

©2001 by RosettaNet. All rights reserved.

RosettaNet Implementation Framework:
Core Specification

Version: Validated 02.00.00

13 July 2001

Validated 13 July 2001 Section 1, Implementation Framework Concept

©2001 by RosettaNet. All rights reserved. i

Legal Disclaimer

RosettaNet�, its members, officers, directors, employees, or agents shall 1

not be liable for any injury, loss, damages, financial or otherwise, arising 2

from, related to, or caused by the use of this document or the 3

specifications herein, as well as associated guidelines and schemas. The 4

use of said specifications shall constitute your express consent to the 5

foregoing exculpation. 6

Copyright 7

©2001 RosettaNet. All rights reserved. No part of this publication may be 8

reproduced, stored in a retrieval system, or transmitted, in any form or by 9

any means, electronic, mechanical, photocopying, recording, or otherwise, 10

without the prior written permission of the publisher. Printed in the 11

United States of America. 12

Trademarks 13

RosettaNet, Partner Interface Process, PIP and the RosettaNet logo are 14

trademarks or registered trademarks of "RosettaNet," a non-profit 15

organization. All other product names and company logos mentioned 16

herein are the trademarks of their respective owners. In the best effort, all 17

terms mentioned in this document that are known to be trademarks or 18

registered trademarks have been appropriately recognized in the first 19

occurrence of the term. 20

Additional Disclaimers 21

Inclusion of Document Type Definitions (DTDs) and Element descriptions 22

in this document are for ease of comprehension. While every effort has 23

been made to ensure that what appears in this document matches the 24

separately published DTD files (*.dtd) and Message Guideline 25

specifications associated with this document, in the event of discrepancies, 26

the DTD file or Message guideline specification is to be used. 27

Use of examples throughout this document is intended to illustrate the 28

concepts or rules being discussed. They must not be treated as 29

specifications themselves. 30

Validated 13 July 2001 Section 1, Implementation Framework Concept

©2001 by RosettaNet. All rights reserved. iii

Contents

Version History .. ix

Preface xi

1 Introduction ...1

1.1 Business Background ... 1

1.1.1 Implementation Framework Concept .. 1

1.1.2 Scalability of RosettaNet Specifications... 2

1.2 Technical Background... 3

1.2.1 Public vs. Private Processes... 3

1.2.1.1 Interoperability Considerations .. 3

1.2.2 PIPs and the Implementation Framework.. 4

1.2.2.1 Action and Signal Messages... 5

1.2.3 PIP Message Exchange Models... 6

1.2.4 PIP Metamodel .. 6

1.2.4.1 Business Operational View (BOV) ... 7

1.2.4.2 Functional Service View (FSV) ... 8

1.2.4.3 Implementation Framework View (IFV) .. 9

1.2.5 RosettaNet Business Message Overview.. 9

1.2.5.1 Parts of a RosettaNet Business Message.. 9

1.2.5.2 Third-Party (Non-RosettaNet) Service Content............................. 10

1.2.5.3 Routing RosettaNet Business Messages through Hubs................... 11

1.2.6 Signals vs. Process Control PIPs..11

1.2.7 Network Application Model ...12

1.2.8 Authentication, Authorization and Non-Repudiation12

1.2.8.1 Authentication ... 13

1.2.8.2 Authorization... 13

1.2.8.3 Non-Repudiation .. 13

2 Technical Specifications..15

2.1 RosettaNet Business Message Components ..15

2.1.1 Introduction ...15

2.1.2 XML Usage...15

2.1.2.1 Encoding Rules .. 15

2.1.2.2 Validation Rules ... 16

RosettaNet Implementation Framework: Core Specification Release for Validation 13 July 2001

iv ©2001 by RosettaNet. All rights reserved.

2.1.2.3 Constraints on Message Elements .. 17

2.1.2.4 DTD Naming, Pathname Specification and Versioning 17

2.1.2.5 XML Namespace... 17

2.1.3 Header Structure and Format Specifications17

2.1.3.1 Preamble Specification.. 18

2.1.3.2 Delivery Header Specification .. 20

2.1.3.3 Service Header .. 23

2.1.4 Payload Components ...31

2.1.4.1 Service Content ... 32

2.1.4.2 Handling Attachments... 32

2.1.4.3 Referring to Attachments from within Service Content 32

2.1.4.4 Shipping Non-RosettaNet Service Content in the Payload 33

2.2 Security Provisions and Trading Partner Authentication34

2.2.1 Use of S/MIME within RosettaNet ..34

2.2.2 Use of Digital Certificates within RosettaNet36

2.3 RosettaNet Business Message Packaging and Unpackaging38

2.3.1 Definitions of Terms ..38

2.3.2 Using Intermediaries ...39

2.3.3 Packaging the RosettaNet Business Message39

2.3.4 Unpackaging the RosettaNet Business Message52

2.3.4.1 Unpackaging Steps... 52

2.3.5 Intermediary-Routed Business Messages58

2.4 RosettaNet Business Message Transfer ..59

2.4.1 Synchronous Response Messages ...59

2.4.2 HTTP Transport Binding Specification...60

2.4.2.1 Outbound HTTP Binding .. 60

2.4.2.2 Processing Inbound HTTP Posts.. 63

2.4.2.3 Processing Inbound Synchronous HTTP Posts............................... 63

2.4.2.4 HTTP Synchronous Exchanges & the Message Sender 65

2.4.2.5 Transfer-Level Security... 65

2.4.2.6 Debug Header as an Extension-Header in HTTP 65

2.4.2.7 Compliance Summary... 67

2.4.3 SMTP Transport Binding Specification ..67

2.4.3.1 SMTP Transport Envelope.. 68

2.4.3.2 Transfer-Level Security... 70

2.4.3.3 Transfer-Level Error Handling .. 70

Validated 13 July 2001 Section 1, Implementation Framework Concept

©2001 by RosettaNet. All rights reserved. v

2.4.3.4 Debug Header as an Extension-Header in SMTP 71

2.4.3.5 Compliance Summary... 71

2.4.4 Transfer Protocol Independence and Other Transfer Mechanisms72

2.4.5 General Guideline for Debug Mode for Other Transport Protocols72

2.5 Business Signal Specifications & Process Control PIPs..................................72

2.5.1 Business Signals ...73

2.5.1.1 Receipt Acknowledgment .. 73

2.5.1.2 Exception.. 74

2.5.2 Process Control PIPs..74

2.5.2.1 0A1: Notification of Failure (NoF) ... 75

2.6 Flow of RosettaNet Business Messages ..75

2.6.1 Asynchronous Single-Action (Simplest) Activity76

2.6.2 Asynchronous Two-Action Activity...76

2.6.3 Synchronous One-Action/Two-Action Activity77

2.6.4 Handling Failures ..78

2.6.4.1 Retries and Timeouts.. 78

2.6.4.2 Other Failure Conditions and Notification of Failure....................... 80

2.6.5 Receipt Acknowledgment ...81

2.6.6 Handling Retries and Late Acknowledgments82

2.6.7 Receipt Acknowledgment and General Exception Error Codes82

2.6.8 Interaction Diagrams...83

2.6.8.1 Asynchronous Interactions .. 83

2.6.8.2 Synchronous Interactions.. 87

2.6.8.3 Notification of Failure Scenarios ... 90

Appendix A Key Differences between RNIF 1.1 & RNIF 2.0.........92

Appendix B Required PIP Metamodel Changes94

Appendix C IFV Mapping from BOV and FSV96

Appendix D Importance of Transfer Independence................... 100

Appendix E Anticipated Futures.. 101

Appendix F Additional Examples... 104

Appendix G References ... 116

Appendix H Glossary ... 118

RosettaNet Implementation Framework: Core Specification Release for Validation 13 July 2001

vi ©2001 by RosettaNet. All rights reserved.

Figures

Figure 1. RosettaNet Specifications in a Trading Partner Implementation 2
Figure 2. Private vs. Public Processes ... 3
Figure 3. Sample PIP Interaction Diagram... 5
Figure 4. Sample BOV Flow (Using �Query Marketing Information� PIP) 7
Figure 5. Sample FSV Network Component Dialog ... 8
Figure 6. Parts of a RosettaNet Business Message.. 10
Figure 7. Network Application Model... 12
Figure 8. Packaging RosettaNet Business Message without Encryption.................................... 42
Figure 9. Packaging Payload Container Prior to Encryption .. 44
Figure 10. Encrypting the Payload Container ... 45
Figure 11. Packaging RosettaNet Message with Encrypted Payload Container 46
Figure 12. Packaging Payload Prior to Encryption... 47
Figure 13. Encrypting the Payload ... 48
Figure 14. Packaging RosettaNet Message with Encrypted Payload... 49
Figure 15. Signing the Unencrypted RosettaNet Business Message... 49
Figure 16. Signing the Encrypted RosettaNet Business Message (Payload Encrypted) 50
Figure 17. Signing the Encrypted RosettaNet Business Message (Payload Container Encrypted) .. 50
Figure 18. Entire Message Processing Flow ... 57
Figure 19. �Handle Error� Flow .. 58
Figure 20. Single-Action Activity (Asynchronous)... 85
Figure 21. Two-Action Activity (Asynchronous).. 86
Figure 22. Single-Action Activity (Synchronous) .. 88
Figure 23. Two-Action Activity (Synchronous) ... 89

Tables

Table 1. Preamble Elements... 19
Table 2. Delivery Header Elements ... 21
Table 3. Service Header Elements... 26
Table 4. Content Location Values.. 40
Table 5. Debug Header Parameters... 66
Table 6. Exception Error Codes... 82
Table 7. Notification of Failure Scenarios ... 90
Table 8. Transport-Independent Mappings ... 97
Table 9. Transport-Dependent Mappings.. 98

Examples

Example 1. Preamble Instance.. 19
Example 2. Delivery Header Instance .. 22
Example 3. Service Header Instance (Using PIP 3A4) .. 30
Example 4. S/MIME Enveloped Message... 35
Example 5. S/MIME multipart/signed Message.. 36
Example 6. Packaged RosettaNet Business Message without Encryption..................................... 42
Example 7. Packaged Payload Container Prior to Encryption ... 44
Example 8. Encrypted Payload Container ... 45
Example 9. Packaged Payload Prior to Encryption.. 47
Example 10. Encrypted Payload.. 48
Example 11. Signed RosettaNet Business Message ... 50
Example 12. HTTP Post of a RosettaNet Message.. 61

Validated 13 July 2001 Section 1, Implementation Framework Concept

©2001 by RosettaNet. All rights reserved. vii

Example 13. HTTP Post of Unsigned RosettaNet Message... 61
Example 14. HTTP Post of Signed RosettaNet Message.. 62
Example 15. HTTP Synchronous Response ... 64
Example 16. RosettaNet Message Encased in SMTP Envelope... 69
Example 17. Unsigned RosettaNet Message in SMTP Envelope.. 69
Example 18. Signed RosettaNet Message in SMTP Envelope... 70

Validated 13 July 2001 Section 1, Implementation Framework Concept

©2001 by RosettaNet. All rights reserved. ix

Version History
Version 01.00 8 June 1999 Release.

Version 01.00.01 8 July 1999 Release.

Version 01.01.00 30 December 1999 Release.

Release 02.00.00 3 January 2001 Release for Validation.

Release 02.00.00A 25 April 2001 Validation Update (Limited Distribution).

Release 02.00.00B 07 May 2001 Validation Update (Limited Distribution).

Release 02.00.00C 25 June 2001 Validation Update (Limited Distribution).

Validated 02.00.00 13 July 2001 Validated Specification.

Validated 13 July 2001 Section 1, Implementation Framework Concept

©2001 by RosettaNet. All rights reserved. xi

Preface

Purpose of the Document

This document is designed to assist e-business system implementers and solution
providers who wish to create or implement interoperable software application
components that cooperatively execute RosettaNet PIPs. The document does this by
specifying the exchange protocol that enables participating supply chain members to
implement RosettaNet PIPs.

The result of these specifications should be to enable two RosettaNet objectives:

• Streamline Execution: RosettaNet needs to facilitate the rapid development of
Partner Interface Processes (PIPs).

• Accelerate Adoption: RosettaNet needs to facilitate the rapid development of
e-business applications that execute RosettaNet-compliant PIPs.

Intended Audience

1. The primary audience for this document is software engineers who will be
developing RosettaNet-compliant networked software applications that can
interoperate with RosettaNet-compliant networked software applications
developed by other companies. These applications will cooperatively execute
RosettaNet e-business PIPs.

2. The secondary audience is system architects, including:

a. Those within implementing companies who must integrate their architectures
with RosettaNet architectures and applications; and

b. Those who volunteer to participate in RosettaNet projects to create additional
RosettaNet e-business specifications.

Prerequisites

RosettaNet assumes that the audience will be familiar with or have knowledge of the
following:

• General Internet protocols,

• MIME and S/MIME,

• Digital signatures and the Secure Socket Layer (SSL),

• Extensible Markup Language (XML),

• BNF grammar specification syntax,

RosettaNet Implementation Framework: Core Specification Release for Validation 13 July 2001

xii ©2001 by RosettaNet. All rights reserved.

• All the external references listed in �References.�

Scope of the Document

The focus of this document is specification of the core of the RosettaNet
Implementation Framework; that is, packaging, routing, and transferring of
RosettaNet business messages (including security aspects), as well as specification of
business signal messages used in the execution of RosettaNet Partner Interface
Processes or PIPs.

While it provides sufficient business and technical background to understand the
context for the implementation framework, the actual specification of the
implementation framework core is the focus of this document.

This document does not provide either user documentation or a detailed architectural
treatise. This document subsumes previous versions, including Technical Advisories
that pertained to previous versions.

Structure of This Document

This document is an implementation specification for the RosettaNet networked
application architecture. It contains the following sections:

• Section 1, �Introduction� has two parts:

• �Business Background� introduces new business concepts that provided
requirements or otherwise influenced the development of this version of the
implementation framework.

• �Technical Background� introduces new technical concepts that influenced
the development of this version of the implementation framework.

• Section 2, �Technical Specifications� has six parts:

• �RosettaNet Business Message Components� enables the implementer to
understand what is needed to populate the various parts of the RosettaNet
Business Message.

• �Security Provisions and Trading Partner Authentication� specifies the use of
S/MIME and establishes norms for use of digital signatures.

• �RosettaNet Business Message Packaging and Unpackaging� specifies how
the implementer assembles the defined message components and how the
recipient extracts those components.

• �RosettaNet Business Message Transfer� specifies transport or transfer
protocols for RosettaNet Business Message exchange, and specifies which are
mandatory and which are optional; additionally, it provides debug header
specifications for use in certain situations.

Validated 13 July 2001 Section 1, Implementation Framework Concept

©2001 by RosettaNet. All rights reserved. xiii

• �Business Signal Specifications & Process Control PIPs� identifies and
specifies current business signals, as well as PIPs that are used in controlling
the process of PIP business exchanges.

• �Flow of RosettaNet Business Messages� specifies the role of business action
messages and business signals in the choreography of a PIP.

• There are several appendices:

• Appendix A, �Key Differences between RNIF 1.1 & RNIF 2.0� outlines
features that are either new in RNIF 2.0 or that have been substantially
changed from RNIF 1.1.

• Appendix B, �Required PIP Metamodel Changes� identifies the changes that
are expected to the existing PIP metamodel in order to take full advantage of
features added in RNIF 2.0.

• Appendix C, �IFV Mapping from BOV and FSV� serves to remove
�boilerplate� material from the individual PIP specifications and place it in
the RNIF.

• Appendix D, �Importance of Transfer Independence� supports the rationale
for transport independence via several example scenarios.

• Appendix E, �Anticipated Futures� describes some promising technologies
that may be useful in future versions of the RNIF.

• Appendix F, �Additional Examples� offers more extensive examples of PIP
exchanges via the RNIF than are present in the specification sections.

• Appendix G, �References� presents both RosettaNet and other documents that
are cited in this document.

• Appendix H, �Glossary� gives definitions for key words used in this
document.

Use of Normative Specifications

The RosettaNet Implementation Framework specification incorporates by reference
certain normative standards or specifications from non-RosettaNet sources. These
documents are referenced in the text and are listed in the �References� appendix of
this document.

This document does not restate material from the referenced document unless this
document is changing a part of the referenced document. The reader is expected to
refer to the relevant original source document for the text of referred specifications.

RosettaNet Implementation Framework: Core Specification Release for Validation 13 July 2001

xiv ©2001 by RosettaNet. All rights reserved.

Style Conventions

This specification uses a number of conventions to convey specific meanings. These
fall into three categories: typographical conventions, language conventions, and
graphical conventions. They are identified below.

Typographical Conventions

The use of a monospaced font indicates presentation of a code fragment.

Within the monospaced font, the use of italics indicates that the text so
presented is text to be replaced by the user or the system, depending upon the context
of the code fragment.

Note: In sections 2.3 (�RosettaNet Business Message Packaging and Unpackaging�)
and 2.4 (�RosettaNet Business Message Transfer�), the MIME convention of using
angle brackets (�<>�) within the monospaced font to enclose text that is to be replaced
has been followed. In these sections, no XML code (which uses angle brackets
differently) is presented.

Language Conventions

This specification adopts the conventions expressed in the Internet Engineering Task
Force�s (IETF) Request for Comments (RFC) 2119 �Key Words for Use in RFCs to
Indicate Requirement Levels.� The key words �MUST,� �MUST NOT,�
�REQUIRED,� �SHALL,� �SHALL NOT,� �SHOULD,� �SHOULD NOT,�
�RECOMMENDED,� �MAY,� and �OPTIONAL� in section 2 of this document are
to be interpreted as described in RFC 2119.

Formatting Conventions

Examples are used throughout the document to enhance understanding. Therefore,
they are formatted for readability. This may mean that lines breaks and extra white
spaces have been used in some examples.

Graphical Conventions

Figures that show the message components, as well as the packaging and unpackaging
of those components, use various line types to indicate whether something is a
concrete component (thin black outline) or a logical component (thick grey line). If a
component or packaging method is optional, the line is broken instead of solid.

Optional Concrete Component

Concrete Component

Logical Component

Validated 13 July 2001 Section 1, Implementation Framework Concept

©2001 by RosettaNet. All rights reserved. xv

Backward Compatibility

The following are statements on backward compatibility between RNIF 1.1 and
RNIF 2.0:

1. RNIF 2.0 is not backward compatible with RNIF 1.1. That is, RNIF 2.0 is not
simply a compatible superset of RNIF 1.1. Software solutions that implement
only RNIF 2.0 WILL NOT be interoperable with software solutions that
implement only RNIF 1.1 and vice versa.

If a software solution that implements only RNIF 2.0 receives an RNIF 1.1
message, then the solution is not expected to do anything with that message. It
MAY simply choose to ignore that message.

Subsequent releases of RNIF 2.x will be backward compatible with previous
releases of RNIF 2.x. That is, RNIF 2.1 will be backward compatible with RNIF
2.0, as will RNIF 2.2, 2.3, etc.

2. All PIPs published prior to the publication of RNIF 2.0 MUST work with RNIF
1.1 and SHOULD work with RNIF 2.x.

3. PIPs published after the publication of RNIF 2.0 MUST work with RNIF 2.x and
MAY work with RNIF 1.1.

4. RosettaNet will issue a separate communication regarding its �retirement� policy
for obsolete releases.

Validated 13 July 2001 Section 1, Implementation Framework Concept

©2001 by RosettaNet. All rights reserved. 1

1 Introduction

RosettaNet�s mission is to facilitate electronic exchange of standard business
documents between trading partners, adhering to the Partner Interface Processes
(PIPs) specified and standardized by RosettaNet. Fundamental to this are the
RosettaNet Implementation Framework (RNIF), the PIP specifications, and the
business and technical dictionaries. This document supplies the specification for the
RosettaNet Implementation Framework; separate documents provide PIP and
dictionary specifications.

This introductory section provides both business and technical background
information that is intended to help the reader make full use of the actual
specifications contained in section 2 of this document.

1.1 Business Background

Since the publication of version 1 (and its revisions) of the RosettaNet Implementation
Framework (RNIF), changes have occurred both in the way that RosettaNet sees the
structure of the framework and in the e-business environment in which RosettaNet
members find themselves. This section touches upon those changes and gives the
business rationale for certain changes that have been made to the RNIF specifications.
See also the �Technical Background� sub-section for additional influences on these
specifications.

1.1.1 Implementation Framework Concept

In previous versions of the implementation framework specifications, the subject
matter has been limited to specifying the format and elements of the common parts of
PIP messages (e.g., headers); and the packaging, routing, and transport of all PIP
messages and business signals. It has also included security to a limited extent.

RosettaNet has since realized that this is only a portion of a useful framework that
members would need to create robust implementations. Some additional elements of a
robust framework would include Trading Partner Agreements and directories or
registries.

This document, therefore, covers only a portion of the total RosettaNet
Implementation Framework � although it is a very large and important part. Figure 1
shows the relationship of the Implementation Framework and its constituent parts to
the rest of the RosettaNet specifications in a trading partner implementation.

RosettaNet Implementation Framework: Core Specification Release for Validation 13 July 2001

2 ©2001 by RosettaNet. All rights reserved.

Trading Partner A

���� Enable
Trading Partners
use RosettaNet
specifications
(RNIF, Dictionaries,
PIPs) to enable
common public
business process
environment

Message
Packing

Message
Unpacking

���� Agree &
Execute
Trading
partners agree
on PIP to use,
perform TPA
and execute a
PIP instance as
a sequence of
business
messages and
signals

Trading Partner B

Private
Process

Public
Process

Private
Process

Message
Transfer

Public
Process

Message Creation

Message Processing

Message
Packing

Message
Unpacking

Message Creation

Message Processing

RNIF
Transfer,
Routing,

Packaging
Security

TPA
Signals

PIPs

Business

Technical

Dict.RNIF
Transfer,
Routing,

Packaging
Security

TPA
Signals

PIPs

Business

Technical

Dict.

Figure 1. RosettaNet Specifications in a Trading Partner
Implementation

1.1.2 Scalability of RosettaNet Specifications

As RosettaNet specifications are increasingly implemented within trading partners�
enterprises, the issue of scalability (for increasing volumes) and applicability to
related e-business transactions that are not directly addressed by current RosettaNet
supply-chain-specific PIPs arises.

Similarly, solution partners face the challenge of creating and maintaining products
that must support multiple approaches and sets of specifications to e-business within
many supply chains.

Therefore, RosettaNet has recognized the need for increasing members� ability to
interoperate across supply chains and achieve greater proliferation of e-business
processes. The approach to achieving this is to search for, foster, and participate in
those industry initiatives that are designed to support a wider set of businesses. This is
particularly true in the implementation framework arena.

For this version of the RosettaNet Implementation Framework, which is designed to
support members� current implementation needs, particular attention has been paid to
using existing well-tested industry standards wherever possible. Where there is no
such existing standard, due recognition of the directions being taken by emerging
cross-industry initiatives has informed the decisions reflected in this document.

Validated 13 July 2001 Section 1, Public vs. Private Processes

©2001 by RosettaNet. All rights reserved. 3

The intent has been to pave the way for RosettaNet ultimately to converge with or
adopt a broader framework, and therefore for members to gain the benefit of a more
broadly applicable implementation.

1.2 Technical Background

This section introduces several key technical concepts and assumptions that pertain to
all the RosettaNet specifications and are necessary to make effective use of the
specification part of this document. See also the �Glossary� in this document.

1.2.1 Public vs. Private Processes

An organization�s business processes can be divided into two broad categories. The
business processes that are internal to the organization are called �private processes,�
while the business processes that involve interactions with trading partners are known
as �public processes.�

The public processes are business processes through which partners conduct
e-business. Within the context of RosettaNet, these are the partner interface processes
that are visible between trading partners. Public processes implement the RosettaNet
PIP specifications to exchange standard business documents over standard Internet
transfer protocols, as specified by the RosettaNet Implementation Framework.

Within trading partner enterprises, private processes interface with public processes
and with back-end business systems as needed to facilitate e-business exchanges
between trading partner organizations.

Public
processes

Public
processes

Private
processes

Private
processes

Back-end Back-end

Internet

Figure 2. Private vs. Public Processes

1.2.1.1 Interoperability Considerations

For public processes to be interoperable, the information format and the sequence of
message exchanges as executed by the public processes must conform to RosettaNet
specifications. However, organizations may wish or need to implement new private
processes or modify existing private processes (that mesh the back-end systems to the
public processes) for this purpose.

RosettaNet Implementation Framework: Core Specification Release for Validation 13 July 2001

4 ©2001 by RosettaNet. All rights reserved.

1.2.2 PIPs and the Implementation Framework

A major part of RosettaNet�s standardization effort is alignment of business processes
between trading partners in a given supply chain (such as the IT Products and
Electronic Component supply chains). RosettaNet specifies these as Partner Interface
Process (PIP) specifications.

RosettaNet divides the entire e-business supply chain domain for which PIPs are
specified into broad classifications called �clusters.� Each cluster is further sub-
divided into two or more �segments.� Each segment comprises several PIPs. PIPs
contain one or more Activities, and Activities in turn specify Actions. An example of
this relationship follows:

• CLUSTER 3: Order Management

• Segment A: Quote and Order Entry

• PIP 3A4: Manage Purchase Order

• Activity: Create Purchase Order

• Action: Purchase Order Request

• Segment B: Transportation and Distribution

• Segment C: Returns and Finance

• Segment D: Product Configuration

Each PIP in a segment represents a well-defined business process subset, and is named
with the cluster, segment, and sequence number of the PIP in the segment. For
example the Manage Purchase Order PIP is fourth in sequence in Segment A (Quote
and Order Entry) of the Cluster 3 (Order Management). Hence the Manage Purchase
Order PIP is identified by the name PIP3A4.

PIPs include specification of partner business roles (Buyer, Seller etc.); business
activities involved between the roles; and type, content, and sequence of business
documents exchanged by the role-interactions while performing these activities. They
also specify the time, security, authentication, and performance constraints of these
interactions. Structure and content of the business documents exchanged is specified
through XML Document Type Definitions (DTDs) and associated Message
Guidelines.

Trading partners that participate in the PIP exchange business documents that conform
to the DTDs and Message Guidelines in the subject PIP specification, using network
protocols that are specified and supported by the RosettaNet Implementation
Framework.

Figure 3 is an example PIP interaction diagram that shows the business roles,
messages, and their sequence of exchange in the PIP.

Validated 13 July 2001 Section 1, PIPs and the Implementation Framework

©2001 by RosettaNet. All rights reserved. 5

Buyer Seller

1. PurchaseOrderRequest

2. ReceiptAcknowledgement

3. PurchaseOrderAcceptance

4. ReceiptAcknowledgement

Figure 3. Sample PIP Interaction Diagram

1.2.2.1 Action and Signal Messages

The messages involved in a PIP business document exchange can be classified into
two broad categories � �business action� messages and a �business signal� message.

Business actions are messages with content that is of a business nature, such as a
Purchase Order or a Request For Quote. The DTDs and the associated Message
Guidelines for business actions are specified as part of the corresponding PIP
specification.

Business signals are positive and negative acknowledgment messages that are sent in
response to business actions. Business signals are specified by and are part of the
RosettaNet Implementation Framework. RNIF 2.0 contains one positive and one
negative business signal.

Note: Only business actions are acknowledged. Business signals are never
acknowledged.

POSITIVE SIGNALS

Receipt-Acknowledgment: This message is a positive acknowledgment of receipt of a
Business Action message. Sent when an action message is received by the trading
partner and is found to be a structurally and syntactically valid RosettaNet business
action message. This message is sent only if it is required by the PIP and it is almost
always required.

Note: In RNIF 2.0, RosettaNet eliminated the Acceptance Acknowledgment Signal,
which had not been used in any of the PIPs.

The PIP specification that specifies the business actions also specifies which business
signals are required. In section 2.6, RNIF provides detailed guidelines for PIP
developers regarding when a specific kind of signal should be sent.

RosettaNet Implementation Framework: Core Specification Release for Validation 13 July 2001

6 ©2001 by RosettaNet. All rights reserved.

NEGATIVE SIGNALS

Exception: This business signal is a negative acknowledgment message that is sent to
indicate an error. (See also the Notification of Failure PIP in section 2.5.)

In RNIF 2.0, there is only one exception message (versus three in RNIF 1.1). In RNIF
2.0, individual exceptions have been converted to exception types within the same
exception signal. This change allows for faster implementation of additional or
changed types. The following �exception types� are equivalent to the separate
exceptions that were used in RNIF 1.1.

• Receipt-Acknowledgment-Exception: This is a negative acknowledgment of
receipt of a business action message. It is sent when a message is received by the
trading partner and is found to be a structurally or syntactically invalid RosettaNet
business action message.

• General-Exception: This is a negative acknowledgment message that is sent to
indicate an error other than the above. For example, in RNIF 1.1 this signal was
sent when an error was detected during sequence validation or while performing
the requested action. (See also the Notification of Failure PIP in section 2.5.)

RosettaNet recommends that authentication or authorization failures should not be
responded to with exception messages. This is to minimize the risk of security
attacks. See section 2.3.4 for further details.

1.2.3 PIP Message Exchange Models

Current PIP specifications are based on a Peer-to-Peer business message exchange
model, between the RosettaNet networked applications (and hence the trading
partners). That is, RosettaNet messages are exchanged between two trading partners
directly. This peer-to-peer mode of message exchange relies on prior knowledge of the
peer network entity identities and their addresses, which should be exchanged by the
trading partners in advance. In RNIF 2.0, RosettaNet is introducing a mechanism to
facilitate exchange of these messages through a third-party routing entity such as a
hub (a.k.a. intermediary). However this mechanism is still based on the peer-to-peer
message exchange model as far as the PIP is concerned. That is, the business entities
involved in the exchange are still two: the originator and the final recipient, with the
Hub simply facilitating the routing and delivery of the messages. RosettaNet is
investigating other message exchange models for potential future use by PIP
specifications. These include: Broadcast to all trading partners together; Publish and
Subscribe mode of message exchanges between trading partners; and Multicast to a
select subset of the trading partners.

1.2.4 PIP Metamodel

A PIP specification includes three major parts. These are the Business Operational
View (BOV), the Functional Service View (FSV), and the Implementation Framework
View (IFV).

Each PIP performs one or more discrete business activities, as specified in the PIP
blueprints by the business community. These activities are identified in the BOV of

Validated 13 July 2001 Section 1, PIP Metamodel

©2001 by RosettaNet. All rights reserved. 7

the PIP specification as described below. For example, the BOV of PIP 3A4 shows
three separate business activities: Create Purchase Order, Change Purchase Order,
and Cancel Purchase Order.

Each activity in the BOV translates into Business Actions and Signals that are
exchanged between network components as specified in the FSV part of the PIP
specification as described below. The IFV specifies the format (XML) and the
corresponding guidelines for the actions and is further described below.

1.2.4.1 Business Operational View (BOV)

The Business Operational View (BOV) of a PIP specification captures the semantics
of business entities and the flow of business information between Roles involved in
the exchange as they perform business activities. The content of the BOV section of a
PIP specification is based on the PIP Blueprint document created for RosettaNet's
business community.

Figure 4 is an example BOV flow diagram (using PIP 2A3, �Query Marketing
Information�).

S t a r t

Q u e r y M a rk e tin g In fo r m a tio n
< < Q u e r y R e s p o n s e A c t iv ity > >

M a r k e t in g In fo r m a t io n
Q u e r y

< < S e c u r e F lo w > >

F A IL E D

[F A IL]

E N D

[S U C C E S S]

M a r k e t in g In fo r m a t io n
R e s p o n s e

< < S e c u r e F lo w > >

P r o c e s s M a r k e t in g
In fo r m a t io n Q u e r y

 : S e l le r : B u y e r

Figure 4. Sample BOV Flow (Using �Query Marketing Information� PIP)

The diagram shows that the PIP involves the exchange of business information
between �Buyer� and �Seller� Roles. The specific activity involved in the PIP is
�Query Marketing Information� and it is a �QueryResponseActivity� type of activity.
The flow also shows that �Query Marketing Information� activity involves the flow of
the �Marketing Information Query� business action from the �Buyer� to the �Seller�
and a subsequent flow of the �Marketing Information Response� business action from
the �Seller� to the �Buyer�. The <<Secure Flow>> stereotype in the boxes containing
the business actions implies that the business action MUST be transported from sender
to recipient in a secure way.

RosettaNet Implementation Framework: Core Specification Release for Validation 13 July 2001

8 ©2001 by RosettaNet. All rights reserved.

The BOV part of the PIP specification also contains the description and type of the
Business Roles involved in the BOV flow. A role type can be one of Organizational,
Employee, or Functional. When two trading partners execute a business process
within the RosettaNet framework, each partner performs a role. As the name implies
the �Organizational� role is for playing the role of an �organization� such as an
enterprise, a company, or a factory to cite few examples. The �Employee� role is used
in business interactions that are performed by employees of an organization. The
�Functional� role is for the cases when the interaction can be performed by either an
employee or an organization.

The Business Activity Control section of the BOV contains business activity
performance control specifications. For each activity in the PIP, this section specifies
whether a �Receipt Acknowledgment� is required; if so, it also specifies whether it
should be a non-repudiable acknowledgment and the time within which the
acknowledgment should be sent. This section also contains other specifications, such
as whether �Authorization is Required� to perform the activity.

Refer to the PIP specification for complete details of the BOV part of that PIP
specification.

