
Component Certi�cation

John Morris, Gareth Lee, Kris Parker, Gary A Bundella, Peng Lamb

Abstract|Component-Based Software Engineering relies on
sources of reliable components: developers need to be able
to trust the components with which they build larger sys-
tems. This has led to suggestions[1] that software certi�-
cation laboratories should undertake the role of checking
reliability of components o�ered for sale. This paper ar-
gues that is it more e�ective for developers to supply the
test certi�cates in a standard, portable form, allowing pur-
chasers to examine and run the test sets themselves and
thus to form an opinion as to whether the component will
meet their needs or not. By removing necessarily expensive
third-party certi�cation exercises, one of the major potential
economic bene�ts of CBSE { the ability to build a complex
system from inexpensive, but trusted, components will be
retained.

I. Introduction

Noting that most methods for certifying the quality of soft-
ware products are process-based { requiring software pub-
lishers to `take oaths concerning which development stan-
dards and processes they will use', Voas[1] has suggested
that independent agencies { software certi�cation labora-
tories (SCLs) { should take on a product certi�cation role.
He believes that `completely independent product certi�-
cation o�ers the only approach that consumers can trust'.
In Voas' scheme, SCLs would

1. accept instrumented software from developers,
2. pass the instrumented software on to pre-quali�ed
users,

3. gather information from user sites,
4. generate statistics on usage and performance in the
�eld using the data gathered from several sites and

5. provide limited warranties for the software based on
these statistics.

Additionally, the SCLs could, by continuing to collect data
over time, broaden the warranty as the operational pro�le
of the software broadened.

A. Limitations

We have identi�ed several limitations of the SCL approach:

A.1 Cost

Of necessity, SCLs will have signi�cant costs which will add
to the cost of the certi�ed product. A signi�cant part of
that cost will be insurance { necessary if the certi�ers are
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to provide any form of guarantee to purchasers. The only
bene�t to a purchaser here is that insurers may be prepared
{ presumably after some some suÆciently long time interval
{ to factor the amount of operational data available into
their calculation of risk and therefore premium.

A.2 Liability

To be e�ective, third party certi�ers will need to provide
some form of precisely stated warranty: purchasers can not
be expected to pay a premium for their services without ad-
ditional value. Whilst testing a component certainly adds
value (cf. section IV), it is doubtful whether testing alone {
without some form of guarantee of the completeness of it {
will add suÆcient value to make a SCL viable. User-based
testing is essentially random testing (albeit biased to some
`operational pro�le') and thus exposes an SCL providing a
warranty to signi�cant damage claims from `time-bombs'
embedded in code which have never been exercised. It may
be that SCLs are in an even more invidious position than
the developers themselves. Developers simply disclaim lia-
bility: SCLs are providing professional advice to clients on
the risk of using a component. As Voas notes, courts have
not been kind when such advice has been proven faulty.

A.3 Developer Resources

Much successful, widely used software is written by a single
programmer or small groups of programmers working in-
dependently (e.g. Linux, gcc, etc.). Their products would
be expected to become a vital part of any thriving com-
ponent market. However, since these individuals or groups
are generally self-�nanced, it is unreasonable to expect that
many of them would

� have the funds initially to pay for SCL services,
� be prepared to give away suÆcient share of their e�orts
in the early stages to attract capital to pay for SCL
services,

� have the time to invest in the negotiations with an SCL
or

� be prepared to instrument their products for residual
testing[2] if they were employing other formal methods
for testing.

A.4 Safety-critical Systems

Voas[1] himself notes this as an area of special challenge;
he recognizes that SCLs will have some diÆculty persuad-
ing testers to 
y software-controlled aircraft or submit to
software-controlled medical devices. His solution is to at-
tempt to certify the software in noncritical environments
�rst: he suggests that once `noncritical certi�cation' is
achieved, a product could be used with con�dence in safety-



critical applications. There are a number of manifest prob-
lems here:

� �rstly, many key components of safety-critical systems
will have no application in non-critical systems and,

� secondly, the operational pro�les collected from users
are unlikely to satisfy the software product standards
that are used in this area; for example, they would not
be expected to satisfy coverage criteria required for air-
borne[3] or defence systems[4]. Thus testing to satisfy
the applicable standard will still be needed. Further-
more, it is likely to consume the major part of any
testing budget as even ensuring statement coverage
requires test cases for many rare situations (unlikely
to be covered in any reasonable period of actual use)
to be constructed.

