
OASIS Registry/Repository
Technical Specification

Working Draft 1.1 December 20, 2000

Copyright © 2000 by OASIS - Organization for the Advancement of Structured Information Systems

Abstract

This specification represents the collective efforts of the Registry and Repository Technical Committee of OASIS, the
Organization for the Advancement of Structured Information Standards. It specifies a registry/repository information
model and a registry services interface to a collection of registered objects, including but not limited to XML
documents and schemas. The information model uses UML diagrams and written semantic rules to specify logical
structures that serve as the basis of definition for an XML-based registry services interface. The information model is
used for definitional purposes only; conformance to this specification depends solely on correct implementation of
some designated subset of the registry services interface.

The registry services interface consists of request services to create new registry information or to modify or
supplement existing registry entries. It also consists of query and retrieval services to search registry content and
retrieve selected registry information, or to retrieve registered objects via object references or locators. The registry
services interface supports browsing by arbitrary electronic agents as well as interoperation among conforming
implementations. This document deals primarily with the registry, although some scenarios and requirements for the
repository are included.

This document is a draft proposal under development by the Oasis Registry/Repository Technical Committee. Its
purpose is to solicit additional input and to convey the current state of the Oasis Registry/Repository Information
Model and Technical Specification.

Status of this Document

This document represents a work in progress upon which no reliance should be made. Its temporary accessibility, until
more permanent accessibility is established at the OASIS web site, is via the following URL:

ftp://xsun.sdct.itl.nist.gov/regrep/OasisRegrepSpec.pdf

Comments are welcome and should be submitted to:

Lisa Carnahan
Chair, Oasis Registry and Repository

 lisa.carnahan@nist.gov

Information on joining the OASIS Registry and Repository Technical Committee
can be found at URL http://www.oasis-open.org

ii

Document Version History

! Version 0.1, June 1999. Initial version, Terry Allen, Editor.

! Version 0.1.5, July 1999. Editor added material on RFC 2169 and RFC 2483, with a suggestion that we use RDF.
Added reference to Editor's essay in taxonomy. Added "User Preferences Among Registries and Repositories"
section. Added section on typology s.v. "Interface", warning not to link to interface. Added section on usage of
registry documents.

! Version 0.2, August 1999. Editor added references to IETF WEBDAV and DASL I-D and much content from
face-to-face meeting. Later added remark about XML Schema in a repository.

! Version 0.3, October 1999. Editor updated, reduced scope, included references to DTDs and sample documents.

! Version 0.4, November 1999. Editor clarified what is normative and nonnormative in submission section.

! Version 0.9, April 2000. Based on member comments, Editor revised sections, moved some functional
requirements into this document, folded in request by identifier, and added design principles.

! Version 0.95, July 2000. NIST assumes temporary editorship of document. Many changes resulted from
contributions and discussions at the June 15-16, 2000 Oasis Reg/Rep meeting in Paris, France. The objective and
principles were changed, the design principles and scenarios were revised, the Registry section was replaced by an
Information Model, and the Submission Semantics section was replaced by XML definitions and protocols based
on the Information Model.

! Version 1.0, November 2000. Changes based on discussions at Oasis Reg/Rep face-to-face meeting held October
18-19, 2000 at Sun Microsystems, Inc. offices in Menlo Park, CA, USA. Decision to base the Information Model
on UML notation rather than Entity-Attribute-Relationship notation.

! Version 1.1, December 2000. Modifications based on discussions at the Oasis Reg/Rep face-to-face meeting held
December 5, 2000, in association with the XML 2000 conference in Washington, DC, and a follow-on
teleconference held December 15, 2000. New Sections "Registry Query" and "Registry Filters"added to the
document as result of discussions, but without a formal vote. Recursive enhancements to "GetRegisteredObject"
added to document as result of discussions, but without a formal vote.

iii

Contributors

The chairman of the OASIS Registry and Repository Technical Committee is Lisa Carnahan of the U.S. National
Institute of Standards and Technology (NIST). Norbert Mikula of DataChannel is the OASIS Chief Technical Officer.

Voting members of the Technical Committee, at the time of this version, are:

Nagwa Abdelghfour (Sun Microsystems),
Lisa Carnahan (U.S. NIST),
Dan Chang (IBM),
Robin Cover (ISOGEN),
Úna Kearns (Documentum),
Megan MacMillan (Gartner Solista),
Norbert Mikula (DataChannel),
Yutaka Yoshida (Sun Microsystems), and
Jaime Walker (Boeing).

