
.

.

Confidential

Security Services Markup Language

Prateek Mishra Netegrity
Phillip Hallam-Baker VeriSign
Zahid Ahmed CommerceOne
Alex Ceponkus BowStreet
Marc Chanliau Netegrity
Jeremy Epstein webMethods
David Jablon Netegrity
Eve Maler SUN Microsystems
David Orchard Jamcracker

Reviewers:
 SUN Microsystems
 ATG, Inc
 TIBCO
 Oracle
 PWC

.

.

Confidential

 Security Services Markup Language
Version 0.7a

1 EXECUTIVE SUMMARY 1

2 INTRODUCTION 2

2.1 STRUCTURE OF THIS DOCUMENT 2

3 S2ML USE CASE SCENARIOS 2

3.1 SCENARIO #1: USER-DRIVEN TRANSACTIONS 2
3.2 SCENARIO #2: SERVICE-DRIVEN TRANSACTIONS 4
3.3 SCENARIO #3: HOSTED SERVICES 5

4 ARCHITECTURE 5

4.1 NAME ASSERTIONS AND ENTITLEMENTS 7
4.2 AUTHENTICATION (AUTH) AND AUTHORIZATION (AZ) SERVICES 9
4.3 ASSERTION VALIDITY 13
4.3.1 AUDIENCE RESTRICTION 14
4.4 SCOPE AND LIMITATIONS 14

5 MESSAGE SET 15

5.1 URI NAMING INFRASTRUCTURE 15
5.2 COMMON SYNTAX 15
5.2.1 THIS 15
5.2.2 ISSUER 15
5.2.3 VALIDITYINTERVAL 15
5.2.4 DATETIME DATE 16
5.2.5 AUDIENCES 16
5.2.6 DEPENDSON URIREFERENCE 17
5.2.7 REQUEST 17
5.2.8 RESULTCODE 17
5.3 AUTHENTICATION 17
5.3.1 NAMEASSERTION 17
5.3.2 REQUEST MESSAGE 18
5.3.3 RESPONSE MESSAGE 18
5.3.4 LOGIN 19
5.3.5 CREDENTIALS 19
5.3.6 AUTHDATA 20
5.3.7 AUTHTYPE 20
5.3.8 USERHANDLE 21

5.3.9 IDENTITYTOKEN 21
5.4 AUTHORIZATION 21
5.4.1 ENTITLEMENT 21
5.4.2 REQUEST MESSAGE 22
5.4.3 RESPONSE MESSAGE 22
5.4.4 RESOURCECONTEXT 23
5.4.5 AZDATA 23
5.4.6 QUESTION 23
5.4.7 ANSWER 23

6 BINDING 24

6.1 HTTP B INDING 24
6.2 MIME B INDING 26
6.1.1 MIME HEADER 27
6.1.2 S/MIME M ESSAGE TOP-LEVEL SIGNATURE BLOCK 27
6.1.3 S2ML SECURITY DOCUMENTS BLOCK 28
6.1.4 ENCRYPTED/SIGNED PAYLOAD BLOCK 30
6.2 EBXML B INDING 31
6.3 SOAP B INDING 31

7 CONFORMANCE 31

APPENDIX A URI EQUALITY: LEXICAL COMPARISON 33

APPENDIX B: SECURING A MULTI-STEP TRANSACTION 35

APPENDIX C REFERENCES 36

APPENDIX D LEGAL NOTICES 37

Draft Version 0.7a: November 16, 2000

Confidential 1

 Security Services Markup Language
Version 0.7a

1 Executive Summary

Security Services Markup Language (S2ML) is a set of XML schemas and interfaces for
security services. S2ML provides a standard description of authentication and
authorization as XML request and response pairs. There are a wide range of
authentication technologies in use, such as, login-password, SSL, Digital Signing,
Kerberos, Smart Cards etc. There are also many frameworks for authorization including
ACLs, Capabilities, Java Authorization Model etc. A major design goal for S2ML is to
provide a single syntax within which a broad class of authentication and authorization
techniques can be expressed and used.

S2ML identifies two key schemas --- Name Assertions and Entitlements --- that provide a
foundation for sharing security artifacts on the internet. Traditionally, security has been
viewed in the context of a transaction that is entirely contained within a single enterprise.
Increasingly, transactions, whether driven by users or document flow, may authenticate at
a portal or marketplace and complete through interactions at other sites. Authentication,
authorization and entitlement information required to complete or enable a transaction
may originate from many sites and be interpreted at other sites.

The following XML schemas and security interfaces are described in this document:

• NameAssertion: the result of successful authentication is a digitally signed XML
assertion describing the authentication type, user and authenticator.

• Entitlement: is a digitally signed XML assertion consisting of a ``portable’’ package
of authorization data created by an issuing authority concerning an authenticated
subject.

• Authentication: An AuthRequest document contains credentials; the result of
authentication is an AuthResponse document containing a NameAssertion and may
also include Entitlements.

• Authorization: An AzRequest document contains an NameAssertion, zero or more
Entitlements and an authorization Question; the AzResponse document contains an
Answer and may also include Entitlements.

Audit, based on logging and analysis of security-related data, is a key requirement in
security systems. S2ML supports audit by including information in schemas, which may

Draft Version 0.7a: November 16, 2000

Confidential 2

be used to establish sequencing relationships between requests, responses, name
assertions and entitlements over long time periods.

2 Introduction

This document describes schemas for Name Assertions, Entitlement Assertions as well as
a XML-based request-response protocol for two security services: authentication and
authorization. The protocol consists of requests and response pairs of XML documents
for each service.

2.1 Structure of this document

The remainder of this document describes S2ML, the Security Service Markup
Language.

Section 3: Use Cases
B2B and B2C Use Cases are described.

Section 4: Architecture
 The S2ML architecture is described.

Section 5: Message Set.
The semantics of the protocol messages is defined.

Section 6: Bindings
Bindings for HTTP, MIME, SOAP and ebXML are described.

Section 7: Conformance

3 S2ML Use Case Scenarios

S2ML can be used in environments where transactions are driven by users or services.

3.1 Scenario #1: User-Driven Transactions

Companies need a way to securely share user information as users travel across trusted
partner sites. The information to be shared through single sign-on includes
authentication, authorization, and profile. In this model, each partner site has its own
security infrastructure. In addition to a business relationship, we assume that partners
have established a trust relationship.

A typical example of a user-driven transaction environment is a large bank and its
partners such as travel agencies, a 401K management company, payment services, etc. In
this case, a user logs on to the large bank and can seamlessly visit the large bank’s partner
sites without having to re-authenticate.