This paper proposes an entirely di�erent model for software
component certi�cation, based on test certi�cates supplied
by developers in a standard portable form so that pur-
chasers may, in very short order, determine the quality and
suitability of purchased software. Note that in the context
of this paper { and for our test speci�cations { `compo-
nent' refers to any piece of software with a well-de�ned

interface and thus encompasses components satisfying any
of the plethora of de�nitions of the term found in the liter-
ature[5] as well as simple functions or procedures, such as
those found in a mathematical library.
Some early proponents of component software based their
ideas on the successful integrated circuit market { even
referring to components as `software ICs'. When describing
an IC's capabilities, manufacturers have tended to adopt a
fairly standard format: most data sheets are structurally
similar { divided into DC and AC characteristics. The AC
sections report propagation delays with similar notations
and structures. This de facto standardisation is naturally
of great bene�t to design engineers: the standard structure
of data sheets from di�erent manufacturers makes them
generally easy and fast to comprehend.
Our model clearly targets small components and does not
necessarily imply that the SCL model has no place: �rstly,
there are many situations where the cost of a software fail-
ure is high and third party certi�cations by specialist test-
ing organizations be the only acceptable model and sec-
ondly, SCL certi�cation may be the only practical alterna-
tive for large software systems.

II. Developer Generated Tests

A. Standard Test Speci�cations

If developers are to supply test sets to purchasers, we need a
standard, portable way of specifying tests, so that a com-
ponent user may assess the reliability { or, alternatively,
the degree of risk associated with use { of a component on
an arbitrary target system.
We designed a test speci�cation with the following aims:

1. it should be standard and portable,
2. it should be simple and easy to learn,
3. it should avoid language-speci�c features,

op_name<Operation Name="..." Pre="        ">*

<TestGroup>*
<Invariant DataType="...">*

<Invariant>*
<Constructor>*
<MethodCall Target="...">*

<Operation>

<Invariant>

<TestSpecification>

<TestGroup Name="...">*

<TestSet Name="...">+

Fig. 1. Top Level Structure of a Test Speci�cation. Only the basic
structure is shown: some details have been omitted for clarity: the
full DTD is in App A. Conventional multiplicity symbols are used: ?
= optional; * = 0 or more; + = 1 or more.

<Exp>?

<Result Name="..." DataType="...">*

<Exp>?

<Exception Name="..." DataType="...">*

<Arg Name="..." Source="..." DataType="...">*

<MethodCall Name="..." Target="..." Static="Y/N">

Fig. 2. Test Speci�cation { <MethodCall> element: <Constructor>
and <MethodCall> elements are essentially the same: refer to the DTD
in App A for details.

4. it should work equally well with object oriented sys-
tems, simple functions and complex components (e.g.
distributed objects, Java Beans, etc.),

5. it should eÆciently handle the repetitive nature of
many test sets,

6. tools to generate tests should be widely available and
easily produced, i.e. it should not require proprietary
software to generate test speci�cations,

7. it should not require proprietary software to interpret
and run the tests and

8. it should support regression testing.

Our speci�cation is depicted in tree form in �gure 1 and
formally described by the document type de�nition (DTD)
set out in appendix A.

XML[6] enables us to meet requirement 1:

1. it has a standard developed by an independent or-
ganisation responsible for a number of other widely
accepted standards;

2. it has achieved wide acceptance;
3. editors and parsers are available on a wide variety
of hardware platforms and operating systems (cf. re-
quirement 6) and

4. it was designed to provide structured documents and
thus matches the requirements of our test speci�ca-
tions well.

XML documents { laid out with some simple rules { are
easy to read and interpret. Understanding is made eas-
ier by several readily available editors which highlight the
structure and provide various logical views - satisfying part
of requirement 7.

