
0018-9162/01/$10.00 © 2001 IEEE June 2001 59

R E S E A R C H F E A T U R E

XML’s Impact on
Databases and
Data Sharing

T
he Extensible Markup Language, HTML’s
likely successor for capturing much Web con-
tent, is receiving a great deal of attention from
the computing and Internet communities.
Although the hype raises unrealistic expecta-

tions, XML does reduce the obstacles to sharing data
among diverse applications and databases by provid-
ing a common format for expressing data structure
and content. Although some benefits are already
within reach, others will require new database tech-
nologies and vocabularies for affected application
communities.

HTML DATA-SHARING DILEMMA
The Web has greatly facilitated the sharing of data

across distributed, heterogeneous hardware and soft-
ware environments. Rather than having to search for
data from only one location, businesses can now use
a browser interface to access data from sources around
the world. Unfortunately, HTML, the predominant
format for Web and intranet publishing, has several
serious shortcomings that limit its use for represent-
ing information from diverse sources.

• Presentation rather than content orientation.
HTML uses presentation-oriented markup tags,
such as <H2> for a second-level heading, that tell
a browser how to display data to human users.
However, it gives no information about the data’s
meaning—for example, “this is a warranty
description for a retail product.” Because HTML
focuses on the computer-to-human interface, it

has limited value as a data format for computer-
to-computer applications such as transferring
information between databases. In addition,
because it tightly couples content and presenta-
tion, HTML does not effectively support alter-
nate presentations of the same underlying content
for different audiences or media.

• No extensibility. HTML has a fixed set of markup
tags. It lacks support for creating new, applica-
tion-specific tags—for example, Patient_ID for
medical applications—that help communicate
data content.

• No data validation capabilities. HTML does not
help applications validate data as it is entered or
imported.

Although instrumental in creating a new perception
among businesses that data can and should come from
many diverse sources, HTML is poorly suited for build-
ing systems in which applications, not users, interpret
the data. Because of these limitations, building and
maintaining complex data-access applications—such
as a comparison-shopping agent—based on HTML
documents is cumbersome. HTML-based applications
require brittle, handcrafted code to screen-scrape infor-
mation from Web pages—for example, “find the third
column and second row of the fourth HTML table in
this page; that’s usually the price.”

Such convoluted techniques are especially frustrat-
ing given that much Web content derives from struc-
tured databases. Structural information would vastly
simplify data extraction by applications, but content

The Extensible Markup Language reduces the obstacles to sharing data
among diverse applications and databases. However, understanding XML’s
benefits requires evaluating which system challenges it actually solves.

Len Seligman
Arnon
Rosenthal
MITRE

Corporation

60 Computer

providers discard most such information when they
publish the data in HTML—or via dynamic script-
ing languages like ColdFusion and Active Server Pages.

ENTER XML
To address HTML’s limitations, the World Wide

Web Consortium (W3C) created XML, a language
similar in format to HTML but more extensible. This
new language lets information publishers invent their
own tags for particular applications or work with
other organizations to define shared sets of tags that
promote interoperability and that clearly separate con-
tent and presentation.

XML is a simplified subset of the earlier, document-
structuring Standard Generalized Markup Language.
Developers have used SGML to create large informa-
tion collections such as encyclopedias and multivol-
ume case law books, but its complexity has dis-
couraged widespread adoption. In addition to being
extensible, XML addresses only content; Cascading
Style Sheets, Extensible Stylesheet Language, or
Extensible HTML handle presentation separately.

XML also supports validation in two ways.
Application developers can associate an XML docu-
ment with a document type description (DTD) that
describes the structure to which the document should
conform. In addition, because DTDs were intended
for document management and cannot adequately
model complex data, the W3C subsequently devel-
oped an XML schema specification, which adds data
types, relationships, and constraints. Applications can
use off-the-shelf XML parsers to validate imported
data for conformation to a DTD or schema.

Widespread acceptance
Although a young standard, XML already exerts

significant influence on intranets and the Web.
Businesses appreciate its elimination of the many
costly and fragile workarounds needed to represent
rapidly changing data in HTML. A vibrant XML mar-
ketplace is providing inexpensive tools for preparing,
validating, and parsing XML data. Application devel-
opers praise XML’s extensibility, and communities
that share common data, such as the chemical indus-
try, like XML’s support for well-defined, common data

representations. XML should continue to have strong
support throughout the next decade.