Draft Version 0.7a: November 16, 2000

Confidential 3

Another typical user-driven transaction environment can include an Application Service
Provider (ASP) aggregator that provides its users with seamless access to all the ASPs
part of its trusted relationship.

In user-driven transaction environments, identity assertions can travel with the user in
various ways, typically using cookies or HTTP headers.

In the following example, users are able to visit SiteA and SiteB seamlessly.

(1) User logs on to SiteA and identifies herself to access SiteA’s protected resources.

(2) Based on the information provided at log-in time by the user, SiteA generates an
S2ML-based assertions including entitlements. S2ML assertions may be generated
through the use of a S2ML conformant security engine, or, by components that
transform the output of existing security engines to S2ML.

(3) User clicks on a link to a resource located at, and protected by, SiteB.

(4) User is allowed into SiteB without having to re-authenticate (information about the
S2ML security token travels with the user as a HTTP header.) The information about
the user authenticated at SiteA together with the entitlements from SiteA is used to
complete the transaction. SiteB may also query SiteA about the user’s authorizations.
Thus authorization information may be both ``pushed’’ from A to B, and “pulled” on
an as-needed basis by B from A.

Trusted Relationship

S2ML

Users Internet

SiteA

Security Engine

1

2
3

4

S2ML

Security Engine

SiteB

Draft Version 0.7a: November 16, 2000

Confidential 4

3.2 Scenario #2: Service-Driven Transactions

A typical example is multiple exchange environments as illustrated in the following
figure. In this model, it is assumed that the buyer and supplier sides have a trusted
relationship.

This example scenario focuses on sharing authorization entitlements between ExchangeA
and ExchangeB.

(1) The buyer (an individual or a buying entity) pushes the XML document to
ExchangeA. The document includes credentials, e.g., name / pwd, etc. (credentials
can alternatively be discovered at the transport level.)

(2) ExchangeA authenticates the user based on credentials, and inserts a name assertion
(subject description) and entitlements (for example, credit analysis information) into
the document. ExchangeA can optionally remove the credentials from the document.

(3) The message is sent to ExchangeB using any messaging framework (SOAP, ebXML,
RMI, multi-part MIME, RosettaNet, etc.) over any transport protocol (HTTPS,
SMTP, JMS, FTP, MSMQ, IBMMQ, etc.)

(4) ExchangeB checks the entitlements (credit analysis information in this example)
against policies stored in the security engine. If additional authorization information
is needed, exchange B may ``pull’’ that information from A.

(5) Based on the credit analysis information, the document is pushed to the appropriate
supplier side, such as one that accepts a risk level matching the credit rating found in
the provided credit analysis information.

ebXML, SOAP, RMI, multi-part MIME

HTTPS, SMTP, JMS, FTP, MSMQ, etc.

Buyer Supplier

S2ML

Security Engine

ExchangeB

S2ML

Security Engine

ExchangeA

1

2

3

5 4

Draft Version 0.7a: November 16, 2000

Confidential 5

3.3 Scenario #3: Hosted Services

In this scenario, enterprises can subscribe to remote authentication and authorization
services and they can access these services through S2ML. Remote authentication and
authorization services are hosted at different sites and are completely distinct. Enterprises
manage their own user and policy data at the hosted service.

(1) User1 logs on to EnterpriseA.

(2) User1 is authenticated by EnterpriseA using remote authentication service.

(3) User2 logs on to EnterpriseB.

(4) User2 is authenticated by EnterpriseB using the same remote authentication service
used in (2).

(5) User1 and User2 access services (i.e., business processes) at EnterpriseA and
EnterpriseB. For example, a user may need specific authorization to make a purchase.

4 Architecture

We assume that one or more computational entities or actors are utilizing security
services. Examples of actors include application servers, application programs, security
services, transport and message-level interceptors etc. Various subjects, such as end-
users, programs, actors and documents interact with the actors so as to carry out some
computational process. The actors utilize security services through S2ML interfaces to

Authentication
Service

User1

S2ML

S2ML

EnterpriseA
Resources

1

2

3

5

4

EnterpriseB
Resources

Authorization
Service S2ML

S2ML

User2

Draft Version 0.7a: November 16, 2000

Confidential 6

ensure that the desired computational processes are secured.

Name assertions and entitlement assertions allow actors to share authentication,
authorization and entitlement information. Actors insert name assertions and entitlements
into transaction flows utilizing one or more bindings. Actors complete computational
processes based on scrutinizing assertions and determing their validity; either by directly
checking assertion validity or indirectly by calling out to an authorization engine.

S2ML places no restriction on the location, cardinality and structure of actors (and
security services); the only restriction placed is that each actor MUST have a unique
name (URI). All URIs used within this specification refer to absolute URIs.

Interaction between actors, and between actors and security services, involve some form
of transport such as TCP, HTTP, SMTP, etc. Further, such an interaction may also
involve a messaging framework such as SOAP or RMI. It is a goal for S2ML is to be
transport and messaging framework neutral and to be useable with a wide variety of
transports and messaging frameworks.

The interaction between actors, and between actors and security services, takes place in
the context of a trust-relationship. In addition, depending upon the environment, there
may also be a privacy requirement requiring the use of data encryption.

The S2ML specification distinguishes between the minimum security required for
assertions versus those for security services. Name assertions and entitlements are
“portable” pieces of information, which may travel across the internet and be scrutinized
and checked for validity far from their point of origin. Therefore, they MUST be signed
using the framework described in the [XML DSIG] specification. It is important to note
that [XML DSIG] supports both using secret-key (e.g., HMAC) or public-key signing.
When the XML encryption specifications are available, additional infra-structure will be
developed within S2ML to support element-level privacy of assertions. In the interim,
other standard technologies for privacy may be used.

In contrast to assertions, security services are defined by a point-to-point request-
response protocol whose functioning is much more localized. Therefore, there is no
mandatory recommendation for use of [XML DSIG]. It is recommended that standard
technologies for trust and encryption be used, such as those based on:

(1) secret key encryption and signing [RC4, HMAC],

(2) transport-based security (SSL),

(3) XML digital signature, secret key or public key, XML encryption models

(4) S/MIME 2 and 3.

Draft Version 0.7a: November 16, 2000

Confidential 7

4.1 Name Assertions and Entitlements

Both types of assertion carry the following information:

• The set of audiences to which the assertion is addressed

• Issuer identification.

• A unique identifier.

• Time of issuance and duration of assertion validity.

• Data related to authentication (Name Assertion) or authorization (Entitlement).

• XML Digital signature which cryptographically binds issuer identity to attributes
of the assertion.

