
.

.

 01/08/01

Security Services Markup Language

Prateek Mishra Netegrity
Phillip Hallam-Baker VeriSign
Zahid Ahmed Commerce One
Alex Ceponkus Bowstreet
Marc Chanliau Netegrity
Jeremy Epstein webMethods
Chris Ferris Sun Microsystems
David Jablon Netegrity
Eve Maler Sun Microsystems
David Orchard Jamcracker

Reviewers: ATG, Inc
 TIBCO
 Oracle
 PWC

Draft Version 0.8a: January 8, 2001

 2

 Security Services Markup Language
Version 0.8a

1 EXECUTIVE SUMMARY .. 2

2 REQUIREMENTS.. 3

2.1 Leveraging Existing Technology...3

2.2 Foundations ...3

2.3 Services ...4

2.4 Design Goals..4

2.5 Scope and Limitations ..5

3 S2ML USE CASE SCENARIOS ... 5

3.1 Scenario #1: User-Driven Transactions (Single Sign-On) ..5

3.2 Scenario #2: Service-Driven Transactions (Trade Exchange) ..7

3.3 Scenario #3: Hosted Services (Security ASP)...8

4 ARCHITECTURE.. 9

4.1 Name Assertions and Entitlements ...10

4.2 Secret Name Assertions vs. Scoped Name Assertions..12
4.2.1 Scoped Name Assertions... 12
4.2.2 Secret Name Assertions... 12

4.3 Authentication (Auth) and Authorization (Az) Services...13

4.4 Assertion Validity ..17
4.4.1 Audience Restriction.. 18

5 MESSAGE SET .. 18

5.1 URI Naming Infrastructure..18

5.2 Common Structures ..18

 3

5.2.1 ID Element... 19
5.2.2 Issuer Element... 19
5.2.3 ValidityInterval Complex Type ... 19
5.2.4 Date Element... 20
5.2.5 Audiences Element... 20
5.2.6 DependsOn Element .. 20
5.2.7 InResponseTo Element.. 20
5.2.8 Holder Element ... 20
5.2.9 ResultCode Simple Type... 20

5.3 Authentication Messages ...21
5.3.1 AuthRequest Element .. 21
5.3.2 AuthResponse Element ... 21
5.3.3 Credentials Element ... 21
5.3.4 NameAssertion Element.. 22
5.3.5 AuthData Element .. 23

5.4 Authorization Messages...24
5.4.1 AzRequest Element.. 24
5.4.2 AzResponse Element ... 25
5.4.3 Entitlement Element... 26

6 BINDINGS TO MESSAGING AND TRANSPORT PROTOCOLS 27

6.1 Web Browser Binding ..27

6.2 HTTP Binding ..28

6.3 MIME Binding ...29
6.3.1 Example of S2ML Security Package .. 30
6.3.2 Example of Encrypted S2ML Security Package... 30
6.3.3 Example of S2ML Security Package Combined with Business Payload... 30
6.3.4 Example of Clear Signed MIME Package ... 31

6.4 ebXML Binding ..31

6.5 SOAP Binding ...31

7 CONFORMANCE .. 32

APPENDIX A URI EQUALITY: LEXICAL COMPARISON 33

APPENDIX B: S2ML SCHEMA.. 35

APPENDIX C REFERENCES ... 39

APPENDIX D LEGAL NOTICES ... 40

 4

1 Executive Summary

This specification defines Security Services Markup Language (S2ML), a protocol for two
security services: authentication and authorization. The protocol consists of request and response
pairs of XML documents for each service. This specification provides a schema that governs
these XML documents, as well as bindings to several message and transport protocols with
which S2ML might be used.

S2ML recognizes that there are a wide range of authentication technologies in use, such as login-
password, SSL, Digital Signing, Kerberos, and Smart Cards. There are also many frameworks
for authorization, including ACLs, Capabilities, and the Java Authorization Model. A major
design goal for S2ML is to provide a single syntax within which a broad class of authentication
and authorization techniques can be expressed, and, which can convey the results established by
a wide variety of existing security mechanisms

S2ML defines two key XML elements—Name Assertions and Entitlements—that provide a
foundation for sharing security artifacts on the Internet. Traditionally, security has been viewed
in the context of a transaction that is entirely contained within a single enterprise. Increasingly,
transactions, whether driven by users or by document flow, may involve cooperating but distinct
enterprises. Transactions may originate at a workstation, and with the help of a portal or
marketplace site, pass through a series of staged interactions with other sites. For example, one
site may authenticate a name-to-credential binding while another site provides additional
assessment of the named user’s capabilities to perform a transaction. Authentication,
authorization, and entitlement information required to complete or enable a transaction may
originate from many sites and be interpreted at other sites.

The following XML elements and security interfaces are described in this document:

• NameAssertion: the result of successful authentication is a digitally signed XML assertion
describing the authentication type, subject name and authenticator.

• Entitlement: is a digitally signed XML assertion consisting of a “portable” package of
authorization data created by an issuing authority concerning an authenticated subject.

• Authentication: An AuthRequest element contains credentials; the result of authentication is
an AuthResponse element containing a NameAssertion and possibly also Entitlements.

• Authorization: An AzRequest element contains a NameAssertion, zero or more Entitlements,
and an authorization Question; the result of authorization is an AzResponse element that
contains an Answer and may also include Entitlements.

Auditing, based on logging and analysis of security-related data, is a key requirement in security
systems. S2ML supports auditing by including information in requests and responses that may be
used to establish their sequencing relationships over long time periods.

 5

2 Requirements

Following are the requirements that underlie S2ML.

2.1 Leveraging Existing Technology

A central requirement for S2ML is to build on existing security technologies, including those
viewed as standard web authentication technologies. These include:

• Server-authenticated SSL connections from browser to web server

• Password and user-certificate authentication from web browser

• Existing web server and related user authentication mechanisms

• Existing secure server-to-server programming infrastructure based on SSL, S/MIME, and
XML Signature [XML-SIG].

2.2 Foundations

This work provides a standardized way to expand the foundation for secure services, including
securely authenticated message flows or transactions initiated by end-users or services, using
private or secret keys or passwords, for authentication.

The following features are required:

• A standard representation of a subject’s authentication “event” which is (1) extensible
and (2) cryptographically bound to an issuer (Name Assertion).

• A standard representation of an authenticated subject’s properties which is (1) extensible
and (2) cryptographically bound to an issuer (Entitlement Assertion).

• Ability to “bind” Name and Entitlement Assertions into standard Internet protocols.
Should include single and multi-step message flows based on:
(1) standard commercial browsers,
(2) HTTP as a transport protocol ,
(3) MIME as a packaging protocol,
(4) SOAP as a messaging protocol,
(5) ebXML as a messaging protocol.

• Support for securing message flows or transactions that involve separately administered
security engines; said security engines may be manufactured by many different vendors.

• Support for “pushing” name and entitlement assertions from one zone of security
administration to another; support for “pulling” name and entitlement assertions from one
zone of security administration to another.

 6

2.3 Services

The required features may be used to provide authentication and authorization services.

Required features of an authentication service include:

• The ability to certify the occurrence of authentication “events”

• The description of the certification request and response in XML

• The ability to authenticate based on name-password, public and private keys, and
certificates

Required features of an authorization service include:

• The description of the authorization request and response in XML

• Extensibility to handle a broad class of authorization models

• Authorization requests and responses that are “scoped” by name and entitlement
assertions carried with the message

• Authorization requests and responses that are able to make explicit references to name
and entitlement assertions

All services require:

• Support for clear separation between security policies and interfaces utilized to access
those policies

2.4 Design Goals

S2ML should:

• Be based on [XML1.0], [XML Schema], [XML-SIG], and (emergent) [XML-Encryption]
specifications

• Complement related efforts such as [XKMS] and any others that emerge

• Have a layered architecture distinguishing clearly between pre-existing infrastructure,
new foundations, and more derived concepts

 7

2.5 Scope and Limitations

It is not a goal for S2ML to propose any new cryptographic technologies or models for security;
instead, the emphasis is on description and use of well-known security technologies utilizing a
standard syntax (markup language) in the context of the Internet.