XML benefits
As Table 1 shows, XML offers many advantages

over HTML.

• Support for multiple views of the same content
for different user groups and media. As Adobe
chairman John Warnock said in his keynote
address at XML 98, “To date we have had a sep-
arate workflow for each output format.... We are
switching to XML because it will allow us to
have a single workflow with multioutput.”

• Selective (field-sensitive) queries over the Internet
and intranets. For example, a search for docu-
ments with an author field containing “Kissinger”
would only return documents that mention
Kissinger within an author tag. This capability
depends on agreements within communities on
the meaning of certain widely used tags.

• An increasingly visible semantic structure for
Web information. This will decrease the need for
brittle screen-scraping parsers.

• A standard data and document interchange infra-
structure. This infrastructure includes freely
available parsers that can validate conformance
with a DTD.

Several related standards will greatly increase XML’s
data sharing and management utility. For current
information on these standards and their supporting
tools, see http://w3.org/xml and http://www.xml.org.

Extensible Stylesheet Language. XSL expresses rules
that indicate how to transform an XML document to
a presentation format such as HTML or PDF, or to
an alternate representation of the content such as an
XML document with a different DTD. Developers
can manage content independently of its presentation,
and they can use different XSL style sheets to produce
alternate views of that content.

Document Object Model. The initial XML standard gives
enough information to drive a parser but does not spec-
ify the parser’s output form, either as a data structure
or in terms of operations. We predict that developers

Table 1. Advantages of XML over HTML.

Feature HTML XML

Extensibility Fixed set of tags Extensible set of tags
Presentation/content Tags for presentation only Tags describe data content
Views Single presentation of each document Multiple views of the same document (provided by XSL)
Document/data orientation Document orientation only Support for documents plus extensive infrastructure for exchange and

validation of structured data
Search/query Search only Search plus field-sensitive queries and later update

June 2001 61

will express most XML-related work in terms of tree
and graph abstractions that hide such details. The
Document Object Model (DOM) provides a tree-based
application programming interface to XML with meth-
ods for traversing the tree, such as getParentNode() and
getChildNodes().

XML query language. A W3C working group is devel-
oping the XQuery language for extracting data from
XML document collections as well as encapsulating
non-XML data via mappings (see the sidebar, “Will
XML ‘Disappear’?”).

XML AND DATABASES
XML and database technology complement rather

than compete with each other. Because XML makes
the structure in nontabular data explicit, database tech-
nologies can provide some of the amenities found in
relational databases. Conversely, database techniques
can improve the integrity and semantic integration of
XML resource sets. The research community and W3C
working groups recognize this synergy and are adapt-

ing database ideas to provide XML schema and query
technologies.

Well-structured data
Today’s broad, mature database management sys-

tems (DBMSs) will dominate critical enterprise data
management in the foreseeable future. They are
rapidly widening their scope to serve newer areas—
for example, electronic commerce has become a
major revenue and development focus. DBMSs offer
high integrity, read, write, and—increasingly—sub-
scribe-to-changes processing of large amounts of
regularly structured data. Data that supports criti-
cal but routine processing will continue to require
these features.

DBMS facilities include highly tuned query and
transaction processing, recovery, indexes, integrity, and
triggers. DBMSs exploit the relational data model—
regular tables, no queries over element tags, weak sup-
port for paths—to simplify semantics and improve
performance. They even optimize load and dump util-

Paradoxically, the Document Object Model and
Extensible Markup Language query language will
reduce the use of XML text. DOM defines a stan-
dard wrapper for XML text, above which most ser-
vices can work—for example, XSL, constraint
checking, and even linking care about abstract ele-
ments, not uninteresting syntactic details such as
“</”. These services can use an off-the-shelf parser
that produces DOM instead of each parsing XML
to its own internal form.

Services must next recognize that a giant XML text
string or Character Large Object within a database

management system is an inefficient representation
for a large, complex, updatable structure, which
requires indexes, clustering, free-space management,
transactions, and so on. Vendors can replace stored
XML text with their own specialized storage formats
under the DOM or query language abstraction.