By de�ning a minimal number of elements in the test spec-
i�cation, we kept it simple and easy to use (cf. requirement



2); rather than make the test speci�cation complex, we al-
low testers to write `helper' classes in the language of the
system being tested. This gives testers all the power of
a programming language (which they presumably already
know!) and avoids the need for them to learn an additional
language solely for testing.

The speci�cation uses the terminology of object oriented
designs and targets individual methods of a class. However,
it can equally well describe test sets for functions written,
for example, in C or Ada. As long as there is a well-de�ned
interface, <MethodCall> elements can be constructed.

The Pre (`Pre�x') attribute of an operation allows a tester
to specify an operation which creates a common initial envi-
ronment for multiple tests and invoke it by name as needed
in other operations. The <Invariant> element allows a
tester to specify a method that will be invoked when any
object of a class is modi�ed or constructed. Invariants may
be speci�ed at any level and the usual scope rules apply:
a local invariant for a particular class may be speci�ed to
override a global one. Making the test pattern veri�er au-
tomatically invoke the invariant every time an object of
a particular class is modi�ed relieves testers from the te-
dium of explicitly adding invariant checks at many places
and contributes to robust testing (i.e. testing that detects
errors at the earliest possible point in an operation) by au-
tomatically invoking checks at every relevant point that a
tester might be tempted to omit in favour of a single check
at the end of an operation. The Pre and <Invariant>

capabilities satisfy requirement 5.

A single test speci�cation contains a hierarchy of el-
ements designed to make regression testing after mi-
nor maintenance exercises simple and eÆcient. A test
speci�cation itself may contain a number of <TestSet>

elements which may contain either <TestGroup>s or
<Operation>s. <TestGroup>s may contain <Operation>s
or nested <TestGroup>s. An <Operation> de�nes a sin-
gle test and may consist of a number of <Constructor>
or <MethodCall> elements. (The distinction between con-
structors and other methods is made for simplicity in spec-
ifying tests for object oriented languages such as Java and
C++. For other languages, it can be ignored.)

We suggest that a <TestGroup> contains <Operation>s
which target a single method of a class whereas a
<TestSet> might contain the tests for a single class. This
would allow a maintainence programmer, having made
changes to one method of a class, to immediately verify that
the changes were correct by selecting a <TestGroup> tar-
getting the modi�ed method and running all the tests in it.
Having obtained passes for all the tests in the <TestGroup>
most likely to be sensitive to the changes, all the remaining
<TestSet> s { which may need to be run to meet an organ-
isation's standards { can be run with lower priority in the
background or on a machine set aside for long batch runs.
However, our association of <TestSet> with a class and
<TestGroup> with a method is just a recommendation and
the tester may use the hierarchy in any way appropriate to
the system being veri�ed.

Each constructor or method call may have arguments and
return a result. Results can be checked against expected
values or stored for veri�cation by `helper' methods. The
ability to call `helper' methods means that the test speci�-
cation itself can be kept simple and portable: no language-
speci�c features need to be added. This has an additional
bene�t: implementations of essentially the same function
in di�erent languages can use the same test speci�cation,
enabling re-use of the signi�cant e�ort that needs to be
invested in test set generation.

We built a `Test Pattern Veri�er' to interpret and process
a test speci�cation (cf. section III), but since the speci�ca-
tion is open and standard, other testers may readily build
equivalent tools.

B. Test Results

Results (either return values or altered object state) from
method invocations may be used in various ways:

� they may be passed to other methods which check their
correctness. In this case, they are assigned a name and
marked `Save' in the <Result> element.

� They may be compared against an expected value
which is stored in an <Exp> element. Discrepancies
will be reported as test failures.

Expected values themselves may have di�erent sources:

� They are derived directly from the speci�cation,
� An Automatic Test Pattern Generator (ATPG), such
as our symbolic execution system[7], has generated an
input test pattern which has been used to execute the
method-under-test and produce a result. The result
has been checked for compliance with the speci�cation.