Non-repudiation services and markup are outside the scope of S2ML 1.0.

Native authentication methods in S2ML 1.0 are limited to login, based on name and password,
validation of X509v3 certificates, and public keys.

Challenge-response authentication protocols are outside the scope of S2ML 1.0.

Protocols for creation and management of user sessions are outside the scope of S2ML 1.0.

3 S2ML Use Case Scenarios

S2ML can be used in environments where transactions are driven by users or services.

3.1 Scenario #1: User-Driven Transactions (Single Sign-On)

Companies need a way to securely share user information as users travel across trusted partner
sites. The information to be shared through single sign-on includes authentication, authorization,
and user profile. In this model, each partner site has its own security infrastructure. In addition
to a business relationship, we assume that partners have established a trust relationship.

A typical example of a user-driven transaction environment is a large bank and its partners such
as travel agencies, a 401K management company, payment services, etc. In this case, a user logs
on to the large bank and can seamlessly visit the large bank’s partner sites without having to re-
authenticate.

Another typical user-driven transaction environment can include an Application Service Provider
(ASP) aggregator that provides its users with seamless access to all the ASPs as part of its trusted
relationship.

In user-driven transaction environments, name assertions can “travel” with the user in various
ways, typically using the URL query string, HTTP headers, or cookies.

In the following example, users are able to visit SiteA and SiteB seamlessly.

(1) User logs on to SiteA and identifies herself to access SiteA’s protected resources.

(2) Based on the information provided at log-in time by the user, SiteA generates an S2ML name
assertion and one or more entitlements. S2ML assertions may be generated through the use of an
S2ML conformant security engine, or by components that transform the output of existing
security engines to S2ML.

(3) User clicks on a link to a resource located at, and protected by, SiteB.

 8

(4) User is allowed into SiteB without having to re-authenticate as information about the S2ML
name assertion travels with the user on the URL line. Site B must check the received name
assertion for validity within the context of the relationship between the two sites. The
information about the user authenticated at SiteA together with the entitlements from SiteA may
be used to complete the transaction at SiteB. SiteB may also further query SiteA about the user’s
authorizations. Thus authorization information may be both “pushed” from A to B in the form of
assertions bound to the user’s transactions, and also “pulled” on an as-needed basis by B from A.

Trusted Relationship

S2ML

Users Internet

SiteA

Security Engine

1

2
3

4

S2ML

Security Engine

SiteB

 9

3.2 Scenario #2: Service-Driven Transactions (Trade Exchange)

A typical example is multiple exchange environments, as illustrated in the following figure. In
this model, it is assumed that the buyer and supplier sides have a trusted relationship.

This example scenario focuses on sharing name and authorization entitlements between
ExchangeA and ExchangeB.

(1) The buyer (an individual or a buying entity) pushes the XML document to ExchangeA. The
document includes credentials, such as a user name and password. (Credentials can
alternatively be discovered at the transport level.)

(2) ExchangeA authenticates the user based on credentials, and inserts a name assertion (subject
description) and entitlements (for example, credit analysis information) into the document.
ExchangeA may optionally remove the credentials from the document.

(3) The message is sent to ExchangeB using any messaging framework (SOAP, ebXML, RMI,
multi-part MIME, RosettaNet, etc.) over any transport protocol (HTTPS, SMTP, JMS, FTP,
MSMQ, IBMMQ, etc.)

(4) ExchangeB checks the entitlements (credit analysis information in this example) against
policies stored in the security engine. If additional authorization information is needed,
exchange B may “pull” that information from A.

(5) Based on the credit analysis information, the document is pushed to the appropriate supplier
side, such as one that accepts a risk level matching the credit rating found in the provided
credit analysis information.

ebXML, SOAP, RMI, multi-part MIME

HTTPS, SMTP, JMS, FTP, MSMQ, etc.

Buyer Supplier

S2ML

Security Engine

ExchangeB

S2ML

Security Engine

ExchangeA

1

2

3

5
4

 10

3.3 Scenario #3: Hosted Services (Security ASP)

In this scenario, enterprises can subscribe to remote authentication and authorization services and
they can access these services through S2ML. Remote authentication and authorization services
are hosted at different sites. Enterprises manage their own user and policy data at the hosted
service.

(1) User1 logs on to EnterpriseA.

(2) User1 is authenticated by EnterpriseA using remote authentication service.

(3) User2 logs on to EnterpriseB.

(4) User2 is authenticated by EnterpriseB using the same remote authentication service used in
(2).

User1 and User2 access services (business processes) at EnterpriseA and EnterpriseB that require
authorization (for example, to make a purchase). The authorization process for both users utilizes
the same remote authorization service.

Authentication
Service

S2ML

S2ML

EnterpriseA
Resources

2
5

4

EnterpriseB
Resources

Authorization
Service S2ML

S2ML

User1
1 3

User2

 11

4 Architecture

The key words MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD, SHOULD
NOT, RECOMMENDED, MAY, and OPTIONAL in this specification are to be interpreted as
described in [RFC2119].

We assume that one or more computational entities or actors are utilizing security services.
Examples of actors include application servers, application programs, security services, transport
and message-level interceptors etc. Various subjects, such as end-users, programs, actors and
documents interact with the actors so as to carry out some computational process. The actors
utilize security services through S2ML interfaces to ensure that the desired computational
processes are secured.

Name assertions and entitlement assertions allow actors to share authentication, authorization,
and entitlement information. Actors insert name assertions and entitlements into transaction
flows utilizing one or more bindings. Actors complete computational processes based on
scrutinizing assertions and determing their validity, either by directly checking assertion validity
or indirectly by calling out to an authorization engine.

S2ML places no restriction on the location, cardinality, or structure of actors and security
services; the only restriction placed is that each actor MUST have a unique name (URI)
[RFC2396]. All URIs used within this specification refer to absolute URIs.

Interaction between actors, and between actors and security services, involve some form of
transport, such as TCP, HTTP, or SMTP. Further, such an interaction may also involve a
messaging framework such as SOAP or RMI. It is a goal for S2ML is to be transport and
messaging framework neutral and to be usable with a wide variety of transports and messaging
frameworks.

The interaction between actors, and between actors and security services, takes place in the
context of a trust-relationship. The creation and management of the trust relationship is outside
the scope of S2ML. In addition, depending on the environment, there may also be a privacy
requirement requiring the use of data encryption.

The S2ML specification distinguishes between the minimum security required for assertions
versus those for security services. Name assertions and entitlements are “portable” pieces of
information, which may travel across the Internet and be scrutinized and checked for validity far
from their point of origin. Therefore, they MUST be signed using the framework described in the
[XML-SIG] specification. It is important to note that [XML-SIG] supports both using secret-key
(for example, HMAC) and public-key signing. When the XML encryption specifications are
available, additional infrastructure will be developed within S2ML to support element-level
privacy of assertions. In the interim, other standard technologies for privacy may be used.