Increasingly, tools will access document set
abstractions through standard interfaces, as Figure
A shows. In the end, XML text might be used mainly
for document management applications and at the
interfaces between loosely coupled systems—for
example, for data exchange over the Web.

Document
Object
Model

interface

XQuery
interface

Tools

Proprietary
format

(for example,
in a

database
management

system)

Extensible
Markup

Language
text

Figure A. Abstract interfaces replacing XML text. Web developers will increasingly access XML document collections
through standard interfaces such as Document Object Model and XQuery, a query language the World Wide Web Consor-
tium is developing.

Will XML “Disappear”?

62 Computer

ities. Providing similar functionality over XML’s
more intricate structures is more complex.

For applications involving regularly struc-
tured data, XML tools will not replace such
DBMSs because there is too much functional-
ity to implement rapidly and migration would
be too traumatic. Still, XML is rapidly gaining
a role as an interface format for even highly
structured data.

To meet specific Web publishing, e-com-
merce, or other application demands, develop-

ers can create XML versions of appropriate data
views. Applications can evaluate these data views on
the fly in response to queries—or in advance when
handling nonvolatile data or supporting users who do
not need completely current information. Major ven-
dors such as Oracle and IBM have already released
tools for creating XML database extracts, and these
tools will become even more powerful. Vendors are
also customizing import utilities to accept XML.

User organizations are committing to XML, with
some already beginning large-scale implementation.
For example, the US Air Force Global Combat
Support System uses XML messages among applica-
tions. In addition, the US Department of Defense is
developing a registry, including tools and process guid-
ance, for XML components—schemas, elements,
attributes, document type definitions, style sheets, and
so on—for its Joint Technical Architecture.

Publishing database contents as XML has other
benefits. The XML output includes its own schema
information; for anyone who understands the tags the
schema uses, the information describes itself. Also, by
keeping part of the format open, XML’s schema
reduces the need for multisite systems to simultane-
ously migrate to a new interface. If an information
provider inserts new tags, sites equipped to use the
new information can do so while parsers for other
sites will ignore the new tags.

Semistructured data
Relational DBMSs contain only a fraction of the

world’s data, for several good reasons. Data must be
tabular and conform to a prespecified schema, which
promotes integrity but discourages rapid development
and change for irregular data or data with a rapidly
evolving structure. Further, DBMS purchase prices are
often high, and they tend to require professional
administration. Semistructured data models address
all but the administration issue, but they currently lack
the features needed for robust systems.

Managing semistructured data. As semistructured data
becomes more widely shared and its processing more
automated, organizations will need the capability to
manage it through powerful queries, integrity,
updates, and versioning. Applications can store XML

data directly in relational systems by encoding its
graph, but relational operators are insufficient for the
manipulations users want.

Object-oriented database vendors such as Poet
(http://www.poet.com) and eXcelon (http://www.
exceloncorp.com) address this need by extending their
capabilities to support XML. (Formerly ObjectDesign,
eXcelon has redefined its identity to focus on XML
data management rather than object databases.)
Relational systems are also increasing their support
of XML. To achieve efficiency, these products often
use highly tuned indexed structures rather than sim-
ply storing XML as text.

The future. The database research community pro-
vides the best indicators of the long-term direction for
database support of XML and other semistructured
data. Many researchers are addressing the challenges
of interfacing with and managing semistructured
data.1 For interfacing, wrappers can mine data with
implicit structure and make the structure explicit and
machine-readable.2,3 Other projects4 have investigated
the use of graph-structured data models—such as that
underlying XML—as a common representation for
heterogeneous information sources, including both
structured and semistructured sources.

Finally, several groups are developing prototype
DBMSs that manage semistructured data with new
query languages and optimization techniques.5,6 These
researchers have converged on the use of graph-struc-
tured data models, especially XML, in which labeled,
directed graphs represent all data.

Research prototypes. Graph-structured DBMSs han-
dle semistructured data from ordinary documents,
Web sites, biochemical structures, and other data dif-
ficult to describe with a fixed schema. Data may be
irregular or the structure may evolve rapidly, lack an
explicit machine-processable description, or be
unknown to the user. Even a known structure can
appear hierarchical, which makes having operations
that understand the hierarchy advantageous.