A Name Assertion describes a successful authentication step:
<NameAssertion>
 <This>urn:authEngine32:xsde12</This>
 <Issuer>http://www.somecompany.com/authEngine32</Issuer>
 <Date>2000-10—16T12:34:120-05:00</Date>
 <Audiences>urn:all_somecompany_servers</Audiences>
 <AuthData>
 <AuthType>Login</AuthType>
 <IdentityToken>x12+21defqa$3#</IdentityToken>
 </AuthData>
 <DSIG:signature>. . . </DSIG:signature>
</NameAssertion>

The name assertion above indicates that actor

http://www.somecompany.com/authEngine32

authenticated a subject, at 12:34:120 EST on the 16th of October, 2000. The assertion is
scoped via the <Audiences> construct as directed to a certain class of actors. Elements
within <AuthData> provide details about the authentication act: in this case, the
subject provided a password and user-name, and the issuer has provided an identity
token.

An entitlement assertion represents a statement made by an actor concerning an
authenticated subject. For example, a server within the finance department in an
enterprise may indicate a partner’s payment status using the following XML fragment:

<Entitlement>
 <This>urn:financeDepartment:129de12</This>

Draft Version 0.7a: November 16, 2000

Confidential 8

 <Issuer>http://www.somecompany.com/finance/AzEngine</Issuer>
 <Date>2000-10—16T12:34:120-05:00</Date>
 <Audiences>urn:all_somecompany_partners urn:all_local_servers</Audiences>
 <ValidityInterval>
 <NotBefore>2000-10—16T19:34:120-05:00</NotBefore>
 <NotAfter>2000-10—16T20:34:120-05:00</NotAfter>
 </ValidityInterval>
 <DependsOn>urn:authEngine32:xsde12</DependsOn>
 <AzData>
 <SC:PaymentRecord xmlns:SC=”http://ns.finance-vocab.org/finance”>
 <SC:TotalDue>19280.76</SC:TotalDue>
 <SC:Over60Days>1200.00</SC:Over60Days>
 <SC:Over90Days>10000.00</SC:Over90Days>
 </SC:PaymentRecord>
 </AzData>
 <DSIG:signature>. . . </DSIG:signature>
</Entitlement>

In the course of completing some transaction, such an entitlement will be scrutinized by
one or more actors (business applications) and the transactions eventual outcome may be
contingent on the validity of the scrutinized entitlements.

The vocabulary (elements and attributes) used to communicate entitlement data within an
<AzData> element lie outside the scope of this specification. An entitlement must cite
or depend on a name assertion. An entitlement is always a composite assertion and
should be read as a conjunction of name assertion and entitlement.

Name Assertion

“Profile” “Session” “Payment
Status”

DependsOn

Entitlements

Relationship between Name Assertions and Entitlements

Draft Version 0.7a: November 16, 2000

Confidential 9

4.2 Authentication (Auth) and Authorization (Az) Services

Typically, authentication services and authorization services are implemented and
managed separately and this is the model developed in S2ML. From a practical point of
view, there may be requirements wherein authentication and authorization need to be
combined in a single step. This may be seen as a composition of the S2ML authentication
and authorization steps.

In S2ML, authentication is defined as a service which consumes subject credentials and,
if successful, returns a name assertion and zero or more entitlements appropriate to the
subject. The name assertion is a description of the subject based on valid credentials at a
certain point in time. Any entitlements returned from the authentication service, provide
additional information about the subject, such as profile information or a session
description.

Consider the following authentication request: an actor has created an <AuthRequest>
message containing login credentials obtained from a subject. The request includes a
unique identifier. The credentials may have been obtained by the actor in a variety of
different ways: direct interaction with a user, extracted from a document etc.

AuthResponse

Authentication

Credentials Name Assertion

Entitlement*

 Policy

AuthRequest

Draft Version 0.7a: November 16, 2000

Confidential 10

<AuthRequest>
 <This>urn:JavaServletPlugInRequest:988</This>
 <Date>2000-11—16T11:34:120-05:00</Date>
 <Credentials>
 <Login>
 <Name>SomeUser</Name>
 <Password>aSecret</Password>
 </Login>
 </Credentials>
</AuthRequest>

S2ML 1.0 describes schemas for four types of credentials (Section 5.3.5): no credentials,
login, X509 certificates and Public Keys. The <Credentials> element also permits
the use of foreign namespaces through the use of the <Any> element. This may be used
as the means for extension to other authentication schemes.

The authentication engine responds with an <AuthResponse> message; if
authentication succeeds, the message includes a name assertion describing the
authentication type and subject attributes.

<AuthResponse>
 <This>urn:MainAuthServer:0981</This>
 <Date>2000-11—16T12:34:120-05:00</Date>
 <Request>urn:JavaServletPlugInRequest:988</Request>
 <Result>Success</Result>
 <NameAssertion>
 <This>urn:authEngine32:xsde12</This>
 <Issuer>http://www.somecompany.com/authEngine32</Issuer>
 <Date>2000-11—16T12:36:120-05:00</Date>
 <Audiences>urn:all_somecompany_servers</Audiences>
 <ValidityInterval>
 <NotBefore>2000-11—16T19:34:120-05:00</NotBefore>
 <NotAfter>2000-11—16T20:34:120-05:00</NotAfter>
 </ValidityInterval>
 <AuthData>
 <AuthType>Login</AuthType>
 <UserHandle>
 <Directory>XJN-Q3</Directory>
 <X509.DN>uid=bjensen,ou=people,dc=airius,dc=com</X509.DN>
 </UserHandle>
 </AuthData>
 <DSIG:signature>. . . </DSIG:signature>
 </NameAssertion>
</AuthResponse>

S2ML 1.0 provides schemas for four types of subject attributes (Section 5.3.6) which
may be contained within an <AuthData> element:

Draft Version 0.7a: November 16, 2000

Confidential 11

• <UserHandle> element, consisting of a string user-store name and an X.509
Distingushed name string,

• <IdentityToken> element, consisting of a string,

• X509 Certificate,

• Public Keys.

The <AuthData> element also permits the use of foreign namespaces through the use
of the <Any> element. This may be used as the means for extension to other forms of
subject description.

Authorization is a central concept in S2ML. Providing a description for authorization
requires distinguishing between the basic information flow in authorization versus the
existing variety of specific authorization models, including those based on ACLs,
Capabilities, Java Authorization model, Rules-based models, etc. For all of these cases,
however, it is possible to develop a model based on information flow:

• An authorization question is posed, in the context of an authenticated subject. This
can take many forms as in:

Can user X access resource R?
OR
Can user X withdraw $10,000 from account A?

