the equivalence class. This can then be used
to allow the creation of one or more exemplars for inclusion
within the test set.

5.1. Symbolic Execution

Currently, symbolic execution works on single methods in
Java classes: if the target method is not the first one in a
test operation, then either the IRTS or the VM is used to
generate the environment in which the target method will
run. The user then specifies a path by indicating which
branch (true or false) of every choice is taken. Loop ter-
minations are considered single branches, so if a loop is to
be executed three times, then the sequence "TTTF” (take
the branch back to the start of the loop 3 times, then exit the
loop) is entered. The example in figure 6 shows a simple
method with a single loop: the tester has entered "TTTF”
in the ”Exec. Path” box to direct the symbolic executor to
iterate through the loop 3 times.

The output from symbolic execution is an expression defin-
ing an equivalence class on the inputs to the method. The
user can then either select a set of values for the inputs
which satisifies the expression or allow the system to choose
one.

Initially the test operation involving this set of inputs would
be marked “pending”. If the user enters an expected result,
then this set will be marked “specified”: it has the same sta-
tus as one input initially. However, if the method is run first
and an output produced, then - unless the tester rejects the
result entirely (because running the method with the chosen
inputs has produced a result which is clearly wrong) - the
result is initially marked "weak accept”. The tester may up-
grade this result to strong accept after having confirmed that
the result does, in fact, match the specification.

At the time of writing, testers must explicitly enter paths: it
is planned to add automatic generation of paths using crite-
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Figure 5. CTB screen. The main window shows
the structure of a test descriptor file: a user can
select any part of the structure for adding new
elements, editing existing ones or removing el-
ements. An element editor (which knows the
structure of the tree, i.e. the allowed attributes
and child elements for the selected element) will
appear to the right when editing. At this point the
user has selected a test operation in a test set
and is about to run it literally using the IRTS: cov-
erage statistics have also been requested. "Run
Selected” can be chosen at any level in the tree
for a batch processing style - running all of the
test operations in a test group, test set, interface
or implementation. "Run All” runs all the tests for
a component - after politely suggesting that the
user might not chose to wait for an instant result.

ria such as defintion-use paths[18] or coverage heuristics.

A number of technical weaknesses have been identified with
symbolic execution[8]. The most significant is its inability
to work with methods that use certain types of array index-
ing. It also has difficulty dealing with ADTSs that are not
amenable to traditional algebraic manipulation - the most
prominent example being the String type. Methods of over-
coming some of these weaknesses, making symbolic execu-
tion more widely applicable, have been discovered and will
be published elsewhere.
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Figure 6. Symbolic execution and coverage.
A tester has selected to test methods in class
SymbolicTest. On the left of the window con-
taining the method’s source, the coverage counts
may be seen: indicating that all statements in
this method have been executed at least once.
The condition field, which is generated by sym-
bolic execution, shows a condition on the input
that will run through the loop 3 times (indicated
by the "TTTF” flags entered into the "Exec. Path”
box). Thus the tester might include a test in
which argl is set to 4 producing a result of 5.

5.2. Literal Execution

Symbolic execution is necessarily slow! The literal execu-
tion mode is used when it is only desired to check or collect
results. For Java, it uses the standard virtual machine for
efficient execution. The test specification is parsed and the
reflection API used to locate the methods appearing in a
test operation, invoke them and collect the results. For C or
C++, a simple test program will be emitted, compiled and
run. Results are collected in log files which are converted to
ResultsSet elements to add to the test descriptor.

6. Regression testing

A key function of a testing tool is the management of re-
gression testing. When the CTB runs a test, it augments the
XML test descriptor file with ResultSet elements (see

<ResultSet>
<ImpRes Name="Java'">
<IntfceRes Name="Java">
<TestSetRes Name="general test">
<TestGrpRes Name="Add sequence">
<OpnRes SWVersion="0.1"
Date="9-6-2000 13:45">
<Actual Name="found"s>true</Actuals>
<Actual Name="valid"strue</Actuals>
</OpnRes>
</TestGrpRes>
</TestSetRes>
</IntfceRes>
</ImpRes>
</ResultSet>

Figure 7. <ResultSet> element of a test de-
scriptor. This section is added to the test de-
scriptor when the first test is run and augmented
thereafter whenever new test results become
available. See figure 1 for the overall document
structure.