In contrast to assertions, security services are defined by a point-to-point request-response
protocol whose functioning is much more localized. Therefore, there is no mandatory
recommendation for use of [XML-SIG]. It is recommended that standard technologies for trust
and encryption be used, such as those based on:

 12

1. Secret key encryption and signing (RC4, HMAC)

2. Transport-based security (SSL)

3. XML digital signature, secret key or public key, XML encryption models

4. S/MIME 2 and 3

4.1 Name Assertions and Entitlements

Both types of assertion[X-TASS] carry the following information:

• The set of audiences to which the assertion is addressed

• Issuer identification

• A unique identifier

• Time of issuance and duration of assertion validity

• Data related to authentication (Name Assertion) or authorization (Entitlement)

• XML digital signature which cryptographically binds the issuer’s identity to attributes of
the assertion

A Name Assertion describes a successful authentication step:

<NameAssertion>
 <ID>urn:authEngine32:xsde12</ID>
 <Issuer>http://www.example.com/authEngine32</Issuer>
 <Date>2000-10—16T12:34:120-05:00</Date>
 <Audiences>urn:all_example_servers</Audiences>
 <AuthData>
 <AuthType>Login</AuthType>

 <IdentityToken>x12+21defqa$3#</IdentityToken>
 </AuthData>
 <dsig:Signature>. . . </dsig:Signature>
</NameAssertion>

The name assertion above indicates that the actor with the identifying URI

http://www.example.com/authEngine32

authenticated a subject, at 12:34:120 EST on the 16th of October, 2000. The assertion is scoped
via the <Audiences> construct as directed to a certain class of actors. Elements within

 13

<AuthData> provide details about the authentication act: in this case, the subject provided a
password and user name, and the issuer has provided an identity token.

An entitlement assertion represents a statement made by an actor concerning an authenticated
subject. For example, a server within the finance department in an enterprise may indicate a
partner’s payment status using the following XML fragment:

<Entitlement>
 <ID>urn:financeDepartment:129de12</ID>
 <Issuer>http://www.example.com/finance/AzEngine</Issuer>
 <Date>2000-10—16T12:34:120-05:00</Date>
 <Audiences>urn:all_example_partners urn:all_local_servers</Audiences>
 <ValidityInterval>
 <NotBefore>2000-10—16T19:34:120-05:00</NotBefore>
 <NotAfter>2000-10—16T20:34:120-05:00</NotAfter>
 </ValidityInterval>
 <DependsOn>urn:authEngine32:xsde12</DependsOn>
 <AzData>
 <SC:PaymentRecord xmlns:SC=”http://ns.finance-vocab.org/finance”>
 <SC:TotalDue>19280.76</SC:TotalDue>
 <SC:Over60Days>1200.00</SC:Over60Days>
 <SC:Over90Days>10000.00</SC:Over90Days>
 </SC:PaymentRecord>
 </AzData>
 <dsig:Signature>. . . </dsig:Signature>
</Entitlement>

In the course of completing some transaction, such an entitlement will be scrutinized by one or
more actors (business applications) and the transaction’s eventual outcome may be contingent on
the validity of the scrutinized entitlements.

The vocabulary (elements and attributes) used to communicate entitlement data within an
<AzData> element lie outside the scope of this specification. An entitlement must cite or
depend on a name assertion. An entitlement is always a composite assertion and should be read
as a conjunction of name assertion and entitlement.

Name Assertion

“Profile” “Session” “Payment
Status”

DependsOn

Entitlements

Relationship between Name Assertions and Entitlements

 14

4.2 Secret Name Assertions vs. Scoped Name Assertions

This section describes two security models for the use of Name Assertions.

In the first model the Name Assertion is a secret value that must be secured with other
mechanisms to prevent vulnerability to theft and misuse through impersonation. In the
second model, the Name Assertion can be a public value without destroying its utility.We
distinguish these models by differentiating between Secret Name Assertions and Scoped
Name Assertions, where each has a distinct but related syntax. The following describes these
in more detail.

4.2.1 Scoped Name Assertions

In this situation, a name assertion is cryptographically bound to a specific payload through a
digital signature. The Holder element is introduced to provide within Name Assertions the
public key of the actor binding the name assertion to a payload using a signature.

A scoped name assertion MUST be combined with a payload and the resulting composite object
MUST be signed by the actor’s private key. The specific packaging and signing details are
described in the bindings section; this currently includes MIME, SOAP, and ebXML.

A relying party MUST validate the signature of the composite object carrying the name assertion
using the public key identified in the Holder element of the NameAssertion. This will ensure that
the name assertion is used within the scope for which it was designated by its original holder.

Two patterns of use are noted for scoped name assertions. In the first, a subject (typically an end-
user) without a private/public key pair presents credentials for authentication to a server together
with a payload for further processing. In this case, only the server can bind the resulting name
assertion to the payload by use of the server private key and must include the server public key in
the generated name assertion Holder element. In this case, there is an assumption that the
server is trusted and can act on behalf of the user.

In the second, a subject presents credentials to a server and receives a name assertion which
includes the subject public key in the returned name assertion Holder element. The subject
may now bind the name assertion to a payload and submit the signed package directly to other
servers. In this case, there is no need to make an assumption that the server will act on behalf of
the user.

4.2.2 Secret Name Assertions

In this situation, Name Assertions are not cryptographically bound to a specific payload and
essentially act as “bearer” tokens. The Holder element is absent from the name assertion. This
type of name assertion MUST be kept secret and used only over encrypted transports such as
SSL. It is also recommended that the lifetime of such name assertions (using the ValidityInterval
element) be kept to the absolute minimum.

A typical use case for secret name assertions is when a user (with no private-public key pair) at a

 15

workstation logs on to a web site. In such a case, a name assertion may be bound to the user,
either as a cookie or as part of a URL line.

The S2ML specification also describes a notion of name assertion reference. Exactly, the same
considerations apply to references: If the reference is not cryptographically bound to a payload it
MUST be kept secret and used only over encrypted transports such as SSL.

4.3 Authentication (Auth) and Authorization (Az) Services

Typically, authentication services and authorization services are implemented and managed
separately and this is the model developed in S2ML. From a practical point of view, there may
be requirements wherein authentication and authorization need to be combined in a single step.
This may be seen as a composition of the S2ML authentication and authorization steps.

In S2ML, authentication is defined as a certification service which validates subject credentials
and, if successful, returns a name assertion and zero or more entitlements appropriate to the
subject.

For the case when the authentication service is invoked with public key credentials, it MUST be
used to complement existing authentication protocols based on SSL or document signature
verification (XML-SIG, S/MIME). The intent here is to separate out a policy-driven component
of authentication into a separate service which can be shared, for example, by all servers in a
web farm. It should not be viewed as a replacement for existing authentication protocols.

The name assertion is a description of the subject based on valid credentials at a certain point in
time. Any entitlements returned from the authentication service provide additional information
about the subject, such as profile information or a session description.

AuthResponse

Authentication

Credentials Name Assertion

Entitlement*

 Policy

AuthRequest

 16

Consider the following authentication request: An actor has created an AuthRequest message
containing login credentials obtained from a subject. The request includes a unique identifier.
The credentials may have been obtained by the actor in a variety of different ways: direct
interaction with a user, extracted from a document, obtained from the transport layer, etc.

<AuthRequest>
 <ID>urn:JavaServletPlugInRequest:988</ID>
 <Date>2000-11—16T11:34:120-05:00</Date>
 <Credentials>
 <Login>
 <Name>SomeUser</Name>
 <Password>aSecret</Password>
 </Login>
 </Credentials>
</AuthRequest>

S2ML 1.0 describes schemas for four types of credentials: no credentials, login, X509
certificates, and public keys. The Credentials element also permits the use of foreign
namespaces. This may be used as the means for extension to other authentication schemes.

The authentication engine responds with an AuthResponse message; if authentication
succeeds, the message includes a name assertion describing the authentication type and subject
attributes.

<AuthResponse>
 <ID>urn:MainAuthServer:0981</ID>
 <Date>2000-11—16T12:34:120-05:00</Date>
 <InResponseTo>urn:JavaServletPlugInRequest:988</InResponseTo>
 <Result>Success</Result>
 <NameAssertion>
 <ID>urn:authEngine32:xsde12</ID>
 <Issuer>http://www.example.com/authEngine32</Issuer>
 <Date>2000-11—16T12:36:120-05:00</Date>
 <Audiences>urn:all_example_servers</Audiences>
 <ValidityInterval>
 <NotBefore>2000-11—16T19:34:120-05:00</NotBefore>
 <NotAfter>2000-11—16T20:34:120-05:00</NotAfter>
 </ValidityInterval>
 <AuthData>
 <AuthType>Login</AuthType>

 <UserHandle>
 <Directory>XJN-Q3</Directory>
 <X509.DN>uid=bjensen,ou=people,dc=airius,dc=com</X509.DN>
 </UserHandle>
 </AuthData>
 <dsig:Signature>. . . </dsig:Signature>
 </NameAssertion>
</AuthResponse>

 17

S2ML 1.0 provides schemas for four types of subject attributes which may be contained within
an AuthData element:

• UserHandle element, consisting of a string user-store name and an X.509
distinguished name string

• IdentityToken element, consisting of a string

• X509 Certificate

• Public keys

The AuthData element also permits the use of foreign namespaces. This may be used as the
means for extension to other forms of subject description.