AzResponse

AzRequest

Authorization (Az)

Name Assertion

Entitlement*

Question

Answer

Entitlement*

 Policy

Draft Version 0.7a: November 16, 2000

Confidential 12

Sometimes, there may be additional information available about user X, such as the
user’s profile. In such a case, the authorization question is scoped by the user identity
AND the entitlements specifying the user profile.

• The authorization engine responds with an Answer:

Yes, user X may access resource R.
OR
Yes, user X may withdraw $10,000 from account A.

Such an answer may just have local scope, in that it is used immediately at the point
of enforcement and then discarded. More broadly, however, there may also be
components to the answer which are meaningful to other applications, such as the
entitlements:

The locator number for user X for accessing R is 17865X.
User X is a platinum-class account holder with over $100,000 in funds.

Our approach to the diversity of authorization models is to use a <AzModel> attribute
for the <Question> and <Answer> element which binds the contents of these
elements to a specific authorization model. The <AzModel> attribute takes a URI value.

S2ML describes only one particular authorization model with URI:

 http://az.s2ml.org/SimpleAz

This model describes a class of authorization questions of the form:

 VERB Resource

model (e.g., GET http://www.somecompany.com/index.html) and answers of the form
success or failure.

Authorization services MAY implement one or more authorization models; each will
have its own vocabulary and associated AzModel URI. An AzModel error MUST be
returned by an authorization service, if a question drawn from an unknown AzModel is
presented in an AzRequest element. An authorization service SHOULD implement
the SimpleAz model in addition to any other implemented models.

An AzRequest MUST include an name assertion and MAY include one or more
entitlements. An AzRequest MUST include a <Question> element.

Draft Version 0.7a: November 16, 2000

Confidential 13

<AzRequest>
 <This>urn:Interceptor1AzRequest:988</This>
 <Date>2000-10—16T12:34:120-05:00</Date>
 <NameAssertion>. . . </NameAssertion>
 <Question AzModel=”http://az.s2ml.org/SimpleAz”>
 <ResourceContext>
 <Method>urn:GET</Method>
 <Resource>http://www.myserver.com/index.html</Resource>
 </ResourceContext>
 </Question>
</AzRequest>

An <AzResponse> MUST contain an answer element and MAY contain one or more
entitlements. The <Answer> element contains a response to the authorization question
posed in <AzRequest>. One or more entitlements may be returned from an
authorization request; for example, when a user is authorized to access a commerce
application, the user’s locator number and payment status may be returned within an
entitlement.

<AzResponse>
 <This>urn:GeneralPurposeAzEngine:908a</This>
 <Request>urn:Interceptor1AzRequest:988</Request>
 <Date>2000-10—16T12:34:120-05:00</Date>
 <Entitlement>. . . </Entitlement>
 <Answer AzModel=”http://az.s2ml.org/SimpleAz”>
 <Result>Success</Result>
 </Answer>
</AzResponse>

4.3 Assertion Validity

Scrutinizing actors will need to determine the validity of both name assertions and
entitlements. Validity is defined in the context of business relationship with the issuer and
security policies in place at the actor scrutinizing the assertion. Minimally, the following
conditions MUST be evaluated by an actor scrutinizing as assertion:

1. The issuer is trusted by the actor,

Draft Version 0.7a: November 16, 2000

Confidential 14

2. Issuer digital signature is valid at time of scrutiny and binds to required elements in
the assertion,

3. The time period for which the assertion is being scrutinized must lie within the time
period specified by the <ValidityInterval> element.

4. The business relationship between the actor and issuer references at least one of the
<Audience> elements.

A compound assertion (entitlement) is valid iff it meets the above rules AND the cited
name assertion is valid.

4.3.1 Audience Restriction

Assertions MAY be addressed to a specific audience. Although a party that is outside the
audience specified is capable of drawing conclusions from an assertion, the issuer
explicitly makes no representation as to accuracy or trustworthiness to such a party.

• Require users of an assertion to agree to specific terms (rule book, liability caps,
relying party agreement)

• Prevent clients inadvertently relying on data that does not provide a sufficient
warranty for a particular purpose

• Enable sale of per-transaction insurance services.

An audience is identified by a URI that identifies to a document that describes the terms
and conditions of audience membership.

Each actor is configured with a set of URIs that identify the audiences that the actor is a
member of, for example:

http://cp.verisign.test/cps-2000
Client accepts the VeriSign Certification Practices Statement

http://rule.bizexchange.test/bizexchange_ruebook
Client accepts the provisions of the bizexchange rule book.

An assertion MAY specify a set of audiences to which the assertion is addressed. If the
set of audiences is the empty set there is no restriction and all audiences are addressed.

4.4 Scope and Limitations

It is not a goal for S2ML to propose any new cryptographic technologies or models for
security; instead, emphasis is placed on description and use of well known security
technologies utilizing a standard syntax (markup language) in the context of the internet.

Draft Version 0.7a: November 16, 2000

Confidential 15

This document does not describe services or markup for security services such as non-
repudiation. These are considered to be outside the scope of S2ML 1.0.

Authentication methods in S2ML 1.0 are limited to login, based on name and password,
validation of X509v3 certificates and public keys.

Challenge-response authentication protocols are outside the scope of S2ML 1.0.

Protocols for creation and management of user sessions are outside the scope of S2ML
1.0.

5 Message Set

5.1 URI Naming Infrastructure

The S2ML Architecture makes extensive use of URIs to identify assertions, actors and
audiences. The use of a URI as an object identifier is a superset from the use of a URI as
an object locator. S2ML introduces objects such as audiences and authorization roles that
carry distinct semantics even though there is no means of locating or even resolving
them. Appendix B describes rules for URI equality.

5.2 Common Syntax

The following data elements are used in the message set:

5.2.1 This

The This element specifies a unique label for the assertion by means of a URI. It is
defined by the following XML schema:
<element name="This" type=“uriReference"/>

5.2.2 Issuer

The Issuer element specifies the issuer of the assertion by means of a URI. It is
defined by the following XML schema:
<element name="Issuer" type=“uriReference"/>

5.2.3 ValidityInterval

The ValidityInterval structure specifies limits on the validity of the assertion.
<complexType name="ValidityInterval">
 <all>
 <element name="NotBefore" type="timeInstant" minOccurs=”0” />
 <element name="NotAfter" type="timeInstant" minOccurs=”0” />
 </all>
</complexType>

Draft Version 0.7a: November 16, 2000

Confidential 16

Member Type Description

NotBefore timeInstant Time instant at which the validity interval
begins

NotAfter timeInstant Time instant after which the validity
interval has ended

The NotBefore and NotAfter elements are optional. If the value is either omitted or
equal to the start of the epoch it is unspecified. If the NotBefore element is unspecified
the assertion is valid from the start of the epoch until the NotAfter element. If the
NotAfter element is unspecified the assertion is valid from the NotBefore element
with no expiry. If neither element is specified the assertion is valid at any time.