figure 7) which contain actual results derived by running
test operations. This part of the test descriptor contains a
number of ImpRes elements with a sub-structure similar
to the main test descriptor part with results for each pos-
sible interface in separate IntfceRes elements, which
in turn contain TestSetRes elements, etc. Each Opn-
Res element is marked with the version of the implemen-
tation from which it was obtained, the date of successful
tests and the date and output of unsuccessful tests. This
provides a complete history of the results from various ver-
sions of the component - linked by version numbers and
dates to a source code control system if one is used. For
efficiency, a tester may specify a maximum number of er-
rors to be captured to prevent the specification files being
loaded with large amounts of essentially useless informa-
tion in cases where the component contains gross errors.
Discrepancies from expected (i.e. those classed as "speci-
fied”) results are highlighted when tests are run. For auto-
matically generated tests with "weak accept”, strong ac-
cept” or ”pending” qualifiers, results obtained from previ-
ous test runs are compared with those from the current run
and discrepancies highlighted. These are cases where a cor-
rected component may have generated a correct result - and
the previous version contained an undetected error. When
advised of this type of discrepancy, the tester has uncovered
a problem that requires further investigation and we would
normally expect the result to be checked and upgraded to
’strong accept” status.

7. Discussion

Our CTB has been used to generate test specifications
for several components available through our component



server, VeriLib[21]. Clients are able to download a package
containing the component (compiled code and, optionally,
source) as well as the XML test specification. The pack-
age includes a module from the CTB which runs the tests,
compares output with the expected output and output from
previous runs. Clients downloading components are able
to immediately determine whether the component performs
according to its specification in the target environment by
running the test specification. They are also able to use
the test specification to gain additional detailed information
about the actual functions of the component as it is an XML
document which can be read directly or - in the case of large
documents - by using any one of a number of freely avail-
able XML editors to work through the structure selecting
portions of interest.

8. Conclusion

If CBSE is going to deliver the promised benefits, then the
components must be reliable. This implies that developers
must be able to produce verified reliable components and
users must be able to confirm the claimed reliability quickly
and easily.

Our component test bench addresses both these needs: it
provides a developer tool that allows multiple ways to spec-
ify tests and captures the test specifications in a portable,
readable way. It captures test results and the source of the
result (i.e. derived directly from specification or automat-
ically generated) so that regression testing can be rapidly
carried out and so that problems which may have lain dor-
mant for some time are highlighted for the developer’s at-
tention. By providing a history of performance - linked to
software version numbers - it also provides the equivalent of
a source code control system which monitors result changes
rather than code changes.

We have observed a wide variety in the style of testing re-
quired by different components. Thus we added the concept
of a test operation which enables a rich variety of test envi-
ronments to be created in a standard way. To further cater
for a diverse range of component testing requirements, we
have prescribed a number of different ways of generating
the test specification: enabling the developer to choose a
style that suits the component under test or personal pref-
erence. Allowing predecessor test operations makes a sig-
nificant contribution to testing productivity by saving much
repetitive work.

Furthermore, by using XML - a standard document format
which is rapidly gaining acceptance in a variety of environ-
ments - for the test specifications, we create the possibility
of portable test specifications that are easily interpreted and
executed by verifier tools other than our verifier.

In critical environments, developers cannot be expected to
trust unknown components, thus the test specifications are

as important as the component itself and must be equally
portable. Our system allows a test specification along with
a lightweight, portable tool - the test pattern verifier module
- to run the tests to be packaged with a component. Thus
users are able to rapidly confirm that a component runs in
the target environment exactly as required and, further, that
when updates are received, that they too conform to the re-
quired specification. This enables them to gain the expected
benefits of CBSE through trust in the building blocks of
the system they are constructing. Naturally, by using a sin-
gle, standard test specification - rather than custom test pro-
grams - a developer need not download the tool every time
a small component is imported, any existing tool which can
read the specification may be used, saving considerable time
if the testing tool is already familiar.

Further work

We plan to extend the current work in a number of ways:
by providing closer integration with visual modelling tools,
and by using the IRTS’ internal representation of the source
code to identify definition-use paths, we will provide further
automation of the test selection process.

9. Acknowledgments

This work was supported by a grant from Software Engi-
neering Australia (Western Australia) Ltd through the Soft-
ware Engineering Quality Centres Program of the Depart-
ment of Communications, Information Technology and the
Aurts.