Authorization is a central concept in S2ML. Providing a description for authorization requires
distinguishing between the basic information flow in authorization versus the existing variety of
specific authorization models, including those based on ACLs, Capabilities, Java Authorization
model, Rules-based models, etc. For all of these cases, however, it is possible to develop a model
based on information flow:

• An authorization question is posed, in the context of an authenticated subject. This can
take many forms, as in:

Can user X access resource R?

AzResponse

 Policy

AzRequest

Authorization (Az)

Name Assertion

Entitlement*

Question

Answer

Entitlement*

AzResponse

 18

OR
Can user X withdraw $10,000 from account A?

Sometimes, there may be additional information available about user X, such as the
user’s profile. In such a case, the authorization question is scoped by the user identity
AND the entitlements specifying the user profile.

• The authorization engine responds with an Answer:

Yes, user X may access resource R.
OR
Yes, user X may withdraw $10,000 from account A.

Such an answer may just have local scope, in that it is used immediately at the point of
enforcement and then discarded. More broadly, however, there may also be components
to the answer which are meaningful to other applications, such as the entitlements:

The locator number for user X for accessing R is 17865X.
User X is a platinum-class account holder with over $100,000 in funds.

Our approach to the diversity of authorization models is to use an AzModel attribute for the
Question and Answer element which binds the contents of these elements to a specific
authorization model. The AzModel attribute takes a URI value.

S2ML describes only one authorization model, SimpleAz, and gives it the URI
http://az.s2ml.org/SimpleAz.

This model describes a class of authorization questions of the form “VERB Resource” (for
example, GET http://www.example.com/index.html) and answers of the form
success or failure.

Authorization services MAY implement one or more authorization models; each will have its
own vocabulary and associated AzModel URI. An UnknownAzModel error MUST be
returned by an authorization service if a question drawn from an unknown AzModel is
presented in an AzRequest element. An authorization service MUST implement the
SimpleAz model in addition to any other implemented models.

An AzRequest MUST include a name assertion and MAY include one or more entitlements.
An AzRequest MUST include a Question element.

<AzRequest>
 <ID>urn:Interceptor1AzRequest:988</ID>
 <Date>2000-10—16T12:34:120-05:00</Date>

 19

 <NameAssertion>. . . </NameAssertion>
 <Question AzModel=”http://az.s2ml.org/SimpleAz”>
 <ResourceContext>

 <Method>urn:GET</Method>
 <Resource>http://www.myserver.com/index.html</Resource>
 </ResourceContext>
 </Question>
</AzRequest>

An AzResponse MUST contain an answer element and MAY contain one or more
entitlements. The Answer element contains a response to the authorization question posed in
AzRequest. One or more entitlements may be returned from an authorization request; for
example, when a user is authorized to access a commerce application, the user’s locator number
and payment status may be returned within an entitlement.

<AzResponse>
 <ID>urn:GeneralPurposeAzEngine:908a</ID>
 <InResponseTo>urn:Interceptor1AzRequest:988</InResponseTo>
 <Date>2000-10—16T12:34:120-05:00</Date>
 <Entitlement>. . . </Entitlement>
 <Answer AzModel=”http://az.s2ml.org/SimpleAz”>
 <Result>Success</Result>
 </Answer>
</AzResponse>

4.4 Assertion Validity

Scrutinizing actors will need to determine the validity of both name assertions and entitlements.
Validity is defined in the context of business relationship with the issuer and security policies in
place at the actor scrutinizing the assertion. Minimally, the following conditions MUST be
evaluated by an actor scrutinizing as assertion:

1. The issuer is trusted by the actor,

2. The issuer’s digital signature is valid at the time of scrutiny and binds to required elements
in the assertion,

3. The time period for which the assertion is being scrutinized lies within the time period
specified by the ValidityInterval element, and

4. The business relationship between the actor and issuer references at least one of the
Audience elements. The creation and management of business relationships is outside
the scope of the specification.

A compound assertion (entitlement) is valid if and only if it meets the above rules AND the cited
name assertion is valid.

 20

4.4.1 Audience Restriction

Assertions MAY be addressed to a specific audience. Although an actor that is outside the
audience specified is capable of drawing conclusions from an assertion, the issuer explicitly
makes no representation as to accuracy or trustworthiness to such a party. An audience is
identified by a URI that identifies a document that describes the terms and conditions of
audience membership. Examples of terms and conditions include:

• Require users of an assertion to agree to specific terms (rule book, liability caps, relying
party agreement)

• Prevent clients inadvertently relying on data that does not provide a sufficient warranty
for a particular purpose

• Enable sale of per-transaction insurance services

Each actor is configured with a set of URIs that identify the audiences that the actor is a member
of, for example:

http://cp.verisign.test/cps-2000
Client accepts the VeriSign Certification Practices Statement.

http://rule.bizexchange.test/bizexchange_rulebook
Client accepts the provisions of the bizexchange rulebook.

An assertion MAY specify a set of audiences to which the assertion is addressed. If the set of
audiences is the empty set there is no restriction and all audiences are addressed.

5 Message Set

This section details the meaning and usage of the XML constructs that make up S2ML messages.
The full schema is provided in Appendix B.

5.1 URI Naming Infrastructure

The S2ML Architecture makes extensive use of URIs to identify assertions, actors, and
audiences. The use of a URI as an object identifier is a superset of the use of a URI as an object
locator. S2ML introduces objects such as audiences and authorization roles that can be identified
for purposes of comparison even though there is no means of locating or even resolving them.
Appendix A describes comparison rules for determining URI equality for S2ML purposes.

5.2 Common Structures

The following elements are used in various locations in S2ML messages.

 21

5.2.1 ID Element

The ID element specifies a label by means of a URI.
 <xsd:element name="ID" type="xsd:uriReference"/>

5.2.2 Issuer Element

The Issuer element specifies the issuer of the assertion by means of a URI.
 <xsd:element name="Issuer" type="xsd:uriReference"/>

5.2.3 ValidityInterval Complex Type

The ValidityInterval structure specifies time limits on the validity of the assertion.
 <xsd:complexType name="ValidityInterval">
 <xsd:sequence>
 <xsd:element name="NotBefore" type="xsd:timeInstant" minOccurs="0"/>
 <xsd:element name="NotAfter" type="xsd:timeInstant" minOccurs="0"/>
 </xsd:sequence>
 </xsd:complexType>

Member Type Description

NotBefore timeInstant Time instant at which the validity interval
begins

NotAfter timeInstant Time instant after which the validity
interval has ended

The NotBefore and NotAfter elements are optional. If the value is either omitted or equal
to the start of the epoch it is unspecified. If the NotBefore element is unspecified the assertion
is valid from the start of the epoch until the NotAfter element. If the NotAfter element is
unspecified the assertion is valid from the NotBefore element with no expiry. If neither
element is specified the assertion is valid at any time.

All time instances SHOULD be interpreted in Universal Coordinated Time unless the parties
concerned have agreed in advance to use a different time standard.

For purposes of comparison the time interval NotBefore to NotAfter begins at the earliest
time instant compatible with the specification of NotBefore and ends after the earliest time
instant compatible with the specification of NotAfter.