1.2.4.2 Functional Service View (FSV)

The Functional Service View (FSV) part of a PIP specification is derived from the
BOV and specifies the network component design and the interactions between the
network components as they execute the PIP. The network components specified in
this section of the PIP are also known as the RosettaNet �services.�

Note: In RNIF 2.0 onwards, the �agent� network component and related interaction
dialogs have been removed from the Functional Service View part of the PIP
specifications. See Appendix C of this document for details.

 : Buyer : Seller

1. request(:PurchaseOrderRequestAction)

1.1. signal(:ReceiptAcknowledgement)

2. response(:PurchaseOrderAcceptanceAction)

2.1. signal(:ReceiptAcknowledgement)

Figure 5. Sample FSV Network Component Dialog

Validated 13 July 2001 Section 1, RosettaNet Business Message Overview

©2001 by RosettaNet. All rights reserved. 9

Figure 5 identifies �Buyer� and �Seller� as two RosettaNet services (network
components). It also depicts the interactions between them, namely, the �request� and
�response� actions and the corresponding Receipt-Acknowledgment signals.

The FSV also defines the message exchange controls for each of the actions and
signals involved in the dialog. For actions, this includes specification of time within
which an Acknowledgment of Receipt signal should be sent; time within which a
response to the action should be sent (if applicable); whether authorization is required
to perform the action; and whether a secure transport should be used to transmit the
action to the recipient.

Refer to the PIP specification for complete details of the FSV part of that PIP
specification.

1.2.4.3 Implementation Framework View (IFV)

The Implementation Framework View (IFV) specifies the action message formats and
communication requirements between network components as supported by the
RosettaNet Implementation Framework. The communication requirements include
specifications on the requirement for secure transport protocols such as SSL and
digital signatures. For message formats, RosettaNet distributes XML DTDs and
Message Guidelines for the action messages that are exchanged when the PIP is
executed.

The RNIF 2.0-compliant PIP specifications include the BOV and FSV specifications
and the XML Message Guidelines part of the IFV. However, other aspects of IFV
such as the communications requirements between peer network components are no
longer specified in the PIP specification, as these aspects can be derived from the
BOV and FSV parts of the PIP specification in a well-defined and consistent fashion.
Refer to Appendix C in this document for a description of how the BOV and FSV
sections of a PIP specification can be mapped to such Implementation Framework
View (IFV) aspects.

1.2.5 RosettaNet Business Message Overview

This section introduces the complete RosettaNet Business Message, as well as other
parts of a completely packaged business message.

1.2.5.1 Parts of a RosettaNet Business Message

The individual business documents involved in a PIP (i.e., action and signal messages)
are exchanged in a container that packs together other related entities such as headers,
attachments and digital signatures. This container with its constituent parts is the basic
unit of exchange between two RosettaNet end-points, and is known as a �RosettaNet
Business Message.� Section 2 of this document gives the complete specification of the
RosettaNet Business Message format and the corresponding packaging and
unpackaging aspects. Below is an introduction to the basic structure and components
of the RosettaNet Business Message.

RosettaNet Implementation Framework: Core Specification Release for Validation 13 July 2001

10 ©2001 by RosettaNet. All rights reserved.

Attachment n

Attachment 1

Service Content
(Action / Signal Message)

Service Header

Preamble Header

..
.

MIME multipart/related

Headers

Payload

RosettaNet
Business-Message

Delivery Header

Figure 6. Parts of a RosettaNet Business Message

A RosettaNet Business Message always contains a Preamble header, a Delivery
Header, a Service Header, and a Service Content. Service Content comprises an action
message or a signal message. If Service Content is an action message, one or more
attachments may be included. As shown, the headers and Service Content are
packaged together using a MIME multipart/related construct. (This is similar to the
RNIF 1.1 packaging scheme.) A RosettaNet Business Message can optionally be
digitally signed. In RNIF 1.1, the RosettaNet Object (RNO) format was used for this
purpose. However RNIF 2.0 does away with the RNO format and uses the standard
S/MIME mechanism in its place. Refer to section 2 for details on the use of S/MIME
for digital signatures and also for complete details of the Preamble and Service Header
and their constituent elements.

1.2.5.2 Third-Party (Non-RosettaNet) Service Content

As described above, the Service Content contains either an action message or a signal
message. A signal message must always be a RosettaNet-defined signal message
instance. However, for action messages, RNIF 2.0 provides the option of shipping
business action messages in a third-party defined format. The RNIF 2.0 Service
Header now includes additional fields that facilitate this. For example, the header now
includes fields that identify the �standard body� and the �version� of the specification
to which the action message conforms.

Only action messages (also known as �business content�) can be of non-RosettaNet
origin. These messages must still be exchanged in a RosettaNet-defined PIP and must
be sanctioned by RosettaNet by explicit identification of the sanctioned third-party
action messages, in the PIP specification. Additionally, trading partners need to agree
in advance to exchange third-party business content (for example, through a Trading
Partner Agreement). This agreement would include the PIP payload binding
information (i.e., which third-party business content would be used as a replacement
for a particular action message in a PIP).

Validated 13 July 2001 Section 1, Signals vs. Process Control PIPs

©2001 by RosettaNet. All rights reserved. 11

If this feature is not made available in a solution, the solution will not be deemed non-
compliant. Similarly, a receiving trading partner MAY not wish to use this feature.
This is also acceptable.

Refer to section 2 and to Appendix C for complete details.

1.2.5.3 Routing RosettaNet Business Messages through Hubs

In this version of RNIF, trading partners have the option of exchanging business
messages directly with each other or through intermediary third-party routers (such as
hubs).

To facilitate routing messages through hubs, RNIF 2.0 introduces a new type of
header called the Delivery Header. The Delivery Header contains elements for the
sending and receiving trading partner identities, the date and time stamp of the
message, and a globally unique tracking ID. An instance of the Delivery Header is
always present in a RosettaNet Business message and MUST be added by the initiator
of the message.

All parties involved in routing the message from its originating point to the (eventual)
destination, including any intermediaries if involved, use the information in the
Delivery Header.

In RNIF 2.0, parts of the RosettaNet Business Message can be encrypted, including
the Service Content and Service Header parts. In order for third-party hubs that may
not have access to the encrypted Service Header to be able to route the message, the
delivery-related elements are now part of the Delivery Header, which is never
encrypted.

The tracking ID element of the Delivery Header and the message creation date and
time stamp element help all parties involved in the message path to track the message
in a globally unique fashion.

The Delivery Header also contains elements for specification of other requirements,
such as whether a secure transport must be used to transmit the message between the
nodes.

Note all headers namely, Preamble, Delivery and Service Headers, are always present
in the message with only one instance of each (see Figure 6). Specifically, there is
always one instance of the Delivery Header, as it is created by the originator/sender of
the message and stays unaltered (along with all other components of the message) as it
is routed and delivered to the final recipient.

For more details on the Delivery Header please refer to section 2 of this specification.

1.2.6 Signals vs. Process Control PIPs

Signals are used between two peers to communicate certain �events� within a PIP
instance, such as �receipt and successful validation of a message� (Receipt
Acknowledgment), �receipt of an out of sequence message� (Exception with a type of

RosettaNet Implementation Framework: Core Specification Release for Validation 13 July 2001

12 ©2001 by RosettaNet. All rights reserved.

�General Exception�), or �receipt of a message that has invalid grammar� (Exception
with a type of �Receipt Acknowledgment Exception�).

Process Control PIPs, on the other hand, are used to communicate process states
outside of the context of the current process instance. An example is the 0A1
�Notification of Failure� PIP. A new instance of the 0A1 process is started when
exceptions happen under a specific condition (namely, when the process is in
�execution� state at one partner�s system and may have possibly reached a
�completed� state in the other partner�s system) during the execution of any other
process.

1.2.7 Network Application Model

The RNIF specifies the transfer and security level protocols to be used and the format
of the RosettaNet business messages that are exchanged by the networked
applications. The following diagram captures the RosettaNet networked application
protocol stack when exchanging RosettaNet business messages.

SSL

Preamble Header

Delivery Header

Service Header
 Process Control
 Activity Control
 Action Control

Service Content
 Action Message/Signal Message
 Optional Attachment(s)

Optional Digital Signature

HTTPS

HTTP SMTP
Other

Transfer
Protocols

Transport and Lower layers
(TCP/IP protocol stack)

RosettaNet
Business Message
in MIME/S-MIME
message format

Other
Transport
Protocols

Figure 7. Network Application Model

1.2.8 Authentication, Authorization and Non-Repudiation

This section explains the concepts of �authentication,� �authorization,� and �non-
repudiation� within the context of RNIF 2.0.

Validated 13 July 2001 Section 1, Authentication, Authorization and Non-Repudiation

©2001 by RosettaNet. All rights reserved. 13

1.2.8.1 Authentication

Authentication within the context of RNIF 2.0 is the act of making sure that the sender
of a RosettaNet Business Message is who the sender claims to be. This is
accomplished by requiring the sender of the message to digitally sign the message. In
RNIF 2.0, a RosettaNet Business Message is digitally signed following the S/MIME
IETF (RFC 2311) specification. See section 2.2 for further details.

The PIP specifications specify whether the messages exchanged must be digitally
signed. If so, then the sending partner is required to digitally sign the messages sent to
its partner. The receiving partner authenticates the message sender by following the
standard S/MIME and PKCS mechanisms to verify the digital signatures. See section
2.2 for more details.

1.2.8.2 Authorization

Authorization is the act of making sure that the sender of a message is permitted or
authorized to send the subject message to the receiving partner. The requirement on
Authorization of message exchanges in PIP is specified in the corresponding PIP
specification. The trading partners must establish agreement between themselves in
advance, by identifying the PIPs they would execute between themselves and the
Digital Certificates that would be used to sign the messages exchanged. Each message
exchanged must also be digitally signed using the S/MIME mechanism as described
earlier.

Authorization is typically a two-step process. The first step is making sure that the
sending partner (as identified in the Delivery and Service Headers) is authorized to
send the subject message (PIP). The second step is making sure that the sending
partner�s organization, as identified by the digital signature on the message, is
authorized to send the subject message.

See section 2.2 for further details.

1.2.8.3 Non-Repudiation

Non-Repudiation is the mechanism for making sure that an originating trading partner
can not deny having originated and sent a message (called �Non-Repudiation of
Origin and Content�) and that a receiving trading partner cannot deny having received
a message sent by its partner (called �Non-Repudiation of Receipt�). Non-repudiation
requirements are explicitly called out in PIP specifications.

NON-REPUDIATION OF ORIGIN AND CONTENT

For the purpose of Non-Repudiation of Origin and Content, the originating partner of
a RosettaNet Business Message must digitally sign the message following the
S/MIME mechanism as described earlier.

The partner receiving the RosettaNet Business Message must store the message in
original form for a mutually agreed period of time (typically three to seven years).

RosettaNet Implementation Framework: Core Specification Release for Validation 13 July 2001

14 ©2001 by RosettaNet. All rights reserved.

This prevents an initiating partner from later denying that they originated contents of a
Business Document.

NON-REPUDIATION OF RECEIPT

For the purpose of Non-Repudiation of Receipt, a signed Receipt-Acknowledgment
signal must be sent for the received RosettaNet Business Message. The
Acknowledgment message must be digitally signed and must also include an MD5 or
SHA-1 digest of the message being acknowledged. Additionally the partner receiving
the acknowledgment must store the receipt and original message in their original form
for a mutually agreed period of time (typically three to seven years). This prevents a
responding partner from later denying that they received a Business Document.

Validated 13 July 2001 Section 2, Introduction

©2001 by RosettaNet. All rights reserved. 15

2 Technical Specifications

This section contains the actual specifications approved by RosettaNet for
constructing and exchanging RosettaNet Business Messages. It begins with the
specifications for the various components of a RosettaNet Business Message, proceeds
to the packaging (and unpackaging) of such messages, and then specifies the various
transfer mechanisms for exchanging those messages. It also contains specifications for
security, for process control PIPs, and for RosettaNet business signals. Additionally, a
section on message flow is included.

2.1 RosettaNet Business Message Components

This section enables the implementer to understand what is needed to populate the
various parts of the RosettaNet Business Message. For simplicity, this section also
includes specifications for special headers needed to route the RosettaNet Business
Message for trading partners using an intermediary service provider (e.g., a hub).

2.1.1 Introduction

A RosettaNet Business Message consists of various components as shown in Figure 6.
Excepting attachments (if any), all the components in the RosettaNet Business
Message are XML documents.

This section provides the syntax, semantics, and descriptions for the various business
message components, such as the various headers used to transmit a RosettaNet action
message or a RosettaNet business signal. Compliant implementations MUST adhere
to these syntactic and semantic rules in order to ensure interoperability.

This section only describes the XML headers for action or signal messages. It does not
include the MIME headers used for packaging or the transfer headers used with a
particular transfer protocol. Refer to those appropriate sections (2.3 and 2.4) for
information regarding the MIME headers and the transfer headers.

2.1.2 XML Usage

Since the core of the RosettaNet Business Message is in XML, it is important to
clarify the usage of XML in the context of encoding and element validation.

2.1.2.1 Encoding Rules

For XML documents, RosettaNet permits both UTF-8 and UTF-16 encoding schemes.
Senders MAY choose either encoding based on the content of the XML document.
The receivers MUST be able to handle both encoding schemes. Subject to the
constraints of the chosen transfer protocol, the XML parts MAY be MIME content-
transfer encoded. See RFC 2376 and W3C�s XML specification for details.

RosettaNet Implementation Framework: Core Specification Release for Validation 13 July 2001

16 ©2001 by RosettaNet. All rights reserved.

2.1.2.2 Validation Rules

All elements MUST be validated against the DTD for the document type that contains
it, based on standard DTD grammar validation rules.

The following is the minimum level of validation that is required on each of the XML
body parts, namely, the Preamble, the Delivery Header, the Service Header, and the
Service Content.

1. The XML document MUST be compliant with its corresponding DTD.

2. Where an element�s data type and/or length is specified in the corresponding
RosettaNet Message Guideline, the element MUST be validated against these
specifications.

3. Where an element�s allowed list of values is specified in the Entity Instance
list in the corresponding RosettaNet Message Guideline, the element MUST
be validated against these specifications.

4. Where the cardinality specification of an element in the Message Guideline is
different from the corresponding specification in the DTD, the specification in
the Message Guideline is more accurate and MUST be adhered to.

5. Where the sequence or naming of an element in the Message Guideline is
different from the corresponding specification in the DTD, the specification in
the DTD is more accurate and MUST be adhered to.

6. Where a dictionary is present and the PIP requires Dictionary Validation, the
Service Content MUST be validated against the dictionary as a part of action
performance.

7. If a message does not follow one or more of the above rules, then it MUST be
deemed invalid.

For elements with validation rules specified in the form of a list of valid or allowed
values, all these values are case sensitive (where not specified otherwise). Also, these
elements are to be treated as �white space sensitive.�

For example, if the allowed values are �Action� and �Signal� for an element or
attribute, then �action�, � signal�, �SIGNAL�, and �A c t I o n� are all examples of
incorrect usage. The only allowed values are those that match an entry in the code list
exactly for case, spacing, and punctuation.

As a further example, suppose there is an element called �ShipToCountry�. If the
element is specified with a cardinality of 1, and if the only allowed value is �United
States of America� then the following is the only allowed XML instance of this
element.

<ShipToCountry>United States of America</ShipToCountry>

The following are examples of incorrect usage:

<ShipToCountry>United States Of America</ShipToCountry>
<ShipToCountry> United States Of America </ShipToCountry>
<ShipToCountry>UnitedStatesOfAmerica</ShipToCountry>

Validated 13 July 2001 Section 2, Header Structure and Format Specifications

©2001 by RosettaNet. All rights reserved. 17

2.1.2.3 Constraints on Message Elements

The following constraints on RosettaNet-defined message elements have been
identified:

• Instance identifiers

Constraint: length constrained to maximum of 255 characters

• Date/time elements

Elements that refer to date and time MUST follow the format for date and
time as specified in the ISO 8601 specification. Specifically, RosettaNet has
chosen the format: CCYYMMDDThhmmss.sssZ , where "CC" represents the
century, "YY" the year, "MM" the month, and "DD" the day. The letter "T" is
the date/time separator and "hh", "mm", and "ss.sss" represent hour, minute,
and second respectively. The "Z" at the end of the date/time element indicates
Coordinated Universal Time. All elements of this format MUST be present.

• Case sensitivity

All element names and element values are case-sensitive.

2.1.2.4 DTD Naming, Pathname Specification and Versioning

All XML documents which are based on specifications that include an associated
Document Type Definition (DTD) MUST reference the DTD by specifying the
doctype element. The name of the DTD file as published by RosettaNet MUST be
specified, and MUST NOT be renamed differently. The doctype element MUST NOT
specify any additional URL qualifiers that refer to a specific location where the DTD
file exists. Recipients of RosettaNet XML messages are responsible for configuring
their systems to find the appropriate DTD file.

 Example: 2A5_MS_R01_00_TechInfoQuery.dtd

2.1.2.5 XML Namespace

A namespace attribute is present in all header and business signal DTD files:
Preamble, Delivery Header, Service Header, Exception and Receipt Acknowledgment.

This is a default attribute with the value "http://www.rosettanet.org/RNIF/V02.00".

2.1.3 Header Structure and Format Specifications

This section describes the various headers that are sent along with a RosettaNet
business action message or a RosettaNet business signal message. Each of these
headers is an XML document, and each of them has a DTD.

The following are the various message headers:

RosettaNet Implementation Framework: Core Specification Release for Validation 13 July 2001

18 ©2001 by RosettaNet. All rights reserved.

• Preamble � This header identifies the standard with which this message structure
is compliant.

• Delivery Header � This header identifies message sender and recipient and
message instance information. This information is placed separately from the
Service Header to allow access to the information by a Hub when the Service
Header is encrypted.

• Service Header � This header identifies the PIP, the PIP instance, the activity, and
the action to which this message belongs.

The overall purpose of these headers is for the recipient to be able to:

• Identify the message as a RosettaNet Business Message;

• Identify the context of the message;

• Identify the sender for authentication and authorization.

2.1.3.1 Preamble Specification

The Preamble is used to identify the standard and the version of the standard with
which the message structure is compliant. All RosettaNet messages MUST have a
Preamble. The structure of the Preamble MUST follow the Preamble DTD.

The values of the elements in the Preamble are fixed by the sender of the first message
in the Activity. All subsequent messages in the activity MUST NOT change the
contents of the preamble.

DOCUMENT TYPE DEFINITION

<!ENTITY % common-attributes "id CDATA #IMPLIED" >
<!ELEMENT Preamble (

standardName ,
standardVersion) >

<!ATTLIST Preamble xmlns CDATA #FIXED
"http://www.rosettanet.org/RNIF/V02.00" >

<!ELEMENT standardName
(GlobalAdministeringAuthorityCode) >

<!ELEMENT GlobalAdministeringAuthorityCode
(#PCDATA) >

<!ELEMENT standardVersion
(VersionIdentifier) >

<!ELEMENT VersionIdentifier
(#PCDATA) >

TREE STRUCTURE FROM MESSAGE GUIDELINE

1 1 Preamble
2 1 |-- standardName.GlobalAdministeringAuthorityCode
3 1 |-- standardVersion.VersionIdentifier

Validated 13 July 2001 Section 2, Header Structure and Format Specifications

©2001 by RosettaNet. All rights reserved. 19

ELEMENT DESCRIPTION

Table 1 provides descriptions of the Preamble elements and special validation and
processing rules where applicable. Note that the Element Names have one-to-one
correspondence with the Element Tag Names, but are not exactly the same. The
element names have been formatted for readability, and white spaces have been
introduced. The official element descriptions appear in the separately published
Message Guideline associated with the Preamble DTD.

Table 1. Preamble Elements

Note: This table is provided to assist in understanding how this header works. For complete documentation on
these elements, consult the Message Guideline itself.

Element

Description/Notes

Special Validation and Processing
Rules

Global Administering
Authority Code

Instance from set of codes identifying
administrating authority.

Standard Name Identifies the name of the standard
with which this message structure is
compliant.

In the case of a RosettaNet-compliant
message, the only allowed value is
�RosettaNet�.

Standard Version Identifies the version number of the
standard.

When the Standard Name is
�RosettaNet�, the Standard Version
MUST carry the version number of the
RNIF specification. For a message
compliant with RNIF 02.00, this value
MUST be �V02.00�.

Example 1. Preamble Instance

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE Preamble SYSTEM "Preamble_MS_V02_00.dtd">
<Preamble>

<standardName>
<GlobalAdministeringAuthorityCode>RosettaNet</GlobalAdministering

AuthorityCode>
</standardName>
<standardVersion>

<VersionIdentifier>V02.00</VersionIdentifier>
</standardVersion>

</Preamble>

VERSIONING NOTES

RNIF 2.0 invalidates the 1.1 version of the Preamble. The new version to use is
version 2.0 of the Preamble, which follows the DTD structure cited in this section.

COMPLIANCE SUMMARY

This summary is for convenience only and is not guaranteed to contain all compliance
statements. For complete compliance knowledge, read the entire specification.

RosettaNet Implementation Framework: Core Specification Release for Validation 13 July 2001

20 ©2001 by RosettaNet. All rights reserved.

A message that is compliant with RNIF 2.0 MUST have an XML document called
Preamble. This document MUST have been packaged according to the packaging
rules specified in section 2.3. The document MUST conform to the DTD cited above
and MUST have values in conformance to the applicable Message Guideline.

2.1.3.2 Delivery Header Specification

This header is added as a separate MIME part to specify route and message instance
information. This information is placed separately from the Service Header to allow
access to the information by a Hub when the Service Header is encrypted.

DOCUMENT TYPE DEFINITION

<!ENTITY % common-attributes "id CDATA #IMPLIED" >
<!ELEMENT DeliveryHeader (

isSecureTransportRequired ,
messageDateTime ,
messageReceiverIdentification ,
messageSenderIdentification ,
messageTrackingID) >

<!ATTLIST DeliveryHeader xmlns CDATA #FIXED
"http://www.rosettanet.org/RNIF/V02.00" >

<!ELEMENT isSecureTransportRequired (AffirmationIndicator) >
<!ELEMENT AffirmationIndicator (#PCDATA) >
<!ELEMENT messageDateTime (DateTimeStamp) >
<!ELEMENT DateTimeStamp (#PCDATA) >
<!ELEMENT messageReceiverIdentification (PartnerIdentification) >
<!ELEMENT PartnerIdentification

(domain? ,
GlobalBusinessIdentifier ,
locationID?) >

<!ELEMENT domain (FreeFormText) >
<!ELEMENT FreeFormText (#PCDATA) >
<!ATTLIST FreeFormText xml:lang CDATA #IMPLIED >
<!ELEMENT GlobalBusinessIdentifier (#PCDATA) >
<!ELEMENT locationID (Value) >
<!ELEMENT messageSenderIdentification (PartnerIdentification) >
<!ELEMENT messageTrackingID (InstanceIdentifier) >
<!ELEMENT InstanceIdentifier (#PCDATA) >
<!ELEMENT Value (#PCDATA) >

TREE STRUCTURE FROM MESSAGE GUIDELINE
1 1 DeliveryHeader
2 1 |-- isSecureTransportRequired.AffirmationIndicator
3 1 |-- messageDateTime.DateTimeStamp
4 1 |-- messageReceiverIdentification.PartnerIdentification
5 0..1 | |-- domain.FreeFormText
6 1 | |-- GlobalBusinessIdentifier
7 0..1 | |-- locationID.Value
8 1 |-- messageSenderIdentification.PartnerIdentification
9 0..1 | |-- domain.FreeFormText
10 1 | |-- GlobalBusinessIdentifier
11 0..1 | |-- locationID.Value
12 1 |-- messageTrackingID.InstanceIdentifier

Validated 13 July 2001 Section 2, Header Structure and Format Specifications

©2001 by RosettaNet. All rights reserved. 21

ELEMENT DESCRIPTION

Table 2 provides descriptions of the Delivery Header elements and special validation
and processing rules where applicable. Note that the Element Names have one-to-one
correspondence with the Element Tag Names, but are not exactly the same. The
element names have been formatted for readability and white spaces have been
introduced. (For example, the Element Name �Sent To� in the table corresponds to
the element with the tag name �SentTo�.) The official element descriptions appear in
the separately published Message Guideline associated with the Delivery Header
DTD.

Table 2. Delivery Header Elements

Note: This table is provided to assist in understanding how this header works. For complete documentation on
these elements, consult the Message Guideline itself.

Element Name

Description/Notes

Special Validation and
Processing Rules

Affirmation Indicator Used to indicate "Yes" or "No"
statements.

Valid values are �Yes� or �No�.

Date Time Stamp Specifies an instance in time.

Domain Identifies the area of applicability.
(In this case, identifies content of
the Partner ID, e.g., whether or not
is DUNS.

For RNIF 2.0, the only allowed
value is �DUNS�. If this optional
element is not present, the default is
�DUNS�.

Free Form Text Unformatted text.

Global Business Identifier The DUNS number of the trading
partner.

Instance Identifier A unique alphanumeric identifier
that represents a specific instance of
a business process, business
transaction, business action, or
business signal. The instance
identifier must be unique for a
particular instance of a business
process, business transaction,
business action and business signal.

Is Secure Transport Required Affirmative value indicates that the
next hub must transmit this message
securely.

Location ID Identifies a logical business location
associated with the trading partner.

Message Date Time The date and time associated with
the creation of a message.

The timestamp MUST be generated
as close to the time of first
attempted transport as possible.

Message Tracking ID Uniquely identifies the message for
tracking purposes.

MUST be unique within the context
of the message sender.

Message Receiver Identification Identity of party receiving message.

Message Sender Identification Identity of party sending message.

RosettaNet Implementation Framework: Core Specification Release for Validation 13 July 2001

22 ©2001 by RosettaNet. All rights reserved.

Element Name

Description/Notes

Special Validation and
Processing Rules

Partner Identification Identifies a trading partner
associated with this message by
Global Business Identifier and
optional Location ID.

Value Identifies the locationID.

Example 2. Delivery Header Instance

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE DeliveryHeader SYSTEM "DeliveryHeader_MS_V02_00.dtd">
<DeliveryHeader>
<isSecureTransportRequired>

<AffirmationIndicator>Yes</AffirmationIndicator>
</isSecureTransportRequired>
<messageDateTime>

<DateTimeStamp>20001121T145200.000Z</DateTimeStamp>
</messageDateTime>
<messageReceiverIdentification>

<PartnerIdentification>
<domain>

<FreeFormText>DUNS</FreeFormText>
</domain>
<GlobalBusinessIdentifier>123456789</GlobalBusinessIdentifier>
<locationID>

<Value>Santa Clara</Value>
</locationID>

</PartnerIdentification>
</messageReceiverIdentification>
<messageSenderIdentification>

<PartnerIdentification>
<GlobalBusinessIdentifier>555123456</GlobalBusinessIdentifier>
<locationID>

<Value>Hong Kong</Value>
</locationID>

</PartnerIdentification>
</messageSenderIdentification>
<messageTrackingID>

<InstanceIdentifier>543543</InstanceIdentifier>
</messageTrackingID>
</DeliveryHeader>

VERSIONING NOTES

This header is new in RNIF 2.0.

COMPLIANCE SUMMARY

This summary is for convenience only and is not guaranteed to contain all compliance
statements. For complete compliance knowledge, read the entire specification.

An instance of this header MUST be added to the message being routed by the
initiating node.

Validated 13 July 2001 Section 2, Header Structure and Format Specifications

©2001 by RosettaNet. All rights reserved. 23

The received message MUST NOT be modified in any form by the intermediary
nodes.

2.1.3.3 Service Header

The Service Header provides the process context for a message. It also provides
information about whether the message is a Test message or a Production message,
who the PIP initiator is, whether the initiator is a known or unknown partner, and
Quality of Service negotiation information (which is currently unused).

DOCUMENT TYPE DEFINITION

<!ENTITY % common-attributes "id CDATA #IMPLIED" >
<!ELEMENT ServiceHeader (ProcessControl) >
<!ATTLIST ServiceHeader xmlns CDATA #FIXED

"http://www.rosettanet.org/RNIF/V02.00" >
<!ELEMENT ProcessControl (

ActivityControl ,
GlobalUsageCode ,
partnerDefinedPIPPayloadBindingId? ,
pipCode ,
pipInstanceId ,
pipVersion ,
QualityOfServiceSpecification?,
(KnownInitiatingPartner |
UnknownInitiatingPartner)) >

<!ELEMENT ActivityControl (
BusinessActivityIdentifier ,
MessageControl) >

<!ELEMENT BusinessActivityIdentifier (#PCDATA) >
<!ELEMENT MessageControl (

fromRole ,
fromService ,
inReplyTo? ,
Manifest ,
toRole ,
toService) >

<!ELEMENT fromRole (GlobalPartnerRoleClassificationCode) >
<!ELEMENT GlobalPartnerRoleClassificationCode (#PCDATA) >
<!ELEMENT fromService (GlobalBusinessServiceCode) >
<!ELEMENT GlobalBusinessServiceCode (#PCDATA) >
<!ELEMENT inReplyTo (ActionControl) >
<!ELEMENT ActionControl (

ActionIdentity ,
messageTrackingID) >

<!ELEMENT ActionIdentity (
GlobalBusinessActionCode ,
messageStandard? ,
standardVersion?) >

<!ELEMENT GlobalBusinessActionCode (#PCDATA) >
<!ELEMENT messageStandard (FreeFormText) >
<!ELEMENT FreeFormText (#PCDATA) >
<!ATTLIST FreeFormText xml:lang CDATA #IMPLIED >
<!ELEMENT standardVersion (VersionIdentifier) >
<!ELEMENT VersionIdentifier (#PCDATA) >
<!ELEMENT messageTrackingID (InstanceIdentifier) >
<!ELEMENT InstanceIdentifier (#PCDATA) >
<!ELEMENT Manifest (

Attachment* ,

RosettaNet Implementation Framework: Core Specification Release for Validation 13 July 2001

24 ©2001 by RosettaNet. All rights reserved.

numberOfAttachments ,
ServiceContentControl) >

<!ELEMENT Attachment (
description? ,
GlobalMimeTypeQualifierCode ,
UniversalResourceIdentifier) >

<!ELEMENT description (FreeFormText) >
<!ELEMENT GlobalMimeTypeQualifierCode (#PCDATA) >
<!ELEMENT UniversalResourceIdentifier (#PCDATA) >
<!ELEMENT numberOfAttachments (CountableAmount) >
<!ELEMENT CountableAmount (#PCDATA) >
<!ELEMENT ServiceContentControl (

(ActionIdentity |
SignalIdentity)) >

<!ELEMENT SignalIdentity (
GlobalBusinessSignalCode ,
VersionIdentifier) >

<!ELEMENT GlobalBusinessSignalCode (#PCDATA) >
<!ELEMENT toRole (GlobalPartnerRoleClassificationCode) >
<!ELEMENT toService (GlobalBusinessServiceCode) >
<!ELEMENT GlobalUsageCode (#PCDATA) >
<!ELEMENT KnownInitiatingPartner (PartnerIdentification) >
<!ELEMENT PartnerIdentification (

domain? ,
GlobalBusinessIdentifier ,
locationID?) >

<!ELEMENT domain (FreeFormText) >
<!ELEMENT GlobalBusinessIdentifier (#PCDATA) >
<!ELEMENT locationID (Value) >
<!ELEMENT UnknownInitiatingPartner (

PartnerIdentification ,
UniformResourceLocator) >

<!ELEMENT UniformResourceLocator (#PCDATA) >
<!ELEMENT partnerDefinedPIPPayloadBindingId

(ProprietaryReferenceIdentifier) >
<!ELEMENT ProprietaryReferenceIdentifier (#PCDATA) >
<!ELEMENT pipCode (GlobalProcessIndicatorCode) >
<!ELEMENT GlobalProcessIndicatorCode (#PCDATA) >
<!ELEMENT pipInstanceId (InstanceIdentifier) >
<!ELEMENT pipVersion (VersionIdentifier) >
<!ELEMENT QualityOfServiceSpecification (QualityOfServiceElement+) >
<!ELEMENT QualityOfServiceElement (

QualityOfServiceClassificationCode ,
Value) >

<!ELEMENT QualityOfServiceClassificationCode (#PCDATA) >
<!ELEMENT Value (#PCDATA) >

TREE STRUCTURE FROM MESSAGE GUIDELINE

1 1 ServiceHeader
2 1 |-- ProcessControl
3 1 | |-- ActivityControl
4 1 | | |-- BusinessActivityIdentifier
5 1 | | |-- MessageControl
6 1 | | | |-- fromRole.GlobalPartnerRoleClassificationCode
7 1 | | | |-- fromService.GlobalBusinessServiceCode
8 0..1 | | | |-- inReplyTo.ActionControl
9 1 | | | | |-- ActionIdentity
10 1 | | | | | |-- GlobalBusinessActionCode
11 0..1 | | | | | |-- messageStandard.FreeFormText
12 0..1 | | | | | |-- standardVersion.VersionIdentifier
13 1 | | | | |-- messageTrackingID.InstanceIdentifier

Validated 13 July 2001 Section 2, Header Structure and Format Specifications

©2001 by RosettaNet. All rights reserved. 25

14 1 | | | |-- Manifest
15 0..n | | | | |-- Attachment
16 0..1 | | | | | |-- description.FreeFormText
17 1 | | | | | |-- GlobalMimeTypeQualifierCode
18 1 | | | | | |-- UniversalResourceIdentifier
19 1 | | | | |-- numberOfAttachments.CountableAmount
20 1 | | | | |-- ServiceContentControl
21 1 | | | | | |-- Choice
22 | | | | | | |-- ActionIdentity
23 1 | | | | | | | |-- GlobalBusinessActionCode
24 0..1 | | | | | | | |-- messageStandard.FreeFormText
25 0..1 | | | | | | | |-- standardVersion.VersionIdentifier
26 | | | | | | |-- SignalIdentity
27 1 | | | | | | | |-- GlobalBusinessSignalCode
28 1 | | | | | | | |-- VersionIdentifier
29 1 | | | |-- toRole.GlobalPartnerRoleClassificationCode
30 1 | | | |-- toService.GlobalBusinessServiceCode
31 1 | |-- GlobalUsageCode
32 0..1 | |-- partnerDefinedPIPPayloadBindingId.Proprietary

ReferenceIdentifier
33 1 | |-- pipCode.GlobalProcessIndicatorCode
34 1 | |-- pipInstanceId.InstanceIdentifier
35 1 | |-- pipVersion.VersionIdentifier
36 0..1 | |-- QualityOfServiceSpecification
37 1..n | | |-- QualityOfServiceElement
38 1 | | | |-- QualityOfServiceClassificationCode
39 1 | | | |-- Value
40 1 | |-- Choice
41 | | |-- KnownInitiatingPartner
42 1 | | | |-- PartnerIdentification
43 0..1 | | | | |-- domain.FreeFormText
44 1 | | | | |-- GlobalBusinessIdentifier
45 0..1 | | | | |-- locationID.Value
46 | | |-- UnknownInitiatingPartner
47 1 | | | |-- PartnerIdentification
48 0..1 | | | | |-- domain.FreeFormText
49 1 | | | | |-- GlobalBusinessIdentifier
50 0..1 | | | | |-- locationID.Value
51 1 | | | |-- UniformResourceLocator

ELEMENT DESCRIPTION

Table 3 provides descriptions of the Service Header elements and special validation
and processing rules where applicable. Note that the Element Names have one-to-one
correspondence with the Element Tag Names, but are not exactly the same. The
element names have been formatted for readability and white spaces have been
introduced. (For example, the Element Name �PIP Code� in the table corresponds to
the element with the tag name �PIPCode�.) The official element descriptions appear in
the separately published Message Guideline associated with the Service Header DTD.