Compared with an ordinary relational or object
database, semistructured databases offer several
capabilities.

• Irregular structure. For example, a short string
such as Good, Bad, or Ugly can describe the
attribute Weather for one data source, while
another might provide a collection of tuples—
date, time, temperature, humidity, wind speed,
and remarks. Document data often varies in
structure, especially if assembled from multiple
sources. The structure can also change—for
example, by adding figures. Relational systems
can model some irregularity by having missing
attributes as nulls, but SQL’s null values cause
awkwardness, while current relational database

Relational systems
often use highly
tuned indexed

structures rather
than simply storing

XML as text.

June 2001 63

storage structures can have excessive overhead.
• Tag and path operations. Conventional database

languages allow manipulation of element values
but not element names. Semistructured databases
provide operators that test tag names—for exam-
ple, “find all documents that have a ReferenceList
or Bibliography element.” They also include oper-
ators that manipulate paths. For example, path
expressions with wild cards can ask for a Subject
element at any depth within a Book element.

• Hierarchical model. Some data is most naturally
modeled as a hierarchy. For this data, hierarchi-
cal languages simplify data manipulation.

• Sequence. Because document sections, unlike
tables, are ordered, they must represent sequence.
Sequence complicates query processing, espe-
cially for joins and updates.

Research prototypes have demonstrated these fea-
tures, which will likely appear in commercial prod-
ucts in the next few years. How the market will
segment among the three approaches—layered over
an object database, over a relational database, or
directly over a new data manager—remains unclear.

XML AND DATA SHARING
Some industry observers have heralded XML as the

solution to data-sharing problems—for example, one
observer asserted that XML together with XSL will
bring “complete interoperability of both content and
style across applications and platforms.”7 In reality,
XML technologies will contribute only indirectly to
meeting many of the toughest data-sharing challenges.

Architectures
Users want seamless access to all relevant infor-

mation about their domain’s real-world objects.
Several general architectures and hybrids are avail-
able for this purpose.

• Integration within the application. An applica-
tion or Web portal uses each source’s native inter-
face to communicate directly with source
databases and reconciles the data it receives.

• Data warehouses. Administrators define a global
schema for the shared data. They provide the
derivation logic to reconcile data and pump it
into one system; often the warehouse is read only,
with updates made directly on the source systems.
As a variation, data marts give individual com-
munities their own subsets of global data.

• Federated databases. These virtual data ware-
houses do not populate the global schema.
Instead, the source systems retain the physical
data, and a middleware layer translates all re-
quests to run against the source systems.

• Messaging. One application or database uses
structured messages to pass data to others.
Enterprise application integration products tend
to support this architecture.

• Parameter passing. One application invokes
another and passes data as parameters. EAI prod-
ucts also support this architecture.

Challenges
Regardless of the distributed architecture chosen,

someone—a standard setter, application programmer,
or warehouse builder—must reconcile the differences
between data sources and the consumer’s view of that
data so users can share it. This reconciliation must
insulate applications from several forms of diversity.
The insulation mechanisms also provide an interface
for programmers to look beneath and see the diversity.

Data reconciliation must overcome challenges at
multiple levels, as Figure 1 shows. Typically, reconcil-
iation must address these challenges in order, from
lowest to highest. For example, unless the reconcilia-
tion meets the challenge of geographic distribution,
the lowest level, resolving heterogeneous data struc-
tures—the next-higher level—will yield little benefit.

Level 1: Geographic distribution. Data can be widely
distributed geographically. Off-the-shelf middleware
products handle most of the challenges at this level,
often supporting standard protocols such as HTTP,
the simple object access protocol (SOAP), or the com-
mon object request broker architecture.

Level 2: Heterogeneous data structures and languages.
Diversity here includes different data-structuring
primitives—such as tables versus objects—and data
manipulation languages—such as SQL versus a pro-
prietary language versus file systems with no query
language. Standards such as open database connec-
tivity (ODBC) and middleware products increasingly
handle this difficulty. However, the middleware can be
costly, lack advanced features such as triggers, and be
inefficient compared with native interfaces.