Other individuals who have contributed to the development of the specification include:

Terry Allen (Commerce One),
Murray Altheim (Sun Microsystems),
Bryan Caporlette (Sequoia Software),
Ron Daniel (Metacode),
Len Gallagher, (U.S. NIST),
Eduardo Gutentag (Sun Microsystems),
Michael Mealling (Network Solutions),
Ron Schuldt (UDEF),
Priscilla Walmsley (XMLSolutions). and
Norm Walsh (Arbortext)

Notational Conventions

This specification uses Unified Modeling Language (UML) and written semantic rules to specify the OASIS
Registry/Repository Information model. It uses XML 1.0 and additional written semantic rules to specify the effect of
SubmitRequest DTD's on registry content and to define the syntax and results of GetRegisterdObject,
GetRegistryEntry, and RegistryQuery DTD's.

Some options for RegistryQuery are specified using syntax and semantics from ISO/IEC 9075 - Database Language
SQL, W3C XML Query, or ODMG Object Query Language (OQL).

iv

Editor's Notes

1. The Introduction sections were copied directly from Introduction sections of earlier versions of the OASIS
specification. These sections were written months ago, and no attempt was made to update the wording for this
version. Some wording in these paragraphs is inconsistent with decisions made at subsequent meetings, especially
regarding Subsection 1.5, entitled "In Scope But Not Specified". It was copied directly from Section 5 of version
0.9.

2. Section 2 originated at the Oasis Reg/Rep face-to-face meeting held October 18-19, 2000 at Sun Microsystems,
Inc. offices in Menlo Park, CA, USA. Slight modifications were made at the December 5, 2000 face-to-face
meeting in Washington, DC.

3. Sections 3 and 4 have changed only minimally from version 1.0 to 1.1, based on the December 5, 2000, face-to-
face in Washington, DC.

4. Section 5.1 "ObjectType" and Section 5.2 "FileType" were modified based on discussions at the December 5 face-
to-face. Some Enumeration Domains in Section 5 are still very unstable, especially 5.2 "FileType", 5.6
"PropertyRights", 5.8 "NameContext", 5.11 "RelatedRole", and 5.12 "RoleCategory".

5. Section 6 changed only minimally from version 1.0- to 1.1, but there were some typo corrections that impact the
previously distributed XML ELEMENT and ENTITY definitions.

6. Sections 7.1 and 7.2 have changed considerably from version 1.0 to version 1.1. GetRegisteredObject and
GetRegistryEntry now take a RegistryEntryQuery as input rather than the previous single AssignedURN. The
recursion rules for GetRegisteredObject, previously unfinished, have been filled in. Filtering options have been
added to GeetRegistryEntry.

7. Section 7.4 is completely new in version 1.1 as the result of discussions during the December 15 teleconference. It
also spawned a completely new Section of the document, "Register Filters", now labeled as Section 9. The
previous Section 9, "Conformance" is now Section 10. No vote was taken to formally approve the content of
Section 7.4 or Section 9. The chair will conduct an email ballot over the next few weeks.

8. The remainder of Section 7, including the DTD's for "SubmitRequest", "ClassificationScheme", and
"RegistryPackage", have not changed from version 1.0 to version 1.1.

9. Section 8, "Request Elements", has not changed from version 1.0 to version 1.1, but it still has not been explicitly
voted upon. It will also be the subject of follow-on email balloting.

10. Subsection 8.24, "Request by unique identifier", was copied directly from version 0.9 with no attempt to update
any of the wording. There is a very close relationship between these requests and the GetRegisteredObject and
GetRegistryEntry services presented in Sections 7.1 and 7.2. The syntax of Section 8.24, if desirable, could be
mapped to the semantics of those two services.

11. Section 9, "Registry Filters", is completely new, based on preliminary discussions during the December 15
teleconference. It is VERY TENTATIVE and should only be considered as a placeholder for XML syntax for
logical predicates over each of the classes in the Registry/Repository Information Model. It has not been acted
upon yet by Oasis TC membership.

12. Section 10, "Conformance", is the former Section 9, renumbered because of the addition of "Registry Filters". It
has been in the document through two versions, but has not yet been formally voted upon by the TC membership.
It will be evaluated along with the other new sections in an upcoming TC email ballot. The Conformance options
could be refined based on the new facilties added in Sections 7.1, 7.2, and 7.4. The subsection on "Normative
Policy Requirements" at the end of the Conformance section was copied directly from Section 9 of version 0.9
from Summer 2000, with no attempt to update the wording to reflect recent decisions.

13. Section 11, Terminology and Relevant Specs, was copied directly from an earlier version of the specification with
no attempt to do any updates of the wording. It should be re-written to properly reference other specifications and
point to external definitions.

v

14. Annex 1, "SQL Representations" is completely new. It was added as support for the RegistryEntrySQL query
added as an option for RegistryEntryQuery in Section 7.4.1. The intent is that SQL, OQL, and XML Query
support "always" be optional as for as this specification is concerned. However, the definitions are added in an
Annex so that implementations wishing to support such queries will do so using the same syntax.