RosettaNet Implementation Framework: Core Specification Release for Validation 13 July 2001

26 ©2001 by RosettaNet. All rights reserved.

Table 3. Service Header Elements

Note: This table is provided to assist in understanding how this header works. For complete documentation on
these elements, consult the Message Guideline itself.

Element Name

Description / Notes

Special Validation and
Processing Rules

Action Identity (In reply to) The identity of the action to which
this message is in reply.

Action Control Business action message control
properties.

Activity Control Specifies the properties of this
activity.

Attachment Details of the attachment. Not
present if the number of attachments
is zero. The number of entries for
this element MUST be equal to the
value specified in No Of
Attachments.

Business Activity Identifier RosettaNet Activity identifier of this
message.

Countable Amount Dimensionless magnitude, e.g.,
number of products.

Description A description of the attachment.

Free Form Text Unformatted text.

From Role The role that the trading partner
sending this message plays in this
PIP.

From Service The service from which this message
is being sent.

Global Business Action Code
(Action Identity)

The Action Code corresponding to
the action to which this message is
in reply.

For the valid value for this element,
refer to the corresponding
�InReplyToActionCode� element in
the PIP Specification corresponding
to the currently executing PIP,
Activity, and Action.

Global Business Action Code
(Service Content)

The Action Code if this is an action.

Global Business Identifier A unique business identifier. Use of
the DUNS number is required by
RosettaNet.

Validated 13 July 2001 Section 2, Header Structure and Format Specifications

©2001 by RosettaNet. All rights reserved. 27

Element Name

Description / Notes

Special Validation and
Processing Rules

Global Business Service Code
(From Service and To Service)

The service specified in the PIP. For the valid value for this element,
refer to the corresponding
�FromService� element (or
�ToService� element, as the case
may be) in the PIP Specification
corresponding to the currently
executing PIP, Activity, and Action.

If the current message is a signal,
then the value corresponding to the
From Service in the signal MUST be
the same as the value of the To
Service in the action to which this
signal is replying.

Global Business Signal Code
(Signal Identity)

The Signal Code if this is a signal.

Global Mime Type Qualifier
Code

The MIME content type of the
attachment.

This value MUST be picked from
the MIME content type for the
attachment.

Global Partner Role
Classification Code
(From Role and To Role)

The role specified in the PIP. For the valid value for this element,
refer to the corresponding
�FromRole� element (or �ToRole�
element, as the case may be) in the
PIP Specification corresponding to
the currently executing PIP,
Activity, and Action.

If the current message is a signal,
then the value corresponding to the
From Role in the signal MUST be
the same as the value of the To Role
in the action to which this signal is
replying.

Global Process Indicator Code Business process. This code MUST
be the PIP identifier (e.g., 3A4).

Global Usage Code Determines whether this message is
to be used in Test mode or in
Production mode.

The only allowed values are �Test�
and �Production�.

In Reply To The elements that help identify the
message to which this message is in
reply.

MUST be present if this is not the
first message in an activity. MUST
be present for all signals.

Instance Identifier A unique alphanumeric identifier
that represents a specific instance of
an business process, business
transaction, business action, or
business signal. The instance
identifier must be unique for a
particular instance of a business
process, business transaction,
business action and business signal.

RosettaNet Implementation Framework: Core Specification Release for Validation 13 July 2001

28 ©2001 by RosettaNet. All rights reserved.

Element Name

Description / Notes

Special Validation and
Processing Rules

Known Initiating Partner A known partner initiating this PIP
instance, with whom the responder
has a valid TPA.

Manifest Provides a list of items in the
payload section (i.e., the Service
Content and the list of attachments if
any).

Message Control The elements whose values change
with every message in the PIP.

Note that all elements other than
those in this group are set by the
initiator and MUST remain the same
through all messages in that PIP
instance.

Message Tracking ID Identifies the instance ID of the
action to which this message is in
reply.

Value MUST come from Message
Tracking ID in the Delivery Header
of the original received message.

Message Standard The standard with which the Service
Content MUST be compliant.

MUST be set if and only if this is a
non-RosettaNet-specified Service
Content message.

Number Of Attachments The number of attachments. If no attachments, the only allowed
value is �0� (i.e., the number zero).

Partner-Defined PIP Payload
Binding ID

MUST be specified if and only if a
non-RosettaNet content is to be
shipped in the payload portion of a
RosettaNet Business Message.

Partners agree on this value.

Refer to section 2.1.4.4 for more
details.

Partner Identification (Known
or Unknown Initiating Partner)

Identifies the trading partner who
initiated this process by Global
Business Identifier and optional
Location ID.

PIP Code RosettaNet PIP Code of this
message. Set by the initiating
partner.

The valid value for this element
MUST be obtained from the
�PIPCode� element in the PIP
Specification corresponding to the
currently executing PIP.

PIP Instance ID The ID of this PIP instance. MUST be unique within the context
of the initiating partner.

PIP Version RosettaNet PIP Version of this
message. Set by the initiator of this
transaction.

The valid value for this element
MUST be obtained from the
�PIPVersion� element in the PIP
Specification corresponding to the
currently executing PIP.

Process Control Group of elements carrying
information about the process within
which this message is being sent.

Proprietary Reference Identifier A unique reference identifier for
goods, services, or business
documents.

Maximum length of 255.

Validated 13 July 2001 Section 2, Header Structure and Format Specifications

©2001 by RosettaNet. All rights reserved. 29

Element Name

Description / Notes

Special Validation and
Processing Rules

Quality Of Service Element Specifies a quality of service
constraint item.

This element is specified for future
backward compatibility.

There are no valid values at this
time. Receiver MUSTignore this
element if set.

Quality Of Service
Specification

Specifies quality of service
constraints for this message instance.

This element is specified for future
backward compatibility.

There are no valid values at this
time. Receiver MUSTignore this
element if set.

Quality Of Service
Classification Code

Identifies the quality of service
measurement category.

This element is specified for future
backward compatibility.

There are no valid values at this
time. Receiver MUSTignore this
element if set.

Service Content Control Contains information about the
Service Content.

Signal Identity The collection of properties that are
used to identify a business signal.

Standard Version
(Action Identity)

The version of the standard with
which the Service Content MUST be
compliant.

MUST be set if and only if this is a
non-RosettaNet-specified Service
Content message.

To Role The role the trading partner
receiving this message plays in this
PIP.

To Service The service to which this message is
being sent.

Uniform Resource Locator
(Unknown Initiating Partner)

Specifies the URL to which replies
MUST go in the case of an unknown
body with whom a TPA MAY not
exist.

If this is the first message in the PIP
instance, MUST be specified if and
only if the Partner Type is
�Unknown� and the message is not
requesting a synchronous response
(see section 2.4).

If Partner Type is �Unknown� and
this value is not specified, further
processing might not be possible.

Universal Resource Identifier
(Attribute of Attachment
Details)

Reference to the content ID of the
attached document.

This value MUST follow the
Content-ID reference syntax per
RFC 2111 and MUST refer to the
MIME Content-ID of the
attachment.

Unknown Initiating Partner An unknown partner initiating this
PIP instance soliciting some public
information through the RosettaNet
PIP framework.

RosettaNet Implementation Framework: Core Specification Release for Validation 13 July 2001

30 ©2001 by RosettaNet. All rights reserved.

Element Name

Description / Notes

Special Validation and
Processing Rules

Value Identifies the quality of service
measurement constraint.

Valid values are defined within the
context of the Quality of Service
Classification Code.

Version Identifier
(Signal Identity)

Identifies the version of the business
signal that is carried in the Service
Content.

The value for this element MUST be
obtained from the Signal Version
Identifier field of the identified
Business Signal's Message

 Guideline.

Example 3. Service Header Instance (Using PIP 3A4)

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE ServiceHeader SYSTEM "ServiceHeader_MS_V02_00.dtd">
<ServiceHeader>
<ProcessControl>

<ActivityControl>
<BusinessActivityIdentifier>Create Purchase

Order</BusinessActivityIdentifier>
<MessageControl>

<fromRole>
<GlobalPartnerRoleClassificationCode>Buyer</GlobalPartner

RoleClassificationCode>
</fromRole>
<fromService>

<GlobalBusinessServiceCode>Buyer
Service</GlobalBusinessServiceCode>

</fromService>
<Manifest>

<Attachment>
<description>

<FreeFormText>PDF version of PO</FreeFormText>
</description>

<GlobalMimeTypeQualifierCode>application/pdf</GlobalMimeType
QualifierCode>

<UniversalResourceIdentifier>cid:Attachment.
20001121T123000.000Z@this.example.com</UniversalResourceIdentifier>

</Attachment>
<numberOfAttachments>

<CountableAmount>1</CountableAmount>
</numberOfAttachments>
<ServiceContentControl>

<ActionIdentity>
<GlobalBusinessActionCode>Purchase Order Request

Action</GlobalBusinessActionCode>
</ActionIdentity>

</ServiceContentControl>
</Manifest>
<toRole>

<GlobalPartnerRoleClassificationCode>Seller</GlobalPartner
RoleClassificationCode>

</toRole>
<toService>

<GlobalBusinessServiceCode>Seller
Service</GlobalBusinessServiceCode>

</toService>
</MessageControl>

</ActivityControl>

Validated 13 July 2001 Section 2, Payload Components

©2001 by RosettaNet. All rights reserved. 31

<GlobalUsageCode>Production</GlobalUsageCode>
<pipCode>

<GlobalProcessIndicatorCode>3A4</GlobalProcessIndicatorCode>
</pipCode>
<pipInstanceId>

<InstanceIdentifier>121212</InstanceIdentifier>
</pipInstanceId>
<pipVersion>

<VersionIdentifier>1.2</VersionIdentifier>
</pipVersion>
<KnownInitiatingPartner>

<PartnerIdentification>
<domain>

<FreeFormText>DUNS</FreeFormText>
</domain>
<GlobalBusinessIdentifier>123456789</GlobalBusinessIdentifier>

</PartnerIdentification>
</KnownInitiatingPartner>

</ProcessControl>
</ServiceHeader>

VERSIONING NOTES

RNIF 2.0 invalidates the 1.1 version of the Service Header. The new version to use is
version 2.0 of the Service Header, which follows the Service Header DTD structure.

COMPLIANCE SUMMARY

This summary is for convenience only and is not guaranteed to contain all compliance
statements. For complete compliance knowledge, read the entire specification.

A message that is compliant with RNIF 2.0 MUST have an XML document called
Service Header. This document MUST have been packaged according to the
packaging rules specified in section 2.3. The document MUST conform to the DTD
defined above and MUST have values in conformance to the applicable Element
Description table.

2.1.4 Payload Components

The payload part of the RosettaNet Business Message comprises the Service Content
(which is either an action message or a signal message) and zero or more OPTIONAL
attachments.

The payload is the actual business content that the Service Header describes or
identifies. The Service Header format is fixed and independent of payload. The
Service Content part of the payload (i.e., the action message or signal message)
changes based on the specific business content being exchanged, which depends on
the PIP type and instance. The attachments are also dynamic per instance of the
business message as should be expected.

RosettaNet Implementation Framework: Core Specification Release for Validation 13 July 2001

32 ©2001 by RosettaNet. All rights reserved.

VERSIONING NOTES

�Payload� as a concept is new to RNIF 2.0, as are attachments. The RosettaNet
Service Content is the same as in RNIF 1.1, except that in RNIF 2.0 it can contain
non-RosettaNet content.

2.1.4.1 Service Content

The Service Content part of the payload contains business content that is in XML
format. The Service Content is always either an action message or a signal message.
The DTDs for all signal messages are specified by RosettaNet. The DTDs for PIP
action messages MAY be specified by RosettaNet or by other standards bodies that
have been sanctioned by RosettaNet.

PIPs must identify which are the allowed standards body(ies) that can supply content
in the given PIP.

2.1.4.2 Handling Attachments

Payloads containing action messages could contain attachments. These attachments
are typically supporting documents that accompany the business documents.
Attachments need not be XML documents; some examples of attachments include:
Word documents, GIF images, PDF files, TIF images, etc. Each attachment
constitutes a separate MIME body part in the RosettaNet Business Message and
MUST have the MIME Content-ID attribute specified (see section 2.3 for details). The
Content-ID value for the attachment is also listed in the Service Header�s Manifest
element.

2.1.4.3 Referring to Attachments from within Service Content

As mentioned above, attachments to Service Content are sent as separate MIME body
parts in the same RosettaNet Business Message. This method packages and ships the
business content and attachments together. However, RosettaNet recognizes that it
sometimes would be necessary to refer to attachments from within the Service
Content. Since action messages (specified by RosettaNet or otherwise) are defined
independently of the RosettaNet Implementation Framework, RNIF 2.0 defines a
standard mechanism to refer to attachments from within XML Service Content
documents and leaves it up to the Service Content DTD developers to make use of this
mechanism.

Each attachment MUST be identified by the MIME header �Content-ID� in the
RosettaNet Business Message. All XML elements that could refer to attachments
MUST have the attribute �href� defined as one of the attributes for the XML element.

For example:

<!ELEMENT AnyElement (#PCDATA)>
<!ATTLIST AnyElement

%miscAttributes;
href CDATA #implied)>

Validated 13 July 2001 Section 2, Payload Components

©2001 by RosettaNet. All rights reserved. 33

An instance of the element �AnyElement� could then refer to the attachment as
follows:

<AnyElement href=”cid:<cid-of-attachment>”> ...
</AnyElement>

where <cid-of-attachment> is the value of Content-ID MIME header for the
attachment.

For example, if the MIME part packaging of an attachment in a RosettaNet message
occurs as follows:

--RN-Outer-Boundary—
Content-Type: image/gif
Content-Transfer-Encoding: Base64
Content-ID: <00180792811xyz@xyz.rosettanet.org>

[Attachment data goes here]

--RN-Outer-Boundary—

then an instance of the element �AnyElement� could refer to the attachment as
follows:

<AnyElement href=”cid:00180792811xyz@xyz.rosettanet.org”>
</AnyElement>

COMPLIANCE SUMMARY

This summary is for convenience only and is not guaranteed to contain all compliance
statements. For complete compliance knowledge, read the entire specification.

The MIME Content-ID attribute MUST be specified for all attachments.

The format cid:<value> MUST be used for the value of the href attribute.

Multiple elements MAY refer to the same attachment.

2.1.4.4 Shipping Non-RosettaNet Service Content in the Payload

A RosettaNet PIP definition, among such other things as activity names, actions,
timeouts, and retry definitions, includes document type definitions and message
guidelines for all the action messages in the PIP. Some Supply Chain Partners have
expressed the need to use Document Type Definitions from other standards within a
RosettaNet PIP. As a result, RNIF 2.0 specifies a mechanism to enable
implementations to exchange non-RosettaNet Service Content within a RosettaNet
Business Message.

Note, however, that these Document Type Definitions and versions MUST be
sanctioned by RosettaNet (on a per-PIP basis). When such service content is allowed
as an alternative to RosettaNet-provided Service Content, then trading partners need to
decide in advance whether to use it.

RosettaNet Implementation Framework: Core Specification Release for Validation 13 July 2001

34 ©2001 by RosettaNet. All rights reserved.

If two trading partners decide to use non-RosettaNet Service Content, they MUST
NOT alter anything in the PIP specification itself. They can only agree upon what
Document Types Definitions and versions to use for all the action messages in the
PIP. For instance, assume that Trading Partner X and Trading Partner Y decide to use
the business message structures defined by the ABC standard for the High Tech
Manufacturing industry, where ABC is a message exchange standard and does not
deal with business process definitions. In such a case, the two trading partners need to
agree on a common �ID� to bind this payload structure with the PIP version they
execute. They MUST agree among themselves as to which RosettaNet-sanctioned
message type and version MUST be used for the request and which message type and
version MUST be used for the response. Let us assume that they choose to use ABC
standard�s DTD structures in order to execute the Purchase Order Management PIP
and specifically, the PO version 1 for the request and a PO Acceptance version 1 for
the response. They will then need to identify this �flavor� of their PIP with a unique
identity, say �XY�. This value �XY� will be used in the Partner-Defined PIP Payload
Binding ID element in the Service Header.

The Partner-Defined PIP Payload Binding ID MUST be unique per the set of Trading
Partners using it (therefore Message Standard and Standard Version can be inferred
from it). This element MUST be set if the PIP is executed in such a scenario. This
element MUST NOT be set if the PIP is compliant with the regular RosettaNet PIP.
Note that the combination of a PIP Code, PIP Version and Partner-Defined PIP
Payload Binding ID identifies a unique set of Service Content types within the
partners' systems

RosettaNet is not responsible for the maintenance of these non-RosettaNet

DTDs.Security Provisions and
Trading Partner Authentication

This section specifies how S/MIME is used within RosettaNet for securing messages.
It also establishes the norms RECOMMENDED by RosettaNet for use of digital
signatures.

2.2.1 Use of S/MIME within RosettaNet

The use of S/MIME (Secure/Multipurpose Internet Mail Extensions) in RosettaNet is
governed by IETF RFC 2311 �S/MIME Version 2 Message Specification� which
describes the S/MIME v.2 format. RNIF 2.0 makes use of the enveloped and signed
data types defined in the S/MIME specification.

S/MIME provides one format for enveloped-only data and several formats for signed-
only data. RNIF 2.0 utilizes the enveloped and the multipart signed S/MIME formats.
(See examples below for use of actual headers.)

A single procedure is used for creating MIME entities that are to be signed or
enveloped. Some additional steps are RECOMMENDED to defend against known
corruption that can occur during mail transport and that are of particular importance
for clear-signing using the multipart/signed format. The rules for creating MIME
entities for signing and enveloping are outlined in RFC 2311 and are defined in RFC
2045 � 2049.

Validated 13 July 2001 Section 2, Use of S/MIME within RosettaNet

©2001 by RosettaNet. All rights reserved. 35

According to S/MIME guidelines each MIME entity MUST be converted to a
canonical form that can be uniquely and unambiguously represented in the
environment where the signature is created and in the environment where the
signature is verified. MIME entities MUST be presented in a canonical format for
enveloping as well as signing. The S/MIME specification also recommends that
entities such as 8-bit text and binary data be encoded with quoted-printable or base-64
transfer encoding. For this reason, all recipients MUST be able to read both quoted-
printable and base-64 encoded messages.

The application/pkcs7-mime defined by S/MIME type carries PKCS #7 objects of
several types, including envelopedData and signedData. The PKCS #7 object MUST
always be BER encoding of the ASN.1 syntax describing the object. According to the
S/MIME guidelines the contentInfo field of the carried PKCS #7 object MUST never
be empty. Since PKCS #7 objects are binary data, in most cases base-64 or quoted
printable transfer encoding is appropriate, in particular when used with SMTP
transport. The transfer encoding used depends on the transport through which the
object is to be sent, and is not a characteristic of the MIME type.

RNIF 2.0 uses S/MIME enveloped messages to secure parts of the RosettaNet
business messages. The S/MIME specification recommends the following three-step
process for creating enveloped messages:

1. The MIME entity is prepared for enveloping.

2. The MIME entity and other required data are processed into a PKCS #7 object of
type envelopedData. The PKCS #7 object is inserted into an application/pkcs7-
mime MIME entity.

3. Appropriate transfer encoding is applied to the parts of the MIME entity.

The smime-type parameter for enveloped-only messages is "enveloped-data". The file
extension for this type of message is ".p7m".

Example 4. S/MIME Enveloped Message

Content-Type: application/pkcs7-mime;
smime-type=enveloped-data;
name=smime.p7m

Content-Transfer-Encoding: base64
Content-Disposition: attachment; filename=smime.p7m

rfvbnj756tbBghyHhHUujhJhjH77n8HHGT9HG4VQpfyF467GhIGfHfYT6
7n8HHGghyHhHUujhJh4VQpfyF467GhIGfHfYGTrfvbnjT6jH7756tbB9H
f8HHGTrfvhJhjH776tbB9HG4VQbnj7567GhIGfHfYT6ghyHhHUujpfyF4
0GhIGfHfQbnj756YT64V

RNIF 2.0 utilizes the multipart/signed form of the signed messages specified by the
S/MIME specification. The S/MIME specification provides the following five-step
process for creating multipart/signed messages:

1. The MIME entity is prepared for signing.

2. The MIME entity is presented to PKCS #7 processing in order to obtain an object
of type signedData with an empty contentInfo field.

RosettaNet Implementation Framework: Core Specification Release for Validation 13 July 2001

36 ©2001 by RosettaNet. All rights reserved.

3. The MIME entity is inserted into the first part of a multipart/signed message.

4. Transfer encoding is applied to the detached signature obtained in step 2 and it is
inserted into a MIME entity of type application/pkcs7-signature.

5. The MIME entity of the application/pkcs7-signature is inserted into the second
part of the multipart/signed entity.

The multipart/signed Content type has two required parameters: the protocol
parameter and the micalg parameter. For this MIME part the protocol parameter is
"application/pkcs7-signature". The value of the micalg parameter is dependent on the
message digest algorithm used in the calculation of the Message Integrity Check.

Example 5. S/MIME multipart/signed Message

Content-Type: multipart/signed;
protocol="application/pkcs7-signature";
micalg=sha1; boundary=boundary42

--boundary42
Content-Type: text/plain

This is a clear-signed message.

--boundary42
Content-Type: application/pkcs7-signature; name=smime.p7s
Content-Transfer-Encoding: base64
Content-Disposition: attachment; filename=smime.p7s

ghyHhHUujhJhjH77n8HHGTrfvbnj756tbB9HG4VQpfyF467GhIGfHfYT6
4VQpfyF467GhIGfHfYT6jH77n8HHGghyHhHUujhJh756tbB9HGTrfvbnj
n8HHGTrfvhJhjH776tbB9HG4VQbnj7567GhIGfHfYT6ghyHhHUujpfyF4
7GhIGfHfYT64VQbnj756

--boundary42--

2.2.2 Use of Digital Certificates within RosettaNet

RNIF 2.0 RECOMMENDS the use of digital certificates. Digital certificates are
delivered as a part of the application/pkcs7-signature part of the multipart-signed
RosettaNet message. RosettaNet uses RFC 2312 �S/MIME Version 2 Certificate
Handling� as a guideline for use of digital certificates in RosettaNet messages. Due to
the complexity of the certification process and overall immaturity of the existing PKI
deployments, RosettaNet is much more tolerant in respect of the content of the
certificates. This section establishes the norms RECOMMENDED by RosettaNet. The
exact implementation of the certificate handling procedures and authentication
semantics of the information in the digital certificate received with a RosettaNet
message is left to the Trading Partner Agreement.

According to the S/MIME certificate handling specification, receiving agents MUST
support X.509 v1 and X.509 v3 certificates. The specification also requires that end-
entity certificates include an Internet mail address for the sender. Since RNIF 2.0 is
defined in a transport-independent fashion, the Internet email address of the sender in
the end-entity certificates MAY be omitted.

Validated 13 July 2001 Section 2, Use of Digital Certificates within RosettaNet

©2001 by RosettaNet. All rights reserved. 37

RNIF 2.0 aligns with the S/MIME certificate handling specification in that receiving
agents MUST be able to handle an arbitrary number of certificates of arbitrary
relationship to the message sender and to each other in arbitrary order. RNIF 2.0 also
aligns with the S/MIME specification in the use of a single or a dual key pair for data
signing and encryption: the choice of the number of the key pairs is left for the
Trading Partner Agreement.

RNIF 2.0 requires that the sender MUST include any certificates that contain the
signer's public key(s). The sender MAY include the associated issuer certificates. This
measure allows establishing a simple and efficient way of associating the message
sender with a particular Trading Partner profile.

RNIF 2.0 leaves it to the Trading Partner Agreement to determine the format of the
certificate chains leading to the self-signed root Certificate Authority (CA)
certificates. The recipient SHOULD be able to support the types of certificate chains
(complete and incomplete) described in the S/MIME certificate handling specification
and directly trusted certificates (empty certificate chain). All trust decisions are left to
the Trading Partner Agreement. In full conformance with the S/MIME certificate
handling specification, RosettaNet message recipients MUST support certificate
chaining based on the distinguished name fields in the certificates. RNIF 2.0
REQUIRES verification of the signer�s certificate validity.

The X.509 v3 standard describes an extensible framework in which the basic
certificate information can be extended and how such extensions can be used to
control the process of issuing and validating certificates. At present, there is no single,
coherent view regarding which certificate extensions must be present in the X.509 v.3
digital certificates. RNIF 2.0 leaves the use of the particular X.509 v.3 certificate
extensions to the Trading Partner Agreement. RNIF 2.0 also lessens the requirements
of the S/MIME certificate handling specification and does not require the recipients to
handle the subset of the certificate extensions listed in RFC 2312. RNIF 2.0
REQUIRES the recipient to abandon verification of messages that contain certificates
with critical extensions that the recipient is unable to handle. It is RECOMMENDED
that the UNP.MESG.SIGNERR event SHOULD be handled according to internal
policies.

RNIF 2.0 RECOMMENDS but does not require the recipient to implement a
certificate-revocation list (CRL) retrieval mechanism in order to gain access to
certificate revocation information when validating certificate chains. RNIF 2.0
RECOMMENDS but does not require the recipient to retrieve and utilize CRL
information every time a certificate is verified as part of a certificate chain validation,
even if the certificate was already verified in the past. RNIF 2.0 does not specify
which technique is used to validate certificates (e.g., via CRL, using the OCSP
protocol, etc.). All certificate validation procedures are executed according to local
security policy. RNIF 2.0 RECOMMENDS that the use of CRL information MAY be
dictated by the value of the information that is protected.

RosettaNet Implementation Framework: Core Specification Release for Validation 13 July 2001

38 ©2001 by RosettaNet. All rights reserved.

2.3 RosettaNet Business Message Packaging
and Unpackaging

This section specifies how the sender of the message assembles the defined message
components and how the recipient extracts those components. It includes details on
packaging and unpackaging RosettaNet Business Messages that have been encrypted
and/or signed, as well as �plain� messages.

A RosettaNet Business Message is a combination of the individual business message
components packaged into a MIME message, with appropriate MIME headers. Signed
and enveloped content types per the S/MIME specification are used to provide
authentication, message integrity, privacy, data security, and non-repudiation of
origin. (See RFC 2311 for details.) Non-repudiation of receipt is achieved by signed
Receipt Acknowledgments, which contain the digest of the received message.

RosettaNet Business Message packaging involves packaging the various business
message components described in section 2.1 into MIME and/or S/MIME entities.
Unpackaging involves extracting individual RosettaNet Business Message
components from the MIME entities.

All packaging and unpackaging specifications within this section are independent of
the transfer protocol used. However, some transfer protocols might not be able to
handle binary or 8-bit data. Where one of these transfer protocols is used, content
transfer encoding such as base-64 MUST be used to transform the binary and 8-bit
data into 7-bit encoding. Transfer protocol-specific bindings and transfer protocol
headers are treated in the �RosettaNet Business Message Transfer� section.

The RosettaNet packaging specification follows standard MIME conventions, unless
otherwise stated.

Note: Per standard MIME convention, MIME header names and values and parameter
names are not case sensitive, while parameter values are normally case sensitive. The
order of MIME headers in a part and the order of parameters in a header (if more than
one is present) are also not significant. Additionally, values for MIME boundaries
shown in the examples are just examples and SHOULD NOT be used as the actual
values.

2.3.1 Definitions of Terms

This subsection describes the terms used throughout this section to refer to certain
logical groups of the business message components. Note that these definitions are
only logical because they do not include the extra entities included by MIME
packaging such as the MIME headers themselves and the MIME boundaries.

These definitions use Backus Naur Form (BNF) for description.

Service Content: comprises an action message or a signal message.
Grammar Rule: Service-Content := Action-Message | Signal-Message

Validated 13 July 2001 Section 2, Using Intermediaries

©2001 by RosettaNet. All rights reserved. 39

Attachments: Documents or files that are not part of the Service Content but need to
be packaged and sent as a part of the RosettaNet Business Message.
Grammar Rule: Attachments := *Attachment

Payload: This refers to a logical group containing the Service Content and the
Attachments (if any).
Grammar Rule: Payload := Service-Content Attachments

Payload Container: This term refers to a logical group containing the Payload and
the Service Header.
Grammar Rule: Payload-Container := Service-Header Payload

RosettaNet Business Message: This term refers to a logical grouping of the Payload
Container, the Delivery Header, and the Preamble. Note: A RosettaNet Business
Message is sometimes referred to as �Business Message� for convenience.
Grammar Rule: RosettaNet-Business-Message := Preamble Delivery-Header
Payload-Container

2.3.2 Using Intermediaries

Care has been taken to ensure that the use of an intermediary by a partner is kept as
�transparent� as possible to the other partner. The idea is to enable transmitting
messages through intermediaries without having to alter the message structure or
perform heavy processing.

Hence, the packaging or unpackaging rules to be followed when an intermediary is
involved are no different from those followed when the intermediary is not involved.

2.3.3 Packaging the RosettaNet Business Message

The RosettaNet Business message consists of the following components:

1. Preamble

2. Delivery Header

3. Service Header

4. Service Content

5. Attachments (if any)

Packaging involves encapsulating these various components using the MIME
specification and optionally encrypting and/or signing the appropriate portions.

NOTES ON SIGNING AND ENCRYPTING

The decision on whether to encrypt depends on the agreement between the trading
partners involved, and other factors such as the sensitivity of the actual service content
and attachments. In order to provide flexibility, RNIF 2.0 allows encryption of either
the entire Payload Container or just the Service Content. The choice depends on what

RosettaNet Implementation Framework: Core Specification Release for Validation 13 July 2001

40 ©2001 by RosettaNet. All rights reserved.

the two trading partners agree upon, which may ultimately depend upon whether an
intermediary needs access to the Service Header and/or the sensitivity of the data in
the Service Header.

In order to make implementations simple, RNIF 2.0 only allows signing of the
RosettaNet Business Message as a whole. In other words, RNIF 2.0 does not allow
signing of individual or selective parts of the RosettaNet Business Message.

To protect sensitive information contained within a RosettaNet Exception Business
Signal, if the message to which it is a response was encrypted and/or signed, the
Exception Business Message MUST likewise be encrypted and/or signed.

PACKAGING NON-ROSETTANET CONTENT

As described earlier in section 2.1, action messages could be in a format defined by
RosettaNet or any other standards body that is permitted by RosettaNet. The XML
Service Header elements MUST clearly identify the nature of the Service Content.
Refer to the description of Service Header for complete details.

GENERAL PACKAGING RULES

In encapsulating the components into a MIME entity, all body parts carrying only
XML data MUST use the content type of application/xml and MAY be content-
transfer-encoded (see RFC 2376). Also, all body parts MUST contain a Content-ID
header. RNIF 2.0 REQUIRES this header for all MIME parts even though this header
is optional according to the MIME specification (see RFC 2045). Additionally the
Content-Location header defined in RFC 2557 MUST be used to label Preamble,
Service Header, and Service Content parts. Use of this header to tag these parts allows
the receiving entity to identify and perform any special handling of these elements.
The values that MUST be used for the Content-Location header for the respective
parts are specified in Table 4.