� An ATPG-generated input has been used to produce a
result which is `reasonable', i.e. it has passed cursory
checks (e.g. no exception was generated and the value
is within an acceptable range) for correctness,

� An ATPG-generated input produces a result which has
not been checked.

Values returned by method invocations may be either speci-
�ed or calculated. Speci�ed results are derived directly from
a component's speci�cation { which may contain an exact
value or a method for computing the value { and are stored
in <Exp> elements of a test speci�cation. Calculated results
are determined by execution of the component's code and
are stored in separate <ResultSet> documents which ac-
company a test speci�cation.

In both cases, discrepancies between speci�ed or calculated
results are 
agged as errors or potential errors by the test
pattern veri�er (cf. section III) when the tests are run.

III. Test Pattern Verifier

Component users must be able to run the tests described
in a test speci�cation. We have developed a lightweight,
portable program { the test pattern veri�er (TPV) { which
reads XML test speci�cations, applies the tests to a compo-
nent and checks results against those in <Exp> elements or



previously stored in <ResultSet> documents by the TPV.
The TPV is written in Java and is small enough (136kb of
Java bytecodes + 451kb for a SAX XML parser1 in com-
pressed (zip) �les) that it does not place an undue burden
on a �le system or communications links (when downloaded
as part of a code/documentation/test certi�cate package).
If many component developers adopt a standard test spec-
i�cation, then this overhead only occurs once on a devel-
oper's system.
However, neither a developer nor a purchaser are con-
strained to using our TPV. Parsers for XML are readily
available and either party may easily construct a TPV pro-
gram to meet their own requirements

IV. Discussion

Our approach which involves developers providing their
own test data to component purchasers has many advan-
tages over the certi�cation laboratory approach:

1. Costs are reduced: the incremental cost to developers
is small. They have produced extensive tests as part of
their own veri�cation procedures; without them, they
cannot make any claim for reliability.

2. There is no need for trust: purchasers are supplied
with the test data, means to interpret it (the XML
DTD can be used by most XML editors to display the
test speci�cation's structure and content) and a means
to run the tests and verify that the developer's claims
for correctness are sustainable.

3. Any reliability level claimed by the developer as a re-
sult of his testing can be con�rmed by examination
the tests for conformance with the purchaser's under-
standing of the speci�cation and completeness.

4. The test speci�cations augment the { usually nat-
ural language and therefore laden with potential for
ambiguity { functional speci�cations. The test spec-
i�cations and accompanying actual results provide a
precise (if voluminous!) speci�cation for the actual
behaviour of the component.

The test speci�cations add considerable value to a software
component: in many cases they already exist in collections
of test programs, scripts and test procedures (i.e. instruc-
tions for the execution of manual tests). All that is needed
is a standard format in which they can be `packaged' and
supplied with a component to a purchaser.
Voas' examples imply that proposal targets large applica-
tion software suites. Our proposal, on the other hand, is de-
signed for `component'2 level software. We �nd that com-
plete test speci�cations are usually several times as large
as the components they test. For example, the test spec-
i�cations for a small component (a Heap) in Java require
15.3kB, whereas the fully commented source code requires
9.2kB, a 1.7:1 ratio. This ratio increases as the size of a
component increases. (We postulate that it will prove in

1This �gure applies to the SAX parser section of Oracle's parser[8]:
other parsers may require even less.
2Remember that our use of the term `component' is extremely

broad: encompassing all the de�nitions collected by Sampat[5].

practice to be at least O(n2).) Thus the volume of a test
speci�cation that approached any de�nition of `complete'
needed to accompany a large application would be imprac-
tical. Although the amount of operational data required by
an SCL to issue a certi�cate will have a similar complexity.
Using code instrumented for residual testing[2] will only
reduce the constant factor!

In addition, we note that the test speci�cations provide a
valuable input to an SCL preparing to certify a component.