15. There was agreement at the October face-to-face meeting to add wording to the document in a couple of other
areas, but precise text has not yet been proposed. Topics include consideration of privileges, roles, authentication,
distinctions between searching and browsing, and authentication tokens ala UDDI.

vi

Table of Contents

1. Introduction .. 1
1.1 Objectives and Deliverables .. 1
1.2 Design Principles ... 1
1.3 Expected Scenarios.. 1
1.4 Basic functional requirements ... 3
1.5 In scope but not specified .. 3

2. Information Model Overview ... 5
2.1 Registry/Repository objects... 5
2.2 RegisteredObject and RegistryEntry... 6
2.3 Associations ... 8
2.4 Classification schemes and classifications.. 8
2.5 Registry packages .. 10
2.6 Other metadata ... 10
2.7 Registry administration.. 12

3. Registry Classes .. 15
3.1 RegistryEntry ... 15
3.2 Association... 17
3.3 Classification and LevelValuePair .. 18
3.4 Organization... 19
3.5 Contact ... 21
3.6 Submission... 23
3.7 Request... 24
3.8 AlternateName ... 25
3.9 ExternalData .. 26
3.10 Description ... 27
3.11 Contribution.. 28
3.12 Impact ... 29
3.13 ClassificationScheme ... 30
3.14 Attribute type definitions ... 32

4. General Enumeration Domains.. 34
4.1 DefinitionSource.. 34
4.2 OrganizationRole ... 35
4.3 RequestCode .. 36
4.4 ImpactCode .. 37

5. OASIS Enumeration Domains.. 38
5.1 ObjectType... 38
5.2 FileType ... 39
5.3 RegistrationStatus .. 41
5.4 Stability .. 43
5.5 FeeStatus .. 44
5.6 PropertyRights ... 45
5.7 AssociationRole ... 46
5.8 NameContext ... 47
5.9 ContactAvailability.. 48
5.10 ContactRole .. 49
5.11 RelatedRole .. 50
5.12 RoleCategory.. 51

6. XML Representations.. 52
6.1 RegistryEntry Elements... 53
6.2 Association Elements... 55
6.3 Classification Elements ... 56
6.4 ExternalData Elements .. 57
6.5 Organization Elements... 58
6.6 Contact Elements ... 60
6.7 AlternateName Elements... 62

vii

6.8 Description Elements... 63
6.9 Contribution Elements ... 64
6.10 SubmissionInstance Element ... 65
6.11 Request Elements ... 66
6.12 Impact Element... 67
6.13 ClassifSchemeInstance Element .. 68
6.14 ClassificationLevel Elements... 69
6.15 ClassificationNode Elements ... 70
6.16 RegistryMetadata Elements ... 71
6.17 Repository Element .. 72
6.18 XML Entity Definitions ... 73

7. Registry Services... 75
7.1 GetRegisteredObject DTD's .. 75
7.2 GetRegistryEntry DTD's.. 78
7.3 SubmitRequest DTD.. 80
7.4 RegistryQuery DTD's .. 82
7.5 ClassificationScheme DTD ... 91
7.6 RegistryPackage DTD ... 92
7.7 RegistryContentFlat DTD.. 93
7.8 RegistryContentNested DTD .. 94

8. Request Elements ... 95
8.1 AddAssociation.. 95
8.2 AddClassification... 96
8.3 AddAlternateName.. 97
8.4 AddContribution .. 98
8.5 AddDescription.. 99
8.6 AddExternalData ... 100
8.7 DefineClassificationScheme.. 101
8.8 DefineRegistryPackage.. 102
8.9 DeleteAssociation .. 104
8.10 DeleteClassification.. 105
8.11 DeleteAlternateName... 106
8.12 DeleteContribution ... 107
8.13 DeleteDescription... 108
8.14 DeleteExternalData .. 109
8.15 ModifyClassificationScheme... 110
8.16 ModifyRegistryPackage... 111
8.17 ModifyRegistryEntry ... 112
8.18 RegisterObject .. 113
8.19 RegisterSubmittingOrg .. 114
8.20 ReaffirmRegisteredObject ... 115
8.21 ReplaceRegisteredObject ... 116
8.22 SupercedeRegisteredObject ... 117
8.23 WithdrawRegisteredObject.. 118
8.24 Request by unique identifier .. 119