Table 4. Content Location Values

Body Part Carrying Content-Location Value (case insensitive)

Preamble RN-Preamble

Delivery Header RN-Delivery-Header

Service Header RN-Service-Header

Service Content RN-Service-Content

The packaging specification uses the multipart/related MIME structure (see RFC
2387) to package plain components of the message. It also uses the S/MIME types
multipart/signed and "application/pkcs7-mime" type with "smime-type=enveloped-
data" for signing and enveloping content, respectively.

For the multipart/related content-type, the �type� parameter is mandatory and MUST
be specified with a value corresponding to the �root� part of the multipart/related
message (see below for more details). The �start� parameter is OPTIONAL and if

Validated 13 July 2001 Section 2, Packaging the RosettaNet Business Message

©2001 by RosettaNet. All rights reserved. 41

present MUST contain the Content-ID value corresponding to the root part that is
identified in the �type� parameter.

NOTES ON CONTENT TRANSFER ENCODING

When deciding on a particular content-transfer-encoding to apply to a MIME entity
(multipart section), consideration SHOULD be given to the characteristics of the data
content of that entity, as well as of the transfer mechanism over which the message
will be carried. In general, if it is known for certain (through an agreement between
the trading partners) that the entire communication path allows binary data to be
carried, then it is most efficient to use binary encoding (no transformation) for all
MIME multipart entities. If this assumption cannot be made (for example, if the
delivery mechanism is determined after packaging, or if an intermediary may route the
message using unknown protocols), then all MIME entities that are not already
compliant with 7bit encoding MUST be transformed by applying either quoted-
printable or base64 transfer encoding. Refer to RFC 2045 for further details about the
Content-Transfer-Encoding MIME header.

PACKAGING STEPS

This section describes the steps necessary to package the RosettaNet Business
Message. These steps are descriptive rather than prescriptive. The implementer MAY
use any procedure or sequence to package a message as long as the result is the same.

The Service Content and the Attachments, if any, are created as per the PIP
specification.

The Service Header is created using information about the PIP being executed, the
Service Content, and the Attachments, if any.

The Delivery Header is created using such information as the sender identification, the
receiver identification, and a message tracking ID.

The Preamble is created as per the Preamble specification.

Once these components are created, packaging of the RosettaNet Business Message
commences. The selection and flow of packaging steps varies depending upon
whether the RosettaNet Business Message is to be encrypted or not, and upon whether
it is to be signed or not. If the message is not to be encrypted, the steps in �Packaging
without Encryption� MUST be performed. If the message is to be encrypted, the steps
in �Packaging with Encryption� MUST be performed. Finally, if the message is to be
signed, the steps in �Signing the Package� MUST be performed.

PACKAGING WITHOUT ENCRYPTION

If encryption is not required, the Preamble, the Delivery Header, the Service Header,
the Service Content and the attachments (if any) are packaged into a multipart/related
message (see RFC 2387). Although the Content-ID header is optional in MIME,
RosettaNet requires that each of the body parts of the multipart/related message
contains the Content-ID header as previously described. Note that the values in the

RosettaNet Implementation Framework: Core Specification Release for Validation 13 July 2001

42 ©2001 by RosettaNet. All rights reserved.

Content-ID header MUST be globally unique (see RFC 2045). Additionally, the
Preamble, the Delivery Header, Service-Header, and Service-Content MUST also
have the Content-Location header with the respective values �RN-Preamble�, �RN-
Delivery-Header�, �RN-Service-Header�, and �RN-Service-Content�.

In creating this multipart message, the Preamble MUST be the first body part, the
Delivery Header the second body part, the Service Header third, and the Service
Content the fourth body part. Attachments (if any) appear from the fifth body part
onwards. There is no specific order in which these attachments are arranged; however,
the order in which the attachments are listed in the manifest part of the Service Header
MAY be followed for convenience.

The mandatory �type� parameter of the multipart/related content-type header MUST
have the value �application/xml�, corresponding to the Preamble (which happens to be
the root or first part). The OPTIONAL �start� parameter, if present, MUST contain
the Content-ID value of the Preamble.

This constitutes the entire (unencrypted) RosettaNet Business Message without a
signature.

Service Content

Attachment 1

Attachment n

�

Service Header

Preamble

Delivery Header

Multipart/related

Service Content

Attachment 1

Attachment n

�
Service Header

Preamble

Delivery Header

Figure 8. Packaging RosettaNet Business Message without Encryption

Example 6. Packaged RosettaNet Business Message without Encryption

Content-Type: multipart/related; boundary=”RN-Outer-Boundary”;
type=”application/xml”

Content-Description: This is the RosettaNet Business Message

--RN-Outer-Boundary
Content-Type: Application/XML
Content-Location: RN-Preamble
Content-ID: <content-ID-for-Preamble>

[Preamble goes here]

--RN-Outer-Boundary
Content-Type: Application/XML

Validated 13 July 2001 Section 2, Packaging the RosettaNet Business Message

©2001 by RosettaNet. All rights reserved. 43

Content-Location: RN-Delivery-Header
Content-ID: <content-ID-for-Delivery-Header>

[Delivery Header goes here]

--RN-Outer-Boundary
Content-Type: Application/XML
Content-Location: RN-Service-Header
Content-Description: RosettaNet-Service-Header
Content-ID: <content-ID-for-Service-Header>

[Service Header goes here]

--RN-Outer-Boundary
Content-Type: Application/XML
Content-Description: RosettaNet-Service-Content
Content-Location: RN-Service-Content
Content-ID: <content-ID-for-Service-Content>

[Service Content goes here]

--RN-Outer-Boundary
Content-Type: Image/jpeg
Content-Description: A Diagram of the product
Content-ID: diag-123-16776789.ghfg.efg-xcabc.071400

[Attachment 1 goes here]

--RN-Outer-Boundary
Content-Type: Image/tiff
Content-ID: diag-123456789.ghfg.efg-xcabc.08233

[Attachment 2 goes here]

--RN-Outer-Boundary--

PACKAGING WITH ENCRYPTION

The Service Header MAY either be encrypted along with the Service Content and
Attachments or be left unencrypted while the Service Content and the Attachments (if
any) alone are encrypted. Depending on which of these two options is used, the rules
under �Encrypting the Entire Payload Container� or �Encrypting the Payload� are
used respectively.

ENCRYPTING THE ENTIRE PAYLOAD CONTAINER

If encryption of the Service Header is required, the Service Header, the Service
Content and the Attachments (if any) are packaged into a MIME multipart/related
message (see RFC 2387). (This is the Payload Container.) Although the Content-ID
header is optional in MIME, RosettaNet REQUIRES that each of the body parts of the
multipart/related message contains the Content-ID header (see RFC 2045). Note that
the values of the Content-ID header MUST be globally unique (see RFC 2045).
Additionally, the Service Header and Service Content MUST also each have the
Content-Location header with the values �RN-Service-Header� and �RN-Service-
Content�, respectively.

RosettaNet Implementation Framework: Core Specification Release for Validation 13 July 2001

44 ©2001 by RosettaNet. All rights reserved.

In creating this multipart/related message, the Service Header MUST be the first body
part and the Service Content the second. Attachments (if any) appear from the third
body part onwards. There is no specific order in which these attachments are arranged;
however, the order in which the attachments are listed in the manifest part of the
Service Header MAY be followed for convenience.

The mandatory �type� parameter of the multipart/related content-type header MUST
have the value �application/xml�, corresponding to the Service Header (which
happens to be the root or first part). The OPTIONAL �start� parameter, if present,
MUST contain the Content-ID value of the Service Header.

Service Content

Attachment 1

Attachment n

�
Service Header

Multipart/related

Service Content

Attachment 1

Attachment n

�

Service Header

Figure 9. Packaging Payload Container Prior to Encryption

Example 7. Packaged Payload Container Prior to Encryption

Content-Type: multipart/related;
boundary=”RN-PayCnt-Boundary”;
type=”application/XML”;
start=”<content-ID-for-Service-Header>”

Content-Description: This is the payload container

--RN-PayCnt-Boundary
Content-Type: application/XML
Content-Description: RosettaNet-Service-Header
Content-Location: RN-Service-Header
Content-ID: <content-ID-for-Service-Header>

[Service Header goes here]

--RN-PayCnt-Boundary
Content-Type: application/XML;
Content-Description: RosettaNet-Service-Content
Content-Location: RN-Service-Content
Content-ID: <content-ID-for-Service-Content>

[Service Content goes here]

--RN-PayCnt-Boundary
Content-Type: Image/jpeg;
Content-Description: A Diagram of the product
Content-ID: diag-987654321.ghfg.efg-xcabc.00112233

Validated 13 July 2001 Section 2, Packaging the RosettaNet Business Message

©2001 by RosettaNet. All rights reserved. 45

[Attachment goes here]

--RN-PayCnt-Boundary--

The resulting multipart/related message is enveloped to create an S/MIME enveloped
message using the "application/pkcs7-mime" content-type with "smime-
type=enveloped-data" (see RFC 2311). RNIF 2.0 does not require any particular
cipher strength or algorithm for data protection or encryption. These settings are
retrieved from the Trading Partner Database as part of the Trading Partner Agreement
and are ultimately determined by corporate policy, import and export restrictions, etc.
(See RFC 2311 and also section 2.2.1 of this specification for complete details.)

Multipart/related

Service Content

Attachment 1

Attachment n

�

Service Header

Multipart/related

Service Content

Attachment 1

Attachment n

�

Service Header

S/MIME Envelope

Figure 10. Encrypting the Payload Container

Example 8. Encrypted Payload Container

Content-Type: application/pkcs7-mime;
smime-type=enveloped-data;
name=something.p7m

Content-Transfer-Encoding: base64
Content-Disposition: attachment; filename=something.p7m

[The Base64-encoded PKCS #7 object goes here]

In Example 8, the base64-encoded PKCS #7 object is the payload container packaged
as a multipart/related message that was shown in Example 7. See RFC 2311 for details
on how to create this object.

The Preamble, the Delivery Header, and the S/MIME enveloped message are then
packaged into a multipart/related message with the Preamble as the first body part, the
Delivery Header as the second, and the S/MIME entity as the third. The mandatory
�type� parameter of the multipart/related content-type header MUST have the value
�application/xml�, corresponding to the Preamble (which happens to be the root or
first part). The OPTIONAL �start� parameter, if present, MUST contain the Content-
ID value of the Preamble.

RosettaNet Implementation Framework: Core Specification Release for Validation 13 July 2001

46 ©2001 by RosettaNet. All rights reserved.

The result of this packaging constitutes the entire encrypted RosettaNet Business
Message without a signature in the case of the encrypted payload container.

Encrypted
Payload Container

Preamble

Delivery Header

Multipart/related

Preamble

Delivery Header

Encrypted
Payload Container

Figure 11. Packaging RosettaNet Message with Encrypted Payload
Container

ENCRYPTING THE PAYLOAD

If the Service Header is required to be left unencrypted, the Service Content and the
Attachments, if any, are packaged into a MIME multipart/related message (see RFC
2387). Although the Content-ID header is optional in MIME, RosettaNet REQUIRES
that each of the body parts of the multipart/related message contain the Content-ID
header (see RFC 2045). Note that the values of the Content-ID header MUST be
globally unique (see RFC 2045). Additionally, the Service Header and Service
Content MUST also each have the Content-Location header with the values �RN-
Service-Header� and �RN-Service-Content�, respectively.

In creating this multipart/related message, the Service Content MUST be the first body
part and the Attachments, if any, MUST appear from the second body part onwards.
There is no specific order in which these attachments are arranged; however, the order
in which the attachments are listed in the manifest part of the Service Header MAY be
followed for convenience.

The mandatory �type� parameter of the multipart/related content-type header MUST
have the value �application/xml�, corresponding to the Service Header (which
happens to be the root or first part). The OPTIONAL �start� parameter, if present,
MUST contain the Content-ID value of the Service Content.

Validated 13 July 2001 Section 2, Packaging the RosettaNet Business Message

©2001 by RosettaNet. All rights reserved. 47

Service Content

Attachment 1

Attachment n

�

Multipart/related

Service Content

Attachment 1

Attachment n

�

Figure 12. Packaging Payload Prior to Encryption

Example 9. Packaged Payload Prior to Encryption

Content-Type: multipart/related;
boundary=”RN-PayCnt-Boundary”;
type=”application/XML”;
start=”<content-ID-for-Service-Content>”

Content-Description: This is the payload

--RN-PayCnt-Boundary
Content-Type: application/XML;
Content-Description: RosettaNet-Service-Content
Content-Location: RN-Service-Content
Content-ID: <content-ID-for-Service-Content>

[Service Content goes here]

--RN-PayCnt-Boundary
Content-Type: Image/jpeg;
Content-Description: A Diagram of the product
Content-ID: diag-987654321.ghfg.efg-xcabc.00112233

[Attachment goes here]

--RN-PayCnt-Boundary--

The resulting multipart/related message is enveloped to create an S/MIME enveloped
message using the "application/pkcs7-mime" content-type with "smime-
type=enveloped-data" (see RFC 2311). RNIF 2.0 does not require any particular
cipher strength or algorithm for data protection or encryption. These settings are
retrieved from the Trading Partner Database as part of the Trading Partner Agreement
and are ultimately determined by corporate policy, import and export restrictions, etc.

RosettaNet Implementation Framework: Core Specification Release for Validation 13 July 2001

48 ©2001 by RosettaNet. All rights reserved.

Multipart/related

Service Content

Attachment 1

Attachment n

�

Multipart/related

Service Content

Attachment 1

Attachment n

�

S/MIME Envelope

Figure 13. Encrypting the Payload

Example 10. Encrypted Payload

Content-Type: application/pkcs7-mime;
smime-type=enveloped-data;
name=something.p7m

Content-Transfer-Encoding: base64
Content-Disposition: attachment; filename=something.p7m

[The Base64-encoded PKCS #7 object goes here]

In Example 10, the base64-encoded PKCS #7 object is the payload packaged as a
multipart/related message (as shown in Example 9). See RFC 2311 for details on how
to create this object.

The Preamble, the Delivery Header, the Service Header, and the S/MIME enveloped
message are then packaged into a multipart/related message with the Preamble as the
first body part, the Delivery Header as the second, the Service Header as the third, and
the S/MIME entity as the fourth. The mandatory �type� parameter of the
multipart/related content-type header MUST have the value �application/XML�,
corresponding to the Preamble (which happens to be the root or first part). The
OPTIONAL �start� parameter, if present, MUST contain the Content-ID value of the
Preamble.

The result of this packaging constitutes the entire encrypted RosettaNet Business
Message without a signature in the case of the encrypted payload.

Validated 13 July 2001 Section 2, Packaging the RosettaNet Business Message

©2001 by RosettaNet. All rights reserved. 49

Encrypted Payload

Preamble

Delivery Header

Multipart/related

Preamble

Delivery Header

Encrypted Payload

Service HeaderService Header

Figure 14. Packaging RosettaNet Message with Encrypted Payload

SIGNING THE ROSETTANET BUSINESS MESSAGE

If signature is required, the RosettaNet Business Message, whether encrypted or not,
is signed following S/MIME conventions as specified in the �General Packaging
Rules� section above. Specifically, the multipart/signed content type MUST be used
for this purpose.

Multipart/related

Service Content

Attachment 1

Attachment n

�

Service Header

Preamble

Delivery Header

Multipart/related

Service Content

Attachment 1

Attachment n

�

Service Header

Preamble

Delivery Header

Multipart/signed

Digital Signature

Figure 15. Signing the Unencrypted RosettaNet Business Message

RosettaNet Implementation Framework: Core Specification Release for Validation 13 July 2001

50 ©2001 by RosettaNet. All rights reserved.

Multipart/related

Preamble

Delivery Header

Encrypted Payload

Service Header

Multipart/related

Preamble

Delivery Header

Encrypted Payload

Service Header

Multipart/signed

Digital Signature

Figure 16. Signing the Encrypted RosettaNet Business Message
(Payload Encrypted)

Multipart/related

Preamble

Delivery Header

Encrypted
Payload Container

Multipart/related

Preamble

Delivery Header

Encrypted
Payload Container

Multipart/signed

Digital Signature

Figure 17. Signing the Encrypted RosettaNet Business Message
(Payload Container Encrypted)

Example 11. Signed RosettaNet Business Message

Content-Type: multipart/signed;
boundary=”RN-Signature-Boundary”;
protocol=”application/pkcs7-signature”;
micalg=sha1

Content-Description: This is a Signed RosettaNet Business Message

--RN-Signature-Boundary

Validated 13 July 2001 Section 2, Packaging the RosettaNet Business Message

©2001 by RosettaNet. All rights reserved. 51

[The RosettaNet Business Message to be signed goes here]

--RN-Signature-Boundary
Content-Type: Application/pkcs7-signature; name=”detached.p7s”
Content-Transfer-Encoding: base64
Content-Disposition: attachment; filename=smime.p7s
Content-Description: This is the signature for the Business Message

[The base64-encoded PKCS7 Detached Signature goes here]

--RN-Signature-Boundary--

REQUESTING SYNCHRONOUS RESPONSE

Note that above packaged message can now be transmitted via any transfer protocol.
A detailed discussion on the transfer protocol specifics can be found in section 2.4. If
the response for the message being so sent is required to be received synchronously,
then the message MUST be sent via HTTP. In such a case, the HTTP entity header �x-
RN-Response-Type� that indicates that the response be received synchronously
MUST be specified. Refer to section 2.4 for more details on this header. Refer to
section 2.6 for detailed rules on PIPs that can allow synchronous responses.

HANDLING PACKAGING ERRORS

Errors that are encountered during packaging are handled as follows:

• If the message being packaged is the first message in the PIP (i.e., the partner has
never seen a message for this PIP instance before), then the error MAY be logged
internally and/or handled according to the local policy.

• If the message being packaged is a response action message, unless the error is
generic enough to happen while packaging any message � either fatal,
irrecoverable, or both � then an Exception of type �General Exception� with
error code PKG.MESG.GENERR (see Table 6) SHOULD be sent to the partner
and the local instance of the process must be aborted. If the
packaging/transmission of the exception fails, a Notification of Failure PIP
instance SHOULD NOT be initiated.

• If the message being packaged is a signal, such as Receipt Acknowledgment or
Exception, then the error MAY be logged internally and/or handled according to
local policy. Also, the local instance of the PIP process MUST be terminated.

COMPLIANCE SUMMARY

This summary is for convenience only and is not guaranteed to contain all compliance
statements. For complete compliance knowledge, read the entire specification.

The rules specified in "General Packaging Rules" and "Packaging Steps" above
MUST be followed.

RosettaNet Implementation Framework: Core Specification Release for Validation 13 July 2001

52 ©2001 by RosettaNet. All rights reserved.

2.3.4 Unpackaging the RosettaNet Business Message

This section of the specification discusses the unpackaging of the RosettaNet Business
Message. Critical to the discussion of unpackaging is the handling of errors.

The Delivery Header carries the sender ID. The Service Header carries information on
which PIP is being executed, as well as the Instance ID of the message. This
information is necessary for the recipient of the message to notify the sender in case of
errors in the message.

If the recipient encounters errors before successfully reading the Delivery Header and
the Service Header, a mechanism is needed to identify the sender and other
information so that errors can be reported back. This is accomplished through
transport-level debug headers that supply this information. However, it is expected
that debug headers would only be used in the set-up phases of new systems and/or
when starting to implement RosettaNet PIPs with new trading partners. RosettaNet
discourages the use of debug headers during production for obvious reasons. Refer to
the sections on debug headers in section 2.4 for further details.

2.3.4.1 Unpackaging Steps

Unpackaging involves extracting the various components of the business message and
simultaneously performing validation steps where applicable.

The steps described in this section are descriptive rather than prescriptive.

IDENTIFYING THE RESPONSE TYPE

In the case of a message received through an HTTP post, the requester posting the
message may have requested that the response be sent back synchronously, on the
same HTTP connection. This information is carried in the HTTP entity header �x-RN-
Response-Type�. Note that such a synchronous response is only possible if the
requesting message came through HTTP. If the message was received through another
transfer protocol, or if the above header is not present, then the message MUST be
treated as if the response is to be sent asynchronously.

VERIFYING THE SIGNATURE

If the incoming RosettaNet Business Message is signed, the recipient MUST verify
the signature. Signature verification and Sender Authentication are usually done
together. Hence, in order to perform signature verification effectively, this step MAY
be postponed until the Delivery Header is extracted completely. Refer to the section
�Authenticating the Sender� for more details. The incoming message MUST be
discarded if the signer is either unknown or not trusted, if the integrity of the message
cannot be verified, or if this step failed for any other reason. In such cases, the error
UNP.MESG.SIGNERR MAY be internally logged according to local policy. An
Exception MUST NOT be sent to the sender of the message unless the transport
headers carried debug information. If the message contained debug information in the
transport headers, and if the recipient�s policy allows notification of security errors to

Validated 13 July 2001 Section 2, Unpackaging the RosettaNet Business Message

©2001 by RosettaNet. All rights reserved. 53

the sender, an Exception MAY be sent. However, this is not recommended for
security reasons.

EXTRACTING AND VALIDATING THE PREAMBLE

The Preamble, which is the first body part of the multipart/related message, is
extracted and validated. For detailed rules on validation of any XML body part, refer
to section 2.1.2.2.

If any of these tasks fail, the message MUST be discarded and the error
UNP.PRMB.READERR or UNP.PRMB.VALERR (as the case may be) MAY be
logged internally per local policy. An Exception signal MUST NOT be sent to the
sender at this point as the sender is not yet identified, unless the incoming message
contained debug headers in the transport headers. If the message contained debug
headers in the transport headers, and if the recipient�s policy allows notifying the
sender of errors during the initial setup stages (debug stages), an Exception with type
value of �General Exception� MAY be sent.

EXTRACTING THE DELIVERY HEADER

The second body part, which is the Delivery Header, is extracted and validated per the
validation rules. If an error is encountered, then the message MUST be discarded and
the error UNP.DHDR.READERR or UNP.DHDR.VALERR (as the case may be)
MAY be logged internally per local policy. An Exception signal MUST NOT be sent
to the sender at this point as the sender is not yet identified, unless the incoming
message contained debug headers in the transport headers. If the message contained
debug headers in the transport headers, and if the recipient�s policy allows notifying
the sender of errors during the initial setup stages (debug stages), an Exception with
type value of �General Exception� MAY be sent.

AUTHENTICATING THE SENDER

Once the sender ID is extracted from the Delivery Header, the sender is authenticated
as follows:

If the message was signed, verify that the signature belongs to the trading partner who
sent this message. Authentication failures MAY be logged internally. An Exception
MUST NOT be sent for security reasons. As in the other cases, if local policy allows,
an Exception MAY be sent if the debug header is present in the transport headers in
the incoming message.

Note that in the case of an unknown sender, the message will not be signed, and
therefore no authentication will be needed.

EXTRACTING THE SERVICE HEADER

The third body part of the Multipart/related message is extracted.

If the content-type is �application/XML�, then the Service Header was not encrypted.
In such a case, this body part constitutes the Service Header.

RosettaNet Implementation Framework: Core Specification Release for Validation 13 July 2001

54 ©2001 by RosettaNet. All rights reserved.

If the content-type is �application/pkcs7-mime�, then the payload and the Service
Header were encrypted. In this case, this body part MUST be decrypted. Decryption
MUST result in a multipart/related entity. The first body part in this enclosed
multipart/related entity is extracted. This MUST be the Service Header.

If the decryption or the extraction of the Service Header fails, the message is discarded
and the error UNP.MESG.DCRYPTERR or UNP.SHDR.READERR (as the case may
be) MAY be logged internally, per local policy. As in previous cases, an Exception
signal MUST NOT be sent to the sender at this point, as there is not yet enough
information available to populate the Exception's Service Header, unless the incoming
message contained debug headers in the transport headers. If the message contained
debug headers in the transport headers, and if the recipient�s policy allows notifying
the sender of errors during the initial setup stages (debug stages), an Exception with
type value of �General Exception�MAY be sent

VALIDATING THE SERVICE HEADER

The Service Header MUST be validated per the rules specified in section 2.1.2.2. If
the header is found to be invalid (i.e., the error UNP.SHDR.VALERR applies), the
error MAY be logged internally, per local policy. Again, an Exception signal cannot
be sent to the sender at this point, unless the incoming message contained debug
headers in the transport headers. If the message contained debug headers, and if the
recipient�s policy allows notifying the sender of errors during the initial setup stages
(debug stages), an Exception MAY be sent.

Once the contents of the Service Header are extracted, the following validations
MUST be performed:

• Sequence validation. The incoming message is related to the proper instance of
an already executing PIP, or a new PIP instance is initiated if this is the first
message of the PIP. If this step fails (e.g., if the message does not correspond to
any PIP configured between the sender and the recipient, or if the instance IDs or
the PIP/activity/action codes do not correspond to valid sequence (for instance,
the request was referring to PIP 3A4, while the response says it is for PIP 3A7)),
then an Exception MUST be sent to the sender if the incoming message is an
action message. The exception type in the Exception is set to �General Exception�
and the error code is set to UNP.MESG.SEQERR. If the incoming message is a
signal, then the error MAY be logged according to local policy.

• Synchronous Response Specification Verification. If the incoming message is
the first message for this PIP instance, and is received through an HTTP POST,
and requires that the response be sent synchronously in the same HTTP
connection, and the recipient supports synchronous message exchange, then the
recipient MUST verify that the PIP specification allows for a synchronous
response for this message. If such verification fails, then the error MAY be logged
internally and an exception MUST be sent back synchronously, within the same
HTTP connection. Similarly, if the HTTP header requires asynchronous response
and the PIP specification prohibits asynchronous response, then an exception
MUST be sent back asynchronously, if the action requires either a response or a
Receipt Acknowledgment. If neither a response to this action nor a Receipt
Acknowledgment is required, then a Notification of Failure PIP is initiated. The

Validated 13 July 2001 Section 2, Unpackaging the RosettaNet Business Message

©2001 by RosettaNet. All rights reserved. 55

error code used for this error, in case an Exception needs to be sent, is
UNP.MESG.RESPTYPERR.

• Authorization of Sender. Note that though the sender�s signature may have
already been verified earlier while unpacking the Delivery Header, authorization
of the sender (i.e., verifying whether the sender has the authority to participate in
this PIP), cannot happen until the Service Header is unpacked. Any error in such
verification is treated as a security error and MAY result in internal logging. An
Exception MUST NOT be sent back to the sender of the message for security
reasons. As in the other cases, if local policy allows, then an Exception MAY be
sent if the debug header is present in the transport headers in the incoming
message. However, if the incoming message requires synchronous response,
failure to authenticate or authorize the sender MUST result in the receiver either
sending an HTTP 403 response code or closing the connection with no response.

• Manifest Verification. If this is an action message, then the manifest is verified
against the attachments (for the existence of the number of attachments as
specified in the manifest, the existence of the specified Content-ID, and the
corresponding content-type). If the verification fails, an Exception is sent to the
sender with the exception type of �General Exception� and an error code of
UNP.SHDR.MNFSTERR. This Exception MUST also be the result if the
manifest indicates that Non-RosettaNet Service Content is present in the message,
and such content is not supported by the solution. Note that the manifest
verification step MAY be deferred until the entire message is unpacked. However,
this step MUST be performed before sending a Receipt Acknowledgment. The
result of the verification MUST be the same whether this step is performed now
or later.

EXTRACTING AND VALIDATING THE SERVICE CONTENT

The Service Content is extracted. (Note that whether or not the message was
encrypted, either the Service Content or the encrypted Service Content is the body part
after the Service Header.) In case the Service Content was encrypted, it MUST be
decrypted. The Service Content is validated per the rules specified in section 2.1.2.2.

Processing an Action Message

If this is an action message, failure to decrypt, read or validate the Service Content
MUST result in an Exception being sent if either a Receipt Acknowledgment or a
response is required for this action. In such a case, the exception type is �Receipt
Acknowledgment Exception�. The error codes to use in the exception are
UNP.MESG.DCRYPTERR, UNP.SCON.READERR, or UNP.SCON.VALERR,
depending on whether the error happened while decrypting, reading or validation of
the Service Content, respectively.

If neither Receipt Acknowledgment nor Response is required, then exceptions in
processing the action message MUST result in initiation of the Notification of Failure
PIP.

Refer to the below step �Processing Attachments� for more detailed instructions on
extracting and validating the attachments.

RosettaNet Implementation Framework: Core Specification Release for Validation 13 July 2001

56 ©2001 by RosettaNet. All rights reserved.

If the processing of the action message completed without any error, the message
MUST be persisted per local policy. A Receipt Acknowledgment MUST then be sent
if the action requires a Receipt Acknowledgment. If the incoming message was signed
and non-repudiation of receipt is required, then the Receipt Acknowledgment MUST
carry the digest of the incoming message. For rules on computing the digest refer to
the �Non-Repudiation of Receipt� section.

Processing a Signal Message

If this is an Exception, then the corresponding PIP instance must be aborted despite
inability to read the Exception. If this is a Receipt Acknowledgment, then failure to
read or validate the Receipt Acknowledgment MUST be treated similarly to the case
where the Receipt Acknowledgment was never received; this error MAY also be
logged internally. If the signal passes validation it is persisted per local policy. The
corresponding PIP instance either completes (if this is the final signal) or continues (if
this is not the final signal).

Processing Attachments

Body parts that follow the Service Content must be treated as attachments. Each
attachment body part must specify the Content-ID for the attachment. If the Content-
ID is missing or invalid, the receiver MUST send a General Exception back to the
requester.

NON-REPUDIATION OF RECEIPT

When non-repudiation of receipt of an action message is required, the recipient of the
message computes a digest of the received multipart/related body part, which is the
first body part of the multipart/signed message. This computation MAY have been
done as part of the signature validation step. The digest MUST then be base-64
encoded (if not already), and included in the Receipt Acknowledgment in the
�OriginalMessageDigest� field.

Note that non-repudiation of receipt is only required when the message is being
accepted for processing. Hence, for messages that result in an Exception while
unpackaging or validation, there is no need for non-repudiation of receipt.

UNPACKAGING AND ERROR HANDLING SUMMARY

This section summarizes in graphical and tabular form the entire message processing
flow and the error handling processes and messages discussed in the previous sections.

2.6.7 shows the mandatory Error Codes and the associated descriptions.

Validated 13 July 2001 Section 2, Unpackaging the RosettaNet Business Message

©2001 by RosettaNet. All rights reserved. 57

Verify Signature and
Remove Encapsulation

Signed?

Valid Sign? Handle Error
UNP.MESG.SIGNERR

Start

Read Preamble

Handle Error
UNP.PRMB.READERR

Validate Preamble

Handle Error
UNP.PRMB.VALERR

Success?

PayCont
Encrypted?

Read Delivery Header

Handle Error
UNP.DHDR.READERR

Success?

Success?

Decrypt

Handle Error
UNP.MESG.DCRYPTERR

Success?

Handle Error
UNP.SHDR.VALERR

Read Service Header

Handle Error
UNP.SHDR.READERR

Validate Service Header

Success?

Success?

Handle Error
UNP.DHDR.VALERR

Success?

Payload
Encrypted?

Decrypt Payload

Handle Error
UNP.MESG.DCRYPTERRRead Service Content

Handle Error
UNP.SCON.READERR

Validate Service Content

Success?

Success?

Persist Message,
Send RctAck if req�d,

Validate Content
& Perform Action

Handle Error
UNP.SCON.VALERR

End

Business-
Message

Validate Delivery Header

Success?

Yes
No

Yes

No

Yes

No

Yes

No

No

No

No

No

No

No

No

No

Yes

Yes

Yes

Yes

No
Yes

Yes

Yes

Yes
No

Yes

Yes

Errors above require debug
headers to send Exception.

Errors below always
sent as Exception.

Figure 18. Entire Message Processing Flow

RosettaNet Implementation Framework: Core Specification Release for Validation 13 July 2001

58 ©2001 by RosettaNet. All rights reserved.

Handle Error Code

SvcHdr
Parsed?

Discard Business-Message
and handle event per local
conventions
[notify system support staff]

Yes

Yes

Send Error Code and
information to partner.
Exception

No

NoDebug
Headers?

Local policy
= Send

Exception?

Yes

No

Figure 19. �Handle Error� Flow

2.3.5 Intermediary-Routed Business Messages

Intermediary-Routed messages are no different from the Peer-to-Peer messages. The
intermediaries MUST always be able to read the Preamble and the Delivery Header.
This is all the information needed to identify that this is a RosettaNet message and to
identify the sender and the recipient of the message. In the event that the Preamble or
the Delivery Header cannot be read by the intermediary, the intermediary may not be
able to act on the message. The Delivery Header contains a tracking number for each
message which, in combination with the sender's identification, can be used by the
intermediary, the sender, and the receiver to identify the message uniquely for
tracking purposes.

When the intermediary receives a message, it identifies the sender and the receiver. It
MAY process the message per local policy and/or per the contract with the sender or
the receiver. RosettaNet does not specify what the intermediary does internally or how
it is done. Once the intermediary determines to send the message to the intended
recipient, it merely sends the message to the recipient.

Validated 13 July 2001 Section 2, Synchronous Response Messages

©2001 by RosettaNet. All rights reserved. 59

The intermediary SHALL send the incoming message as received from the sender and
SHALL NOT reconstruct or repackage the message. This is necessary in order to be
able to achieve non-repudiation of origin and content and non-repudiation of receipt.