All time instances SHOULD be interpreted in Universal Coordinated Time unless the
parties concerned have agreed in advance to use a different time standard.
Implementations MUST NOT generate time instances that specify leap seconds.

For purposes of comparison the time interval NotBefore to NotAfter begins at the
earliest time instant compatible with the specification of NotBefore and has ended
after the earliest time instant compatible with the specification of NotAfter.

For example if the time interval specified is dayT12:03:02 to dayT12:05:12 the
times 12:03:02.00 and 12:05:12.9999 are within the time interval. The time
12:05:12.0001 is outside the time interval.

5.2.4 DateTime Date

The DateTime instant MUST fully specify the date.
<element name="Date" type="timeInstant"/>

5.2.5 Audiences

The Audiences element specifies a set of audiences to which the assertion is
addressed. The element is defined by the following XML schema:
<simpleType name=”listOfUriRefs”>
 <list itemType=”uriReference”>
</simpleType>

<element name="Audiences" type="listOfUriRefs">

Draft Version 0.7a: November 16, 2000

Confidential 17

5.2.6 DependsOn uriReference

The DependsOn element allows an assertion to refer to or cite another assertion,
thereby forming a compound assertion. A compound assertion is valid if only if each
component assertion is valid.
<element name="DependsOn" type=“uriReference"/>

5.2.7 Request

The request element is used as part of the response structure to track the URI of the
request object.
<element name="Request" type=“uriReference"/>

5.2.8 ResultCode

The enumerated type ResultCode is used to return result codes from each interface. It
has the following possible values:

Success
The operation succeeded.

Failure
The operation failed for unspecified reasons.

ResultCode is defined as:
<simpleType name="ResultCode" base="string">
 <enumeration value="Success"/>
 <enumeration value="Failure"/>
</simpleType>

5.3 Authentication

5.3.1 NameAssertion
<element name="NameAssertion">
<complexType>
 <all>
 <element name ref = “This"/>
 <element name ref = “Issuer"/>
 <element name ref = “Date"/>
 <element name ref = “Audiences” minOccurs=”0” />
 <element name ref = “ValidityInterval" minOccurs=”0”/>
 <element name ref = "AuthData"/>
 <element name ref = “DSIG:signature”>
 </all>
</complexType>
</element>

Draft Version 0.7a: November 16, 2000

Confidential 18

Where the schema elements have the following use:

Identifier Type Description

This URI Assertion identifier. MUST be
present.
MUST satisfy the uniqueness
property

Issuer URI

Date timeInstant Time instant of issue

AuthData Information generated by
authentication step.

ValidityInterval ValidityInterval Optional

Audiences Optional

DSIG:signature Enveloped digital signature binding
issuer identity to required assertion
attributes

5.3.2 Request Message

The following schema defines the request message:
<element name="AuthRequest">
 <complexType>
 <all>
 <element ref = “This”/>
 <element ref = “Time”/>
 <element ref = “Credentials”/>
 </all>
 </complexType>
</element>

5.3.3 Response Message

The following schema defines the response message:
<element name="AuthResponse">
 <complexType>
 <sequence>
 <element ref = “This”/>
 <element ref = ”Time”/>
 <element ref = “Request”/>
 <element name = “Result" type=”ResultCode”/>
 <element ref = “NameAssertion” minOccurs=”0”/>
 <element ref = “Entitlement” minOccurs=”0” maxOccurs=”unbounded”/>
 </sequence>
 </complexType>

Draft Version 0.7a: November 16, 2000

Confidential 19

</element>

The <request> element contains the unique identifier of the <AuthRequest>
element for which this <AuthResponse> element has been created.

5.3.4 Login

The Login element must contain a name and password pair; it may also contain an
optional realm or domain element.

<element name=”Login”>
 <all>
 <element name=”Name” type=”string”/>
 <element name=”Password” type=”string”/>
 <element name=”Domain” type=”string” minOccurs=”0”/>
 </all>
</complexType>
</element>

5.3.5 Credentials

The Credentials element may contain any one of four standard elements, or an
element derived from a namespace other than S2ML. The Nocreds element indicates
that no credentials are being provided.

<element name="Credentials">
<complexType>
 <choice>
 <element ref =”Login”/>
 <element ref=”DSIG:X509Data”/>
 <element ref=”DSIG:KeyValue”/>
 <any namespace=”##other”/>
 <element Nocreds/>
 </choice>
</complexType>
</element>

Draft Version 0.7a: November 16, 2000

Confidential 20

5.3.6 AuthData

The AuthData element encodes the result of a successful authentication step. The
AuthType element describes the type of credentials that presented for authentication.
Credentials are mapped into one of four standard forms: UserHandle,
IdentityToken, DSIG:X509Data, DSIG:KeyValue.

<element name="AuthData">
<complexType>
 <sequence>
 <element ref = “AuthType”>
 <choice>
 <element ref = “UserHandle”/>
 <element ref = “IdentityToken”>
 <element ref= “DSIG:X509Data”/>
 <element ref=”DSIG:KeyValue”/>
 <any namespace= “##other”/>
 </choice>
 <sequence>
</complexType>
</element>

5.3.7 AuthType

<element name="AuthType">
<complexType>
 <choice>
 <simpletype base=”string”>
 <enumeration value="Login"/>
 <enumeration value="Nocreds"/>
 <enumeration value="X509Data"/>
 <enumeration value=”KeyValue” />
 </simpleType>
 <any namespace= “##other”/>
 </choice>
</complexType>
</element>

Draft Version 0.7a: November 16, 2000

Confidential 21

5.3.8 UserHandle

Element UserHandle represents the case wherein credentials are mapped to an entry
within a directory or user store. Element X509.DN MUST take the form of an X.509
Distinguished Name [X.509], for example:

uid=bjensen,ou=people,dc=airius,dc=com

<element name=”UserHandle”>
<complexType>
<all>
 <element name = “Directory” type = “string” />
 <element name = “X509.DN” type = “string” />