9. Registry Filters.. 120
9.1 RegistryEntryFilter .. 120
9.2 AssociationFilter .. 121
9.3 ClassificationFilter... 122
9.4 ExternalDataFilter.. 123
9.5 AlternateNameFilter .. 124
9.6 DescriptionFilter .. 125
9.7 ContributionFilter .. 126
9.8 OrganizationFilter.. 127
9.9 ImpactFilter.. 128
9.10 RequestFilter... 129
9.11 ContactFilter ... 130
9.12 SubmissionFilter... 131

viii

9.13 RegistryPredicate.. 132
10. Conformance .. 133

10.1 RegistryOnly... 133
10.2 RegistryRepositoryBasic.. 133
10.3 RegistryRepositoryQuery... 133
10.4 with Validation option.. 133
10.5 with Query options ... 134
10.6 Normative policy requirements.. 134

11. Terminology and Relevant Specs... 135
Annex 1 - Database Language SQL Representations .. 137

A1.1 - Information Model via SQL Views... 137
A1.2 - Additional Registry Views .. 139
A1.3 - Minimal SQL ... 141

Index... 143

1

1. Introduction
As XML comes into use on the Web, DTDs, schemas, style sheets, and reuseable public text will be referred to by
identifier, rather than being packaged with actual documents. It is critically necessary to be able to retrieve the referred-
to entities, and in the Web context, it is preferrable to be able to do this automatically. And it is vital for users to be able
to locate DTDs and schemas for the document types they want to create by consulting an interface to metadata about
those DTDs and schemas.

1.1 Objectives and Deliverables
The objective of the OASIS Registry and Repository Technical Committee is to develop a specification for
interoperable registries and repositories for SGML- and XML-related entities, including but not limited to DTDs and
schemas, with an interface that enables searching on the contents of a repository of those entities, and to construct a
prototype registry and repository. The registry and repository are to be designed to interoperate and cooperate with
other registries and repositories compliant with this specification. The prototype is intended to serve as a model for an
extensible and distributed network of registries and repositories; the specification is viewed as the primary deliverable.

1.2 Design Principles
The following design principles have been agreed to:

! The Registry Technical Specification shall employ existing standards and specifications where possible,
avoiding specifications that are not stable.

! The normative part of the Registry Technical Specification shall be as small as reasonable.

! The normative part of the Registry Technical Specification shall be complete enough that registries and
repositories conformant to it can interoperate in an extensible and distributed network.

! The normative part of the Registry Technical Specification shall be extensible; in particular, it shall be
possible to extend the registration information schema or DTD without inhibiting interoperability among
registries. (This point is called out because the registration information schema or DTD is likely to be a
normative part of this specification).

! The Registry Technical Specification shall be vendor-neutral.

! The Registry Technical Specification shall use XML by preference for encoding of information and
documents.

! The Registry Technical Specification shall assume the use of HTTP.

! The registry and repository shall be scaleable.

1.3 Expected Scenarios
These scenarios (or use cases, if you believe that use cases aren't scenarios) involve both users retrieving something
from the repository and contributors registering something in the registry, which may involve depositing something in
the repository. The OASIS Registry and Repository Technical Committee does not intend to specify solutions to all of
thees scenarios, especially those that involve services built on top of registries. The OASIS Registry and Repository
Technical Committee intends to add scenarios to this list only when they affect the data model proposed for the registry
and repository.

1.3.1 Obtaining a DTD automatically

A user or user agent retrieves an XML-related entity such as a DTD automatically over the Web, as a result of some
use of it in an XML context.

2

Motivation. Unless everything needed for parsing and displaying a document under all circumstances is packaged with
the document itself, the document must refer to something (DTD, style sheet, public text) by identifier. It is necessary
to be able to retrieve the referred-to entity, and in the Web context, it is preferrable to be able to do this automatically.

Example A. A user is sent a document the DOCTYPE declaration of which refers to a DTD by unique identifier
(URN, PI, or FPI). His parser tells him it can't find the DTD, so he goes out and retrieves it manually from a repository
(he doesn't need the registry interface because he has a unique ID but he does need to know where to find the
repository).

Example B. A user clicks on a link to the stockmarket news and his browser receives an XML document the
DOCTYPE declaration of which refers to a DTD by unique identifier; his browser, which has no copy locally, retrieves
it automatically from the repository.

1.3.2 Depositing an XML-related entity

A creator of a resource deposits it, possibly along with related data, for service to the public, at some range of
accessibility from archival (retrieval rate could be slow) to utility (retrieval rate must be fast, large number of
connections must be supported, round-the-clock uptime with failover, etc.).

Motivation. Many creators of resources lack the facilities to serve them reliably; even those that can do so may not
wish to deal with the burden.