2.4 RosettaNet Business Message Transfer

This section specifies transfer protocols for RosettaNet Business Message exchange,
and specifies which are mandatory and which are optional. It also provides debug
header specifications for use in certain situations.

One of the intentions of RNIF 2.0 is to de-couple the packaging (encoding) of the
RosettaNet Business Message from the delivery or transfer of the RosettaNet Business
Message. In doing so, more flexibility is provided to the implementers to select the
transfer mechanism that best meets the requirements of a particular implementation.
(See Appendix D for further rationale behind this approach.)

As a result, the concept of transfer independence is introduced. With transfer-
independence, the RosettaNet Business Message defined in section 2.1 MUST be
delivered to the receiving trading partner exactly as it was generated by the sender. To
facilitate this, a transfer binding or envelope (transfer level header) specification,
within which the transfer-independent RosettaNet Business Message MUST be
transported end to end, and the transfer interface usage details are provided for each of
the transfer protocols supported by RosettaNet. In the current release, RosettaNet
specifies transfer binding and other details for HTTP and SMTP transfer protocols,
with the intent to add support for more transfer protocols in the future. Use of
additional transfer protocols is not considered RosettaNet-compliant until such time as
these new protocol bindings are published in a future RNIF release or addendum to
this specification.

In addition to allowing for maximum flexibility through transfer protocol
independence, RNIF 2.0 also provides for maximum compatibility by specifying one
transfer protocol that all solution providers MUST implement. Specifically, this
protocol is HTTP. This guarantees that all RNIF 2.0-compliant trading partners can
count on support for at least one transfer protocol (HTTP) being available from all
solution providers.

This section also defines RNIF 2.0 debug-headers to be used at the transfer protocol
level. These headers provide additional information on the content being transferred,
to assist the implementers in the deployment effort. This document specifies details of
these headers for HTTP and SMTP transfer protocols, as well as general guidelines for
implementing debug headers for other transfer mechanisms.

2.4.1 Synchronous Response Messages

The RosettaNet PIP model is primarily based on an asynchronous message exchange
mechanism, where reliable messaging is accomplished by means of separate
acknowledgment message exchanges, as described in other parts of this specification.
However, a need for transmitting the business response synchronously has already
been identified by some of the more recent PIP specifications. Hence RNIF 2.0

RosettaNet Implementation Framework: Core Specification Release for Validation 13 July 2001

60 ©2001 by RosettaNet. All rights reserved.

specifies the transfer protocol level binding needed to perform synchronous exchange
of messages also.

Of the two protocols (SMTP and HTTP) for which RNIF 2.0 specifies transfer
protocol level bindings, HTTP is the only protocol that can support synchronous
message exchanges. Hence the transfer bindings for synchronous message exchanges
are specified and applicable to the HTTP transfer protocol only. It also follows that
PIP implementers requiring synchronous message exchanges MUST use the HTTP
transfer mechanism until RosettaNet specifies support in the future for other transfer
protocols that would support synchronous message exchanges.

2.4.2 HTTP Transport Binding Specification

This section specifies the HTTP transfer envelope or the transfer-level headers to be
used when transferring a RosettaNet message through HTTP transfer protocol. As
noted earlier, all solution providers MUST support HTTP transfer protocol.

All trading partners MUST be able to use (i.e., exchange action and signal messages)
this transfer protocol. Trading partners MAY use alternate protocols by agreement
with selected trading partners (e.g., non-RNIF-compliant trading partners).

RNIF 2.0 RECOMMENDS the use of HTTP version 1.1 for the improvements it
offers over HTTP version 1.0. Stable implementations of HTTP version 1.1 are
widespread at this point. However, RosettaNet recognizes that many implementations
still support HTTP version 1.0 only. Hence, use of HTTP version 1.0 is also permitted,
and HTTP 1.1 implementations can downgrade the service to 1.0 level. However
RosettaNet urges trading partners and solution providers to move to HTTP 1.1.

Note that the specifications and examples that follow show the use of the HTTP 1.1
specification. However, use of HTTP 1.0 version in all such places MUST be
considered valid as well. The HTTP protocol request lines (e.g., HTTP POST), as
required by the HTTP 1.0 and later versions of the specification, MUST explicitly
supply the version of the HTTP protocol. In addition, to facilitate cross-compatibility
between HTTP versions, RosettaNet REQUIRES that every HTTP request contain a
valid Content-Length header field.

2.4.2.1 Outbound HTTP Binding

When using the HTTP protocol, the outbound RosettaNet messages are transferred via
an HTTP POST request to a trading-partner-specified URL.

The message to be transferred is transmitted as the �body� of the HTTP POST request.
The following MIME headers are to be used with the HTTP POST request:

Content-Type: multipart/related;
boundary=”any-value-appropriate”;
type=”value”

x-RN-Version: RosettaNet/V02.00
x-RN-Response-Type: sync or async
Content-Length: nnnn

Validated 13 July 2001 Section 2, HTTP Transport Binding Specification

©2001 by RosettaNet. All rights reserved. 61

The MIME Content-Type MUST be multipart/related, with the two required
parameters: �type� and �boundary�. The value for the type parameter MUST be the
same as the MIME content-type for the RosettaNet message being transmitted. For
RNIF 2.0, the only valid values are �multipart/related� and �multipart/signed�. The
value for the boundary parameter MUST follow the standard MIME specification;
note that RosettaNet does not specify the boundary parameter. However, care must be
taken to use a value for the boundary that does not conflict with the potential boundary
values in the RosettaNet message being transmitted. The x-RN-Version header with a
value of �RosettaNet/V02.00� MUST be specified.

The Content-Length header, if used, MUST be in compliance with RFC 2616.

The x-RN-Response-Type header can take only one of the two values: �sync� or
�async� (case insensitive). The x-RN-Response-Type header when present with the
value �sync� specifies to the receiver of the message that the sender of the message
requires a synchronous response. However, the x-RN-Response-Type header is
OPTIONAL, and if not present, the value of the header defaults to �async� or the
usual asynchronous message exchange mechanism. If the x-RN-Response-Type
header is present with a value other than �sync� or �async� (case insensitive), the
HTTP request should be rejected with a response code of 400 (Bad Request).

Other standard (HTTP-compliant) MIME headers MAY be used as mutually agreed
by the trading partners. However, these headers are not significant from a RosettaNet
message transfer/envelope perspective. Implementers are explicitly prohibited from
attaching any significance that makes the RosettaNet message transport end-to-end
dependent on those headers. See also debug-headers described in section 2.4.2.6
below.

Following the standard MIME convention, the MIME header and parameter names
and values are not case-sensitive. The order in which the parameters occur is also not
significant.

Note: In the following examples, all headers for the �body� RosettaNet message are
not shown.

Example 12. HTTP Post of a RosettaNet Message

POST http://TPserver.TPcompany.com/cgi-bin/rosettanetservice HTTP/1.1
Content-Type: Multipart/related;

boundary=”RN-HTTP-Boundary”; type=”multipart/related”
Content-Length: nnnn
x-RN-Version: RosettaNet/V02.00
x-RN-Response-Type: async

--RN-HTTP-Boundary

[RosettaNet Business Message goes here]

--RN-HTTP-Boundary--

Example 13. HTTP Post of Unsigned RosettaNet Message

POST /servlet/RNInBoundServlet HTTP/1.1
Host: partnerA.name.com
Content-Type: Multipart/related;

RosettaNet Implementation Framework: Core Specification Release for Validation 13 July 2001

62 ©2001 by RosettaNet. All rights reserved.

Boundary=”RN-HTTP-Body-Boundary”;
type=”multipart/related”

x-RN-Version: RosettaNet/V02.00
x-RN-Response-Type: async
Content-Length: 1896

--RN-HTTP-Body-Boundary
Content-Type: multipart/related;

boundary=”RN-Outer-Boundary”;
type=”application/xml”

Content-Description: This is the RosettaNet Business Message

--RN-Outer-Boundary
Content-Type: Application/XML
Content-Location: RN-Preamble-Header
Content-ID: <value>

[Preamble Header instance goes here]

--RN-Outer-Boundary
Content-Type: Application/XML
Content-Location: RN-Delivery-Header
Content-ID: <value>

[Delivery Header instance goes here]

--RN-Outer-Boundary
Content-Type: Application/XML
Content-Location: RN-Service-Header
Content-ID: <value>

[Service Header instance goes here]

--RN-Outer-Boundary
Content-Type: Application/XML
Content-Location: RosettaNet-Service-Content
Content-ID: <value>

[Service Content instance goes here]

--RN-Outer-Boundary
Content-Type: image/gif
Content-Transfer-Encoding: Base64
Content-ID: <value>

[Attachment goes here]

--RN-Outer-Boundary--

--RN-HTTP-Body-Boundary--

Example 14. HTTP Post of Signed RosettaNet Message

POST http://partnerB.name.com/servlet/RNInBoundServlet HTTP/1.1
Content-Type: multipart/related;

type=”multipart/signed”;
boundary=”RN-HTTP-Boundary”;

x-RN-Version: RosettaNet/V02.00
x-RN-Response-Type: async
Content-Length: 18899

--RN-HTTP-Boundary
Content-Type: multipart/signed;

Validated 13 July 2001 Section 2, HTTP Transport Binding Specification

©2001 by RosettaNet. All rights reserved. 63

boundary=”RN-Signature-Boundary”;
protocol=”application/pkcs7-signature”;
micalg=sha1

Content-Description: This is a Signed RosettaNet Business Message

--RN-Signature-Boundary
[The Business Message to be signed goes here]
[Business Message Payload Container + Preamble
[packed in MIME multipart/related construct]

--RN-Signature-Boundary
Content-Type: Application/pkcs7-signature; name=”detached.p7s”
Content-Transfer-Encoding: base64
Content-Disposition: attachment; filename=smime.p7s

[The base64-encoded PKCS7 Detached Signature]

--RN-Signature-Boundary--

--RN-HTTP-Boundary--

2.4.2.2 Processing Inbound HTTP Posts

The HTTP processor on the receiving side MUST verify the posted message for
correct content-type and other MIME headers at the transfer level. The HTTP
processor MUST also make sure the HTTP body matches the Content-Length (if
specified). See section 2.4.2.6 below for details on dealing with debug headers.

If the HTTP headers are incorrect, or the content length specified does not match, or
for any other errors related to receiving the HTTP posted message successfully, error
codes as specified in the HTTP 1.1 RFC 2616 MUST be returned. Additionally
RosettaNet RECOMMENDS that 1xx responses should never be returned, that 2xx
responses SHOULD be limited to 200 and 202 (200 in the case of synchronous HTTP
requests and 202 in the case of asynchronous, as further discussed below), and that
3xx, 4xx and 5xx error conditions must be dealt with in the usual way, governed by
the local policy. See the description below for specific guidelines on HTTP errors to
be returned. See section 2.6 for a detailed description of how to handle error
conditions (exception handling).

If the value of the x-RN-Response-Type header is �async� (or if the x-RN-Response-
Type header is not present in the HTTP POST), and the posted message is
successfully received completely, without any errors, an HTTP response code of �202
Accepted� MUST be returned. For asynchronous messaging, in the case of HTTP
based transfer, acknowledgment and response messages are returned in separate HTTP
POST requests. Hence, a �202 Accepted� is the correct HTTP status code to be
returned.

2.4.2.3 Processing Inbound Synchronous HTTP Posts

Following are additional guidelines for handling �sync� requests:

RosettaNet Implementation Framework: Core Specification Release for Validation 13 July 2001

64 ©2001 by RosettaNet. All rights reserved.

• If the value of the x-RN-Response-Type header is �sync�, and the receiver does
not support synchronous message exchanges, an HTTP error with the error code
501 (Not Supported) MUST be returned. Otherwise the receiver MUST attempt to
process the request for a synchronous response. Please note that the request for
synchronous response could be in error, as the support for synchronous responses
must be explicitly called out in the PIP specification.

• If the value of the x-RN-Response-Type header is �sync�, and the requested PIP
does not support synchronous response mode, then an exception with error code
UNP.MESG.RESPTYPERR MUST be returned.

• If the received message is processed successfully, the response (MIME-packaged
RosettaNet Business Message) MUST be conveyed on the same HTTP connection
with a 200 OK response code. See the example below for the format of the HTTP
response.

• If the received message does not pass authentication or authorization checks, the
receiver should either return an HTTP error with �403� response code or close the
connection without a response, according to local policy.

• If the grammar/schema validation of the incoming message fails, an Exception
(General Exception) signal (MIME-packaged) with an appropriate error code (as
described in section 2.6) MUST be returned with the HTTP response code 200
OK.

• If the business content validation step fails or an error occurs while processing
(performing) the request, an Exception (General Exception) signal with an
appropriate error code (as described in section 2.6) MUST be returned with the
HTTP response code 200 OK.

• For one-action PIPs, a Receipt Acknowledgment signal may be returned with an
HTTP response code 200 OK, if called for in the PIP specification; a response
code 200 OK with no entity-body should be sent otherwise as positive response.
For two-action PIPs, only business response messages (no Receipt
Acknowledgments) can be returned as a positive response with an HTTP response
code 200 OK. For both one-action and two-action PIPs, an exception signal
message MUST be sent with a response code 200 OK for conditions requiring to
report exceptions, as described above.

• If an entity body is returned as an HTTP response, a Content-Length header field
MUST be included. The x-RN-Version and x-RN-Response-Type header fields
MAY appear in the response, but are not required.

Example 15. HTTP Synchronous Response

HTTP/1.1 200 OK
Content-Type: Multipart/related;

boundary=”RN-HTTP-Boundary”; type=”type”
Content-Length: nnnn

--RN-HTTP-Boundary

[RosettaNet Response Business Message goes here]

Validated 13 July 2001 Section 2, HTTP Transport Binding Specification

©2001 by RosettaNet. All rights reserved. 65

--RN-HTTP-Boundary--

The x-RN-Version and x-RN-Response-Type headers MAY be omitted from the
synchronous response, as shown.

Refer to section 2.6 for further details on handling synchronous requests and for
guidelines on handling one-action and two-action PIPs in synchronous exchanges.

2.4.2.4 HTTP Synchronous Exchanges & the Message Sender

The following are some guidelines for the message sender of HTTP based
synchronous message exchanges:

• The sender should receive an HTTP response code other than 200 OK, for HTTP
transfer related errors.

• The sender should expect to receive Exception Signal messages in addition to
business response messages, with an HTTP 200 OK response code.

• For one-action PIPs the sender MUST receive a Receipt Acknowledgment signal
with a 200 OK if called for in the PIP specification, or a 200 OK with no body
otherwise as positive response. For two-action PIPs, only business response
messages (no Receipt Acknowledgments) can be returned as a positive response,
returned with a 200 OK. For both one-action and two-action PIPs, the sender
MUST expect to receive an exception signal message also (instead of a positive
response) with a 200 OK.

• If the sender receives no response within the timeout constraints as specified in
the PIP specification, or if the connection is dropped or times out, this could be
due to a failure or error condition at the receiver. If the sender believes that it is a
valid request, the sender must close the HTTP session if not already terminated
and the request MAY be sent again, as a new instance of the subject PIP.

Refer to section 2.6 for further details.

2.4.2.5 Transfer-Level Security

If additional transfer-specific security is desired, Secure Sockets Layer (SSL) protocol
v.3 or any backward-compatible successors (such as TLS v.1.0) MAY be used. A
minimum of SSL v.3 MUST be made available by solution providers.

2.4.2.6 Debug Header as an Extension-Header in HTTP

The Debug-header provides additional information to the recipient of the RosettaNet
Business Message via HTTP headers.

The RosettaNet Exception signals are asynchronous. That is, if an action message is
sent by Partner A to Partner B, errors in the message are indicated by Partner B to
Partner A asynchronously. These exceptions can only be sent by the recipient of the
original message if (minimally) the Service Header of the incoming message could be
read successfully. Errors that occur before successful reading of the Service Header

RosettaNet Implementation Framework: Core Specification Release for Validation 13 July 2001

66 ©2001 by RosettaNet. All rights reserved.

would result in the sender timing out waiting for the Receipt Acknowledgment. As a
value-add, solution providers MAY choose to provide a feature that enables the
recipient of an action message to notify the sender if there is a problem unpacking a
message. This can be done by the sender setting the RosettaNet debug header as an
HTTP extension header. The recipient MAY then use this information to send an
exception to the sender (if there was an error while unpackaging the message) even if
the service header was not read completely.

The debug header is intended to be used during initial setup and testing, so that the
trading partner receiving a message can send an exception to the trading partner who
sent the message even if the service header was not successfully read.

However, if this feature is not made available in a solution, the solution will not be
deemed non-compliant. Similarly a receiving trading partner MAY not wish to use
this feature. This is also acceptable. For security reasons, debug headers SHOULD
NOT be used in production mode. Debug headers if received during production mode
SHOULD be ignored.

Debug headers MUST NOT be set while sending signals, in order to avoid an infinite
loop.

The following is the form of the extension header:

x-RN-Debug-Mode: Yes; <parameter>=<value>; <parameter>=<value>; ...

The parameters of the debug header are shown in Table , along with the XPATH-style
locations from which the corresponding values are to be taken.

Table 5. Debug Header Parameters

Parameter Name Value (Element Location)

x-RN-PIP-Code //ServiceHeader/ProcessControl/pipCode/GlobalProcessIn
dicatorCode

x-RN-PIP-Version //ServiceHeader/ProcessControl/pipVersion/VersionIdenti
fier

x-RN-PIP-Instance-ID //ServiceHeader/ProcessControl/pipInstanceId/InstanceIde
ntifier

x-RN-Message-Tracking-ID //DeliveryHeader/messageTrackingID/InstanceIdentifier

x-RN-Activity-Code //ServiceHeader/ProcessControl/ActivityControl/Business
ActivityIdentifier

x-RN-Action-Code //ServiceHeader/ProcessControl/ActivityControl/Message
Control/Manifest/ServiceContentControl/ActionIdentity/G
lobalBusinessActionCode

x-RN-Sending-Partner-ID //DeliveryHeader/messageSenderIdentification/PartnerIde
ntification/GlobalBusinessIdentifier

x-RN-Sending-Partner-Location-
ID

//DeliveryHeader/messageSenderIdentification/PartnerIde
ntification/locationID/Value

x-RN-Initiating-Partner-ID //ServiceHeader/ProcessControl/KnownInitiatingPartner/P
artnerIdentification/GlobalBusinessIdentifier

x-RN-Initiating-Partner-
Location-ID

//ServiceHeader/ProcessControl/KnownInitiatingPartner/P
artnerIdentification/locationID/Value

Validated 13 July 2001 Section 2, SMTP Transport Binding Specification

©2001 by RosettaNet. All rights reserved. 67

Parameter Name Value (Element Location)

x-RN-PIP-Payload-Binding-ID //ServiceHeader/ProcessControl/partnerDefinedPIPPayloa
dBindingId/ProprietaryReferenceIdentifier

Refer to section 2.1.3 for element descriptions. Each parameter MUST be present in
the debug header, and its value exactly duplicated from the given location, if the
respective Service Header or Delivery Header element is present. Parameters whose
corresponding elements are not present MUST NOT appear in the debug header.

The debug header MUST follow standard MIME header conventions, paying
particular attention to quoting and long-line folding. The order in which the
parameters are listed is of no significance (they MAY appear in any order), and
parameter values are to be treated as case-sensitive.

2.4.2.7 Compliance Summary

This summary is for convenience only and is not guaranteed to contain all compliance
statements. For complete compliance knowledge, read the entire specification.

HTTP POST method with the MIME content-type of �multipart/related� MUST be
used to transmit RosettaNet messages over HTTP. The �type� and boundary
parameters MUST be specified with multipart/related content-type. The type
parameter MUST match the MIME content-type of the RosettaNet Business Message
being transmitted. The only valid values are �multipart/related� and
�multipart/signed�.

Content-Length MIME header MAY be specified with the HTTP POST and if
specified, MUST match the length of the body posted. See RFC 2616 for details on
use of Content-Length with HTTP POST.

Other standard (HTTP-compliant) MIME headers MAY be used as needed by the
trading partners based on mutual agreements. However, these headers are not
significant from a RosettaNet message transfer perspective. Solution providers are
explicitly prohibited from attaching any significance to these additional headers that
makes the RosettaNet message transport end-to-end dependent on those headers

All solution providers MUST provide support for HTTP transport. HTTP 1.1 or HTTP
1.0 level support is required.

Support for secure transport for HTTP is also mandatory for solution providers. SSL
v.3 or any backward-compatible successor (such as TLS v.1.0) MUST be supported.

All solution partners must be able to correctly read and interpret the HTTP header
response type (x-RN-Response-Type). In the event the solution does not support
synchronous responses, it MUST be able to return the HTTP status code 501 (Not
Implemented).

2.4.3 SMTP Transport Binding Specification

This section specifies the SMTP transfer envelope or the transfer-level headers to be
used when transferring a RosettaNet message through SMTP. RosettaNet messages

RosettaNet Implementation Framework: Core Specification Release for Validation 13 July 2001

68 ©2001 by RosettaNet. All rights reserved.

are transmitted over SMTP by building an RFC 822-compliant email (SMTP/MIME)
message, with the SMTP Transport Headers specified below forming RFC 822
message envelope/�headers� and the RosettaNet message to be transported forming
the �body� of the RFC 822 message. Any RFC 822-compliant headers other than the
ones specified in the section below MAY be used as needed. However, all the headers
specified in the section MUST be used.

While use of SMTP is widespread, a number of SMTP implementations can still only
support 7-bit data transmissions. Hence care MUST be taken to content-transfer-
encode the binary and 8-bit content portions of RosettaNet messages if they will be
transferred using SMTP.

2.4.3.1 SMTP Transport Envelope

The following MIME/RFC-822 headers MUST minimally be used to encapsulate the
RosettaNet message for transmission via SMTP.

MIME-Version: 1.0
Content-Type: multipart/related;

type=”value”;
boundary=”any-value-appropriate”

x-RN-Version: RosettaNet/V02.00
Content-Length: nnnn
From: value
To: value

Additional MIME/RFC-822 headers MAY be used as needed by the trading partners
based on mutual agreement. However, these headers are not significant from a
RosettaNet message transfer/envelop perspective. Solution providers are explicitly
prohibited from attaching any significance to additional headers that make the
RosettaNet message transfer end-to-end dependent on those headers.

Partners MUST agree on and exchange the email addresses to be used when sending
RosettaNet messages over SMTP transport. The sending partner�s email address
MUST be specified in the �From� header field and receiving partner�s address MUST
be specified in the �To� header field. The recipient should be aware that SMTP
headers (including the From header field) are susceptible to spoofing.

A content-type value of �multipart/related� MUST be used, with the two required
parameters �type� and �boundary�. The value for the type parameter MUST be the
same as the MIME content-type for the RosettaNet message being transmitted. For
RNIF 2.0, the only valid values are �multipart/related� and �multipart/signed�. The
�boundary� parameter is also needed by the MIME multipart/related content-type and
MUST be specified. The value for the boundary parameter MUST follow the standard
MIME specification and is not specified by RosettaNet. However, care MUST be
taken to use a value for the boundary that does not conflict with the potential boundary
values in the RosettaNet message being transmitted. The x-RN-Version header with a
value �RosettaNet/V02.00� MUST be specified.

Following the standard MIME convention, the MIME header and parameter names
and values are not case-sensitive. The order in which the parameters occur is also not
significant

Validated 13 July 2001 Section 2, SMTP Transport Binding Specification

©2001 by RosettaNet. All rights reserved. 69

The entire RosettaNet message MUST be added as the body of an RFC-822 compliant
email message with headers specified above (adding any OPTIONAL headers as
needed). The message so built is sent over SMTP to a partner-specified SMTP server
(as agreed in advance by the trading partners), to be delivered to the email address
specified in the �To� header field.

Note: In the following examples, all headers for the �body� RosettaNet message are
not shown.

Example 16. RosettaNet Message Encased in SMTP Envelope

MIME-Verson: 1.0
From: sendingpartner@sendcompany.com
To: receivingpartner@receivingcompany.com
Content-Type: Multipart/related;

boundary=”2934792834”;
type=”body-MIME-type”

x-RN-Version: RosettaNet/V02.00
Content-Length: 5609

--2934792834

[The RosettaNet-Message to be sent goes here]

--2934792834--

Example 17. Unsigned RosettaNet Message in SMTP Envelope

MIME-Verson: 1.0
From: sendingpartner@sendcompany.com
To: receivingpartner@receivingcompany.com
Content-Type: Multipart/related;

Type=”multipart/related”;
Boundary=”RN-SMTP-Body-Boundary”

x-RN-Version: RosettaNet/V02.00
Content-Length: 1896

--RN-SMTP-Body-Boundary
Content-Type: multipart/related;

boundary=”RN-Outer-Boundary”;
type=”application/xml”

Content-Description: This is the RosettaNet Business Message

--RN-Outer-Boundary
Content-Type: Application/XML
Content-Location: RN-Preamble
Content-Description: This is the XML that is the Preamble

[Preamble goes here]

--RN-Outer-Boundary
Content-Type: Application/XML
Content-Location: RN-Delivery-Header
Content-ID: <value>

[Delivery Header instance goes here]

--RN-Outer-Boundary

Content-Type: Application/XML
Content-Location: RN-Service-Header

RosettaNet Implementation Framework: Core Specification Release for Validation 13 July 2001

70 ©2001 by RosettaNet. All rights reserved.

Content-ID: <value>

[Service Header instance goes here
--RN-Outer-Boundary

[Service Content goes here]

--RN-Outer-Boundary--

--RN-SMTP-Body-Boundary--

Example 18. Signed RosettaNet Message in SMTP Envelope

MIME-Verson: 1.0
From: sendingpartner@sendcompany.com
To: receivingpartner@receivingcompany.com
Content-Type: Multipart/related;

Type=”multipart/signed”;
Boundary=”RN-SMTP-Boundary”

x-RN-Version: RosettaNet/V02.00
Content-Length: 18899

--RN-SMTP-Boundary
Content-Type: multipart/signed;

boundary=”RN-Signature-Boundary”;
protocol=”application/pkcs7-signature”;
micalg=sha1

Content-Description: This is a Signed RosettaNet Business Message

--RN-Signature-Boundary
[The Business Message to be signed goes here]
[Business Message Payload Container + Preamble
packed in MIME multipart/related construct]

--RN-Signature-Boundary
Content-Type: Application/pkcs7-signature; name=”detached.p7s”
Content-Transfer-Encoding: base64
Content-Disposition: attachment; filename=smime.p7s

[The base64-encoded PKCS7 Detached Signature]

--RN-Signature-Boundary--

--RN-SMTP-Boundary--

2.4.3.2 Transfer-Level Security

SMTP does not naturally support transfer-level security. Hence trading partners are
encouraged to explore the possibility of using HTTP with SSL. However, encrypting
the content to be transferred would provide some level of privacy if SMTP needs to be
used. Refer to section 2.3 for details on how to encrypt and decrypt the content.

2.4.3.3 Transfer-Level Error Handling

Email-based message transfer is a store-forward-based message delivery mechanism
and the SMTP messages need not be sent directly between the source and the eventual
recipient�s SMTP nodes (due to SMTP routing involved). Hence, trading partners
cannot rely on any synchronous transport level errors (analogous to HTTP

Validated 13 July 2001 Section 2, SMTP Transport Binding Specification

©2001 by RosettaNet. All rights reserved. 71

response/error codes) being returned. Therefore, trading partners MUST have a
mechanism in place to handle undeliverable email messages sent to each other.
Delivered messages with content problems SHOULD, however, result in the recipient
sending separate RosettaNet Exception business signals. If desired, trading partners
could use the SMTP Delivery Status Notification (DSN) mechanism (see RFC 1891)
to request that the recipient notify the sender of SMTP message delivery status.
Partners could also use the SMTP Message Disposition Notification (MDN)
mechanism as needed. These are part of the standard SMTP message delivery
mechanism / standard and can be used by trading partners as needed and feasible,
based on their SMTP set-ups. RosettaNet does not provide any explicit specification in
this respect.

Many SMTP servers have a delivery timeout of several days, which may be longer
than the performance controls specified in a PIP. Also, messages sent via SMTP might
not be delivered in the order in which they are sent. Trading partners should take these
constraints into consideration prior to choosing SMTP as the delivery method.

2.4.3.4 Debug Header as an Extension-Header in SMTP

The Debug Header provides additional information to the recipient of the RosettaNet
Business Message via SMTP headers.

Refer to the HTTP debug header section (section 2.4.2.6) for the specification and
usage of this header.

2.4.3.5 Compliance Summary

This summary is for convenience only and is not guaranteed to contain all compliance
statements. For complete compliance knowledge, read the entire specification.

The MIME content-type of �multipart/related� MUST be used to transmit RosettaNet
messages over SMTP. The �type� and boundary parameters MUST be specified with
the multipart/related content-type. The type parameter MUST match the MIME
content-type of the RosettaNet Business Message being transmitted. The only valid
values are �multipart/related� and �multipart/signed�.

x-RN-Version header with a value of �RosettaNet/V02.00� MUST be specified

Content-Length MIME header MUST be specified and MUST match the length of the
RosettaNet message included in the body.

MIME-Version header with a value of �1.0� MUST be specified.

All MIME header and parameter names are case-insensitive. The order of parameters
in a header is insignificant. Both are per standard MIME conventions.

Other standard MIME/RFC-822 compliant headers MAY be used as needed by the
trading partners based on mutual agreements. However, these headers are not
significant from a RosettaNet message transfer/envelop perspective. Solution
providers are explicitly prohibited from attaching any significance to these additional

RosettaNet Implementation Framework: Core Specification Release for Validation 13 July 2001

72 ©2001 by RosettaNet. All rights reserved.

headers that makes RosettaNet message transfer end-to-end dependent on those
headers.

2.4.4 Transfer Protocol Independence and Other
Transfer Mechanisms

The transfer protocol-independent nature of the RosettaNet Business Message enables
addition of support for other transfer protocols as they are adopted by RosettaNet in
the future, without impacting the format of the message.

To facilitate the use of other private transfer mechanisms (e.g., file-based) by which
trading partners may exchange messages between themselves (without direct support
from solution providers), solution providers SHOULD make transfer protocol-
independent RosettaNet Business Messages available for delivery by other transfer
mechanisms. The means by which the messages are made available to the alternate
transfer mechanisms is not specified by RosettaNet. Similarly, solution providers
SHOULD provide hooks to process the messages received via other transfer
mechanisms. Again the means by which this is done is not specified by RosettaNet.

2.4.5 General Guideline for Debug Mode for Other
Transport Protocols

The purpose of the debug header is to supply critical information from the Service
Header in case the Service Header for an incoming message could not be read
successfully. This information MUST minimally include: PIP Code, PIP Instance ID,
Activity Code, Action Instance ID, Instance ID, Sending Partner ID.

2.5 Business Signal Specifications &
Process Control PIPs

This section identifies and specifies current business signals as well as PIPs that are
used in controlling the process of PIP business exchanges.

In the execution of PIPs that carry out specific business functions (e.g., 3A4 --
Manage Purchase Order), it might be necessary for certain system-level
acknowledgment messages or exception messages to be returned to one or both parties
to the PIP. These are referred to as �business signals� and are distinct from the
business action messages that are defined by each business PIP.

Additionally, there are other classes of RosettaNet PIPs that do not perform any
business-related function (e.g., a possible class of �maintenance� PIPs which could
cover such RosettaNet functions as dictionary maintenance). One of these classes is
called �process control PIPs�; these PIPs perform various system-level administrative
tasks that aid in the execution of business PIPs.

These business signals and process control PIPs are part of the implementation
framework and are more fully described in this section. The Message Guidelines,
DTDs, and (in the case of Process Control PIPs) PIP specifications are published in
separate files and available through the normal PIP access channels.

Validated 13 July 2001 Section 2, Business Signals

©2001 by RosettaNet. All rights reserved. 73

For additional insight into how these business signals and process control PIPs are
used, see section 2.6.

2.5.1 Business Signals

Business signals are positive and negative acknowledgment messages that are sent in
response to business actions. There is one positive business signal (Receipt
Acknowledgment) and one negative business signal (Exception); all other RosettaNet
messages are business actions. In contrast to business actions, all business signals are
RosettaNet-specified and carry no content from other sources.

Whether the Receipt Acknowledgment signal is required for a given Business Action
is specified in the corresponding PIP specification. Detailed specifications on when a
specific kind of signal should be sent are provided in section 2.6; additionally, further
description of the uses of these signal is available in section 2.3.

Note: Only Business Actions are acknowledged. Business Signals are never
acknowledged.

2.5.1.1 Receipt Acknowledgment

A Receipt Acknowledgment is a positive signal acknowledging receipt of a Business
Action message. It is sent when a message is received by the trading partner and is
found to be a structurally and syntactically valid RosettaNet business action message.
It is sent only if required by the PIP (it is almost always required).

To send a Receipt Acknowledgment for the appropriate business action, use the PIP,
action, and activity information in the received message�s Service Header.

See the following documents for the Receipt Acknowledgment specifications.