V. Conclusion

In addition to reliability, CBSE will need economic sources
of components. Component software presents an oppor-
tunity for many small developers to produce high quality
software and �nd a market for it. These small developers
can operate very eÆciently by operating with low over-
heads, specializing in certain application domains or oth-
erwise leveraging particular skills or knowledge. Since it
is always going to be very diÆcult to predict whether any
one component will become popular with other developers,
small developers will be reluctant to incur additional costs
speculating that one component will actually achieve some
reasonable volume of sales. Third party SCL's will only
add to costs unnecessarily { and be impractical for small
developers. If CBSE practitioners see that the only way to
obtain reliable components is to use ones certi�ed by SCLs,
the industry may well sti
e itself before it has a chance to
develop its full potential.

However, if component authors generate complete (or sub-
stantially complete) test sets and supply them with com-
ponents, they incur little additional cost, since they must
generate the tests in the �rst place. Any extra e�ort is also
adding value to a component { as a tested component is
certainly a more marketable commodity { with relatively
small investments in additional time. SCL certi�cation
would also add value to a component, but it is likely that
many more sales would be needed to recover the cost of
generating the additional value in this way. The test spec-
i�cations that we are proposing have similarities with data
sheets supplied by manufacturers for integrated circuits.
This market is well established and thus a good indicator
for successful practices.

As a �nal note, we believe that SCL's do have a place:
there will be complex or valuable components destined for
systems for which reliability is an overriding goal, so that
third party certi�cation { possibly using author-generated
test sets { is economically justi�ed, but we consider that
such situations are not likely to be common compared to
the majority of commercial software developments where
the cost of failure is not large and only a small premium
(the cost of generating tests and inspecting them) for reli-
ability can be justi�ed.
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Appendix

I. Test Specification DTD

The full document type de�nition of our test speci�cation is
reproduced here: comments have been removed to satisfy
the constraints of this publication. An extensively com-
mented version may be found on the Software Component
Laboratory web site[9].

<?xml version="1.0" encoding="utf-8"?>
<!ELEMENT TestSpecification ( TestSet* ) >
<!ELEMENT TestSet (Desc? (Operation | TestGroup | Invariant )* ) >

<!ATTLIST TestSet Name ID #REQUIRED >
<!ELEMENT TestGroup (Desc? (Operation | TestGroup | Invariant)* ) >

<!ATTLIST TestGroup Name ID #REQUIRED >
<!ATTLIST TestGroup TargetMethod CDATA #IMPLIED >

<!ELEMENT Invariant ( Arg* (Result | Exception)? ) >
<!ATTLIST Invariant DataType CDATA #REQUIRED >
<!ATTLIST Invariant MethodCall CDATA #REQUIRED >
<!ELEMENT Operation ( (Constructor | MethodCall | Invariant)* ) >
<!ATTLIST Operation Name ID #REQUIRED >
<!ATTLIST Operation Pre IDREF #IMPLIED>
<!ATTLIST Operation Version CDATA #IMPLIED>
<!ELEMENT Constructor ( Arg*, (Result | Exception)? ) >

<!ATTLIST Constructor Name CDATA #REQUIRED >
<!ELEMENT MethodCall ( Arg*, (Result | Exception)? ) >

<!ATTLIST MethodCall Name CDATA #REQUIRED >
<!ATTLIST MethodCall Target CDATA #REQUIRED >
<!ATTLIST MethodCall Static ( Y | N ) "N" >
<!ELEMENT Arg (#PCDATA) >
<!ATTLIST Arg Name CDATA #IMPLIED >
<!ATTLIST Arg Source CDATA #IMPLIED >
<!ATTLIST Arg DataType CDATA #IMPLIED>

<!ELEMENT Result (Exp?) >
<!ATTLIST Result Name CDATA #IMPLIED>
<!ATTLIST Result DataType CDATA #IMPLIED>
<!ATTLIST Result Qualification CDATA #IMPLIED >
<!ATTLIST Result Save ( Y | N ) "N" >
<!ELEMENT Exp (#PCDATA) >

<!ATTLIST Exp SpecVersion CDATA #IMPLIED >
<!ELEMENT Exception (Exp?) >
<!ATTLIST Exception Name CDATA #IMPLIED >
<!ATTLIST Exception DataType CDATA #REQUIRED >
<!ATTLIST Exception Qualification CDATA #IMPLIED >
<!ATTLIST Exception Save ( Y | N ) "N" >
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