References

[1] M. Aoyama. New age of software development: How
component-based software engineering changes the way of
software development. In Proceedings. 20th International
Conference on Software Engineering, pages 30-37. IEEE
Computer Society Press / ACM Press, 1998.

[2] R.V.Binder. Testing Object-Oriented Systems: Models, Pat-
terns, and Tools. Addison-Wesley, 2000.

[3] D.Box. Essential COM. Addison-Wesley, 1999.

[4] A.W.Brown and K. C. Wallnau. The current state of CBSE.
|EEE Software, 15(5):37-46, sept/oct 1998.

[5] G. A. Bundell, G. Lee, J. Morris, S. Hope, S. Parr,
and R. G. Dromey. Component Software: A White Pa-
per: Part II. Technical Aspects. Software Engineer-
ing Australia (WA): http://ciips.ee.uwa.edu.
au/Research/SCL/white6 .pdf, 2000.

[6] H. Buwalda. Testing with Action Words, chapter 22. Soft-
ware Test Automation: Effective use of test execution tools.
Addison-Wesley, 1999.

[7]1 T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduc-
tion to Algorithms., MIT Press, 1989.

[8] P.D. Coward. Symbolic execution and testing. Jnl Informa-
tion and Software Technology, 33(1):53-64, Feb 1991.



9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

R.-K. Doong and P. G. Frankl. The ASTOOT approach
to testing object-oriented programs. ACM Transactions on
Software Engineering and Methodology, 3(2):101-130, Apr
1994.

R. Ferguson and B. Korel. The chaining approach for soft-
ware test data generation. |EEE Transactions on Software
Engineering and Methodology, 5(1):63-86, jan 1996.

M. Fewster and D. Graham. Software Test Automation: Ef-
fective use of test execution tools. Addison-Wesley, 1999.
D. Garlan, R. Allen, and J. Ockerbloom. Architectural mis-
match or why it’s hard to build systems out of existing parts.
In Proceedings: 17th International Conference on Software
Engineering, pages 179-185. IEEE Computer Society Press
/ ACM Press, 1995.

M. G. Hinchey and J. P. Bowen. To formalize or not to
formalize? |EEE Computer, 29(4):18-19, Apr 1996. In
H. Saiedian, editor, An Invitation to Formal Methods, pages
16-30.

ICSE. Ensuring  Successful COTS  Develop-
ment. ICSE COTS Workshop Summary: http:
//wwwsel.iit .nrc.ca/projects/cots/
icsewkshp/mainsummary.html, 1999.

D. Megginson. SAX 2.0: The Smple API for XML. http:
//www.megginson.com/SAX/, 2000.

U. S. Navy. Vrginia Class Submarine Program. http:
//www.chinfo.navy.mil/navpalib/ships/
submarines/centennial/subinno%.html, 2000.
J. A. Profdeta, N. P. Andrianos, B. Yu, B. W. Johnson, T. A.
DeLong, D. Guaspari, and D. Jamsek. Safety-critical system
built with COTS. |EEE Computer, 29(11):54-60, Nov 1996.
S. Rapps and E. J. Weyuker. Selecting software test data
using data flow information. |EEE Transactions on Software
Engineering, 11(4):367-375, Apr 1985.

J. Siegel. CORBA: Fundamentals and Programming. John
Wiley, 1996.

Software Component Laboratory. Component  Test
Bench Documents. http://ciips.ee.uwa.edu.au/
Research/SCL/Docs.html, 2000.

Software Component Laboratory. VeriLib: A Source of Reli-
able Components. http://www.verilib.sea.net.
au, 2000.

A. Thomas. Enterprise JavaBeans: Server Component
Model for Java, White paper. http://www.javasoft.
com/products/ejb/, Dec 1997.

M. R. Vigder, W. M. Gentleman, and J. Dean. COTS Soft-
ware Integration: Sate of the Art. NRC-CNRC Technical
Reports, Software Engineering Group, Jan 1996.

E. J. Weyuker. Testing component-based software: A cau-
tionary tale. IEEE Software, 15(5):54-59, Sep 1998.

J. C. Wileden. Programming languages and software engi-
neering: Past, present and future. ACM Computing Surveys,
28(4es):202, Dec 1996.