• Acknowledgment of Receipt DTD
(AcknowledgmentOfReceipt_MS_V02_00.dtd)

• Acknowledgment of Receipt Message Guideline
(AcknowledgmentOfReceipt_MG_V02_00_00.htm)

DOCUMENT TYPE DEFINITION

<!ENTITY % common-attributes "id CDATA #IMPLIED" >
<!ELEMENT ReceiptAcknowledgment (NonRepudiationInformation?) >
<!ATTLIST ReceiptAcknowledgment xmlns CDATA #FIXED

"http://www.rosettanet.org/RNIF/V02.00" >
<!ELEMENT NonRepudiationInformation (OriginalMessageDigest) >
<!ELEMENT OriginalMessageDigest (#PCDATA) >

RosettaNet Implementation Framework: Core Specification Release for Validation 13 July 2001

74 ©2001 by RosettaNet. All rights reserved.

TREE STRUCTURE FROM MESSAGE GUIDELINE

1 1 ReceiptAcknowledgment
2 0..1 |-- NonRepudiationInformation
3 1 | |-- OriginalMessageDigest

See the actual Message Guidelines for descriptions of these elements.

2.5.1.2 Exception

See the following documents for the Exception specifications.

• Exception DTD (Exception_MS_V02_00.dtd)

• Exception Message Guideline (Exception_MG_V02_00_00.htm)

DOCUMENT TYPE DEFINITION

<!ENTITY % common-attributes "id CDATA #IMPLIED" >
<!ELEMENT Exception (

ExceptionDescription ,
GlobalExceptionTypeCode) >

<!ATTLIST Exception xmlns CDATA #FIXED
"http://www.rosettanet.org/RNIF/V02.00" >

<!ELEMENT ExceptionDescription (
errorClassification ,
errorDescription ,
offendingMessageComponent?) >

<!ELEMENT errorClassification (GlobalMessageExceptionCode) >
<!ELEMENT GlobalMessageExceptionCode (#PCDATA) >
<!ELEMENT errorDescription (FreeFormText) >
<!ELEMENT FreeFormText (#PCDATA) >
<!ATTLIST FreeFormText xml:lang CDATA #IMPLIED >
<!ELEMENT offendingMessageComponent (GlobalMessageComponentCode) >
<!ELEMENT GlobalMessageComponentCode (#PCDATA) >
<!ELEMENT GlobalExceptionTypeCode (#PCDATA) >

TREE STRUCTURE FROM MESSAGE GUIDELINE

1 1 Exception
2 1 |-- ExceptionDescription
3 1 | |-- errorClassification.GlobalMessageExceptionCode
4 1 | |-- errorDescription.FreeFormText
5 0..1 | |-- offendingMessageComponent.GlobalMessageComponentCode
6 1 |-- GlobalExceptionTypeCode

See the actual Message Guidelines for descriptions of these elements.

2.5.2 Process Control PIPs

Process Control PIPs are designed to be sent by either party to a PIP dialogue to notify
the other party of events that affect the execution of the business PIP or to ascertain
status of a business PIP that is believed to be in process.

Validated 13 July 2001 Section 2, Process Control PIPs

©2001 by RosettaNet. All rights reserved. 75

These PIPs follow the business PIP naming conventions, and belong to the cluster �0�
and the segment �A�.

As of this writing, only one such PIP exists.

2.5.2.1 0A1: Notification of Failure (NoF)

See the following documents for the PIP 0A1: Notification of Failure specification.

• PIP Spec (0A1_Spec_V02_00_00.doc)

• DTD (0A1_MS_V02_00_FailureNotification.dtd)

• Message Guideline (0A1_MG_V02_00_00_FailureNotification.htm)

2.6 Flow of RosettaNet Business Messages

RosettaNet Partner Interface Processes (PIPs) are implemented by the exchange of
business messages in specific sequences and specific timeframes. These business
messages contain both control and content information to meet PIP requirements.

A PIP defines one or more business activities involving two or more partner roles. A
business activity consists of one or more business actions executed in the sequence
specified by RosettaNet.

RosettaNet PIPs follow a specific choreography of action and signal message
exchange. A PIP instance begins by a partner starting the first action in an activity in
the PIP and continues until all the actions in the activity are completed successfully or
an action fails.

An action execution results in a business action message being sent from one trading
partner (Trading Partner A) to another (Trading Partner B) and if specified by the PIP,
an acknowledgment signal being sent from the recipient (Trading Partner B) of the
original message to its sender (Trading Partner A), to indicate the fact that the action
message has been validated from a security point of view and that all of the base-level
validation rules described in section 2.1 have been applied successfully. Depending on
the PIP, the recipient of the original message (Trading Partner B) may have to perform
a response action. The response action message would then be sent from Trading
Partner B to Trading Partner A, with Trading Partner A possibly acknowledging
receipt of the response action message. This completes the entire PIP instance. This
entire action message and signal exchange constitutes the choreography of the PIP.

It is important to note that the overlapped execution of multiple instances of the same
PIP or related PIPs between two trading partners is not addressed here. PIP
specifications state the semantics for executing multiple instances of the same PIP or
related PIPs in overlapping timeframes, and should provide real-world examples of
such concurrent execution where appropriate. If such semantics are not met, then the
situation should be treated as an action performance failure.

RosettaNet Implementation Framework: Core Specification Release for Validation 13 July 2001

76 ©2001 by RosettaNet. All rights reserved.

2.6.1 Asynchronous Single-Action (Simplest) Activity

The simplest choreography is an asynchronous single-action PIP activity. That is, an
activity where one action message is sent from Partner A to Partner B and the Receipt
Acknowledgment is sent from Partner B to Partner A. When this complete set of one
action message and one signal message have been exchanged successfully between
these trading partners, the PIP instance is deemed complete at both ends. One
commonly used single-action PIP is PIP2A1: Distribute New Product Information.

While the Receipt Acknowledgment indicates successful receipt and grammar/schema
validation of an action message by an action message recipient, the exception message
indicates an error in processing of the action message. An exception sent by Partner B
in the above scenario indicates failure of the above PIP instance at both the partners�
systems.

To be exact, in the above scenario the PIP reaches completion state at Partner A upon
receipt of the Receipt Acknowledgment. Partner B reaches completion only after
finishing its internal processing of the action message. These two events could happen
at different times. If Partner B has returned a Receipt Acknowledgment to Partner A
and then encounters an error in its internal processing of the action message, then it
MUST initiate an instance of the Notification of Failure PIP to inform Partner A of the
error. This is because Partner A will have completed its PIP instance once it receives
the Receipt Acknowledgment.

If a PIP does not specify Receipt Acknowledgment (such as in an information
distribution scenario), then the action and the PIP are complete for the sender once it
has successfully transmitted the message, and is complete for the receiver as soon as
the action message is received and processed by the receiver. The receiver MUST
initiate an instance of the Notification of Failure PIP if it encounters any error while
processing the action message.

2.6.2 Asynchronous Two-Action Activity

A slightly more complex scenario would be the above case, but with the addition of
Trading Partner B sending a response action to Trading Partner A. That is, Trading
Partner A initiates the activity by sending Action Message X to Trading Partner B.
Trading Partner B sends a Receipt Acknowledgment to Trading Partner A and then
later sends a response action message Y to Trading Partner A. Trading Partner A then
sends a Receipt Acknowledgment signal to Trading Partner B. In this case, Trading
Partner A completes execution of the PIP instance immediately after processing
message Y. (If Trading Partner A fails to send a Receipt Acknowledgment signal to
Trading Partner B, Trading Partner A will still close the PIP after processing message
Y.) Trading Partner B completes execution of the PIP instance after receiving the
Receipt Acknowledgment for message Y. (If Trading Partner B does not receive a
Receipt Acknowledgment signal from Trading Partner A, Trading Partner B will
continue resending message Y until a Receipt Acknowledgment is received or until
Trading Partner B decides to issue a Notification of Failure.) One commonly used
two-action PIP is PIP3A4: Manage Purchase Order.

If Trading Partner B has returned a Receipt Acknowledgment to Trading Partner A
and then encounters an error in its internal processing of action message X, it MUST

Validated 13 July 2001 Section 2, Synchronous One-Action/Two-Action Activity

©2001 by RosettaNet. All rights reserved. 77

send an exception to Trading Partner A. Since Trading Partner A is still waiting for
the response action, it is unnecessary for Trading Partner B to initiate an instance of
the Notification of Failure PIP. On the other hand, once Trading Partner A has
returned a Receipt Acknowledgment confirming receipt of the response action to
Trading Partner B, then any subsequent error encountered by Trading Partner A in
processing the response message MUST trigger an instance of the Notification of
Failure PIP.

2.6.3 Synchronous One-Action/Two-Action Activity

By default, PIP interactions between two trading partners are asynchronous. When
HTTP is used as transport, each business action message or business signal message
flows over a separate HTTP connection. In order to support PIPs such as PIP 2A9
(Query EC Technical Information) that require immediate responses and optimized
use of network bandwidth, RNIF 2.0 allows for synchronous PIPs over HTTP
transport. An initiator of a synchronous single-action PIP MUST specify that the
message exchange is to be completed synchronously in the HTTP header (x-RN-
ResponseType: sync). Similarly, an initiator of a synchronous two-action PIP that
does not require Receipt Acknowledgment MUST specify in the HTTP header that the
response be returned synchronously. If the responder of a synchronous activity does
not support synchronous interaction at all, it MUST return the HTTP status code �501
Not Implemented�.

Each PIP specifies whether the entire exchange of messages is synchronous or
asynchronous. In the absence of any definition in the PIP specification, the default
SHALL be that all exchanges are asynchronous. The following rules apply to the
processing of the �x-RN-Response-Type� HTTP header:

1. When the PIP specification requires a response to be asynchronous, an
initiating partner SHALL always designate the interaction to be asynchronous
and SHALL not designate synchronous.

2. When the PIP specification requires a Receipt Acknowledgment to be
synchronous but does not require a substantive response, an initiating partner
SHALL always designate the interaction to be synchronous and SHALL not
designate asynchronous.

3. When the PIP specification requires a response to be synchronous and no
Receipt Acknowledgment at all, an initiating partner SHALL always
designate the interaction to be synchronous and SHALL not designate
asynchronous.

4. When the PIP specification allows responses to be either asynchronous or
synchronous, an initiating partner MAY designate either asynchronous or
synchronous. The receiving partner SHALL provide the response in the
manner indicated.

In general, it is possible to execute a PIP instance synchronously only if the PIP has a
single action, or if the PIP has two-actions and neither Receipt Acknowledgment nor
Non-Repudiation of Receipt is required. This does not preclude the use of digital
signatures in synchronous response mode for purposes of Non-Repudiation of Origin

RosettaNet Implementation Framework: Core Specification Release for Validation 13 July 2001

78 ©2001 by RosettaNet. All rights reserved.

and Content (either single- or two-action PIPs), or for Non-Repudiation of Receipt
(single-action PIPs only).

Retries, even if specified by a PIP, are not allowed for in a synchronous interaction.
Timeouts must result in the initiator closing the connection and terminating the PIP. If
retries are performed, they MUST be PIP-level retries, with each being a new PIP
instance.

2.6.4 Handling Failures

Failures can occur at any point in PIP execution, as discussed in the following
subsections. Two methods of handling failure are provided in RNIF 2.0: sending an
exception signal or initiating a Notification of Failure (NoF) PIP.

To determine whether an exception signal should be sent or whether to initiate a NoF,
the following guidance may be useful. In general, send an exception signal if it is the
case that the trading partner should still be executing the PIP in question; initiate a
NoF if it is possible that the other trading partner is not executing the PIP (e.g., has not
yet begun processing or has completed processing already).

2.6.4.1 Retries and Timeouts

Note: The following discussions on retries and timeouts apply only to asynchronous
PIP activities. Synchronous PIPs SHOULD specify a Time To Perform that does not
inherently exceed the reasonable/acceptable time for leaving a HTTP connection open,
and a Retry Count of 0. Time to Acknowledge, if specified, should be identical to
Time to Perform.

In order to achieve transfer independence, transfer protocol-specific acknowledgments
are not attached any receipt semantics. That is, if a HTTP acknowledgment is
received, it only means successful �delivery� of the message and nothing more.
Hence, the sender is dependent on a Receipt Acknowledgment to infer that the
message has been received, read and validated (for grammar and schema) successfully
by the recipient. The Receipt Acknowledgment happens asynchronously (i.e., uses a
different �connection� from the incoming message). Therefore, the sender has to
�wait� for the Receipt Acknowledgment. Under certain conditions, when the recipient
is not able to decipher anything about the incoming message, the recipient cannot
inform the sender about the error (as the sender or the PIP context may not be
identifiable). Under such conditions, the sender cannot wait indefinitely for the
acknowledgment. This necessitates the concept of �timeout�.

Timeouts can occur when the sender does not receive the Receipt Acknowledgment
after a particular time. The reason could be either that the recipient never received the
original message (this could be difficult to infer depending on the transfer protocol
used); the recipient was not able to �read� the message; the recipient had a problem
sending the Receipt Acknowledgment; or the Receipt Acknowledgment never reached
the sender of the original message.

Nevertheless, in order to ensure a more reliable message delivery, the sender MUST
retry sending the message until either the Receipt Acknowledgment or an Exception is
received, or until all allowable retries are exhausted.

Validated 13 July 2001 Section 2, Handling Failures

©2001 by RosettaNet. All rights reserved. 79

Once the initiator of a two-action PIP receives the Receipt Acknowledgment for the
initial action, it should wait for a response action message from the responder. A Time
to Perform timeout can occur while waiting for the response action message.

When a timeout occurs and retries are no longer allowable, the PIP instance on the
sender�s side ends in a failure state. In order to ensure that the other partner does not
continue with the process, the sender MUST initiate an instance of the Notification of
Failure PIP.

In general, retries and timeouts for a PIP are governed by the Time To Acknowledge,
Time To Perform, and Retry Count parameters in the PIP�s Business Activity
Performance Controls table:

• Time to Acknowledge1 refers to the time duration within which a partner role that
initiates a role interaction MUST receive acknowledgment that a Business
Document is received by a responding partner role. This time is measured from
the instant the action message has been sent successfully. That is, once an action
message has been delivered successfully, the sender expects to receive a Receipt
Acknowledgment before Time to Acknowledge has elapsed. In a one-action PIP,
only the initiator needs to monitor the Time to Acknowledge. In a two-action PIP,
Time to Acknowledge applies individually to both the initiator and the responder;
each waits for a Receipt Acknowledgment in reply to their respective initiating
and responding action messages.

• Time to Perform refers to the time duration within which the PIP activity MUST
be successfully performed. It is measured from the Message Date Time value
found in the Delivery Header within the action message that initiates the PIP
instance. For a two-action PIP, Time to Perform is interpreted as the time for
receipt of the response action message by the initiator. The initiator should
consider the PIP instance as failed if no response action is received before Time to
Perform elapses. Only the initiator of a PIP instance is required to ensure that the
PIP instance is completed within the allowable Time to Perform. The responder of
a PIP instance SHOULD NOT test an incoming action message that initiates a PIP
instance for expiration, nor must it abort execution of the PIP instance if the
private process does not respond before Time to Perform expires. Nevertheless, it
is assumed that clocks at the initiator and at the responder are synchronized
closely enough that the Delivery Header Date Timestamps can be relied upon.
The method for such synchronization is outside the scope of this specification. If
specified for a single-action PIP, Time to Perform MUST be ignored, as only the
Time to Acknowledge and Retry Count parameters are relevant to this type of
exchange.

• Retry Count refers to the number of times an action message MAY be
retransmitted (in addition to the initial attempt) due to timeout waiting for Receipt
Acknowledgment. Thus, if the Retry Count is 3, an action message may be sent a
total of 4 times. For a two-action PIP, the Retry Count applies both to the initiator
for sending the request action message and to the responder for sending the

1 This is a slight misnomer. A more appropriate term would have been Time to Receive
Receipt Acknowledgment

RosettaNet Implementation Framework: Core Specification Release for Validation 13 July 2001

80 ©2001 by RosettaNet. All rights reserved.

response action message. This interpretation is different from RNIF 1.1 where
retries for two-action PIPs may be triggered both by timeout waiting for Receipt
Acknowledgment (action-level retries) and by timeout waiting for response action
(activity-level retries), and the Retry Count is used to govern both action-level and
activity-level retries. RNIF 2.0 eliminates activity-level retries because they are
unnecessary; a Receipt Acknowledgment is sufficient indication that a message
has been persisted and restarting the activity would be pointless. Furthermore,
handling of activity-level retries in the context of more complex activities would
be even more problematic than it would be with today's simpler one- and two-
action patterns.

An RNIF 2.0 implementation MAY also perform transport (i.e., HTTP/SMTP) level
retries if non-fatal transport level status codes result from transmission attempts.
However, the frequency of such retries is outside the scope of the RNIF 2.0
specification and SHOULD be addressed via trading partner agreements. If
communication failure persists after all agreed-upon transport-level retries have been
exhausted, then an instance of the Notification of Failure PIP MUST be executed if
the failed message is an action message or an exception message. If the failed message
is a Receipt Acknowledgment, Notification of Failure is not executed, because the
intended recipient is expected to time out and possibly resend the action message.

2.6.4.2 Other Failure Conditions and Notification of Failure

An RNIF implementation SHOULD maintain sufficient state information related to
open PIP instances so that on recovery from a system failure, the progress of open PIP
instances can be resumed. For example, if an initiator was waiting for Receipt
Acknowledgment for a PIP instance and was supposed to retry sending the action
message at time t, then on restart it SHOULD continue to wait for Receipt
Acknowledgment until time t before retrying. Of course, if time t has already passed,
then retransmission of the action message SHOULD happen immediately, provided
that the Time to Perform has not yet expired and that the allowable retries have not
been exhausted.

In the asynchronous single-action scenario, Partner A �completes� or �deems
complete� its PIP instance a little ahead of Partner B. This leaves the possibility that
Partner B could encounter a failure while processing the action message (i.e., after
Partner A has attained the PIP completion stage). Though the probability of this may
be low, it is nevertheless something that the PIP choreography should provide for.
Since the PIP is deemed completed at Partner A, Partner A will no longer expect to
receive signals from the same PIP instance. Hence, Partner B MUST initiate an
instance of the Notification of Failure PIP to Partner A in such cases.

Similarly, in the asynchronous two-action scenario, Partner A could encounter an error
while processing Message Y (i.e., after sending Receipt Acknowledgment for message
Y to Partner B). Since at this point Partner B would have completed its PIP instance,
Partner A MUST initiate an instance of the Notification of Failure PIP to indicate the
failure in the PIP instance.

Notification of Failure is only intended as an out-of-band mechanism to signal error
conditions. It MUST NOT be used when a responding party encounters an exception
while processing a business document request. An exception is be used in such cases.

Validated 13 July 2001 Section 2, Receipt Acknowledgment

©2001 by RosettaNet. All rights reserved. 81

It is RECOMMENDED that the communications channel, application server or
network, (or combinations thereof) used by the Notification of Failure PIP instance be
different from those used for regular PIP instances. This is to enable reporting of
failures caused by communication problems. Trading partners MAY also agree that
still another mechanism be used to report inability to execute Notification of Failure
PIPs. . Trading partners SHOULD, however, agree on the exact nature of these
�alternate communication channels�. In addition, they SHOULD specify the legal
meaning and the private process logic for Notification of Failure triggered by the
execution of individual PIP types.

In order to avoid an �infinite loop� scenario, another instance of Notification of
Failure MUST NOT be initiated in response to an error encountered during the
execution of an instance of Notification of Failure.

2.6.5 Receipt Acknowledgment

The Receipt Acknowledgment confirms that the grammar and schema rules applicable
to the message received are satisfied. See base level validation described in section
2.1. Trading partners MAY optionally agree to validate other constraints specified in
the message guidelines that are beyond the scope of base-level validation prior to
sending Receipt Acknowledgments.

Nevertheless, the above acknowledgment is the result of verification of a static set of
syntactical and data validation rules. It does not confirm any semantic validation of
the message as such validation can vary from trading partner to trading partner and
can depend heavily on the end system. This type of validation is called �content
validation� or validation of the content of a business action message against the
organization�s internal business rules. If an action message does not pass content
validation, and this is not the last action within the PIP, then the recipient MAY return
an exception to the sender. The exception type is �General Exception� and the error
code to use is PRF.DICT.VALERR. If this is the last action within the PIP, then the
recipient MUST initiate a Notification of Failure because the sender may have already
received the Receipt Acknowledgment and closed its PIP instance.

The fact that the Receipt Acknowledgment was sent by the receiver of the business
message is good enough to infer that the business message was indeed delivered and
�read� successfully by the intended recipient. Also, RNIF 2.0 requires that the
recipient of a business action message save a persistent copy of the business action
message after grammar and schema validation, so as to avoid unnecessary retries once
the PIP initiator has received the Receipt Acknowledgment for the initial business
action message. Thus, the Retry Count specified for a PIP is interpreted as the number
of action-level retries only. The initiator of a PIP MUST resend an action message if
no Receipt Acknowledgment is received within the Time to Acknowledge, subject to
the Retry Count and Time to Perform constraints. Likewise, the responder of a two-
action PIP MUST resend a response action message under the same conditions. Unlike
RNIF 1.1, RNIF 2.0 does not provide for retrying at the activity-level.

RosettaNet Implementation Framework: Core Specification Release for Validation 13 July 2001

82 ©2001 by RosettaNet. All rights reserved.

2.6.6 Handling Retries and Late Acknowledgments

As established earlier, the trading partner sending an action message retries the
message until either a Signal (Receipt Acknowledgment or Exception) is received or a
timeout condition occurs. Hence, the receiver MUST be prepared to receive the same
action message more than once. In such a case, if the action requires a Receipt
Acknowledgment, the Receipt Acknowledgment (or Exception if there is a failure)
MUST be resent.

Also, as mentioned earlier, the PIP choreography is independent of the transfer or
transport mechanisms. Therefore, it is possible that for a given request, the Receipt
Acknowledgment can arrive after the response message. This MUST NOT be deemed
as an out-of-order message. If the response is received before the Receipt
Acknowledgment and the request action requires non-repudiation of receipt, then any
of the following suggested approaches MAY be followed.

A response that arrives before the Receipt Acknowledgment MAY either be queued
for processing until the Receipt Acknowledgment is received or processed
immediately. If the response is processed immediately, then the process SHALL NOT
be completed until the Receipt Acknowledgment is received, since the Receipt
Acknowledgment contains the digest information for non-repudiation of receipt.
These approaches are suggestive only and the implementer is free to choose a similar
approach as long as the result is the same (i.e., the response SHALL NOT be rejected
unless a timeout occurs waiting for the Receipt Acknowledgment).

2.6.7 Receipt Acknowledgment and General Exception
Error Codes

Table 5 shows the mandatory Error Codes and their associated descriptions for
Receipt Acknowledgment exceptions and general exceptions.

Table 6. Exception Error Codes

Error Code
(Case Insensitive)

Description

PKG.MESG.GENERR Error during packaging � General error

PRF.ACTN.GENERR Error during action performance � General Error

PRF.DICT.VALERR Error during action performance � Validating the
Service Content against a PIP-specified dictionary

UNP.MESG.GENERR Error during unpackaging � General error

UNP.MESG.SIGNERR Error during unpackaging � Verifying the signature of
the RosettaNet Business Message

UNP.PRMB.READERR Error during unpackaging � Reading the Preamble

UNP.PRMB.VALERR Error during unpackaging � Validating the Preamble

UNP.DHDR.READERR Error during unpackaging � Reading the Delivery
Header

UNP.DHDR.VALERR Error during unpackaging � Validating the Delivery
Header

UNP.SHDR.READERR Error during unpackaging � Reading the Service
Header

Validated 13 July 2001 Section 2, Interaction Diagrams

©2001 by RosettaNet. All rights reserved. 83

Error Code
(Case Insensitive)

Description

UNP.SHDR.VALERR Error during unpackaging � Validating the Service
Header

UNP.SHDR.MNFSTERR Error during unpackaging � Verifying Manifest against
the actual attachment body parts

UNP.MESG.SEQERR Error during unpackaging � Validating the message
sequence

UNP.MESG.RESPTYPERR Unexpected Response type in the HTTP header

UNP.MESG.DCRYPTERR Error Decrypting the message

UNP.SCON.READERR Error during unpackaging � Reading the Service
Content

UNP.SCON.VALERR Error during unpackaging � Validating the Service
Content

2.6.8 Interaction Diagrams

The diagrams in this section are intended to illustrate the general flow for both single-
action and two-action activities in both asynchronous and synchronous interactions.

The FSV section of the PIP specification documents contain specific interaction
diagrams detailing the normal flow of business messages (action and signal) between
services performing the PIP partner roles. Those diagrams show which business
action messages and business signal messages are part of the choreography of the PIP.

2.6.8.1 Asynchronous Interactions

Figure 20 and Figure 21 illustrate the high-level choreography of an asynchronous
single-action activity and an asynchronous two-action activity, respectively. The
boxes with solid boundaries represent steps that are executed in the public process
space; those with dashed boundaries represent steps that are executed in the private
process space.

It should be noted that the Responder side �Validate Message Structure� step in these
figures actually encompasses all of the validation steps shown in Figure 19. It includes
all base-level validation specified in section 2.1, plus optional schema-level validation
(if any) that may have been agreed between the two trading partners. Validation using
business rules, however, is responsibility of the private process and is assumed to be
included in the �Process Action Message� step.

The �Handle Error� step in Figure 20 and Figure 21 roughly corresponds to the
�Handle Error� Flow in Figure 19.

The steps labeled �Requesting Business Action Message�, �Receipt
Acknowledgment�, �Responding Business Action Message� in Figure 20 and Figure
21 represent transfer of the packaged business action/signal message over HTTP or
SMTP. An error may occur in sending any of these messages. Depending on the
trading partner agreement, transport-level retries MAY be used. If the communication
error persists while attempting to send an action message, then an instance of the

RosettaNet Implementation Framework: Core Specification Release for Validation 13 July 2001

84 ©2001 by RosettaNet. All rights reserved.

Notification of Failure PIP SHOULD be executed to notify the trading partner of the
communication failure. If the message is a business signal, the sender SHOULD NOT
initiate Notification of Failure. Instead, the intended recipient is expected to time out
and retry, if appropriate, before finally initiating the Notification of Failure. If this is
the last Receipt Acknowledgment within a two-action PIP, the message initiator MAY
close the PIP instance without reporting any error, even though the responder has not
received the Receipt Acknowledgment.2 The responder in this case SHOULD retry
sending the response action message and might eventually have to initiate Notification
of Failure. However, Notification of Failure in this case does not necessarily mean
that the business transaction has to be aborted. It only signals that there is a problem
with completing the PIP�s choreography. If the initiator has already received the
response action from the responder�s initial or retried attempts, there is no reason to
nullify the business transaction. For example, if the PIP specification calls for non-
repudiation of receipt for the response action, then the responder�s execution of the
Notification of Failure might simply require the initiator to return the missing Receipt
Acknowledgment (including the signed digest for the received action message) to the
responder. This will have to be done through some other out-of-band mechanism not
currently defined by RNIF 2.0.

It should be noted that the logic for dealing with communication failures described
above is not captured in the figures in this section.

Similarly, the exception-handling rule for business signals is such that when there are
errors validating the Preamble, Delivery Header, or Service Header for grammar,
content or sequence, the erroneous signal MAY be logged internally and essentially
ignored. No exception SHOULD be sent to the sender of these signals, nor SHOULD
the Notification of Failure PIP be initiated. The logic for ignoring incorrect signal
messages again is not explicitly represented in any of the figures.

Likewise, logic necessary for implementing non-repudiation of origin and content /
non-repudiation of receipt, checkpoint and restart, etc., are omitted from these figures
to limit their complexity.

2 Even if the transmission of the Receipt Acknowledgment is successful, the initiator cannot
know positively when the responder has successfully validated the Receipt Acknowledgment
for a certain time because the responder is not allowed to send an acknowledgment for the
Receipt Acknowledgment. This �finish� state can only be inferred if the responder has not
triggered NoF within (Retry Count + 1) times the PIP's Time to Acknowledge. Since the NoF
may itself fail due to a variety of problems before human intervention takes place, another
(NoF Retry Count + 1) times the NoF Time to Acknowledge may elapse before the initiator
learns of the original failure and the subsequent NoF failure through an external channel.

Validated 13 July 2001 Section 2, Interaction Diagrams

©2001 by RosettaNet. All rights reserved. 85

ResponderInitiator

Requesting
Business Action

Message

Valid?Receipt
Acknowledgement

Process Action
Message

Able to
Process?

Timeout?

Execute 0A1
Notification of

Failure

Retries =
Max retries?

Finish

No A

Validate Message
Structure

Yes

Yes

Exception

Yes

Perform
Initiating Action

Start

Queue Message

Wait For Receipt
Acknowledgement

Or Timeout

Finish

No

No

Yes

Error

No

No

A

Send
Exception?

Yes

Handle
Error

Finish

Figure 20. Single-Action Activity (Asynchronous)

RosettaNet Implementation Framework: Core Specification Release for Validation 13 July 2001

86 ©2001 by RosettaNet. All rights reserved.

Timeout?

ResponderInitiator

Requesting
Business Action

Message

Valid?
Receipt

Acknowledgement

Timeout?

Execute 0A1
Notification of

Failure

Retries =
Max Retries?

Or Time To Perform
Expired

Finish

No
A

Validate Message
Structure

Yes

Yes

Exception

Yes

Perform
Initiating Action

Start

Queue Message

Wait For Receipt
Acknowledgement

Or Timeout

Finish

No

No

No

No

Wait For
Response

Or Timeout

Timeout?

Queue Message

Yes

Yes

No

C

B

Yes Responding
Business Action

Message

Receipt
Acknowledgement

Able to
process?

Queue Message

Wait For Receipt
Acknowledgement

Or Timeout

Retries =
Max Retries?

A
No

Yes

No

Yes

Error

B Exception

Able to
Process?

NoYes

A

Send
Exception?

Yes

Handle
Error

FinishNo

Error

C
Process Response

Response
Valid?

Process Request

Figure 21. Two-Action Activity (Asynchronous)

Validated 13 July 2001 Section 2, Interaction Diagrams

©2001 by RosettaNet. All rights reserved. 87

2.6.8.2 Synchronous Interactions

Figure 22 and Figure 23 illustrate the high-level choreography of a synchronous
single-action activity and a synchronous two-action activity, respectively. As before,
the boxes with solid boundaries represent steps that are executed in the public process
space while those with dashed boundaries represent steps that are executed in the
private process space.

Since PIP interactions are by default asynchronous, an action message that initiates a
PIP instance must explicitly specify in the HTTP header �x-RN-Response-Type� a
value of �sync�, if the PIP is single-action and the Receipt Acknowledgment (if any)
is expected to be returned synchronously, or if the PIP is two-action and the Response
action is expected to be returned synchronously.

If the HTTP header specifies synchronous response and this is disallowed in the PIP
specification, then an exception along with a status code of 200 will be returned over
the same HTTP connection. If the incoming message contains a signature and the
signature cannot be verified, or if HTTPS is used as the transport and errors occur
during handshaking, the connection is simply closed and no error code is returned.
Otherwise, a single �403 Forbidden� HTTP response code is returned for signature
verification and authorization errors. If the responder does not support synchronous
interactions at all, a single �501 Not Implemented� HTTP response code is returned.

For a synchronous single-action PIP that requires Receipt Acknowledgment, detailed
processing of the action message happens after the HTTP connection has been closed.
Thus, if the processing is unsuccessful, an instance of the Notification of Failure PIP
MUST be executed. A synchronous two-action PIP, on the other hand, completes
processing of the incoming action message and can either return a Response action or
an exception over the original HTTP connection. Therefore, there is no necessity for
the responder to initiate the Notification of Failure PIP to report errors back to the
initiator.

RosettaNet Implementation Framework: Core Specification Release for Validation 13 July 2001

88 ©2001 by RosettaNet. All rights reserved.

ResponderInitiator

Request
Over HTTP
Connection

Timeout?

Finish

Validate Message
Structure

Yes

Perform
Initiating Action

Start

Queue Message

Wait For Response
Or Timeout

Finish

No

Reply
Over Same HTTP

Connection

Process Reply

Yes

Execute 0A1
Notification of

Failure

Able to
Process?

No

Success?

Yes

Exception
Status = 200

Receipt
Acknowledgement

Status = 200

Security Error Grammar / Schema
Error Or Sync

Not Allowed For PIP

Status = 403

Process Action
Message

Able to
Process?

No Yes

Figure 22. Single-Action Activity (Synchronous)

Validated 13 July 2001 Section 2, Interaction Diagrams

©2001 by RosettaNet. All rights reserved. 89

ResponderInitiator

Request
Over HTTP
Connection

Timeout
Or Error?

Finish

Validate Message
Structure

Yes

Perform
Initiating Action

Start

Queue Message

Wait For Response
Or Timeout

Finish

No

Reply
Over Same HTTP

Connection

Yes

Execute 0A1
Notification of

Failure

Able to
Process?

No

Success?

Yes

Exception
Status = 200

Perform
Responding

Action

Security Error Grammar / Schema
Error Or Sync

Not Allowed For PIP

Exception
Status = 200

Response
Status = 200

Status = 403

Process Response

Able to
Process?

Figure 23. Two-Action Activity (Synchronous)

RosettaNet Implementation Framework: Core Specification Release for Validation 13 July 2001

90 ©2001 by RosettaNet. All rights reserved.