</all>
</complexType>
</element>

5.3.9 IdentityToken
<element name=”IdentityToken” type=”string”/>

5.4 Authorization

5.4.1 Entitlement

The Entitlement (Assertion) element
<element name=”Entitlement”>
<complexType>
 <all>
 <element name ref =”This”/>
 <element name ref =”Issuer”/>
 <element name ref = “Date”/>
 <element name ref = “Audiences” minOccurs=”0”/>
 <element name ref = “DependsOn”>
 <element name ref =”AzData” />
 <element name=”ValidityInterval” type=”ValidityInterval” minOccurs=”0”/>
 <element name ref = “DSIG:signature” />
 </all>
</complexType>

Draft Version 0.7a: November 16, 2000

Confidential 22

Where the schema elements have the following use:

Identifier Type Description

This String Assertion identifier. MUST be
present.
MUST satisfy the uniqueness
property

Date timeInstant Time instant of issue

Issuer uriRef

DependsOn uriRef Link to Name Assertion

ValidityInterval ValidityInterval Optional

Audiences Optional

DSIG:signature Enveloped digital signature binding
issuer identity to assertion attributes

5.4.2 Request Message

The following schema defines the request message:
<element name="AzRequest">
 <complexType>
 <sequence>
 <element ref = “This”/>
 <element ref = “Time”/>

 <element ref = “NameAssertion”/>
 <element ref = “Question”/>
 <element ref = “Entitlement” minOccurs=”0” maxOccurs=”unbounded”/>

 </sequence>
 </complexType>
</element>

5.4.3 Response Message

The following schema defines the response message:
<element name="AzResponse">
 <complexType>
 <sequence>
 <element ref = “This”/>
 <element ref = “Time”/>
 <element name=”Request” type=”uriRef”/>
 <element name ref = “Answer”/>
 <element name ref = “entitlement” minOccurs=”0” maxOccurs=”unbounded”/>
 </sequence>
 </complexType>
</element>

Draft Version 0.7a: November 16, 2000

Confidential 23

5.4.4 ResourceContext

<element name="ResourceContext">
<complexType>
 <all>
 <element name="Resource" type="uriReference"/>
 <element name="Method" type="uriReference"/>
 </all>
</complexType>
</element>

Where the sub-elements have the following meaning

Identifier Type Description

Resource URI Resource Name

Method URI Verb

5.4.5 AzData

<element name="AzData">
<complexType>
 <all>
 <any namespace=”##other”/>
 </all>
</complexType>
</element>

5.4.6 Question
<element name="Question">
<complexType>
 <choice>
 <element ref = “ResourceContext”>
 <any namespace=”##other”/>
 </choice>
 <attribute name=”AzModel” type=”uriRef” />
</complexType>
</element>

5.4.7 Answer

<element name="Answer">
<complexType>
 <all>
 <element name="Result" type="ResultCode"/>
 <any namespace=”##other”/>
 <all>
 <attribute name=”AzModel” type=”uriRef” />
</complexType>
</element>

Draft Version 0.7a: November 16, 2000

Confidential 24

6 Binding

6.1 HTTP Binding

In many user-driven scenarios there is a need to communicate security information
through HTTP headers as discussed in [User-driven Use-Case]. In such a case, assertions
originating from one site may need to be communicated to another site through HTTP
headers. As S2ML assertions may be of variable size and HTTP headers are strongly size
constrained, this specification describes a system in which unambiguous references to
S2ML assertions are conveyed through HTTP headers. Using such references sites may
retrieve S2ML assertions from other sites through means that lie outside the scope of this
specification.

The S2MLheader HTTP header follows the standard HTTP header format as in
[RFC2068].

S2MLheader “ : “ <encrypted-payload>

The encrypted payload is comprised of a reference to a single assertion. The payload is
constructed in the following manner:

20 octets: Sender Description Digest A 20-byte SHA1 hash of the Sender URI
20 octets: Message Digest A 20-byte SHA1 hash of contents of <This> element of an
assertion.

The payload is encrypted using 128-bit secret key encryption based on the US AES
standard.

The encrypting and decrypting cipher is the AES(*) cipher in CBC mode with 128-bit
blocks. Encryption and decryption will use a constant initialization vector of 16 zero
bytes. The input to the cipher is a set of three 16-byte blocks formatted from the
following concatenated blocks:

4 bytes random header
20 bytes message digest value
20 bytes sender description digest value
4 bytes reserved, must be set to 0, 0, 0, 1

Draft Version 0.7a: November 16, 2000

Confidential 25

The three 16-byte blocks that are output from the AES-CBC-128 cipher form a 48-byte
message.

The sending site will store and manage a table of assertions for which references have
been exported outside the site. The table is indexed by the Message Digest element of
each assertion. The receiving site will decrypt and verify the S2ML header payloads.
Based upon the sender description digest, it will contact the sending site and “pull” the
relevant assertions.

(*) At the time of this proposal, the selection of Rijndael as the AES cipher is not yet
finalized by NIST.

Security of cipher construction

Using digest values for the Sender URI and Message fields serves two distinct purposes.
The primary purpose is to create a unique handle for these fields, where it is not feasible
for anyone to construct another field value that hashes to the same digest value. The
SHA1 hash function is suitable to achieve this cryptographic property. The secondary
purpose of the digest value is as a database lookup key. SHA1 is certainly more than
sufficient for this purpose.

A standard cryptographic envelope using a 128-bit key would expand the message by at
least 32 bytes, including a 16-byte initialization vector (IV) and a 16-byte message
authentication code. In contrast, our cipher construction is optimized to save a few bytes,
at the expense of some (perhaps torturous) analysis. The cipher text is only 8 bytes larger
than the clear text, where 4 bytes act as a crude message authenticator, and another 4
bytes act as a simple message obfuscator. While this construction does give us full 128-
bit privacy protection, it does not strongly authenticate the message, nor does it strongly
guarantee that two identical plain texts won't appear as equal. The rest of this section
explains why we can "get away" with this.

We have no compelling need for strong message authentication, because it is impossible
to create a valid forged message through cipher-text manipulation. This is guaranteed
because our plaintext consists only of cryptographic digests.

Similarly, while we enjoy the benefits of 128-bit message privacy, we have no
particularly strong need to prevent enemies from detecting that two enciphered messages
correspond to identical plain text. Sure we'd like to hide this fact, but if one can tell with
a one in 2^32 chance that two plaintexts are equal, this is not a major threat. Simple
traffic analysis will almost certainly pose a much greater threat.

So, of the 8 extra bytes, 4 are set to zero, and used to provide a weak form of message
authentication, which is largely used to detect accidental corruption. Another 4 bytes are
used to provide a random message ID, which provides for a reasonable level of
information hiding in this application.