Level 3: Heterogeneous attribute representations and
semantics. Integrators often must reconcile different rep-
resentations of the same concept. For example, one sys-
tem might measure altitude in meters from the earth’s

Geographic distribution

Heterogeneous data structures and languages

Heterogeneous attribute representations and semantics

Heterogeneous schemas

Object identification

3

2

1

4

5

6 Data value reconciliation

Figure 1. Levels
at which data
reconciliation must
occur. Reconciliation
generally must
address challenges
in order from the
lowest to the
highest level.

64 Computer

surface while another measures it in miles from the
earth’s center. In the future, application developers may
define interfaces in terms of abstract attributes with self-
description—for example, Altitude (datatype=integer,
units=miles). Mediators can use these descriptions to
shield users from the representational details.8

Differences in semantics offer greater challenges
than representation heterogeneity. For example, two
personnel systems include an Employee Compen-
sation attribute. One might be gross salary plus annual
bonus, while the other is net salary after taxes.
Transformations can sometimes resolve such differ-
ences—for example, rederiving gross salary. However,
automated transformation often is impossible, and the
integrator must simply indicate whether it is possible
to use a particular attribute for a particular purpose.

Level 4: Heterogeneous schemas. Systems can assem-
ble the same information elements into many different
structures. For example, one system might store all
customer account information in one denormalized
table, while two others split it several ways among
several tables. Each has chosen a schema that is nat-
ural for its own use rather than one designed for inter-
change with other systems. Many applications
communities are addressing this challenge by defin-
ing standard interface schemas, expressed as Unified
Modeling Language models, XML schemas, or SQL
tables. Such standards reduce the number of external
interfaces a system must support.

Level 5: Object identification. Object identification
determines if two objects, usually from different data
sources, refer to the same real-world object. For
example, if the CriminalRecords database has “John
Public, armed robber, born 1 Jan. 1970” and the
MotorVehicleRegistry database has “John Public Sr.,
license plate JP-1, born 9 Sept. 1939,” should a police
automobile-check view consider the tuples to refer to
the same person and return—“John Public, armed
robber”?

Level 6: Data value reconciliation. After object identifi-
cation, the different sources can disagree about par-
ticular facts. Suppose three sources report John
Public’s height to be 180, 187, and 0 centimeters,
respectively. What value or values should the search
return to the application?

Reconciliation at this level can require detailed
application knowledge. “Data-cleaning” researchers
and vendors are increasing their efforts to help admin-
istrators specify the desired policy, semiautomatically
identify candidate objects to be merged, and—if cost-
justified—resolve individual instances.9 Reconciliation
rules should be flexible, modular, and displayable to
domain experts who lack programming skills.

Where can XML help?
Given these challenges, how can XML help improve

data sharing? As Table 2 shows, using XML and
related tools often eliminates the problems associated
with heterogeneous data structures. In addition, data
administrators can use XML to express results that
help at other levels, especially levels 3 and 4.

Level 1: Geographic distribution
XML indirectly assists with distribution by sup-

porting mechanisms for remote function invocation
across the Web. For example, SOAP specifies an
XML vocabulary for representing method parame-
ters, return values, and exceptions (http://www.
w3.org/TR/SOAP). Data sharing also requires func-
tions that actually create, send, and read interchange
files. For example, application developers must know
the syntax and exact semantics for “Send.” Database-
oriented data sharing can use submittal protocols
like ODBC. XML does not provide these functions,
but middleware vendors will likely layer them on top
of XML-based invocation mechanisms such as
SOAP.

Level 2: Heterogeneous data
structures and languages

XML provides a neutral syntax for describing
graph-structured data as nested, tagged elements with
links. Because developers can transform diverse data
structures into such graphs, XML—along with DOM
and XQuery—provides the operations users need to
access these heterogeneous data structures. Micro-
soft’s ODBC and OLE DB offer analogous function-
ality for accessing flat and nested data sources as well
as a model for describing server search capabilities at
fairly low cost.

Table 2. XML’s contributions to data sharing.