For example, if the time interval specified is dayT12:03:02 to dayT12:05:12, the times
12:03:02.00, 12:05:11.9999, and 12:05:12.00 are within the time interval. The time
12:05:12.0001 is outside the time interval.

 22

5.2.4 Date Element

The Date element MUST fully specify the date.
 <xsd:element name="Date" type="xsd:timeInstant"/>

5.2.5 Audiences Element

The Audiences element specifies a set of audiences to which the assertion is addressed.
 <xsd:simpleType name="listOfUriRefs">
 <xsd:list itemType="xsd:uriReference"/>
 </xsd:simpleType>

 <xsd:element name="Audiences" type="listOfUriRefs"/>

5.2.6 DependsOn Element

The DependsOn element allows an assertion to refer to or cite another assertion, thereby
forming a compound assertion. A compound assertion is valid if and only if each component
assertion is valid.

 <xsd:element name="DependsOn" type="xsd:uriReference"/>

5.2.7 InResponseTo Element

The InResponseTo element is used as part of the response structure to track the URI of the
request object.

 <xsd:element name="InResponseTo" type=“xsd:uriReference"/>

5.2.8 Holder Element

The Holder element describes a public key value or X509Data.
<xsd:element name="Holder" minoccurs="0"/>
 <xsd:complexType>
 <xsd:element ref="dsig:X509Data"/>
 <xsd:element ref="dsig:KeyValue"/>
 </xsd:complexType>

5.2.9 ResultCode Simple Type

The ResultCode enumerated type is used to return result codes from each interface. It has the
following possible values:

Success
The operation succeeded.

Failure
The operation failed for unspecified reasons.

 23

UnknownAzModel
The authorization engine is does not support the AzModel used in the request.

NotEnoughInfo
The service lacks information required to respond definitively to the request.

 <xsd:simpleType name="ResultCode" base="xsd:string">
 <xsd:enumeration value="Success"/>
 <xsd:enumeration value="Failure"/>
 <xsd:enumeration value=”UnknownAzModel”/>
 <xsd:enumeration value=”NotEnoughInfo”/>
</xsd:simpleType>

5.3 Authentication Messages

This section describes the structures for authentication-related messages.

5.3.1 AuthRequest Element

The AuthRequest element contains an authentication request message.
 <xsd:element name="AuthRequest">
 <xsd:complexType>
 <xsd:all>
 <xsd:element ref="ID"/>
 <xsd:element ref="Time"/>
 <xsd:element ref=”Holder” minoccurs=”0”/>
 <xsd:element ref="Credentials"/>
 </xsd:all>
 </xsd:complexType>
 </xsd:element>

5.3.2 AuthResponse Element

The AuthResponse element contains an authentication response message.
 <xsd:element name="AuthResponse">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref="ID"/>
 <xsd:element ref="Time"/>
 <xsd:element ref="InResponseTo"/>
 <xsd:element name="Result" type="ResultCode"/>
 <xsd:element ref="NameAssertion" minOccurs="0"/>
 <xsd:element ref="Entitlement" minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

The InResponseTo element contains the unique identifier of the AuthRequest element for
which this <AuthResponse> element has been created.

5.3.3 Credentials Element

The Credentials element contains one of the following:

 24

• A Login element for providing user name-password information

• An X509Data element (from [XML-SIG])

• A KeyValue element (from [XML-SIG])

• A NoCredentials element to signify that no credentials are being provided

• An element that is in a namespace other than S2ML
 <xsd:element name="Credentials">
 <xsd:complexType>
 <xsd:choice>
 <xsd:element ref ="Login"/>
 <xsd:element ref="dsig:X509Data"/>
 <xsd:element ref="dsig:KeyValue"/>
 <xsd:any namespace="##other"/>
 <xsd:element name="NoCredentials"/>
 </xsd:choice>
 </xsd:complexType>
 </xsd:element>

5.3.3.1 Login Element

The Login element must contain a name and password pair; it may also contain an optional
Domain element.

 <xsd:element name="Login">
 <xsd:complexType>
 <xsd:all>
 <xsd:element name="Name" type="xsd:string"/>
 <xsd:element name="Password" type="xsd:string"/>
 <xsd:element name="Domain" type="xsd:string" minOccurs="0"/>
 </xsd:all>
 </xsd:complexType>
 </xsd:element>

5.3.4 NameAssertion Element

The NameAssertion element contains all the information related to a name assertion.
 <xsd:element name="NameAssertion">
 <xsd:complexType>
 <xsd:all>
 <xsd:element ref=“Holder” minoccurs=”0”/>
 <xsd:element ref="ID"/>
 <xsd:element ref="Issuer"/>
 <xsd:element ref="Date"/>
 <xsd:element ref="Audiences" minOccurs="0"/>
 <xsd:element ref="ValidityInterval" minOccurs="0"/>
 <xsd:element ref="AuthData"/>
 <xsd:element ref="dsig:Signature"/>
 </xsd:all>
 </xsd:complexType>
 </xsd:element>

 25

The subelements for NameAssertion have the following meaning and usage:

Identifier Type Description

Holder Optional; describes public key used to validate
a scoped name assertion binding to a payload.

ID URI MUST be present and be unique over all Name
Assertions.

Issuer URI MUST be present.

Date timeInstant MUST be present

AuthData Information generated by authentication step;
MUST be present.

ValidityInterval Optional.

Audiences Optional.

dsig:Signature MUST be present; enveloped digital signature
binding the issuer’s identity to required assertion
attributes.

5.3.5 AuthData Element

The AuthData element encodes the result of a successful authentication step. The AuthType
element describes the type of credentials that presented for authentication. Credentials are
mapped into one of four standard forms, UserHandle, IdentityToken,
dsig:X509Data, or dsig:KeyValue, or are provided using XML structures from a
namespace other than S2ML

 <xsd:element name="AuthData">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref="AuthType"/>
 <xsd:choice>
 <xsd:element ref="UserHandle"/>
 <xsd:element ref="IdentityToken">
 <xsd:element ref="dsig:X509Data"/>
 <xsd:element ref="dsig:KeyValue"/>
 <xsd:any namespace="##other"/>
 </xsd:choice>
 </xsd:sequence>
 </xsd:complexType>

 26

 </xsd:element>

5.3.5.1 AuthType Element

The AuthType element identifies the type of authentication data that is to follow in this
AuthData element.

 <xsd:element name="AuthType">
 <xsd:complexType>
 <xsd:choice>
 <xsd:simpletype base="string">
 <xsd:enumeration value="Login"/>
 <xsd:enumeration value="Nocreds"/>
 <xsd:enumeration value="X509Data"/>
 <xsd:enumeration value="KeyValue"/>
 </xsd:simpleType>
 <xsd:any namespace="##other"/>
 </xsd:choice>
 </xsd:complexType>
 </xsd:element>

5.3.5.2 UserHandle Element

The UserHandle element represents the case wherein credentials are mapped to an entry
within a directory or user store. The contents of element X509.DN MUST take the form of an
X.509 Distinguished Name [X.509], for example:

uid=bjensen,ou=people,dc=airius,dc=com

 <xsd:element name="UserHandle">
 <xsd:complexType>
 <xsd:all>
 <xsd:element name="Directory" type="xsd:string"/>
 <xsd:element name="X509.DN" type="xsd:string"/>
 </xsd:all>
 </xsd:complexType>
 </xsd:element>

5.3.5.3 IdentityToken Element

 <xsd:element name=”IdentityToken” type=”xsd:string”/>

5.4 Authorization Messages

This section describes the structures for authorization-related messages.