Draft Version 0.7a: November 16, 2000

Confidential 26

Note that of the two digest values, we place the message digest first, since it will be
varying much more than the Sender URI digest, and thus offer added protection against
an enemy occasionally noticing that two messages are the same. If the Sender URI was
positioned first, one might see with a 1/2^32 chance, that two different messages came
from the same sender, regardless of the whether the message itself was distinct.

Also note that the value of the last byte is "1" to be compatible with standard message
padding schemes (=== name them), which require at least one padding byte to be present.

6.2 MIME Binding

MIME and particularly Multipart-MIME are very commonly used in XML messaging
systems. Hence, a S2ML document instance can be packaged into various MIME based
enveloping schemes, including S/MIME which supports multipart/signed content types.

The purpose of the following discussion is to specify how S2ML documents instances
can be applied into a MIME messaging protocol. However, this discussion is
independent of the specific MIME messaging protocol used. Our viewpoint is that the
S2ML MIME binding should provide a reasonable “default” binding for messaging based
on MIME packaging. Individual messaging frameworks may provide more specific ways
to include S2ML fragments and assertions.

Hence, in the process of this discussion we note what is required and what is optional
from the standpoint of consistently publishing, processing, and incorporating S2ML
documents into a MIME message processing system, e.g., used in a B2B messaging
protocol.

Requirements for Multipart MIME Packaging

- Use of multipart/mixed

 S2ML documents such a Credential, Identity Assertions, and Entitlement
can be packaged using MIME multipart/related into a single MIME package. This
security document can be included into a multipart/mixed envelope as a MIME
part or as an attachment;

- Encryption

The S2ML document may be optionally encrypted if S/MIME enveloping (is
employed) using application/pkcs7-mime content-type. E.g., the Credential
document that includes login password may need to be protected over insecure
transports. Entitlement information may also need to be protected if it is being
processed over multiple sites over varying transport protocols.

Draft Version 0.7a: November 16, 2000

Confidential 27

- Signed S2ML Documents

Since XML DSig will be employed to sign and endorse the S2ML document
instance, it is not required that S2ML parts in a MIME envelope be
additionally signed.

Logical Schema for Packaging S2ML in a MIME Message

6.1.1 MIME Header

Header
Component

Description

Header attributes MIME Message Header properties

6.1.2 S/MIME Message Top-level Signature Block

There is a need to package the message payload and the S2ML Security Documents that
have been created as a result of a successful validation of the message originator and/or
the message. The specific packaging structure is beyond the scope of S2ML specification
since it depends on the messaging protocol. However, in all messaging protocol cases,
we want to make sure that the business document(s) (i.e., message payload) is linked with
the S2ML security assertions generated by the security serviice provider.. There are a
number of ways this can be accomplished and the corrrect packaging approach depends
on the specific messaging protocol employed.

Draft Version 0.7a: November 16, 2000

Confidential 28

Here we demonstrate an example of packaging the S2ML Security Documents Block
with the message payload via a top-level message signature generated over the
multipart/related S2ML Security Documents and message payload parts.

Signature Component Description

Signature

Signature Format

Generated using the private signature key of the
some trusted party (and/or message over both the
S2ML Security Documents Block and the message
payload. The purpose of the outer signature is to
ensure that the Name assertion and any
entitlements associated with message originator
are combined with the original message payload
such that no intermediary party can replace the
original S2ML security properties

(e.g., during message transmissions) with a false
set of S2ML documents. Note: This signature
block may be optional for some messaging
protocols since 1) their will be transmission
security (e.g., SSL) and 2) their will be a signature
on each S2ML document by a trusted security
provider that authenticates the message which may
be sufficient in some messaging apps.

multipart/signed

Public Certificate Chain The public certificate corresponding to the end-
entity that is signing the message containing both
the S2ML Security Documents and original
message payload. The first certificate in the chain
is the actual public identity of the originating
party; the rest of the chain elements are used to
establish trust . e.g., trusted third party CA.

6.1.3 S2ML Security Documents Block

The message authentication service provider will typically generate one or more S2ML
documents which will represent the following types of security information:

- application authentication information, i.e., Credential of the message
originator

Draft Version 0.7a: November 16, 2000

Confidential 29

- authenticated identity of the message originator, i.e., name assertions
created/endorsed by a trusted security service provider;

- entitlements associated with the message originator, e.g., access rights or
membership domain that are validated/endorsed by a security service
provider;

The Credential document is always created and included into MIME message package by
the message oroginating party. The Name assertion and any entitlements are included
into the MIME message by a trusted security service provider that manages
authentication and authorizations services. The messaging application will package these
elements together into a multipart/mixed part of the MIME message envelope such that:

- Name Assertions Linked with Entitlement (REQUIRED)

Name assertion document is always linked with their corresponding one or
more Entitlement

assertions documents;

 - S2ML Security Documents Block is Protected (OPTIONAL)

Signing the S2ML security block will ensure that this part is not tampered
with; for example, to ensure that none of the entitlement documents are
discarded. This will be highly useful if there is no transmission-level security
and/or there are multiple message processing parties involved in the B2B
transaction.

S2ML
Component

Description

Credential/Name
Assertion/Entitlem
ents

Content Type

The S2ML document instance (of content type
text/xml) is part of a multipart/mixed message part.

Multipart/mixed

Encrypted S2ML
Envelope

Content Type

The S2ML document instance will be optionally
encrypted with the public key of the receiving
party.

The resulting packaged in an application/pkcs7-
mime envelope layer.

Draft Version 0.7a: November 16, 2000

Confidential 30

Signed and
encrypted S2ML
documents

Content Type

The S2ML Security Documents Block may also
optionally be signed. Note: The entity signing the
S2ML Security Document block maybe distinct
from the entities that have signed the name and
entitlement assertions. E.g., this signature may be
the messaging application that uses the security
services that validated/created the S2ML
documents.

The resulting MIME content type application/pkcs7
signature.

6.1.3.1 Example of S2ML Security Documents Block

Multipart/MIXED;,,,,; boundary="xxxxxxxxx"

 -"xxxxxxxxxxxxxx"

 Name-Assertion Document

 -"xxxxxxxxxxxxx"

 Entitlement-Document #1

 -"xxxxxxxxxxxxx"

Entitlement-Document #1

 -"xxxxxxxxxxxxx"

6.1.4 Encrypted/Signed Payload Block

Payload
Component

Description

Payload
component

Payload components refer to the primary
message body.

Encrypted Payload
Envelope

The payload will be optionally packaged in an
application/pkcs7-mime envelope layer.