Level Challenge Contribution

1 Geographic distribution Assists with remote function invocation—for example, via SOAP
2 Heterogeneous data structures Provides convenient, neutral, self-describing syntax for

and languages heterogeneous data structures
3 Heterogeneous attribute Provides convenient way to attach and reference metadata that

representations and semantics describes data representation and semantics
Ubiquitous Web infrastructure eases compliance with data standards

4 Heterogeneous schemas Rich environment facilitates building tools that encourage resource reuse
Makes it easier to map to some well-understood schema
Mechanisms for expressing interschema mappings, such as the Common
Warehouse Metadata model, can leverage XML

5 Object identification Provides a convenient mechanism for attaching metadata
6 Data value reconciliation Provides a convenient mechanism for attaching metadata

June 2001 65

Although applications can use XML for relational
data, it really shines in other settings. When a source
or recipient views the world hierarchically—for exam-
ple, as formatted messages—XML technologies can
help restructure the information between relational
and hierarchical formalisms. For example, the US mil-
itary and its coalition partners are transitioning their
Message Text Format to an XML-based infrastructure.
XML’s strong base of freeware and commercial tools
affords flexibility at greatly reduced development costs.
In another example, XML provides a useful common
representation for integrating semistructured text data
sources.3

Observers who point to XML as a panacea for
interoperability usually refer to level 2. For the pur-
pose of representing data structures, XML—right out
of the box—provides both a representation and, with
its current and future query languages, a manipulate-
transform capability. A recipient can reassemble, in
the form of a labeled graph, the same data structure
sent. Many organizations and data exchange stan-
dards10 employ XML in this way, thereby removing
the obstacles to interoperability at this level.
Interpreting the meaning of the graph is a substantial
task for subsequent levels.

Level 3: Heterogeneous attribute
representations and semantics

This level deals with atomic concepts. Transmitting
a fact between systems requires relating each system’s
semantics as well as their representations. The com-
puter does not need to “understand” either the source
or target concept; rather, it only needs to know whether
they are identical or how to convert them. XML pro-
vides a convenient mechanism for attaching descriptive
metadata to both source and target schemas’ attributes.

For semantics, the key is knowing whether the source
concept is good enough for the target, not necessarily
that two concepts mean the same thing. For example,
an instrument landing system might measure altitude
from the current lowest point of the aircraft, but any
part of the aircraft can suffice for air traffic control.

When a source and target database disagree about
representation, each should explicitly describe repre-
sentation details, for example:

<Altitude>38500
<LengthUnit>feet</LengthUnit>
<MeasurePoint>lowest</MeasurePoint>

</Altitude>

Standards should make this subsidiary information
sharable—for example, by clarifying the meaning of
“LengthUnit.” The descriptions determine what trans-
formations are necessary. Increasingly, integration
tools include libraries of such conversions and insert

them automatically. However, we need more
than a mechanism to collect metadata. Reposi-
tories, for example, have not yielded the ex-
pected interoperability benefits. Without effec-
tive metadata location and exploitation tools,
organizations lack sufficient incentives to col-
lect and update accurate metadata. As a result,
repositories have not greatly eased interoper-
ability.

Fortunately, typical XML environments have
universal connectivity and rich toolsets that
provide wide accessibility and ease construc-
tion of interoperability tools. The universal connec-
tivity of Web environments facilitates pointing to
standard element definitions, conversion function
libraries, and other resources that promote interoper-
ability. Also, because of XML’s ubiquity, tool builders
benefit from a large marketplace of high-quality, inex-
pensive commercial development tools that simplify
interoperability tool construction.

Level 4: Heterogeneous schemas
Developers are increasingly aware that schema

diversity will be a serious problem even if XML
schemas achieve wide usage.11 To support interoper-
ability at this level, a way to describe and share com-
munity schemas and to express mappings across
schemas is necessary. Various communities have
defined XML schemas that provide a neutral model
for describing data structures. Communities develop-
ing standard schemas include e-commerce, healthcare,
and data-warehousing vendors. Such schemas will
reduce diversity among interfaces and ease data shar-
ing. Oasis and BizTalk are examples of XML reposi-
tory environments that map among XML elements
and models.

XML does not provide intrinsically simpler model
standardization than object systems, but its ubiquity
and cheap tools have sparked enthusiasm, motivating
some communities to agree on standards when previ-
ously they could not. Because it facilitates the sharing
of information, the Web will dramatically increase the
impact of community standards. Organizations will
need to map their schemas and non-DBMS data to the
standards, which may spur creation of a new genera-
tion of schema integration tools.