5.4.1 AzRequest Element

The AzRequest element contains an authorization request message.
 <xsd:element name="AzRequest">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref ="ID"/>
 <xsd:element ref ="Time"/>
 <xsd:element ref ="NameAssertion"/>

 27

 <xsd:element ref ="Question"/>
 <xsd:element ref ="Entitlement" minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

5.4.1.1 Question Element

 <xsd:element name="Question">
 <xsd:complexType>
 <xsd:choice>
 <xsd:element ref="ResourceContext"/>
 <xsd:any namespace="##other"/>
 </xsd:choice>
 <xsd:attribute name="AzModel" type="xsd:uriReference"/>
 </xsd:complexType>
 </xsd:element>

5.4.1.2 ResourceContext Element

The ResourceContext element provides information about the resource context.
 <xsd:element name="ResourceContext">
 <xsd:complexType>
 <xsd:all>
 <xsd:element name="Resource" type="xsd:uriReference"/>
 <xsd:element name="Method" type="xsd:uriReference"/>
 </xsd:all>
 </xsd:complexType>
 </xsd:element>

The sub-elements for ResourceContext have the following meaning and usage:

Identifier Type Description

Resource URI The resource name. MUST be present.

Method URI Verb. MUST be present.

5.4.2 AzResponse Element

The AzResponse element contains an authorization response message.
 <xsd:element name="AzResponse">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref="ID"/>
 <xsd:element ref="Time"/>
 <xsd:element ref="InResponseTo" />
 <xsd:element name ref="Answer"/>
 <xsd:element name ref="entitlement" minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

 28

5.4.2.1 Answer Element

 <xsd:element name="Answer">
 <xsd:complexType>
 <xsd:all>
 <xsd:element name="Result" type="ResultCode"/>
 <xsd:any namespace="##other"/>
 </xsd:all>
 <xsd:attribute name="AzModel" type="xsd:uriReference"/>
 </xsd:complexType>
 </xsd:element>

5.4.3 Entitlement Element

The Entitlement element contains all the information related to an entitlement assertion.
 <xsd:element name="Entitlement">
 <xsd:complexType>
 <xsd:all>
 <xsd:element name ref="ID"/>
 <xsd:element name ref="Issuer"/>
 <xsd:element name ref="Date"/>
 <xsd:element name ref="Audiences" minOccurs="0"/>
 <xsd:element name ref="DependsOn"/>
 <xsd:element name ref="AzData"/>
 <xsd:element name="ValidityInterval" type="ValidityInterval" minOccurs="0"/>
 <xsd:element name ref="dsig:Signature"/>
 </xsd:all>
 </xsd:complexType>
 </xsd:element>

The sub-elements for Entitlement have the following meaning and usage:

Identifier Type Description

ID URI MUST be present and be unique over all
entitlements.

Date timeInstant MUST be present.

Issuer uriRef MUST be present.

DependsOn uriRef Link to Name Assertion; MUST be present.

AzData MUST be present.

ValidityInterval ValidityInterval Optional.

Audiences Optional.

dsig:Signature MUST be present; enveloped digital signature
binding the issuer’s identity to assertion
attributes.

 29

5.4.3.1 AzData Element

The AzData element provides data about the authorization.
 <xsd:element name="AzData">
 <xsd:complexType>
 <xsd:all>
 <xsd:any namespace="##other"/>
 </xsd:all>
 </xsd:complexType>
 </xsd:element>

6 Bindings to Messaging and Transport Protocols

It is a goal of S2ML to be neutral with respect to messaging and transport protocols, such that
bindings could be created to any one protocol. Bindings to several common protocols are
provided in this section.

6.1 Web Browser Binding

In many user-driven scenarios there is a need to communicate security information through
cookies or URL query strings. In such cases, assertions originating from site A may need to be
communicated to site B via the user’s browser.

As S2ML assertions may be of variable size and as both URLs and cookies are strongly size
constrained, this specification describes a system in which unambiguous references to S2ML
assertions are conveyed through short fixed-size strings. Using such references, sites may
retrieve S2ML assertions from other sites through means that lie outside the scope of this
specification.

The separate notions of References and Secret References are defined here. Secret References
must be used when the Assertion referred to is a Secret Assertion. A Secret Reference may be
used as a “bearer” token in place of the Secret Assertion itself.

User Browser

Site A

Site B

1

2

3

 30

Note that a Reference itself is not a signed object. It is assumed that the authenticity and
integrity of a Reference may be verified in the act of retrieving the associated Assertion.

A Reference refers to a single assertion, and is constructed from two components:

Sender Identifier uniquely identifies the Sender URI

Assertion
Identifier

uniquely identifies the contents of This element of an Assertion.

Identifiers should be guaranteed to be unique within the scope of use. For the case of an
Assertion Identifier in a Secret Reference, it is essential that the size be appropriately large to
prevent forgery of valid Assertion Identifiers. We recommend that any Assertion Identifiers be
constructed from an appropriately sized cryptographic hash function, to prevent possible
collisions between an artificially constructed Assertion Identifier and the set of valid Secret
Assertions.

The S2MLreference conforms to the standard HTTP header format as in [RFC2068], with the
name field set to "S2MLreference" and the value field containing the Reference.

<S2Mlreference> := “S2Mlreference:” <Reference>
<Reference> := “v1” <SenderIdentifier> “:” <AssertionIdentifier>
<SenderIdentifier> := B64 representation of SHA1 hash of Sender URI
<AssertionIdentifier> := B64 representation of SHA1 hash of Assertion <ID> element

The construction of the SenderIdentifier and AssertionIdentifier uses a B64 representation, as
specified in [MIME], of SHA1 hash results of a Sender URI and the <ID> element of the
associated Assertion, respectively.

The remainder of this section gives suggestions for implementation and use of these References.

An originating site may store and manage a table of assertions for which references have been
exported outside the site. The table would be indexed by the Assertion Identifier element of each
Reference, which is constructed from a hash function of the referenced Assertion. The receiving
site would maintain a table of Sender Identifiers and sending site descriptions. The receiving site
would decode and verify the Assertion Identifier and Sender Identifier, determine the sending
site from the Sender Identifier, and contact the sending site to retrieve the relevant Assertion
associated with the Assertion Identifier.

6.2 HTTP Binding

For this case, we are interested in conveying assertions from an originating site to a receiving
site, where the originating site is sending an HTTP command to the receiving site. Two methods
are defined:

(1) Use of HTTP headers to convey assertion references in the format presented in 6.1,

 31

(2) Incorporation of S2ML assertions within the body of an HTTP POST command. Details are
TBD.

6.3 MIME Binding

MIME and particularly Multipart-MIME are very commonly used in messaging systems. In this
section, we describe the use of MIME as a packaging technique for combining one or more
S2ML documents into a single MIME entity, a security package. We also describe the use of
S/MIME to encrypt security packages and to bind a security package to a business payload.

This discussion is independent of the specific MIME messaging protocol used. Our viewpoint is
that the S2ML MIME binding should provide a reasonable “default” binding for messaging
based on MIME. Individual messaging frameworks may provide alternative ways to include
S2ML fragments and assertions with messages.

S2ML documents such as Credentials, Name Assertions, and Entitlements MUST be packaged
using MIME multipart/mixed into a single MIME security package. Each S2ML document is
packaged as a single MIME object with content-type text/xml. The security package MAY be
optionally encrypted with S/MIME enveloping using application/pkcs7-mime content-type. A
credential document that includes login password information may need to be protected over
non-secure transports. Entitlement information requiring confidentiality may also need to be
protected if it is being processed over multiple sites over varying transport protocols.

The security package MUST be combined with the message payload using content-type
multipart/related with the business payload comprising the root of the message.

Finally, the message payload and the S2ML security package MUST be bound together. This is
achieved either by using SSL with a client-side certificate or by signing. If signing is used, the
document will have content-type multipart/signed. The purpose of the signature is to ensure that
the security package combined with the original message payload such that no intermediary
party can replace the original S2ML security package (e.g., during message transmissions) with
alternatives. This signature block is optional and some messaging frameworks may choose to
rely on transport-level security (e.g., SSL). The act of binding the security package to a message
payload also serves to scope any name assertions contained within the security package (Section
4.2).