2.6.8.3 Notification of Failure Scenarios

To compensate for the lack of low-level details inFigure 20 to Figure 23, Table 7
provides a complete list of the scenarios under which Notification of Failure will be
initiated for each corresponding type of PIP activity.

Table 7. Notification of Failure Scenarios

Type of
Activity

Initiator Responder

One Action
(async)

1. Initiator fails in establishing
communication with Responder for
sending the action message.

2. Initiator times out waiting for Receipt
Acknowledgment after exhausting
retries for sending the action message.

1. Responder successfully sends Receipt
Acknowledgment for action message,
but thereafter fails in its further
processing.

Two Actions
(async)

1. Initiator fails in establishing
communication with Responder for
sending the action message.

2. Initiator times out waiting for Receipt
Acknowledgment after exhausting
retries for sending the action message.3

3. Initiator does not receive the response
action message from Responder before
Time to Perform expires.4

4. Initiator fails in processing the response
action message after sending Receipt
Acknowledgment to the Responder.

1. Responder fails in establishing
communication with Initiator for
sending the response action message.

2. Responder times out waiting for Receipt
Acknowledgment after exhausting
retries for sending the response action
message.

One Action
(sync)

1. Initiator fails in establishing
communication with Responder for
sending the action message.

2. Initiator does not receive the response
action message beore Time To Perform
expires.

1. Responder successfully sends Receipt
Acknowledgment for the action
message, but thereafter fails in its further
processing.

3 Example: With a Retry Count of 3 and Time to Acknowledge of 2 hours, NoF may be
triggered after (3 + 1) * 2 = 8 hours due to non receipt of Receipt Acknowledgment by the
Initiator (assuming that are no communication failures that result in Notification of Failure).
Since the sending of an action message is not instantaneous and may require transport-level
retries, the NoF triggered by the Receipt Acknowledgment timeout may actually happen after
more than 8 hours due to the way Time to Acknowledge is defined.

4 Example: With a Retry Count of 3 and Time to Perform of 24 hours, NoF may be triggered
after 24 hours due to non receipt of the response action message from the Responder. This is
different from the (3 + 1) * 24 = 96 hours for RNIF 1.1, which allows activity-level retries.

Validated 13 July 2001 Section 2, Interaction Diagrams

©2001 by RosettaNet. All rights reserved. 91

Type of
Activity

Initiator Responder

Two Actions
(sync)

1. Initiator fails in establishing
communication with Responder for
sending the action message.

2. Initiator does not receive the response
action message from Responder before
Time To Perform expires.

3. Initiator fails in processing the response
action message after receiving the
response from the Responder.

No scenario for Notification of Failure.

RosettaNet Implementation Framework: Core Specification Release for Validation 13 July 2001

92 ©2001 by RosettaNet. All rights reserved.

APPENDIX A KEY DIFFERENCES BETWEEN RNIF 1.1 &
RNIF 2.0

This appendix outlines features that are either new in RNIF 2.0 or that have been
substantially changed from RNIF 1.1.

Feature 1.1 Treatment 2.0 Treatment

Multiple Transfer
Protocols

HTTP was the only transfer protocol
supported.

New in 2.0.

While all RNIF-compliant implementations
must support HTTP, RNIF 2.0 provides
guidelines for the use of other transfer
protocols. SMTP specification is added in
2.0. Others would be added in future
releases of RNIF.

Attachments No explicit support. Private agreements
needed to use.

Formal support added in 2.0

RNIF 2.0 provides for formal framework
for attaching supporting documents to the
business content (service content). These
could be .pdf file, word document, or files
in GIF TIF and other formats.

RNIF 2.0 also defines a mechanism by
which attachments could be referenced from
the business content (XML documents).

Encryption of Service
Content and Service
Header

Not available. New in 2.0.

RNIF 2.0 recommends use of S/MIME
based content enveloping scheme for
encrypting the Service Content and also the
Service Header as needed by the partners.

Support for Hubs and
Delivery Header

Not available New in 2.0.

RNIF 2.0 adds a new header called Delivery
Header and makes associated
recommendations for use by partners when
RosettaNet messages are sent through Hubs
between trading partners.

Third-Party Service
Content

Not available New in 2.0.

RNIF 2.0 adds support for shipping non-
RosettaNet Service Content (e.g. business
documents whose format is standardized by
standard bodies other than RosettaNet), as
sanctioned by RosettaNet, in RosettaNet
PIPs.

Synchronous
Transactions

Not available New in 2.0.

RNIF 2.0 permits synchronous exchange of
request and response messages in a single
HTTP session, if permitted by the PIP.

Validated 13 July 2001 Section 2, Interaction Diagrams

©2001 by RosettaNet. All rights reserved. 93

Digital Signature
Packaging

Uses RosettaNet Object (RNO) format
for signing / to attach detached
(PKCS7) signatures to the RosettaNet
business messages.

Uses standard S/MIME format for signing
or attaching the signatures to the RosettaNet
business messages.

Message Manifest Not Available New in 2.0.

RNIF 2.0 adds support for Message
Manifest that describes the payload
contents.

Service Header Service header is restructured in 2.0 to
eliminate inconsistencies in 1.1 version and
to add support for new features such as
third-party content, attachments, message
manifest.

Signals and Signal
Fields

 RNIF 2.0 eliminated the Acceptance
Acknowledgment Signal.

RNIF 2.0 also integrated all the Exception
Signals into one schema (DTD) and
Guideline specification and added a field to
identify the specific signal being sent.

RNIF 2.0 removes some of the RosettaNet
action message-specific fields from signals
to provide support for third-party service
content.

RNIF 2.0 adds an error code field to
exception signals that can be used to return
specific error condition codes with the
signal.

Quality Of Service Not Available RNIF 2.0 adds a Quality of Service element
to the Service Header as a placeholder hook
for specifying dynamically negotiable
Quality of Service parameters for the
message exchange between trading partners.
This is a placeholder at this point (for future
backward compatibility), to be specified
fully in a future version of the RNIF
specification.

Retry Level Activity-level retries. RNIF 2.0 eliminated Activity-level retries
and calls for individual Action level retries
only. See section 2.6.

Exception Handling Described in a Technical Advisory
issued separately.

RNIF 2.0 integrates the description of
Exception Handling and message flow into
the specification. See section 2.6.

Debug Headers Not Available New in 2.0.

RNIF 2.0 adds support for transfer-level
debug headers that can be used during
initial set-up by trading partners.

RosettaNet Implementation Framework: Core Specification Release for Validation 13 July 2001

94 ©2001 by RosettaNet. All rights reserved.

APPENDIX B REQUIRED PIP METAMODEL CHANGES

This version of the RNIF core specification introduces new functionality beyond
RNIF 1.1. In order to allow newly designed PIPs to fully take advantage of the new
features and to remove certain perceived inconsistencies, the PIP Metamodel has to be
enhanced. This appendix identifies the changes that are expected to be applied to the
existing PIP Metamodel.

B.1 Machine-readable PIP Specifications

Many of the elements in the Service Header of business action and signal messages
make use of fields that are to be extracted from PIP specifications. It is assumed that
in the near future PIPs will be published in machine-sensible XML formats so that the
construction of business action and signal messages can be automated. As a pre-
requisite, the grammar and schema to which all XML-based PIP specifications MUST
conform will have to be specified.

B.2 Retry

In RNIF 1.1, retries are applied at the activity level. The Retry Count found in the
Business Activity Performance Controls table of a PIP�s Business Operation View
determines the number of times a PIP activity can be retried due to timeouts waiting
for Receipt Acknowledgments or Response Action messages. In other words, retries
can happen both at the activity level and at the action level. In RNIF 2.0, only action-
level retries happen as a result of timeouts waiting for Receipt Acknowledgments. The
requirement that a recipient make a persistent copy of an action message before
acknowledging is designed to eliminate expensive activity-level retries that may
require the re-computation of digital signatures. Since retry is no longer an activity-
level concept, its specification should be moved to the Message Exchange Controls
table of each PIP�s Functional Service View.

B.3 Encryption

RNIF 2.0 allows for the encryption of message payloads above the transport level. The
Message Exchange Controls section of a PIP�s Functional Service View therefore
should include an attribute �Is Encryption Required?�

B.4 Synchronous versus Asynchronous

By default, the exchange of action and signal messages between business partners is
asynchronous. However, activities with only one or two actions can optionally be
completed over a single synchronous HTTP connection. The Message Exchange
Controls section of a PIP�s Functional Service View therefore SHOULD include an
attribute �Use Synchronous Connection?� If this is not specified in the PIP, then it
must be considered to be an asynchronous response. It should be noted that a

Validated 13 July 2001 Section 2, Interaction Diagrams

©2001 by RosettaNet. All rights reserved. 95

synchronous two-action activity MUST NOT require Receipt Acknowledgment. This
implies that synchronous two-action activities do not support non-repudiation of
receipt.

B.5 Acceptance Acknowledgment

RNIF 2.0 no longer supports the use of the Acceptance Acknowledgment concept for
non-substantive acknowledgments of initial business actions. The Time to
Acknowledge Acceptance attribute in the Business Activity Performance Controls
table in the Business Operation View and the Time to Acknowledge Acceptance
Signal in the Functional Service View therefore should be omitted for newly designed
PIPs.

B.6 Non-Repudiation of Receipt

In the Business Activity Performance Controls table of a PIP�s Business Operation
View, the Acknowledgment of Receipt column should indicate whether Non-
Repudiation is required for the initial action message or for all action messages within
the PIP. Currently, there are some PIPs that specify Non-Repudiation for the request
action message but not for the response action message in the Message Exchange
Controls table in the Functional Service View. In other words, the Functional Service
View does not seem consistent with the Business Operation View for some existing
PIPs.

B.7 IFV and Agent/Service References

RNIF 2.0 specifies how the Implementation Framework View of a PIP, with the
exception of DTDs and Message Guidelines for business documents, can be derived
consistently from the Business Operation View and Functional Service View portions
of the PIP specification. Therefore, �boiler-plated� materials related to the
Implementation Framework View, including reference to agent/service interactions,
should be removed.

RosettaNet Implementation Framework: Core Specification Release for Validation 13 July 2001

96 ©2001 by RosettaNet. All rights reserved.

APPENDIX C IFV MAPPING FROM BOV AND FSV

This appendix serves to remove �boilerplate� material from the individual PIP
specifications and place it in the RNIF. This will facilitate maintenance of this
material, as well as remove material from the PIP specifications that is rarely
referenced by PIP implementers.

A RosettaNet Partner Interface Process (PIP) specification comprises the following
three views of the e-Business PIP model.

1. Business Operational View (BOV). Captures the semantics of business data
entities and their flow of exchange between roles as they perform business
activities. The content of the BOV section is based on the PIP Blueprint document
created for RosettaNet's business community.

2. Functional Service View (FSV). Specifies the network component services and
agents and the interactions necessary to execute PIPs. The FSV includes all of the
transaction dialogs in a PIP Protocol. The purpose of the FSV is to specify a PIP
Protocol that is systematically derived from the BOV. The two major components
within the FSV are the network component design and network component
interactions.

3. Implementation Framework View (IFV). The Implementation Framework View
specifies the action message formats and communication requirements between
network components as supported by the RosettaNet Implementation Framework.
The communication requirements include specifications on requirement for secure
transport protocols such as SSL and digital signatures. For message formats,
RosettaNet distributes XML DTDs and Message Guidelines for the action
messages that are exchanged when the PIP is executed.

The RNIF 2.0 PIP specifications include the BOV and FSV specifications and the
XML Message Guidelines part of the IFV. However, other aspects of IFV such as the
communications requirements between network components are no longer specified as
part of the PIP specification, as these aspects can be derived from the BOV and FSV
parts of the PIP specification in a well-defined and consistent fashion. This appendix
describes how the BOV and FSV sections of a PIP specification can be mapped to
such Implementation Framework View (IFV) aspects.

In the following tables, the BOV and FSV columns, their values and the
corresponding IFV mapping is listed. Table 8 contains mappings that are transport
independent and Table 9 contains mappings that are transport dependent.

Note: Please note that the PIP specification table numbers referenced below are
consistent with all the PIP specifications published so far. This numbering scheme is
expected to continue. However, if the scheme ever changes, this appendix needs to be
updated to be consistent with the PIP specifications.

Validated 13 July 2001 Section 2, Interaction Diagrams

©2001 by RosettaNet. All rights reserved. 97

Table 8. Transport-Independent Mappings

BOV

Table 3-3
Business Activity

Performance Control

FSV

Tables 4.3 � 4.n
Message Exchange Controls

IFV Mapping

Column Name Value Column Name Value Transport-Independent
Mapping

Acknowledgment of
Receipt:
Non-Repudiation
Required?

Y Is Non-Repudiation
Required?

Y A signed Receipt-Acknowledgment
is required for the received
RosettaNet Business Message. The
Acknowledgment MUST include
MD5 or SHA-1 digest of the
received message, in addition to the
digital signature.

Additionally the partner receiving
the acknowledgment MUST store
the receipt in original form for a
mutually agreed period of time
(typically three to seven years).
This prevents a responding partner
later denying that they received a
Business Document.

Note: Signals are not
acknowledged. Hence this is
applicable to Action Messages
only.

Acknowledgment of
Receipt: Time to
Acknowledge

>0 Time To Acknowledge
Receipt Signal

>0 A Receipt Acknowledgment for the
received RosettaNet Business
Message is required and MUST be
received by the sender within the
time constraint specified. However
there is no non-repudiation
requirement unless specified with a
separate non-repudiation clause as
above.

Note: Signals are not
acknowledged. Hence this is
applicable to Action Messages
only.

Time to Acknowledge
Acceptance

N/A Time To Acknowledge
Acceptance Signal

N/A The Acceptance Acknowledgment
Signal had been eliminated by the
RNIF 2.0 specification. Hence these
columns are no longer needed and
would be eliminated from future
versions of the PIP Specifications.

RosettaNet Implementation Framework: Core Specification Release for Validation 13 July 2001

98 ©2001 by RosettaNet. All rights reserved.

BOV

Table 3-3
Business Activity

Performance Control

FSV

Tables 4.3 � 4.n
Message Exchange Controls

IFV Mapping

Column Name Value Column Name Value Transport-Independent
Mapping

Time to Perform Value Time to Respond to
Action

Value The response Business Action
Message to the received Business
Action Message MUST be sent
within the time constraint specified.

Note: Certain Action Messages do
not require a response Action
Message (PIP specific). For such
PIPs this field would have a value
of N/A.

Is Authorization
Required?

Y Is Authorization
Required?

Y Sender MUST be Authorized to
send this RosettaNet Business
Message (or perform this business
action). Digital Signature is
required on the Message, which
would be used by the receiving
party to authenticate the sender and
verify authorization to send the
message.

Non-Repudiation of
Origin and Content?

Y Is Non-Repudiation
Required?

Y The partner receiving the
RosettaNet Business Message
MUST store the message in original
form for a mutually agreed period
of time (typically three to seven
years). This prevents an initiating
partner later denying that they
originated contents of a Business
Document.

Retry Count* Value Specified the retry count for the
Action Messages within the PIP.

* Retry Count will be moving from BOV to FSV in PIPs adhering to the PIP metamodel arising out of RNIF 2.0. See also
Appendix B.

Table 9. Transport-Dependent Mappings

FSV

Tables 4.3 � 4.n
Message Exchange

Controls

IFV Mapping BOV

Figure 3-1
PIP Business
Process Flow

Diagram Column Value General HTTP
Transport

SMTP
Transport

Business Activity
contains
<<SecureFlow>>
Stereotype

Is Secure
Transport
Required?

Y The Business
message MUST be
transported from
sender to the
recipient in a secure
way.

SSL is required Message MUST
be encrypted
during transport.

Validated 13 July 2001 Section 2, Interaction Diagrams

©2001 by RosettaNet. All rights reserved. 99

 Is Persistent
Encryption
Required?

Y The Business
Message or Signal
MUST be secured
from end-to-end
(originator to final
recipient), not only
from point-to-point.

Message MUST
be encrypted
before being
transported.

Message MUST
be encrypted
before being
transported.

RosettaNet Implementation Framework: Core Specification Release for Validation 13 July 2001

100 ©2001 by RosettaNet. All rights reserved.

APPENDIX D IMPORTANCE OF TRANSFER
INDEPENDENCE

It is important to understand the reasons for embracing and requiring transfer-level
independence.

Transfer independence allows for rapid integration into existing products and systems
by allowing the RosettaNet Business Message to be submitted to these systems for
additional packaging and transport. Some transfer mechanisms may not be considered
robust enough, secure enough, flexible enough, or easy enough to use for every
implementation scenario. The following examples should make this clearer.

A corporation may have an existing infrastructure in place for secure communications
and wish to leverage this investment for RosettaNet Partner Interface Processes. This
existing infrastructure may be a Virtual Private Network (VPN), a secure tunneling
infrastructure, an IP-SEC infrastructure, etc. In cases such as this, transfer-level
security alone may be sufficient to protect the RosettaNet Business Message.

Because of the very poor Internet infrastructure that exists in some geographies, a
trading partner may choose to compress RosettaNet Business Message(s) together or
break up large business messages and transport them using HTTP, secure FTP, secure
email solutions such as PGP, etc.

A trading entity may need to trade documents over a medium or networking protocol
where TCP/IP does not exist, or where industry-standard data protection mechanisms
are not deemed adequate.

Transfer independence allows for all of these scenarios and many yet unforeseen
scenarios.

Validated 13 July 2001 Section 2, Interaction Diagrams

©2001 by RosettaNet. All rights reserved. 101

APPENDIX E ANTICIPATED FUTURES

This appendix describes some of the technologies examined during the development
of this document that seemed promising for later versions of the framework, but which
are not yet at the point of being production-worthy in the RosettaNet environment.
Inclusion of a given technology in this appendix does not guarantee that RosettaNet
will adopt it, nor does it promise adoption on a pre-stated timeline if the decision is
made in the future to make use of it in RosettaNet specifications.

E.1 Use of XML-Schemas

Currently PIP IFV specifications use XML DTD format to define the structure of the
Action messages and use associated guideline specifications to define semantic and
integrity constraints. RosettaNet is closely following the W3C XML-Schema draft
specifications and when the specifications do become a standard and software
implementations that support the schema specifications become available, RosettaNet
intends to use the W3 XML-Schema format to specify the Action and Signal
messages. It should be noted that this would not impact the physical encoding of the
Action or Signal messages but, provides more robust specification of the schemas for
these specifications that support more automated schema validation to the extent
facilitated by the schema standards.

E.2 Use of XML D-Signature

As mentioned earlier, RNIF 2.0 uses S/MIME for digital signatures. RosettaNet
intends to evaluate and consider for utilization in a future RNIF release, the XML-
Dsig specification by W3C when the specification becomes a standard.

E.3 XML-Based Packaging

RosettaNet business messages comprise multiple XML and non-XML documents (e.g.
attachments) and other components like digital signatures. In RNIF 2.0 RosettaNet
uses MIME and S/MIME based packaging schemes for building the RosettaNet
business message, as MIME and S/MIME are found to provide the best and probably
only solution to the packaging needs of the RosettaNet Business Message. However, if
a better standards based packaging scheme, such as a pure XML based packaging
scheme does become available, RosettaNet intends to consider that for adaptation in a
future version of RNIF. We are not aware of any potential solution at this point.

E.4 Other Transport (Transfer) Protocols

RNIF 2.0 specification supports the use of HTTP(S) and SMTP protocols for
exchange of RosettaNet Business Messages. However, the RosettaNet Business
Message format is really transfer protocol independent and hence RosettaNet intends
to support other transfer protocols in the future, as needed by the RosettaNet member

RosettaNet Implementation Framework: Core Specification Release for Validation 13 July 2001

102 ©2001 by RosettaNet. All rights reserved.

community and based on the usability of the transfer protocol for RosettaNet
purposes.

E.5 PIP Message Exchange Models

Current PIP specifications are based on a Peer-to-Peer business message exchange
model between the RosettaNet networked applications (and hence the trading
partners). This peer-peer mode of message exchange requires prior knowledge of the
peer, and it does not support broadcast to several trading partners. RosettaNet is
investigating other message exchange models such as Publish and Subscribe,
Broadcast and Multicast for potential future incorporation into the PIP specifications.

E.6 Grouping Multiple Action Messages

The RNIF 2.0 team considered grouping and packaging schemes that would permit
exchanging two or more Action message in a group between trading partners.
However, the robust reliable message delivery mechanism that RosettaNet employs,
based on different kinds of acknowledgments being exchanged and the associated
timeout and message retry constraints made the grouping scheme too complex to use.
Additionally it was felt that the grouping scheme was intended for bulk exchange of
messages, where a separate network connection for each transferred message was
considered too expensive and predates the current HTTP and such recent transfer
technologies. The complexities introduced by such grouping scheme outweighed the
benefits offered and hence it was decided not to introduce a grouping scheme in RNIF
2.0.

E.7 Non-Repudiation of Routing for Hub-Routed
Messages

A complete specification for non-repudiable routing through hubs is planned for a
future release of RNIF. In the meantime, hubs are responsible for solving this in
private ways.

E.8 Agent-Service Transmissions

This document focuses specifically on data transmissions between trading partners�
RosettaNet-aware network applications, also known as service-to-service
transmissions. In the future, depending upon the complexities of a particular business
activity or new requirements from trading partners, RosettaNet may have to specify
additional transmission patterns. This section discusses some possibilities.

Instead of the typical service-to-service transmissions, business activities or trading
partners may require the introduction of one or more intermediaries or agents between
services. An agent may be a human at a browser or perhaps a software application
simply acting as a proxy that prevents direct communication between trading partners'
services.

Validated 13 July 2001 Section 2, Interaction Diagrams

©2001 by RosettaNet. All rights reserved. 103

In any case, the important thing to note is that an agent simply passes information to
another agent or service but is, itself, incapable of actually conversing using the
RosettaNet protocol. Only services can provide direct bi-directional support for the
RosettaNet protocol.

The following are examples of possible transmission patterns that RosettaNet may
specify in the future.

The vertical bar indicates the separation between trading partners� RosettaNet-aware
network applications. Trading Partner A is to the left of the bar, Trading Partner B is
to the right.

• Service-Agent-|-Service or Service-|-Agent-Service

Trading Partner A�s service converses with Trading Partner B�s service but passes
the RosettaNet business message first to a proxy agent which forwards it to
Trading Partner B�s service. The agent could, of course, be a human at a browser
or a software application that adds, subtracts, or normalizes information in the
message. From that point, the trading partner services might converse directly
with each other or continue to communicate through the agent.

• Service-Agent-|-Agent-Service

A variation of the transmission pattern above.

• Service-|-Service-Agent

Trading Partner A�s service communicates directly with Trading Partner B�s
service using the RosettaNet protocol, however Trading Partner B�s service
digests and passes information from the RosettaNet business message to a
backend agent for processing. The agent might interact with a backend system
and return its results to Trading Partner B�s service to communicate back to
Trading Partner A�s service.

• Agent-Service-|-Service

An agent on Trading Partner A�s side (may be a human at a browser) sends
information to Trading Partner A�s service which then communicates with
Trading Partner B�s service using the RosettaNet protocol.

E.9 Dynamic Negotiation of Quality of Service
Parameters

RNIF 2.0 added a Quality of Service element to the Service Header as a placeholder
hook for specifying dynamically negotiable Quality of Service parameters for the
message exchange between trading partners. This is a placeholder at this point (for
future backward compatibility), to be specified fully in a future version of the RNIF
specification.

RosettaNet Implementation Framework: Core Specification Release for Validation 13 July 2001

104 ©2001 by RosettaNet. All rights reserved.

APPENDIX F ADDITIONAL EXAMPLES

F.1 Complete Unsigned Message-Packaging
Example

MIME-version: 1.0
Content-Type: multipart/related; boundary="example-boundary";

type="application/xml"
Content-Description: This is the RosettaNet Business Message

--example-boundary
Content-Type: Application/XML
Content-Location: RN-Preamble
Content-ID: <PreambleHdrExample.20001121T123100.000Z@this.example.com>

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE Preamble SYSTEM "Preamble_MS_V02_00.dtd">
<Preamble>
<standardName>

<GlobalAdministeringAuthorityCode>RosettaNet</GlobalAdministering
AuthorityCode>
</standardName>
<standardVersion>

<VersionIdentifier>V02.00</VersionIdentifier>
</standardVersion>
</Preamble>

--example-boundary
Content-Type: Application/XML
Content-Location: RN-Delivery-Header
Content-ID: <DeliveryHdrExample.20001121T123100.000Z@this.example.com>

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE DeliveryHeader SYSTEM "DeliveryHeader_MS_V02_00.dtd">
<DeliveryHeader>
<isSecureTransportRequired>

<AffirmationIndicator>Yes</AffirmationIndicator>
</isSecureTransportRequired>
<messageDateTime>

<DateTimeStamp>20001121T145200.000Z</DateTimeStamp>
</messageDateTime>
<messageReceiverIdentification>

<PartnerIdentification>
<domain>

<FreeFormText>DUNS</FreeFormText>
</domain>
<GlobalBusinessIdentifier>123456789</GlobalBusinessIdentifier>
<locationID>

<Value>Santa Clara</Value>
</locationID>

</PartnerIdentification>
</messageReceiverIdentification>
<messageSenderIdentification>

<PartnerIdentification>
<GlobalBusinessIdentifier>555123456</GlobalBusinessIdentifier>
<locationID>

<Value>Hong Kong</Value>
</locationID>

Validated 13 July 2001 Section 2, Interaction Diagrams

©2001 by RosettaNet. All rights reserved. 105

</PartnerIdentification>
</messageSenderIdentification>
<messageTrackingID>

<InstanceIdentifier>543543</InstanceIdentifier>
</messageTrackingID>
</DeliveryHeader>

--example-boundary
Content-Type: Application/XML
Content-Location: RN-Service-Header
Content-Description: RosettaNet-Service-Header
Content-ID: <ServiceHdrExample.20001121T123100.000Z@this.example.com>

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE ServiceHeader SYSTEM "ServiceHeader_MS_V02_00.dtd">
<ServiceHeader>
<ProcessControl>

<ActivityControl>
<BusinessActivityIdentifier>Create Purchase

Order</BusinessActivityIdentifier>
<MessageControl>

<fromRole>
<GlobalPartnerRoleClassificationCode>Buyer</GlobalPartner

RoleClassificationCode>
</fromRole>
<fromService>

<GlobalBusinessServiceCode>Buyer
Service</GlobalBusinessServiceCode>

</fromService>
<Manifest>

<Attachment>
<description>

<FreeFormText>PDF version of PO</FreeFormText>
</description>

<GlobalMimeTypeQualifierCode>application/pdf</GlobalMimeType
QualifierCode>

<UniversalResourceIdentifier>cid:Attachment.
20001121T123000.000Z@this.example.com</UniversalResourceIdentifier>

</Attachment>
<numberOfAttachments>

<CountableAmount>1</CountableAmount>
</numberOfAttachments>
<ServiceContentControl>

<ActionIdentity>
<GlobalBusinessActionCode>Purchase Order Request

Action</GlobalBusinessActionCode>
</ActionIdentity>

</ServiceContentControl>
</Manifest>
<toRole>

<GlobalPartnerRoleClassificationCode>Seller</GlobalPartner
RoleClassificationCode>

</toRole>
<toService>

<GlobalBusinessServiceCode>Seller
Service</GlobalBusinessServiceCode>

</toService>
</MessageControl>

</ActivityControl>
<GlobalUsageCode>Production</GlobalUsageCode>
<pipCode>

<GlobalProcessIndicatorCode>3A4</GlobalProcessIndicatorCode>

RosettaNet Implementation Framework: Core Specification Release for Validation 13 July 2001

106 ©2001 by RosettaNet. All rights reserved.

</pipCode>
<pipInstanceId>

<InstanceIdentifier>121212</InstanceIdentifier>
</pipInstanceId>
<pipVersion>

<VersionIdentifier>1.2</VersionIdentifier>
</pipVersion>
<KnownInitiatingPartner>

<PartnerIdentification>
<domain>

<FreeFormText>DUNS</FreeFormText>
</domain>
<GlobalBusinessIdentifier>123456789</GlobalBusinessIdentifier>

</PartnerIdentification>
</KnownInitiatingPartner>

</ProcessControl>
</ServiceHeader>

--example-boundary
Content-Type: Application/XML
Content-Description: RosettaNet-Service-Content
Content-Location: RN-Service-Content
Content-ID:
<ServiceContentExample.20001121T123100.000Z@this.example.com>

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE Pip3A4PurchaseOrderRequest SYSTEM
"3A4PurchaseOrderRequestMessageGuideline_v1_2.dtd">
<Pip3A4PurchaseOrderRequest>
<PurchaseOrder>

<deliverTo>
<PhysicalAddress>

<cityName>
<FreeFormText xml:lang="EN">CityName</FreeFormText>

</cityName>
<addressLine1>

<FreeFormText xml:lang="EN">1234 Address
Drive</FreeFormText>

</addressLine1>
<regionName>

<FreeFormText xml:lang="EN">Eastern US</FreeFormText>
</regionName>
<postOfficeBoxIdentifier>

<FreeFormText xml:lang="EN">20202</FreeFormText>
</postOfficeBoxIdentifier>

<GlobalLocationIdentifier>1234567890000</GlobalLocationIdentifier>
<GlobalCountryCode>US</GlobalCountryCode>

</PhysicalAddress>
</deliverTo>
<ProductLineItem>

<shipFrom>

<GlobalLocationIdentifier>9876543210000</GlobalLocationIdentifier>
</shipFrom>
<ProductQuantity>1</ProductQuantity>
<LineNumber>1</LineNumber>
<productUnit>

<ProductPackageDescription>
<ProductIdentification>

<GlobalProductIdentifier>12345678901234</GlobalProductIdentifier>
</ProductIdentification>

Validated 13 July 2001 Section 2, Interaction Diagrams

©2001 by RosettaNet. All rights reserved. 107

</ProductPackageDescription>
</productUnit>
<countryOfOrigin>

<GlobalCountryCode>US</GlobalCountryCode>
</countryOfOrigin>
<requestedShipDate>

<DateStamp>20001121</DateStamp>
</requestedShipDate>
<contractIdentifier>

<ProprietaryDocumentIdentifier>1021358129419</ProprietaryDocument
Identifier>

</contractIdentifier>
<GlobalProductUnitOfMeasureCode>Each</GlobalProductUnitOfMeasure

Code>
<SpecialHandlingInstruction>

<specialHandlingText>
<FreeFormText xml:lang="EN">Hand deliver</FreeFormText>

</specialHandlingText>
</SpecialHandlingInstruction>
<requestedPrice>

<FinancialAmount>
<GlobalCurrencyCode>USD</GlobalCurrencyCode>
<MonetaryAmount>25</MonetaryAmount>

</FinancialAmount>
</requestedPrice>

</ProductLineItem>
<GlobalShipmentTermsCode>Third party pay</GlobalShipmentTermsCode>
<RevisionNumber>11</RevisionNumber>
<prePaymentCheckNumber>

<CheckNumber>10101</CheckNumber>
</prePaymentCheckNumber>
<QuoteIdentifier>

<ProprietaryDocumentIdentifier>12345</ProprietaryDocumentIdentifier>
</QuoteIdentifier>
<WireTransferIdentifier>88888</WireTransferIdentifier>
<AccountDescription>

<GlobalAccountClassificationCode>Procurement</GlobalAccount
ClassificationCode>

<billTo>
<PartnerRoleDescription>

<GlobalPartnerRoleClassificationCode>Buyer</GlobalPartnerRole
ClassificationCode>

<ContactInformation>
<PhysicalAddress>

<cityName>
<FreeFormText xml:lang="EN">City Name</FreeFormText>

</cityName>
<addressLine1>

<FreeFormText xml:lang="EN">3877 Fairfax Ridge Rd,
4th
Floor</FreeFormText>

</addressLine1>
<addressLine2>

<FreeFormText xml:lang="EN">Fairfax, VA
22030</FreeFormText>

</addressLine2>
<regionName>

<FreeFormText xml:lang="EN">Eastern
US</FreeFormText>

</regionName>

RosettaNet Implementation Framework: Core Specification Release for Validation 13 July 2001

108 ©2001 by RosettaNet. All rights reserved.