Signed and
encrypted payload

The payload can also optionally be signed and the
resulting envelope is of the MIME content type
application/pkcs7-signature

Draft Version 0.7a: November 16, 2000

Confidential 31

6.2 ebXML Binding

TBD

6.3 SOAP Binding

Binding Notes:
- It is up to the application about whether the 'mustUnderstand' attribute will be applied to
the headers.
- It is up to the application about whether the 'Actor' attribute will be applied to the
headers.
- All entries in the Header MUST be namespace qualified (requirement of SOAP 1.1)
- Until XML encryption standard becomes available, no standard technique is available to
precisely to encrypt the S2ML headers. However, the entire SOAP message can be
placed in MIME packaging and S/MIME technology utilized for encryption.

* Passing around IdentityAssertion and Entitlement:

<soap-env:Envelope
 xmlns:soap-env="http://schemas.xmlsoap.org/soap/envelope/"
 soap-env:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

 <soap-env:Header>
 <s2ml:NameAssertion xmlns:s2ml="http://ns.s2ml.org/S2ML" />
 <s2ml:Entitlement xmlns:s2ml="http://ns.s2ml.org/S2ML" />
 <s2ml:Entitlement xmlns:s2ml="http://ns.s2ml.org/S2ML" />
 </soap-env:Header>

 <soap-env:Body>
 <message_payload/>
 </soap-env:Body>

</soap-env:Envelope>

7 Conformance

Four levels of conformance are defined:

1. A security system is a consumer of S2ML it can provide authorization decisions
based on name assertions and entitlements generated elsewhere.

2. A security service which is a S2ML consumer may also provide an S2ML conformant
authorization service. This type of service cannot create any entitlements, but can
read name assertions and entitlements (Read-only S2ML Az) and determine their

Draft Version 0.7a: November 16, 2000

Confidential 32

validity.

3. A security system is a consumer and producer of S2ML if it can both produce and
consume name assertions and entitlements.

4. A security system which is a S2ML consumer-producer may also provide a S2ML
conformant authentication or authorization service (S2ML Auth, S2ML Read-Write
Az).

Draft Version 0.7a: November 16, 2000

Confidential 33

Appendix A URI Equality: Lexical Comparison

The equality function used on URIs is strictly lexical and are applied without reference to
the semantics of the underlying URI name space. The rules for lexical comparison of
URIs described here differ in some respects to the rules for semantic equivalence of URIs
specified in RFC 2396 [RFC2396].

Use of lexical comparison functions ensures that the comparison functions are defined
even though the application may not understand the resolution semantics of the
underlying name space. The complexity of client implementations is reduced through
application of the following rules:

• The forward slash character ‘/’ is always interpreted as a separator for different
levels in the name space hierarchy. No other character is interpreted as a
separator.

• Comparison is always performed within the ASCII character set encoding of the
URI.

• Characters describes as escaped, reserved and unreserved in RFC 2396 are always
regarded as being so.

RFC 2396 defines rules for semantic equivalence of URIs. To simplify client
implementation the following forms of URI are differentiated:

• A URI that specifies the default port explicitly is NOT equivalent to a URI that
specified the default port implicitly (i.e. http://site.test/ is distinct from
http://site.test:80/).

Differentiating between explicitly and implicitly defined port numbers ensures that
lexical comparison is consistent even though a client may not understand the resolution
semantics of a URL scheme.

The following forms of URI are never differentiated:

• A URI that does end in a forward slash character ‘/’ is directly equivalent to the
same URI with a slash character appended at the end.

• A URI in which a character is escaped is directly equivalent to one in which the
character is not escaped. Where more than one means of character escape is
defined for the same character no distinction is made on the basis of the escape
mechanism chosen.

Applying these rules the following URIs are not differentiated.

http://site.test/my+resource
http://site.test/my%20resource

Draft Version 0.7a: November 16, 2000

Confidential 34

http://site.test/my+resource/
http://site.test/my%20resource

Draft Version 0.7a: November 16, 2000

Confidential 35

Appendix B: Securing a Multi-Step Transaction

In this example, we follow a multi-step transaction which may involve one or more
enterprises. A subject is interacting with a commerce engine so as to complete some
business transaction. The commerce engine further interacts with finance and fulfillment
servers for sub-parts of the transaction. Each server may be located in a different
enterprise or within a different administrative area within a single enterprise. A single
remote Auth server is utilized for authentication; multiple authorization servers are
utilized for checking subject authorization.

WORK THROUGH THE FLOW ---- TBD

S2ML Request - Response

Transaction Flow

Actors

Commerce
Server Fulfillment

Finance

Subject

Auth Az1 Az2 Az3

Security Services

1

<Name Assertion>
<Entitlement>

<Name Assertion>
<Entitlement>

2 3

4

6

5

Draft Version 0.7a: November 16, 2000

Confidential 36

Appendix C References

[RFC2396] T. Berners-Lee, R. Fielding and L. Masinter. Uniform Resource
Identifiers (URI): Generic Syntax RFC 2396, August 1998,
Internet Engineering Taskforce. http://www.rfc-
editor.org/rfc/rfc2396.txt.

[XML-SIG] D. Eastlake, J. R., D. Solo, M. Bartel, J. Boyer , B. Fox , E. Simon.
XML-Signature Syntax and Processing, World Wide Web
Consortium. http://www.w3.org/TR/xmldsig-core/

[XML-Schema1] H. S. Thompson, D. Beech, M. Maloney, N. Mendelsohn. XML
Schema Part 1: Structures, W3C Working Draft 22 September
2000, http://www.w3.org/TR/xmlschema-1/

[XML-Schema2] P. V. Biron, A. Malhotra, XML Schema Part 2: Datatypes; W3C
Working Draft 22 September 2000,
http://www.w3.org/TR/xmlschema-2/

[X.509] rfc2253 Lightweight Directory Access Protocol (v3): UTF-8 String
Representation of Distinguished Names

Draft Version 0.7a: November 16, 2000

Confidential 37

Appendix D Legal Notices

Copyright

© All S2ML participants as called out in Netegrity S2ML MOU.

Intellectual Property Statement

Neither the authors of this document, nor their companies take any position regarding the
validity or scope of any intellectual property or other rights that might be claimed to
pertain to the implementation or use of the technology described in this document or the
extent to which any license under such rights might or might not be available; neither do
they represent that they have made any effort to identify any such rights.

Disclaimer

This document and the information contained herein is provided on an "AS IS" basis and
THE AUTHORS AND THEIR COMPANIES DISCLAIM ALL WARRANTIES,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY
THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY
RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR
FITNESS FOR A PARTICULAR PURPOSE.