Note: if an S2ML payload will be transferred over a transfer medium that is constrained to 7-bit
text (e.g., parts of the Internet SMTP infrastructure), then the charset attribute of the Content-
Type header should be set to "us-ascii", or another 7-bit character set. However, specifying a
value for the Content-Transfer-Encoding header can relax this requirement. Using the "quoted-
printable" value of the Content-Transfer-Encoding header, for instance, allows an 8-bit character
set (such as iso-8859-1 or UTF-8) to be sent over a 7-bit network. Binary data can have a
Content-Transfer-Encoding type of "base64" to solve the 7-bit issue. Note that 8-bit clean
transports do not encode 8-bit character sets, but still may require base64 encoding for binary
data. So-called “binary clean” transport protocols (such as HTTP) do not require encoding.

 32

6.3.1 Example of S2ML Security Package

MIME-Version: 1.0
 Content-Type:multipart/mixed;
 boundary="boundary1"

 --boundary1

 Content-Type:text/xml;
 charset=us-ascii

 <NameAssertion>...</NameAssertion>

 --boundary1

 Content-Type:text/xml;
 charset=iso-8859-1
 Content-Transfer-Encoding:quoted-printable

 <Entitlement>...</Entitlement>

 --boundary1--

6.3.2 Example of Encrypted S2ML Security Package

Encrypted multipart MIME documents without signing are packaged as type application/pkcs7-
mime. The example below assumes that a multipart MIME document (such as listed above) has
already been created.

 MIME Version: 1.0
 Content-Type:application/pkcs7-mime;
 smime-type=envelope-data;
 name=smime.p7m
 Content-Transfer-Encoding:base64
 Content-Disposition:attachment;
 filename=smime7.p7m

[Encrypted S2ML security package, whose MIME type is multipart/mixed when decrypted]

6.3.3 Example of S2ML Security Package Combined with Business Payload

MIME-Version: 1.0
 Content-Type: Multipart/Related;

boundary=”payload+security”
--“payload+security”
Business Payload
--“payload+security”
Security Package
--“payload+security”

 33

6.3.4 Example of Clear Signed MIME Package
MIME-Version: 1.0

Content-Type:multipart/signed;
protocol="application/pkcs7-signature";
micalg=sha1;
boundary="boundary2"

--boundary2

Content-Type: Multipart/Related;
boundary=”payload+security”
--“payload+security”
Business Payload
--“payload+security”
Security Package
--“payload+security”

--boundary2

Content-Type:application/pkcs7-signature;
name=smime2.p7s
Content-Transfer-Encoding:base64
Content-Disposition:attachment;
filename=smime2.p7s

 [SIGNATURE GOES HERE]

--boundary2--

6.4
ebXML Binding

TBD

6.5 SOAP Binding

Binding Notes:
- It is up to the application to decide whether the 'mustUnderstand' attribute is applied to the
headers.
- It is up to the application to decide whether the 'Actor' attribute is applied to the headers.
- All entries in the Header MUST be namespace qualified (requirement of SOAP 1.1)
- Until XML encryption standard becomes available, no standard technique is available to
precisely encrypt the S2ML headers. However, the entire SOAP message can be placed in MIME
packaging and S/MIME technology utilized for encryption.

* Passing around IdentityAssertion and Entitlement:

<soap-env:Envelope
 xmlns:soap-env="http://schemas.xmlsoap.org/soap/envelope/"
 soap-env:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

 <soap-env:Header>

 34

 <s2ml:NameAssertion xmlns:s2ml="http://ns.s2ml.org/S2ML" />
 <s2ml:Entitlement xmlns:s2ml="http://ns.s2ml.org/S2ML" />
 <s2ml:Entitlement xmlns:s2ml="http://ns.s2ml.org/S2ML" />
 </soap-env:Header>

 <soap-env:Body>
 <message_payload/>
 </soap-env:Body>

</soap-env:Envelope>

7 Conformance

Four levels of conformance are defined:

1. A security system is a consumer of S2ML if it provides authorization decisions based on
name assertions and entitlements generated elsewhere.

2. A security service which is an S2ML consumer may also provide an S2ML-conformant
authorization service. This type of service cannot create any entitlements, but can read name
assertions and entitlements (Read-Only S2ML Az) and determine their validity.

3. A security system is a consumer-producer of S2ML if it can both produce and consume
name assertions and entitlements.

4. A security system which is an S2ML consumer-producer may also provide an S2ML-
conformant authentication or authorization service (S2ML Auth, S2ML Read-Write Az).

 35

Appendix A URI Equality: Lexical Comparison

The equality function used on URIs is strictly lexical and is applied without reference to the
semantics of the underlying URI name space. The rules for lexical comparison of URIs described
here differ in some respects to the rules for semantic equivalence of URIs specified in RFC 2396
[RFC2396].

Use of lexical comparison functions ensures that the comparison functions are defined even
though the application may not understand the resolution semantics of the underlying name
space. The complexity of client implementations is reduced through application of the following
rules:

• The forward slash character ‘/’ is always interpreted as a separator for different levels in
the name space hierarchy. No other character is interpreted as a separator.

• Comparison is always performed within the ASCII character set encoding of the URI.

• Characters describes as escaped, reserved and unreserved in RFC 2396 are always
regarded as being so.

• Only absolute URIs are utilized within S2ML.

RFC 2396 defines rules for semantic equivalence of URIs. To simplify client implementation the
following forms of URI are differentiated:

• A URI that specifies the default port explicitly is NOT equivalent to a URI that specified
the default port implicitly (i.e. http://site.test/ is distinct from
http://site.test:80/).

Differentiating between explicitly and implicitly defined port numbers ensures that lexical
comparison is consistent even though a client may not understand the resolution semantics of a
URL scheme.

The following forms of URI are never differentiated:

• A URI that does not end in a forward slash character ‘/’ is directly equivalent to the
same URI with a slash character appended at the end.

• A URI in which a character is escaped is directly equivalent to one in which the character
is not escaped. Where more than one means of character escape is defined for the same
character no distinction is made on the basis of the escape mechanism chosen.

Applying these rules, the following URIs are not differentiated.

 36

http://site.test/my+resource
http://site.test/my%20resource
http://site.test/my+resource/
http://site.test/my%20resource/

[ISSUE: These definitions are not complete; for example, what about hierarchical URIs?]

 37

Appendix B: S2ML Schema

This appendix describes the XML schema for S2ML. The namespace URI identifying the element
set described in this document is http://ns.s2ml.org/s2ml.

<?xml version = "1.0" encoding = "UTF-8"?>
<xsd:schema
 targetNamespace=”http://ns.s2ml.org/s2ml”
 xmlns:dsig = "http://www.w3.org/2000/9/xmldsig#"
 xmlns:xsd = "http://www.w3.org/2000/10/XMLSchema">
 <xsd:import namespace = "http://www.w3.org/2000/9/xmldsig#"
 schemaLocation = "http://www.w3.org/2000/9/xmldsig%23"/>
 <xsd:annotation>
 <xsd:documentation>
 ===
 This document is the XML schema for the S2ML specification V0.8a
 Latest Update: January 06, 2001
 ===
 Conforms to w3c http://www.w3.org/2000/10/XMLSchema
 ===
 URI identifying the element set described in this document:
 http://ns.s2ml.org/s2ml
 ===
 </xsd:documentation>
 </xsd:annotation>
 <xsd:element name = "ID" type = "xsd:uriReference"/>
 <xsd:element name = "Issuer" type = "xsd:uriReference"/>
 <xsd:complexType name = "ValidityInterval">
 <xsd:sequence>
 <xsd:element name = "NotBefore" type = "xsd:timeInstant" minOccurs = "0"/>
 <xsd:element name = "NotAfter" type = "xsd:timeInstant" minOccurs = "0"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:element name = "Date" type = "xsd:timeInstant"/>
 <xsd:simpleType name = "listOfUriRefs">
 <xsd:list itemType = "xsd:uriReference"/>
 </xsd:simpleType>
 <xsd:simpleType name = "ResultCode">
 <xsd:restriction base = "xsd:string"/>
 </xsd:simpleType>
 <xsd:element name = "Audiences" type = "listOfUriRefs"/>
 <xsd:element name = "DependsOn" type = "xsd:uriReference"/>
 <xsd:element name = "InResponseTo" type = "xsd:uriReference"/>
 <xsd:element name = "NameAssertion">
 <xsd:complexType>
 <xsd:all>
 <xsd:element name = "Holder"/>
 <xsd:element ref = "ID"/>
 <xsd:element ref = "Issuer"/>
 <xsd:element ref = "Date"/>
 <xsd:element ref = "Audiences" minOccurs = "0"/>