Example A. An IETF working group decides that a DTD that is part of their specification, but which the IETF has no
facilities to serve, must be available from a public Web server with high bandwidth, and doesn't want to have to
maintain the server. It sends the DTD to a registry and repository services, which serves it, as in the first scenario.

Example B. A nonprofit publisher wishes its resources to be available for inspection and display. It deposits the
resources in a repository and provides appropriate metadata for the repository's registry. The owner of the repository
undertakes to make them available (but not with a high guaranteed quality of service).

Example C. Rosetta Net, a (real life) consortium of hardware vendors and suppliers, develops UML models, DTDs,
and sets of text values used in their content, all expected to be in heavy demand, the text values to change frequently. It
deposits the UML models, DTDs, and the initial set of text values in a repository, contracts for a regular update
schedule and the highest available quality of service, and the repository undertakes to serve them, update them as
agreed, push updates to subscribers, and maintain high quality of service for retrieval requests. Rosetta Net doesn't need
a registry interface for this purpose because everything is to happen automatically, but it provides appropriate
registry metadata so that the DTDs can be browsed and searched.

Example D. The Air Transport Association, which maintains important DTDs but make them available only to its
members, wishes to offload the work of supplying those DTDs. It deposits the DTDs in a repository, contracts for
service as in Example C, and in addition arranges that the DTDs are listed in the registry interface but are available
only when an appropriate credential is presented in connection with a request for them. (This is an application of access
control.)

1.3.3 Registering a resource without deposit

The owner of a resource, or another repository, registers the resource in the registry, but does not deposit the resource
itself.

Motivation. Registries can interoperate to increase useability, but the actual storage location of a resource alone must
not restrict the content of a registry.

Example A. A special-purpose registry wishes to makes its content visible in another registry, while maintaining that
content in its own repository. It submits appropriate registry documents to the registry, including a pointer to its
repository, and agrees with the registry that it will supply timely update information and that the registry will update its
records and interface in a timely manner.

3

1.3.4 Browsing or searching for a DTD

A user ready to compose an XML document searches for a DTD that covers the subject of the document.

Motivation. Every day in newsgroups and e-mail discussion lists such as comp.text.sgml, comp.text.xml, and xml-dev
people ask whether there is a DTD for some subject area or functional purpose. The number of such queries will grow
if XML is widely adopted. Somehow they have to be answered if wheel reinvention is to be minimized.

Example A. A user is about to write his resume, and wants to use XML. He goes to a registry and looks in a subject
hierarchy (or taxonomy) to find a resume DTD (this is browsing, not searching). The subject hierarchy interface
displays three appropriate listings, he chooses among them on the basis of their descriptions, downloads the DTD he
chose from the repository, manually adds it to his SO catalog, and sets to work with vi and SP.

Example B. A user is about to write his resume, and wants to use XML. He goes to a registry and uses its search
engine to find a resume DTD (this is searching, not browsing). The search interface returns three hits, he chooses
among them on the basis of their descriptions, downloads from the repository the DTD he chose, and loads it into his
XML writing tool. The interface also provides a time-to-live value, showing him how long he can expect his resume
DTD to be served by the repository.

Example C. A homeowner is about to advertise his house for sale, and opens his verboprocessor. He says "take a
memo: real estate for sale" and the verboprocessor automatically contacts a registry to find an appropriate XML DTD
for the homeowner's jurisdiction. He dictates the text of his ad, and the verboprocessor sends it to all real estate listing
services it can locate. (In this scenario the verboprocessor uses a registry to find something in a repository and queries
the repository with more than one query parameter.)

Example D. An XML application designer needs a component to represent the list of names of French provinces, so he
consults a registry. The registry interface indicates that the list is available as a tab-delimited list in ASCII, as an XML
schema datatype declaration, and as a parameter entity declaration in DTD syntax. He chooses the parameter entity
declaration format by clicking something in the interface, and the repository returns it.

1.4 Basic functional requirements
On the basis of the registry and repository scenarios, the following functional requirements have been identified:

! Registration. A registry must support registration of the contents of the repository (and potentially other
repositories) using standardized administrative metadata.

! Classification. Metadata must support application of both controlled vocabulary (for taxonomic view) and
uncontrolled vocabulary (for searching) for subject matter of registered entities.

! Service. The registry must return a registered entity in response to a request by URN, URL, PI, and, or, FPI.
That is, a user shall be able to request an XML-related entity by PI, FPI, URL, or URN (note that some entities
may have multiple unique identifiers) and get the entity as the response. (This requirement can be thought of as
applying to the repository, but it is convenient to imagine all requests being channelled through the registry.)

! Metadata. The registry must return metadata about registered entity in response to a request in a specified
format that uses a unique identifier.