To cope with diversity, organizations must describe
interschema mappings. Too often these are specified in
code tied to specific proprietary tools, especially data-
warehousing vendors’ extract-transform-load tools.
In recently merged efforts, the Metadata Coalition’s
Open Information Model (OIM) and the Object
Management Group’s Common Warehouse Metadata
pursue a better approach that represents mappings
declaratively and generates glue code from reusable
and vendor-independent mappings.10 CWM supports

XML’s strong base of
freeware and

commercial tools
affords flexibility at

greatly reduced
development costs.

66 Computer

relational, XML, and several legacy data
sources, using SQL-99 to express mappings
and XML for data interchange. Other mecha-
nisms for expressing mappings include XSL
and XQuery, although it may take some time
before the latter receives efficient support from
off-the-shelf query processors.

Level 5: Object identification
Improvements in describing attribute repre-

sentation and semantics can remove one source
of object misidentification—for example, is the

date in a payment in US or European format? Also,
XML makes it easy to attach uncertainty estimates as
subsidiary elements to any output—although to be
useful, the recipient must be prepared to interpret
them.

Level 6: Data value reconciliation
Many strategies for data value reconciliation

depend on having metadata such as time stamp and
source quality attached to the data. In addition to
attaching such annotations, XML makes it easy to
return a set of alternative elements for an uncertain
value if the recipient can use such output.

OUTSTANDING ISSUES
XML leaves unresolved how to best specify inter-

system mappings. First, analysts need tools to help
identify candidate relationships across systems.
Second, the tools need to specify mappings declara-
tively, not in procedural or vendor-dependent code
about which optimizers and other automated tools
cannot reason. SQL and, hopefully, the upcoming
XQuery language, are examples of such a declarative
language. Of the two efforts to standardize the
expression of intersystem mappings—OIM and
CWM—only the latter directly supports XML data
sources. Finally, analysts need tools to record inter-
system relationships and mappings to community
standard DTDs or schemas and to make them avail-
able for reuse.12

XML-based interoperability often means using
XML as a message syntax for bulk transfers among
systems. However, this approach often supports only
predefined requests, notably: “Generate the standard
message XYZ.” Although XML tools will eventually
support ad hoc queries, transactional updates, and
subscriptions to specific kinds of changes, these capa-
bilities currently lag behind comparable offerings in
relational databases.

A s with any hot new technology, XML has generated
exaggerated claims. In reality, XML does not come
close to eliminating the need for database manage-

ment systems or solving large organizations’ data-sharing

problems. Some developers have a tendency to use XML
as an excuse for skipping rigorous data modeling, which
remains a critical activity for enterprise systems. However,
exaggerated claims and occasional misuse do not negate
XML’s very real benefits, which apply not only to the
Web but also to databases and applications:

• XML reduces the work of reconciling heteroge-
neous data structures. For example, XML will
soon underlie a ubiquitous and inexpensive infra-
structure for exchanging self-describing mes-
sages. In fact, participants can use XML as a
neutral format to describe almost any data as a
graph if they can agree on which schema to use
and on what the elements mean.

• Data administrators can use XML to conveniently
attach metadata, thereby simplifying other kinds
of reconciliation—especially for heterogeneous
attribute representations, semantics, and schemas.

• The enthusiasm surrounding XML motivates
some communities to agree on standards when
previously they could not.

• XML tools contribute greatly to organizations’
ability to manage and share semistructured
data—including much Web content—that is dif-
ficult to describe with a prespecified schema.

Although researchers and vendors have made great
strides, realizing XML’s full potential requires more:
DBMS products that manage semistructured data;
standards that provide shared vocabularies and
schemas; and administrative tools that map hetero-
geneous attributes and schemas and resolve object
identity and conflicting values. ✸

Acknowledgments
The authors thank Terry Bollinger, Frank Manola,

Roger Costello, John Schneider, Kit Lueder, Lisa
Harper, and the anonymous reviewers for their help-
ful comments.

References
1. J. Widom, “Data Management for XML: Research

Directions,” IEEE Data Eng., Sept. 1999, pp. 44-52.
2. B. Adelberg, “NoDoSE: A Tool for Semi-Automatically

Extracting Structured and Semistructured Data from Text
Documents,” Proc. ACM Sigmod Int’l Conf. Manage-
ment Data, ACM Press, New York, 1998, pp. 283-294.