<postOfficeBoxIdentifier>
<FreeFormText xml:lang="EN">20202</FreeFormText>

</postOfficeBoxIdentifier>

<GlobalLocationIdentifier>9876543210000</GlobalLocation
Identifier>

<GlobalCountryCode>US</GlobalCountryCode>
</PhysicalAddress>
<EmailAddress>contact@rnifexample.com</EmailAddress>
<contactName>

<FreeFormText xml:lang="EN">Mr. Contact
Smith</FreeFormText>

</contactName>
<telephoneNumber>

<CommunicationsNumber>555-555-
5555</CommunicationsNumber>

</telephoneNumber>
</ContactInformation>

</PartnerRoleDescription>
</billTo>
<accountName>

<FreeFormText xml:lang="EN">Cash Account</FreeFormText>
</accountName>
<AccountNumber>12341234</AccountNumber>

</AccountDescription>
<generalServicesAdministrationNumber>

<ProprietaryDocumentIdentifier>11111111</ProprietaryDocument
Identifier>

</generalServicesAdministrationNumber>
<GlobalFinanceTermsCode>Net 30</GlobalFinanceTermsCode>
<PartnerDescription>

<PhysicalAddress>
<cityName>

<FreeFormText xml:lang="EN"/>
</cityName>
<addressLine1>

<FreeFormText xml:lang="EN">1234 Address
Drive</FreeFormText>

</addressLine1>
<regionName>

<FreeFormText xml:lang="EN">Eastern US</FreeFormText>
</regionName>
<postOfficeBoxIdentifier>

<FreeFormText xml:lang="EN">20202</FreeFormText>
</postOfficeBoxIdentifier>
<GlobalCountryCode>US</GlobalCountryCode>

</PhysicalAddress>
<GlobalPartnerClassificationCode>End

User</GlobalPartnerClassificationCode>
</PartnerDescription>
<GlobalPurchaseOrderTypeCode>Dropship</GlobalPurchaseOrderTypeCode>

</PurchaseOrder>
<fromRole>

<PartnerRoleDescription>
<GlobalPartnerRoleClassificationCode>Buyer</GlobalPartnerRole

ClassificationCode>
<ContactInformation>

<EmailAddress>xyz@abc.com</EmailAddress>
<contactName>

<FreeFormText xml:lang="EN">Somebody</FreeFormText>
</contactName>
<telephoneNumber>

<CommunicationsNumber>888-888-8888</CommunicationsNumber>

Validated 13 July 2001 Section 2, Interaction Diagrams

©2001 by RosettaNet. All rights reserved. 109

</telephoneNumber>
</ContactInformation>
<PartnerDescription>

<GlobalPartnerClassificationCode>End
User</GlobalPartnerClassificationCode>

<BusinessDescription>

<GlobalBusinessIdentifier>123456789</GlobalBusinessIdentifier>
<GlobalSupplyChainCode>Information

Technology</GlobalSupplyChainCode>
</BusinessDescription>

</PartnerDescription>
</PartnerRoleDescription>

</fromRole>
<toRole>

<PartnerRoleDescription>
<GlobalPartnerRoleClassificationCode>Seller</GlobalPartnerRole

ClassificationCode>
<PartnerDescription>

<GlobalPartnerClassificationCode>End
User</GlobalPartnerClassificationCode>

<BusinessDescription>

<GlobalBusinessIdentifier>987654321</GlobalBusinessIdentifier>
<GlobalSupplyChainCode>Information

Technology</GlobalSupplyChainCode>
</BusinessDescription>

</PartnerDescription>
</PartnerRoleDescription>

</toRole>
<thisDocumentGenerationDateTime>

<DateTimeStamp>20001121T080010.005Z</DateTimeStamp>
</thisDocumentGenerationDateTime>
<thisDocumentIdentifier>

<ProprietaryDocumentIdentifier>1021358129419</ProprietaryDocument
Identifier>
</thisDocumentIdentifier>
<GlobalDocumentFunctionCode>Request</GlobalDocumentFunctionCode>
</Pip3A4PurchaseOrderRequest>

--example-boundary
Content-Type: application/pdf; name="PO.pdf"
Content-Description: PDF version of PO
Content-ID: <Attachment.20001121T123000.000Z@this.example.com>

[PO.pdf attachment goes here]

--example-boundary--

F.2 Complete Signed Message-Packaging Example
MIME-version: 1.0

Content-Type: multipart/signed;
boundary="RN-Signature-Boundary";
protocol="application/pkcs7-signature";
micalg=sha1

Content-Description: This is a Signed RosettaNet Business Message

--RN-Signature-Boundary
Content-Type: multipart/related; boundary="example-boundary";

type="application/xml"

RosettaNet Implementation Framework: Core Specification Release for Validation 13 July 2001

110 ©2001 by RosettaNet. All rights reserved.

Content-Description: This is the RosettaNet Business Message

--example-boundary
Content-Type: Application/XML
Content-Location: RN-Preamble
Content-ID: <PreambleHdrExample.20001121T123100.000Z@this.example.com>

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE Preamble SYSTEM "Preamble_MS_V02_00.dtd">
<Preamble>
<standardName>

<GlobalAdministeringAuthorityCode>RosettaNet</GlobalAdministering
AuthorityCode>
</standardName>
<standardVersion>

<VersionIdentifier>V02.00</VersionIdentifier>
</standardVersion>
</Preamble>

--example-boundary
Content-Type: Application/XML
Content-Location: RN-Delivery-Header
Content-ID: <DeliveryHdrExample.20001121T123100.000Z@this.example.com>

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE DeliveryHeader SYSTEM "DeliveryHeader_MS_V02_00.dtd">
<DeliveryHeader>
<isSecureTransportRequired>

<AffirmationIndicator>Yes</AffirmationIndicator>
</isSecureTransportRequired>
<messageDateTime>

<DateTimeStamp>20001121T145200.000Z</DateTimeStamp>
</messageDateTime>
<messageReceiverIdentification>

<PartnerIdentification>
<domain>

<FreeFormText>DUNS</FreeFormText>
</domain>
<GlobalBusinessIdentifier>123456789</GlobalBusinessIdentifier>
<locationID>

<Value>Santa Clara</Value>
</locationID>

</PartnerIdentification>
</messageReceiverIdentification>
<messageSenderIdentification>

<PartnerIdentification>
<GlobalBusinessIdentifier>555123456</GlobalBusinessIdentifier>
<locationID>

<Value>Hong Kong</Value>
</locationID>

</PartnerIdentification>
</messageSenderIdentification>
<messageTrackingID>

<InstanceIdentifier>543543</InstanceIdentifier>
</messageTrackingID>
</DeliveryHeader>

--example-boundary
Content-Type: Application/XML
Content-Location: RN-Service-Header
Content-Description: RosettaNet-Service-Header
Content-ID: <ServiceHdrExample.20001121T123100.000Z@this.example.com>

Validated 13 July 2001 Section 2, Interaction Diagrams

©2001 by RosettaNet. All rights reserved. 111

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE ServiceHeader SYSTEM "ServiceHeader_MS_V02_00.dtd">
<ServiceHeader>
<ProcessControl>

<ActivityControl>
<BusinessActivityIdentifier>Create Purchase

Order</BusinessActivityIdentifier>
<MessageControl>

<fromRole>
<GlobalPartnerRoleClassificationCode>Buyer</GlobalPartner

RoleClassificationCode>
</fromRole>
<fromService>

<GlobalBusinessServiceCode>Buyer
Service</GlobalBusinessServiceCode>

</fromService>
<Manifest>

<Attachment>
<description>

<FreeFormText>PDF version of PO</FreeFormText>
</description>

<GlobalMimeTypeQualifierCode>application/pdf</GlobalMimeType
QualifierCode>

<UniversalResourceIdentifier>cid:Attachment.
20001121T123000.000Z@this.example.com</UniversalResourceIdentifier>

</Attachment>
<numberOfAttachments>

<CountableAmount>1</CountableAmount>
</numberOfAttachments>
<ServiceContentControl>

<ActionIdentity>
<GlobalBusinessActionCode>Purchase Order Request

Action</GlobalBusinessActionCode>
</ActionIdentity>

</ServiceContentControl>
</Manifest>
<toRole>

<GlobalPartnerRoleClassificationCode>Seller</GlobalPartner
RoleClassificationCode>

</toRole>
<toService>

<GlobalBusinessServiceCode>Seller
Service</GlobalBusinessServiceCode>

</toService>
</MessageControl>

</ActivityControl>
<GlobalUsageCode>Production</GlobalUsageCode>
<pipCode>

<GlobalProcessIndicatorCode>3A4</GlobalProcessIndicatorCode>
</pipCode>
<pipInstanceId>

<InstanceIdentifier>121212</InstanceIdentifier>
</pipInstanceId>
<pipVersion>

<VersionIdentifier>1.2</VersionIdentifier>
</pipVersion>
<KnownInitiatingPartner>

<PartnerIdentification>
<domain>

<FreeFormText>DUNS</FreeFormText>
</domain>
<GlobalBusinessIdentifier>123456789</GlobalBusinessIdentifier>

RosettaNet Implementation Framework: Core Specification Release for Validation 13 July 2001

112 ©2001 by RosettaNet. All rights reserved.

</PartnerIdentification>
</KnownInitiatingPartner>

</ProcessControl>
</ServiceHeader>

--example-boundary
Content-Type: Application/XML
Content-Description: RosettaNet-Service-Content
Content-Location: RN-Service-Content
Content-ID:
<ServiceContentExample.20001121T123100.000Z@this.example.com>

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE Pip3A4PurchaseOrderRequest SYSTEM
"3A4PurchaseOrderRequestMessageGuideline_v1_2.dtd">
<Pip3A4PurchaseOrderRequest>
<PurchaseOrder>

<deliverTo>
<PhysicalAddress>

<cityName>
<FreeFormText xml:lang="EN">CityName</FreeFormText>

</cityName>
<addressLine1>

<FreeFormText xml:lang="EN">1234 Address
Drive</FreeFormText>

</addressLine1>
<regionName>

<FreeFormText xml:lang="EN">Eastern US</FreeFormText>
</regionName>
<postOfficeBoxIdentifier>

<FreeFormText xml:lang="EN">20202</FreeFormText>
</postOfficeBoxIdentifier>

<GlobalLocationIdentifier>1234567890000</GlobalLocationIdentifier>
<GlobalCountryCode>US</GlobalCountryCode>

</PhysicalAddress>
</deliverTo>
<ProductLineItem>

<shipFrom>

<GlobalLocationIdentifier>9876543210000</GlobalLocationIdentifier>
</shipFrom>
<ProductQuantity>1</ProductQuantity>
<LineNumber>1</LineNumber>
<productUnit>

<ProductPackageDescription>
<ProductIdentification>

<GlobalProductIdentifier>12345678901234</GlobalProductIdentifier>
</ProductIdentification>

</ProductPackageDescription>
</productUnit>
<countryOfOrigin>

<GlobalCountryCode>US</GlobalCountryCode>
</countryOfOrigin>
<requestedShipDate>

<DateStamp>20001121</DateStamp>
</requestedShipDate>
<contractIdentifier>

<ProprietaryDocumentIdentifier>1021358129419</ProprietaryDocument
Identifier>

</contractIdentifier>

Validated 13 July 2001 Section 2, Interaction Diagrams

©2001 by RosettaNet. All rights reserved. 113

<GlobalProductUnitOfMeasureCode>Each</GlobalProductUnitOfMeasureCode>
<SpecialHandlingInstruction>

<specialHandlingText>
<FreeFormText xml:lang="EN">Hand deliver</FreeFormText>

</specialHandlingText>
</SpecialHandlingInstruction>
<requestedPrice>

<FinancialAmount>
<GlobalCurrencyCode>USD</GlobalCurrencyCode>
<MonetaryAmount>25</MonetaryAmount>

</FinancialAmount>
</requestedPrice>

</ProductLineItem>
<GlobalShipmentTermsCode>Third party pay</GlobalShipmentTermsCode>
<RevisionNumber>11</RevisionNumber>
<prePaymentCheckNumber>

<CheckNumber>10101</CheckNumber>
</prePaymentCheckNumber>
<QuoteIdentifier>

<ProprietaryDocumentIdentifier>12345</ProprietaryDocumentIdentifier>
</QuoteIdentifier>
<WireTransferIdentifier>88888</WireTransferIdentifier>
<AccountDescription>

<GlobalAccountClassificationCode>Procurement</GlobalAccount
ClassificationCode>

<billTo>
<PartnerRoleDescription>

<GlobalPartnerRoleClassificationCode>Buyer</GlobalPartnerRole
ClassificationCode>

<ContactInformation>
<PhysicalAddress>

<cityName>
<FreeFormText xml:lang="EN">City Name</FreeFormText>

</cityName>
<addressLine1>

<FreeFormText xml:lang="EN">3877 Fairfax Ridge Rd,
4th Floor</FreeFormText>

</addressLine1>
<addressLine2>

<FreeFormText xml:lang="EN">Fairfax, VA
22030</FreeFormText>

</addressLine2>
<regionName>

<FreeFormText xml:lang="EN">Eastern
US</FreeFormText>

</regionName>
<postOfficeBoxIdentifier>

<FreeFormText xml:lang="EN">20202</FreeFormText>
</postOfficeBoxIdentifier>

<GlobalLocationIdentifier>9876543210000</GlobalLocation
Identifier>

<GlobalCountryCode>US</GlobalCountryCode>
</PhysicalAddress>
<EmailAddress>contact@rnifexample.com</EmailAddress>
<contactName>

<FreeFormText xml:lang="EN">Mr. Contact
Smith</FreeFormText>

</contactName>
<telephoneNumber>

RosettaNet Implementation Framework: Core Specification Release for Validation 13 July 2001

114 ©2001 by RosettaNet. All rights reserved.

<CommunicationsNumber>555-555-
5555</CommunicationsNumber>

</telephoneNumber>
</ContactInformation>

</PartnerRoleDescription>
</billTo>
<accountName>

<FreeFormText xml:lang="EN">Cash Account</FreeFormText>
</accountName>
<AccountNumber>12341234</AccountNumber>

</AccountDescription>
<generalServicesAdministrationNumber>

<ProprietaryDocumentIdentifier>11111111</ProprietaryDocument
Identifier>

</generalServicesAdministrationNumber>
<GlobalFinanceTermsCode>Net 30</GlobalFinanceTermsCode>
<PartnerDescription>

<PhysicalAddress>
<cityName>

<FreeFormText xml:lang="EN"/>
</cityName>
<addressLine1>

<FreeFormText xml:lang="EN">1234 Address
Drive</FreeFormText>

</addressLine1>
<regionName>

<FreeFormText xml:lang="EN">Eastern US</FreeFormText>
</regionName>
<postOfficeBoxIdentifier>

<FreeFormText xml:lang="EN">20202</FreeFormText>
</postOfficeBoxIdentifier>
<GlobalCountryCode>US</GlobalCountryCode>

</PhysicalAddress>
<GlobalPartnerClassificationCode>End

User</GlobalPartnerClassificationCode>
</PartnerDescription>
<GlobalPurchaseOrderTypeCode>Dropship</GlobalPurchaseOrderTypeCode>

</PurchaseOrder>
<fromRole>

<PartnerRoleDescription>
<GlobalPartnerRoleClassificationCode>Buyer</GlobalPartnerRole

ClassificationCode>
<ContactInformation>

<EmailAddress>xyz@abc.com</EmailAddress>
<contactName>

<FreeFormText xml:lang="EN">Somebody</FreeFormText>
</contactName>
<telephoneNumber>

<CommunicationsNumber>888-888-8888</CommunicationsNumber>
</telephoneNumber>

</ContactInformation>
<PartnerDescription>

<GlobalPartnerClassificationCode>End
User</GlobalPartnerClassificationCode>

<BusinessDescription>

<GlobalBusinessIdentifier>123456789</GlobalBusinessIdentifier>
<GlobalSupplyChainCode>Information

Technology</GlobalSupplyChainCode>
</BusinessDescription>

</PartnerDescription>
</PartnerRoleDescription>

</fromRole>

Validated 13 July 2001 Section 2, Interaction Diagrams

©2001 by RosettaNet. All rights reserved. 115

<toRole>
<PartnerRoleDescription>

<GlobalPartnerRoleClassificationCode>Seller</GlobalPartnerRole
ClassificationCode>

<PartnerDescription>
<GlobalPartnerClassificationCode>End

User</GlobalPartnerClassificationCode>
<BusinessDescription>

<GlobalBusinessIdentifier>987654321</GlobalBusinessIdentifier>
<GlobalSupplyChainCode>Information

Technology</GlobalSupplyChainCode>
</BusinessDescription>

</PartnerDescription>
</PartnerRoleDescription>

</toRole>
<thisDocumentGenerationDateTime>

<DateTimeStamp>20001121T080010.005Z</DateTimeStamp>
</thisDocumentGenerationDateTime>
<thisDocumentIdentifier>

<ProprietaryDocumentIdentifier>1021358129419</ProprietaryDocument
Identifier>
</thisDocumentIdentifier>
<GlobalDocumentFunctionCode>Request</GlobalDocumentFunctionCode>
</Pip3A4PurchaseOrderRequest>

--example-boundary
Content-Type: application/pdf; name="PO.pdf"
Content-Description: PDF version of PO
Content-ID: <Attachment.20001121T123000.000Z@this.example.com>

[PO.pdf attachment goes here]

--example-boundary--

--RN-Signature-Boundary
Content-Type: Application/pkcs7-signature; name="detached.p7s"
Content-Transfer-Encoding: base64
Content-Disposition: attachment; filename=smime.p7s
Content-Description: This is the signature for the Business Message

ghyHhHUujhJhjH77n8HHGTrfvbnj756tbB9HG4VQpfyF467GhIGfHfYT6
4VQpfyF467GhIGfHfYT6jH77n8HHGghyHhHUujhJh756tbB9HGTrfvbnj
n8HHGTrfvhJhjH776tbB9HG4VQbnj7567GhIGfHfYT6ghyHhHUujpfyF4
7GhIGfHfYT64VQbnj756

--RN-Signature-Boundary--

RosettaNet Implementation Framework: Core Specification Release for Validation 13 July 2001

116 ©2001 by RosettaNet. All rights reserved.

APPENDIX G REFERENCES

• Understanding a PIP Blueprint. RosettaNet, 1999, 2000. (Source:
http://www.rosettanet.org)

• RosettaNet Technical Conventions and Style Guide. RosettaNet, 2000. (Source:
http://www.rosettanet.org)

• RosettaNet PIP Specifications (complete collection). RosettaNet, 1998-ongoing.
(Source: http://www.rosettanet.org)

• RosettaNet Dictionaries (business, technical). RosettaNet, 1998-ongoing. (Source:
http://www.rosettanet.org)

• RFC 822: �Standard for the format of ARPA Internet text messages.� David H.
Crocker. 1982. (Source: ftp://ftp.isi.edu/in-notes/rfc822.txt)

• RFC 1891: �1996 SMTP Service Extension for Delivery Status Notifications.� K.
Moore. IETF, Network Working Group, 1996. (Source:
http://www.ietf.org/rfc/rfc1896.txt)

• RFC 2045: �Multipurpose Internet Mail Extensions (MIME) Part One: Format of
Internet Message Bodies.� N. Freed, et al. IETF, Network Working Group, 1996.
(Source: http://www.ietf.org/rfc/rfc2045.txt)

• RFC 2046: �Multipurpose Internet Mail Extensions (MIME) Part Two: Media
Types.� N. Freed, et al. IETF, Network Working Group, 1996. (Source:
http://www.ietf.org/rfc/rfc2046.txt)

• RFC 2047: �Multipurpose Internet Mail Extensions (MIME) Part Three: Message
Header Extensions for Non-ASCII Text.� K. Moore. IETF, Network Working
Group, 1996. (Source: http://www.ietf.org/rfc/rfc2047.txt)

• RFC 2048: �Multipurpose Internet Mail Extensions (MIME) Part Four:
Registration Procedures.� N. Freed, et al. IETF, Network Working Group, 1996.
(Source: http://www.ietf.org/rfc/rfc2048.txt)

• RFC 2049: �Multipurpose Internet Mail Extensions (MIME) Part Five:
Conformance Criteria and Examples.� N. Freed, et al. IETF, Network Working
Group, 1996. (Source: http://www.ietf.org/rfc/rfc2049.txt)

• RFC 2111: �Content-ID and Message-ID Uniform Resource Locators.�
E. Levinson. IETF, Network Working Group, 1997 (Source:
http://www.ietf.org/rfc/rfc2111.txt)

• RFC 2119: �Key Words for Use in RFCs to Indicate Requirement Levels.�
S. Bradner. IETF, Network Working Group, 1997. (Source:
http://www.ietf.org/rfc/rfc2119.txt)

Validated 13 July 2001 Section 2, Interaction Diagrams

©2001 by RosettaNet. All rights reserved. 117

• RFC 2311: �S/MIME Version 2 Message Specification.� S. Dusse, et al. IETF,
Network Working Group, 1998. (Source: http://www.ietf.org/rfc/rfc2311.txt)

• RFC 2312: �S/MIME Version 2 Certificate Handling� S. Dusse, et al. IETF,
Network Working Group, 1998. (Source: http://www.ietf.org/rfc/rfc2312.txt)

• RFC 2376: �XML Media Types� E. Whitehead, et al. IETF, Network Working
Group, 1998. (Source: http://www.ietf.org/rfc/rfc2376.txt)

• RFC 2387: �The MIME Multipart/Related Content-type.� E. Levinson. IETF,
Network Working Group, 1998. (Source: http://www.ietf.org/rfc/rfc2387.txt)

• RFC 2557: �MIME Encapsulation of Aggregate Documents, such as HTML
(MHTML).� J. Palme, et al. IETF, Network Working Group, 1999. (Source:
http://www.ietf.org/rfc/rfc2557.txt)

• RFC 2616: �Hypertext Transfer Protocol -- HTTP/1.1.� R. Fielding, et al. IETF,
Network Working Group, 1999. (Source: http://www.ietf.org/rfc/rfc2616.txt)

• ISO 8601:1988. Data elements and interchange formats -- Information interchange
-- Representation of dates and times. (Available from:
http://www.iso.ch/cate/cat.html)

• PKCS #7: Cryptographic Message Syntax Standard. An RSA Laboratories
Technical Note. Version 1.5. Revised November 1, 1993, and PKCS-7 version 1.6
bulletin: Extensions and Revisions to PKCS #7 (13 May 1997): Source:
http://www.rsa.com/rsalabs/pubs/PKCS/html/pkcs-7.html (January 5, 1999)

• S/MIME Implementation Guide, Version 2. Steve Dusse, RSA Labs, ©1996.
(Source: http://www.rsa.com)

• Recommendation X.208 (11/88) �Specification of Abstract Syntax Notation One
(ASN.1)� (Technically aligned with ISO 8824.) ITU-T (formerly CCITT).
(Available at: http://www.itu.int)

• Recommendation X.209 (11/88) �Specification of basic encoding rules for
Abstract Syntax Notation One (ASN.1)� ITU-T (formerly CCITT). (Available at:
http://www.itu.int)

• Recommendation X.509 (08/97) - Information technology - Open Systems
Interconnection - The Directory: Authentication framework. (Available at:
http://www.itu.int/itudoc/itu-t/rec/obsolete/x/x500up/x509_97.html)

• Extensible Markup Language (XML) 1.0, W3C Recommendation. Tim Bray, Jean
Paoli, C.M. Sperberg-McQueen. Worldwide Web Consortium (W3C), February
1998. (Source: www.w3.org/TR/REC-xml)

RosettaNet Implementation Framework: Core Specification Release for Validation 13 July 2001

118 ©2001 by RosettaNet. All rights reserved.

APPENDIX H GLOSSARY

action message: a properly packaged business action message. See also RosettaNet
Business Message.

asynchronous: Communication among distributed processes is said to be
"asynchronous" when there is no expectation that the reply to a request comes within
the time interval in which the communication session of the request is still "live."
Compare with �synchronous.�

authorization: permission to access a protected resource, a service, or sensitive
information. Sometimes confused with authentication, which is simply verification
that a user is who he claims to be. One can be properly authenticated but not be
authorized to access a protected resource, a service, or sensitive information.

BOV: Business Operational View (concept from ISO 14662 Open-EDI Reference
Model). The first section of every PIP specification, the BOV describes the business-
related aspects of the PIP. This is information captured from business analysts during
development of the PIP. The BOV is the PIP Blueprint as approved by the RosettaNet
members.

business action: a message with content of a business nature such as a Purchase
Order Request or a Request For Quote. The exchange of business actions and
business signals comprise the message choreography necessary to complete a business
activity specified by a given PIP.

business activity: a PIP encapsulates one or more discrete business activities as
specified by the business analysts during development of the PIP blueprint. For
example, PIP 3A4 (Manage Purchase Order) specifies three (3) separate business
activities: Create Purchase Order, Change Purchase Order, and Cancel Purchase
Order. The exchange of business actions and business signals comprise the message
choreography necessary to complete a business activity specified by a given PIP.

business message: see RosettaNet Business Message.

business signal: a message exchanged between two RosettaNet network applications
to communicate certain events within the execution of a PIP instance. Examples of
signals include �receipt and successful validation of a message� (Receipt
Acknowledgment) and �receipt of a message out of sequence� (General Exception).
A signal is used to communicate an exception condition within the normal message
choreography of a PIP. See also Process Control PIP.

compliance: an implementation is compliant if and only if it fully meets each and
every requirement of the RNIF specification. In particular, each and every transaction,
action, or data element emitted by the implementation must be valid as defined in
�Validation� below. Compliance testing is the act of comparing an implementation's
operation against the specified requirements to determine compliance or
noncompliance.

Validated 13 July 2001 Section 2, Interaction Diagrams

©2001 by RosettaNet. All rights reserved. 119

conformance: the ability to demonstrate in an unambiguous way that a given
implementation is correct with respect to the formal model. (from the Foundation for
Intelligent Physical Agents, www.fipa.org/spec/fipa97/fipa97.html)

data element: a basic unit of identifiable and definable data (ISO 10324,1997), a
basic unit of data for the purpose of recording and interchange (ISO 2146,1988).

DTD: a type of schema used to specify the structure and semantics of an XML
document or message.

e-business: an enterprise that conducts many of its business functions through
electronic means. The term also refers to businesses that operate on the Internet and
offer goods, services, and information for sale via the Web. (from Jonar C. Nader,
Prentice Hall�s Illustrated Dictionary of Computing, 3rd edition, 1998)

framework: a set of related architectural components.

FSV: Functional Service View (concept from ISO/IEC 14662 Open-EDI Reference
Model). The second section of every PIP specification, the FSV describes the PIP
exchange protocol sometimes known as the message choreography or dialog between
trading partners during the execution of the PIP. The FSV is systematically derived
from the BOV.

guideline: a set or collection of specifications, sometimes including specific
implementation advice.

header: Control information prepended to content.

IFV: Implementation Framework View. The IFV provides the transfer protocol
specific requirements for any given PIP, based upon the requirements in the BOV and
FSV sections of the PIP, as well as the format of the service content. The mapping of
the transfer protocol specific requirements is provided in an appendix of the RNIF:
Core Specification, while the format of the service content is packaged with the PIP
specification.

implementation framework: guidelines for creating instances of related architectural
components.

Manifest: a component of the Service Header that provides information (in the form
of a structured listing) about the payload. It describes certain characteristics of the
Service Content and also lists the number of attachments included in the payload.

message: a properly packaged business action or business signal. See also business
action, business signal, and RosettaNet Business Message.

message choreography: the exchange of business actions and business signals
required to complete a business activity specified by a given PIP.

message guideline: part of a published RosettaNet specification, a message guideline
provides information that supports, but cannot be specified in, a particular declarative
schema. Both the message guideline and the declarative schema (presently an XML
DTD) are used to validate that a particular message or service content is properly
formatted and uses expected values.

RosettaNet Implementation Framework: Core Specification Release for Validation 13 July 2001

120 ©2001 by RosettaNet. All rights reserved.

non-repudiation: the ability of a message transfer system to provide unforgeable
evidence that a specific action occurred. Three types of the non-repudiation services
are most common: non-repudiation of origin, non-repudiation of submission, and non-
repudiation of delivery. Non-repudiation of origin protects against any attempt by a
message originator to deny sending a message. Non-repudiation of submission
protects against any attempt by a message transfer agent to deny that a message was
submitted for delivery. Non-repudiation of delivery protects against any attempt by a
message recipient to deny receiving a message.

one-action activity: a business activity comprised of the following message
choreography. Partner A sends a business action to Partner B and Partner B sends a
Receipt Acknowledgment signal back to Partner A. When these messages have been
exchanged successfully between these trading partners, the activity is deemed
complete. PIP 2A1 (Distribute New Product Information) is an example of a PIP that
specifies one-action activities.

Partner Interface Process (PIP): A model that depicts the activities, decisions and
partner Role Interactions that fulfill a business transaction between two partners in a
given supply chain. Each partner participating in the partner interface process must
fulfill the obligations specified in a PIP instance. If any one party fails to perform a
service as specified in the PIP implementation guide then the business transaction is
null and void.

Payload: the Service Content plus any file attachments comprises the payload
component of a RosettaNet Business Message. The payload is packaged together with
the headers to form a complete RosettaNet Business Message.

PIP: See Partner Interface Process (PIP).

Preamble Header: an XML document that identifies the name and version of the
standard with which the business message is compliant. It is packaged together with
other headers and the payload to form a complete RosettaNet Business Message.

Process Control PIP: a type of PIP used to communicate process states outside the
context of the process instance with which it is associated. For example, PIP 0A1
(Notification of Failure or NoF) is a process control PIP that is used to communicate
an exception condition that occurs outside the normal message choreography of the
subject PIP. See also business signal.

protocol: a protocol is a formal set of rules and conventions that governs how
computers exchange information over a network medium.

Receipt Acknowledgment: a positive business signal that acknowledges receipt of a
message. The Receipt Acknowledgment is sent from the receiver of a valid business
action message back to the sender. Validity of the message is determined by RNIF
base-level validation or by additional validation requirements negotiated between
trading partners.

RosettaNet Business Message: the logical grouping of the preamble header, delivery
header, service header, and payload (in the case of business action messages).

Validated 13 July 2001 Section 2, Interaction Diagrams

©2001 by RosettaNet. All rights reserved. 121

schema: a specification for the structure and semantics of some related data. One
uses the schema to validate or otherwise understand a group of data. One type of
schema is the XML-DTD.

service: a networked application that is capable of participating in a RosettaNet
conversation.

service message: messages exchanged between services.

Service Content: the primary component of the payload of a RosettaNet Business
Message. It is an XML document that represents the business content specified by a
particular PIP. The Service Content plus any file attachments comprises the payload
component of the RosettaNet Business Message.

Service Header: an XML document that identifies the PIP, the business activity and
action with which the business message is associated, the sending and receiving
services, partners, roles, etc. It is packaged together with other headers and the
payload to form a complete RosettaNet Business Message.

single action activity: see one-action activity.

solution partner: An organization or company that produces an RNIF 2.0-compliant
product(s).

specification: a detailed formulation, in document form, which provides a definitive
description of a system for the purpose of developing or validating the system.
[ISO/IEC 2382, Information technology � Vocabulary, 1997]

standard: a set of clearly defined and agreed-upon conventions for specific
programming interfaces that has been approved by a formally constituted standards-
setting body.

structure: something composed of organized or interrelated elements; the manner in
which the elements of something are organized or interrelated

synchronous: a mode of coordination of communication among distributed processes
that requires request-reply pairs to occur within the bounds of some time interval in
which the communication session is said to be "live." No implication is made about
whether the processes or threads "block" while waiting for a response, though it is
assumed that some mechanism of expecting the response within the time interval
exists. In practice for internet communication protocols, synchronous communication
exists when the reply to a request is conveyed over the same "connection," which for
TCP based communication, means that the bounding time interval is that of the TCP
connection. Though there are RosettaNet timeouts for replies, these intervals do not
involve maintaining a communicative connection throughout and so are not thought of
as synchronous with respect to communication primitives.

syntax: the patterns of formation of sentences and phrases from words and the rules
for the formation of grammatical sentences in a language.

TPA: see Trading Partner Agreement.

RosettaNet Implementation Framework: Core Specification Release for Validation 13 July 2001

122 ©2001 by RosettaNet. All rights reserved.

trading partner: An organization or company that transacts business using
RosettaNet specifications.

Trading Partner Agreement (TPA): information exchanged between trading
partners that describes certain mutually agreed upon execution parameters and service
level expectations that will be used when conducting business between them.

two-action activity: : a business activity comprised of the following message
choreography. Partner A sends a business action to Partner B, Partner B sends a
Receipt Acknowledgment signal back to Partner A, some time later Partner B sends a
response business action to Partner A, and Partner A sends a Receipt
Acknowledgment back to Partner B. When these messages have been exchanged
successfully between these trading partners, the activity is deemed complete. PIP 3A4
(Manage Purchase Order) is an example of a PIP that specifies a two-action activity.

valid XML document: An XML document is valid if it has an associated document
type declaration and if the document complies with the constraints expressed in it.
(From World Wide Web Consortium, Extensible Markup Language (XML) 1.0: W3C
Recommendation 10-February-1998.)

validation: A data element, action, transaction, or process is valid if and only if it
meets each and every requirement of the RNIF specification, as well as the each and
every requirement of the relevant PIP specification. Validation is the act of
comparing such an entity against the specified requirements to determine validity or
invalidity. Note that each action within a transaction must meet the content and
sequence requirements for that transaction. Similarly, each transaction within a
process must meet the content and sequence requirements of that process. Such
validation is an essential part of testing an implementation. It is also anticipated that
the validation team will develop specific requirements for such validation during
production use of an implementation.

vocabulary: the collection of words known to a particular person or group and used
for a particular purpose.

well-formed XML document: An XML document that, taken as a whole, matches
the XML production labeled �document,” meets all the well-formedness constraints
given in the XML specification, and each of the parsed entities which is referenced
directly or indirectly within the document is well-formed. A well-formed document
may also be �valid� if it meets additional criteria. (Adapted from World Wide Web
Consortium, Extensible Markup Language (XML) 1.0: W3C Recommendation 10-
February-1998.) (See also valid XML document.)

XML document: a data object made up of virtual storage units called entities, which
contain either parsed or unparsed data. Parsed data is made up of characters, some of
which form the character data in the document, and some of which form markup.
Markup encodes a description of the document�s storage layout and logical structure.
(From www.w3.org/TR/PR-xml-971208) See also well-formed XML document;
valid XML document.