! Revision. It must be possible for the SO to request (and obtain) revision of information it provided, or that the
RA assigned (or that is provided as added value) while not changing the registered entity.

1.5 In scope but not specified
The OASIS Registry and Repository Technical Committee has omitted to specify how to provide certain functionality
that it is agreed is needed:

! Submission. Submissions to a registry may be made by an application-to- application process or through a
human-manipulable interface. Certain semantics related to the purpose of the submission should be specified,

4

but it is not useful to specify the design of a human-manipulable interface. Further, while it may prove to be
useful to specify a common method of application-to-application submission, the method of packaging a
submission package should not be specified until current work in the IETF on XML packaging has borne fruit.
Consequently, this specification does not prescribe any method for submitting items to a registry. Certain
semantics related to submission are specified (below). This area will require further work in the future.

! Service Description. While it is considered desireable that any registry provide a way to obtain information
about the registration authorities it supports, and other services, the OASIS Registry and Repository Technical
Committee has not specified a method of doing so.

! Interoperability. Work on interoperability has been postponed to projected second phase of work in order to
concentrate on the specification of the registry itself.

! PIs and FPIs. Support of the requirement to return registered entities in response to a request by PI or FPI has
not been provided. It is envisioned that these unique identifiers should be conveyed as URNs, but construction
of a URN name space for this purpose has not been essayed.

5

2. Information Model Overview
An OASIS registry/repository is a software system that consists of two components, a registry and a repository. A
registry/repository is concerned with registered objects and registry entries. A registered object is something important
that an author or producer wants to have visible to the world so that it can be discovered and used by a client or
customer. A registry entry is relevant descriptive information about a registered object. Such information is called
metadata. Registry entries are stored in a registry and registered objects are stored in a repository. A repository has only
an elementary access method that allows retrieval of registered objects by object reference. In general, a registry entry
will provide that object reference for some registered object.

A registry can operate independently, or it can be paired with a repository. In either case, the implementation must
support a registry services interface. This interface can be used by abstract agents to assist a human or some other
software process to register new objects, provide appropriate metadata for those objects, browse or query registry
content, filter out irrelevant references, and retrieve selected registry entries or registered objects.

A registry/repository has administrative obligations, so it must be concerned with more than just the metadata for a
specific registered item. It is also concerned with organizations and contacts within those organizations that submit or
maintain submissions made to a registry. It is important that a registry be able to identify who has the privileges
necessary to add or modify registry content and to maintain a log of all changes made.

2.1 Registry/Repository objects
Using UML notation, a registry/repository can be visualized as in Figure 1. The RegRepObject class represents the
persistent objects of a registry/repository implementation. Each instance of this class has a unique identifier locally
assigned by that implementation. Initially, this identifier is not visible to the public or as part of the registry services
interface. It may be used locally to support associations among classes. Later, it may become the basis of a globally
unique identifier that can be used for distributed processing among cooperating implementations. The five classes
identified as subtypes of the RegRepObject class are the only classes that require independent object identifiers. All
other classes presented in this specification are dependent on one of these five; whether or not these other classes have
independent object identifiers is an implementation decision that has no effect on the semantics of the registry services
interface.

The RegisteredObject class identifies all registered objects that are managed by the local registry/repository
implementation. Some requests to register an object will be accompanied by the object itself and some will not. If the
object to be registered is submitted to the registry/repository for storage and safe-keeping, then it will become a
persistent instance of this class.

The RegistryEntry class identifies the metadata for a registered object. Each instance includes an object URL that can
be used to locate the corresponding registered object. It also includes both a common name and a global name. The
common name is intended for use by humans and is not necessarily unique except in some local human context. The
global name, called the assignedURN, is used as an alias for the local object identifier since that identifier may not be
visible to users. It is intended for use both by humans and by software systems and is unique within all registries that
claim conformance to the registry/repository specification. The assignedURN can be used by registry services to Get
the metadata for a registered object (see Section 7.2), or to Get the object itself (see Section 7.1). Each RegistryEntry
instance also includes additional attributes to define the registered object's persistence and mutability, its administrative
and payment status, and its submitting and responsible organizations. The RegistryEntry class will be linked to a
number of other dependent classes. These dependent classes will maintain the classifications, associations, and other
metadata associated with the registered object identified by a registry entry (see Figures 2 and 3).