3. D. Mattox, L. Seligman, and K. Smith, “Rapper: A
Wrapper Generator with Linguistic Knowledge,” Proc.
2nd Int’l Workshop Web Information and Data Man-
agement, ACM Press, New York, 1999, pp. 6-11.

XML’s very real
benefits apply

not only to
the Web but also
to databases and

applications.

June 2001 67

4. Y. Papakonstantinou, H. Garcia-Molina, and J. Widom,
“Object Fusion in Mediator Systems,” Proc. Int’l Conf.
Very Large Databases, Morgan Kaufmann, San Fran-
cisco, 1996, pp. 413-424.

5. P. Buneman et al., “A Query Language and Optimiza-
tion Techniques for Unstructured Data,” Proc. ACM Sig-
mod Int’l Conf. Management Data, ACM Press, New
York, 1996, pp. 505-516.

6. M. Fernandez et al., “Catching the Boat with Strudel:
Experiences with a Web-Site Management System,”
Proc. ACM Sigmod Int’l Conf. Management Data, ACM
Press, New York, 1998, pp. 414-425.

7. J. Bosak, “Media-Independent Publishing: Four Myths
about XML,” Computer, Oct. 1998, pp. 120-122.

8. E. Sciore, M. Siegel, and A. Rosenthal, “Using Semantic
Values to Facilitate Interoperability among Heteroge-
neous Information Systems,” ACM Trans. Database Sys-
tems, June 1994, pp. 254-290.

9. S. Sarawagi, ed., IEEE Data Eng., Special Issue on Data
Cleaning, Dec. 2000.

10. T. Vetterli, A. Vaduva, and M. Staudt, “Metadata Stan-
dards for Data Warehousing: Open Information Model
versus Common Warehouse Metadata,” Sigmod Record,
Sept. 2000, pp. 68-75.

11. A. Gonsalves and L. Pender, “Schema Fragmentation
Takes a Bite out of XML,” PC Week Online, ZDNet,
May 3, 1999, http://www.zdnet.com/pcweek/stories/
news/0,4153,401355,00.html.

12. A. Rosenthal, E. Sciore, and S. Renner, “Toward Unified
Metadata for the Department of Defense,” IEEE
Metadata Workshop, Silver Spring, Md., 1997, http://
computer.org/conferen/proceed/meta97/papers/arosenthal/
arosenthal.html.

Len Seligman is a principal scientist at MITRE Corp.
His research interests include heterogeneous data-
bases, semistructured data, and large-scale informa-
tion dissemination. Seligman received a PhD in
information technology from George Mason Univer-
sity. Contact him at seligman@mitre.org.

Arnon Rosenthal is a principal scientist at MITRE

Corp. His research interests include data administra-
tion, interoperability, distributed object management,
legacy system migration, and database security. Rosen-
thal received a PhD in electrical engineering and
computer science from the University of California,
Berkeley. Contact him at arnie@mitre.org.

A
W

A
R

D
S

A
W

A
R

D
S You work hard.

We notice.
You work hard.
We notice.

¤

SOFTWARE PROCESS ACHIEVEMENT AWARD
Advanced Information Services 1999
Hughes 1997
Raytheon 1995
NASA Goddard 1994

COMPUTER ENTREPRENEUR AWARD
William Hewlett and David Packard 1995

COMPUTER PIONEER AWARD
Grace M. Hopper 1980

SEYMOUR CRAY COMPUTER SCIENCE AND ENGINEERING AWARD
John Cocke 1999

TSUTOMU KANAI AWARD
Kenneth L. Thompson 1999

computer.org/awards/

SOFTWARE PROCESS ACHIEVEMENT AWARD
Advanced Information Services 1999
Hughes 1997
Raytheon 1995
NASA Goddard 1994

COMPUTER ENTREPRENEUR AWARD
William Hewlett and David Packard 1995

COMPUTER PIONEER AWARD
Grace M. Hopper 1980

SEYMOUR CRAY COMPUTER SCIENCE AND ENGINEERING AWARD
John Cocke 1999

TSUTOMU KANAI AWARD
Kenneth L. Thompson 1999

computer.org/awards/