 38

 <xsd:element ref = "ValidityInterval" minOccurs = "0"/>
 <xsd:element ref = "AuthData"/>
 <xsd:element ref = "dsig:Signature"/>
 </xsd:all>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name = "AuthRequest">
 <xsd:complexType>
 <xsd:all>
 <xsd:element ref = "ID"/>
 <xsd:element ref = "Time"/>
 <xsd:element ref = "Credentials"/>
 </xsd:all>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name = "AuthResponse">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref = "ID"/>
 <xsd:element ref = "Time"/>
 <xsd:element ref = "InResponseTo"/>
 <xsd:element name = "Result" type = "ResultCode"/>
 <xsd:element ref = "NameAssertion" minOccurs = "0"/>
 <xsd:element ref = "Entitlement" minOccurs = "0" maxOccurs = "unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name = "Login">
 <xsd:complexType>
 <xsd:all>
 <xsd:element name = "Name" type = "xsd:string"/>
 <xsd:element name = "Password" type = "xsd:string"/>
 <xsd:element name = "Domain" type = "xsd:string" minOccurs = "0"/>
 </xsd:all>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name = "Credentials">
 <xsd:complexType>
 <xsd:all>
 <xsd:element name = "Holder"/>
 <xsd:choice>
 <xsd:element ref = "Login"/>
 <xsd:element ref = "dsig:X509Data"/>
 <xsd:element ref = "dsig:KeyValue"/>
 <xsd:any namespace = "##other" processContents = "strict"/>
 <xsd:element name = "NoCredentials"/>
 </xsd:choice>
 </xsd:all>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name = "AuthData">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref = "AuthType"/>
 <xsd:choice>
 <xsd:element ref = "UserHandle"/>
 <xsd:element ref = "IdentityToken"/>

 39

 <xsd:element ref = "dsig:X509Data"/>
 <xsd:element ref = "dsig:KeyValue"/>
 <xsd:any namespace = "##other" processContents = "strict"/>
 </xsd:choice>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name = "AuthType">
 <xsd:complexType>
 <xsd:choice>
 <xsd:any namespace = "##other" processContents = "strict"/>
 </xsd:choice>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name = "UserHandle">
 <xsd:complexType>
 <xsd:all>
 <xsd:element name = "Directory" type = "xsd:string"/>
 <xsd:element name = "X509.DN" type = "xsd:string"/>
 </xsd:all>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name = "IdentityToken" type = "xsd:string"/>
 <xsd:element name = "Entitlement">
 <xsd:complexType>
 <xsd:all>
 <xsd:element ref = "ID"/>
 <xsd:element ref = "Issuer"/>
 <xsd:element ref = "Date"/>
 <xsd:element ref = "Audiences" minOccurs = "0"/>
 <xsd:element ref = "DependsOn"/>
 <xsd:element ref = "AzData"/>
 <xsd:element name = "ValidityInterval" type = "ValidityInterval" minOccurs =

"0"/>
 <xsd:element ref = "dsig:Signature"/>
 </xsd:all>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name = "AzRequest">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref = "ID"/>
 <xsd:element ref = "Time"/>
 <xsd:element ref = "NameAssertion"/>
 <xsd:element ref = "Question"/>
 <xsd:element ref = "Entitlement" minOccurs = "0" maxOccurs = "unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name = "AzResponse">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref = "ID"/>
 <xsd:element ref = "Time"/>
 <xsd:element ref = "InResponseTo"/>
 <xsd:element ref = "Answer"/>
 <xsd:element ref = "entitlement" minOccurs = "0" maxOccurs = "unbounded"/>

 40

 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name = "ResourceContext">
 <xsd:complexType>
 <xsd:all>
 <xsd:element name = "Resource" type = "xsd:uriReference"/>
 <xsd:element name = "Method" type = "xsd:uriReference"/>
 </xsd:all>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name = "AzData">
 <xsd:complexType>
 <xsd:all>
 <xsd:any namespace = "##other" processContents = "strict"/>
 </xsd:all>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name = "Question">
 <xsd:complexType>
 <xsd:choice>
 <xsd:element ref = "ResourceContext"/>
 <xsd:any namespace = "##other" processContents = "strict"/>
 </xsd:choice>
 <xsd:attribute name = "AzModel" type = "xsd:uriReference"/>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name = "Answer">
 <xsd:complexType>
 <xsd:all>
 <xsd:element name = "Result" type = "ResultCode"/>
 <xsd:any namespace = "##other" processContents = "strict"/>
 </xsd:all>
 <xsd:attribute name = "AzModel" type = "xsd:uriReference"/>
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

 41

Appendix C References

[RFC2068] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, T. Berners-Lee, Hypertext Transfer
Protocol -- HTTP/1.1, RFC2068, January 1997,
http://www.ietf.org/rfc/rfc2068.txt

[RFC2119] S. Bradner, editor. Key words for use in RFCs to Indicate Requirement Levels.
March 1997. http://www.ietf.org/rfc/rfc2119.txt

[RFC2396] T. Berners-Lee, R. Fielding and L. Masinter. Uniform Resource Identifiers
(URI): Generic Syntax RFC 2396, August 1998, Internet Engineering
Taskforce. http://www.rfc-editor.org/rfc/rfc2396.txt

[XML-SIG] D. Eastlake, J. R., D. Solo, M. Bartel, J. Boyer , B. Fox , E. Simon. XML-
Signature Syntax and Processing, World Wide Web Consortium.
http://www.w3.org/TR/xmldsig-core/

[XML-Schema1] H. S. Thompson, D. Beech, M. Maloney, N. Mendelsohn. XML Schema
Part 1: Structures, W3C Working Draft 22 September 2000,
http://www.w3.org/TR/xmlschema-1/

[XML-Schema2] P. V. Biron, A. Malhotra, XML Schema Part 2: Datatypes; W3C Working
Draft 22 September 2000, http://www.w3.org/TR/xmlschema-2/

[X.509] M. Wahl, S. Kille, T. Howes, Lightweight Directory Access Protocol (v3): UTF-8
String Representation of Distinguished Names, RFC2253, December
1997, http://www.rfc-editor.org/rfc/rfc2253.txt

[X-TASS] Phillip Hallan-Baker, X-TASS: XML Trust Assertion Service Specification,
Version 0.9, January 2001.

[MIME] Freed, N., and N. Borenstein, Multipurpose Internet Mail Extensions (MIME) Part
One: Format of Internet Message Bodies, RFC 2045, Innosoft, First
Virtual, November 1996, http://www.rfc-editor.org/rfc/rfc2045.txt

 42

Appendix D Legal Notices

Copyright

© http://www.s2ml.org

Intellectual Property Statement

Neither the authors of this document nor their companies take any position regarding
the validity or scope of any intellectual property or other rights that might be claimed
pertaining to the implementation or use of the technology described in this document or
the extent to which any license under such rights might or might not be available;
neither do they represent that they have made any effort to identify any such rights. Use
of and results from the documents, specifications, technology and/or information
contained herein is solely at the discretion and risk of the user.

Disclaimer

This document and the information contained herein is provided on an "AS IS" basis
and THE AUTHORS AND THEIR COMPANIES DISCLAIM ALL WARRANTIES,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT
THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR
ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE.