The Organization class identifies all organizations that have some relationship to a registered object. This includes a
submitting organization (SO), a responsible organization (RO), and a registration authority (RA). An organization
wishing to become a submitting organization must first make an application to a recognized registration authority via a
registry services request for that purpose. The end result is that a submitting organization and responsible contacts
within that organization will be known to the registration authority before follow-on submissions from that
organization will be accepted. Each organization will be assigned a globally unique orgURN that can be used as an
alias for its local object identifier. An organization will be the basic authentication unit for accepting registry requests
that modify the content of a registry or repository. Organizations can be subdivided as appropriate by parent/child
relationships to achieve an appropriate granularity for authentication.

6

Figure 1 - Registry and Repository Objects

The Contact class identifies each person, role, or other entity within an organization that has some relationship to a
registered object. A contact will consist of a contact name, i.e. an arbitrary string, used to identify the contact within an
organization, and some specific contact information such as telephone number and email. Each contact instance has a
non-public, local identifier created by the registration authority that is used to maintain required relationships among
organizations, contacts, and registry entries. Each contact includes a mandatory reference to some organization and
each organization must identify at least one contact for that organization. In addition, each submission must provide at
least one contact. It is not necessary to maintain a global, unique name for contacts because the global name for the
organization together with the common name and email address for the contact will be sufficient to identify the contact
in any human context.

The Submission class identifies each submission made to a registry/repository implementation. A submission is a
collection of requests, in the form of a message, sent from a submitting organization to a registry. For administrative
accountability the registry logs each submission, timestamps it with the date and time received, and stores this
information as a persistent instance of the Submission class. The required contact that accompanies a submission is
stored as a Contact instance. Each request received as part of a submission is logged as an instance of the Request class
for potential subsequent scrutiny. Any registry entities that are created, deleted, or modified by a request are traceable
back to the submission instance and to its submitting organization. For accountability purposes, a registry will track all
modifications to the metadata for any registered object. Thus there will be a many-to-many relationship among requests
and registry entries to identify the type of impact each request has on one or more entries. The specific associations that
must be maintained by a registry implementation are visible in Figure 4.

2.2 RegisteredObject and RegistryEntry
Details of the RegisteredObject and RegistryEntry classes are given in Figure 2. Registered objects are characterized by
whether they are known or unknown objects. A known object is one whose data type and structure are known to the
registry implementation. The registry will be able to open these objects and take appropriate actions based on their
content. An unknown object is just a binary large object, i.e. BLOB, as far as the registry is concerned. For an unknown
object, it will be up to the submitting organization to use the registry services interface to create all appropriate

RegRepObject

RegistryEntry

assignedURN
commonName
objectURL

RegisteredObject

Describes Object

Has Metadata
Request

requestNbr

Submission

timestamp

Has

Contact

contactName
emailAddress

Has

Has

Organization

orgURN

SubmittingOrg

From
Has

7

metadata. The Known and Unknown classes in the figure represent this distinction, but they are essentially superfluous
and have no attributes.

If a registered object's type is known to the registry, then the registry services interface will provide the ability to create
and modify those objects. Initially, classification schemes and registry packages are the only registered objects whose
content is managed by registry services. To create a new classification scheme, a submitting organization need only
submit an XML document (see Section 8.7) that validates to the ClassificationScheme DTD described in Section 7.5.
To create a new registry package, a submitting organization need only create and describe an empty registry package.
Registry services can then be used to add and remove package elements. A DefineRegistryPackage service (see Section
8.8) provides other options for package creation.

Figure 2 - Registry/Repository Class Diagram

The Association class records in the registry any real-world associations that may exist among the unknown registered
objects. This allows new associations to be entered and retrieved through a standard interface without the need for
accessing the internals of each such object. The Classification class allows the submitting organization to classify its
registered objects according to any previously registered classification scheme. It also allows third parties to classify
registered objects according to classification schemes they are more comfortable with. The Classification class includes
a submittingOrg attribute to identify classifications submitted and owned by a third party. The RegistryEntry,
Association, and Classification classes are the most important in this model. The OtherMetadata class is an abstract
placeholder for simple convenient metadata features of the model whose details are presented in Figure 3.

UnknownType

x : BLOB

RegisteredObject

OtherMetadata

RegistryPackage

Association

givenItem
assocItem
assocRole

KnownType

RegistryEntry

assignedURN
commonName
version
objectURL
defnSource
objectType
fileType
registrationStatus
statusChgDate
stability
feeStatus
propertyRights
shortDescription
expirationDate
submittingOrg
responsibleOrg

1..*1..*
Has Metadata

0..10..1
Describes Object 0..*0..*

0..*0..*

HasMembers

0..*0..*

GivenItem

0..*0..*

AssocItem

HasDTD

LevelValuePair

levelCode
itemValue

Classification

schemeURN
submittingOrg

0..*0..*

11

schemeURN=assignedURN

1..*1..*

ClassificationLevel

levelCode
levelName

ClassificationScheme

schemeName

0..*0..*

ClassificationNode

itemValue
itemName

1..*1..*

0..10..1
Parent

0..*0..*

Children

8

2.3 Associations
The Association class represents binary associations between registered objects. If a registered object X has a specific
association with a registered object Y, then that association is represented implicitly by a pairwise association between
a registry entry for X with a registry entry for Y. One item in the pair is called the given item and the other item is
called the associated item. Both the given item and the associated item are registry entries in the same registry as the
association instance. The name of the original association between X and Y is represented by the assocRole attribute of
the association instance.

For Oasis, the following are supported association roles:

Role Name Meaning

Validates To
The given item validates to the specification provided by the associated item. If the
objectType of a given item is instance, then a validatesTo association must exist and
the associated item must be of type definition. Examples: an XML document validates
to an XML schema; a classification scheme validates to the Classification Scheme
DTD defined herein; a program validates to its UML class specification.

Requires
The given item requires the presence of the associated item. The expectation is that the
associated item must be retrieved before the given item can be processed or used. If
the given item is retrieved, the default action is that the required items are NOT
retrieved along with it. However, a retrieve request may have variants that allow
recursive retrievals. .Examples: an XML element requires the presence of some other
XML element or entity that it references; a software program requires the installation
of some other program before it will execute properly.

Contains
The given item is a registry entry for a registry package that has a reference to the
associated item as one of its package members. This role is used exclusively to
support the RegistryPackage class.

Is Superceded By
The given item is superceded by the associated item. Only the SO of a given item can
say that it is superceded by some other registered object. The registered object of the
given item is still registered, its registry entry still points to it, and its registrationStatus
becomes superceded. Example: one version of a registered object is superceded by a
newer version, but the old version remains available.

Is Replaced By
The given item is replaced by the associated item. Only the SO of the given item can
say that it is replaced by another registered object. The given registered object is no
longer registered, but its registry entry remains in the registry, its registrationStatus
becomes replaced, and the objectURL of that registry entry now points to the other
registered object. Example: a new, upward compatible version of a registered object
replaces the existing version. All pointers to the old version, via the old registry entry,
now point to the new version via the new objectURL.

Is Related To
The given item is related to the associated item. This is a very loose association that
has no dependency implications. Example: a GIF graphic is related to the
classification scheme that it visualizes, and vice versa; a company catalog is related to
a company purchase order DTD, and vice versa. But each one-way relationship is
created and maintained by the SO of the given item.

2.4 Classification schemes and classifications
A classification scheme is a fixed hierarchy of nodes, where each node has a name. The node names may not be unique
so it is sometimes necessary to know a complete path of node names from the root of a hierarchy to a given node before
that node can be uniquely determined. Classification schemes are useful tools to categorize and describe the various
properties of a population. A well-known classification scheme is the 5-level hierarchy, NAICS, used to classify
segments of North American industry (cf. http://www.census.gov/epcd/naics/naicscod.txt).

A classification is a reference to a single node of a classification scheme. For example, the NAICS code 11114
represents a node at the 4-th level of the NAICS classification tree. The value is really a sequence of 4 values 11, 1, 1,
4, where 11 represents "Agriculture, Forestry, Fishing and Hunting", the next digit 1 represents "Crop Production", the
next digit 1 represents "Oilseed and Grain Farming", and the final digit 4 represents "Wheat Farming".

9

The most common uses of classification schemes are to identify enumeration domains. If an enumeration domain
consists of N distinct values, then it can be specified as a 1-level classification scheme of N nodes, all at Level 1. More
sophisticated examples of multi-layer classification schemes are the NAICS scheme described above, the 3-level IPTC
scheme for classifying news articles (cf. http://www.iptc.org/SubjectView.zip)), and the 7-layer scheme used by
biologists to classify all living things by Kingdom, Phylum, Class, Order, Family, Genus, and Species.

2.4.1 Classification scheme definition

A classification scheme S is a pair (N, !) where N is a set of nodes and ! is a partial ordering over N, with the
additional requirement that the set of predecessors of every node is linearly ordered by the partial ordering and has a
unique first element. Every node, x, is assigned a level number by the expression Level(x) = Card(Pred(x))+1, where
Pred(x) is the set of predecessors of the node x under the partial ordering and Card(Pred(x)) is the cardinality of that set.
All nodes that have no predecessors are at level 1. The number of levels in the classification scheme is defined to be the
maximum of {Level(x) | x ∈ N}.

If N is a finite set with cardinality n, then every classification scheme S with N as its set of nodes has exactly k levels,
for some integer k between 1 and n inclusive. The ClassificationScheme DTD specified in Section 7.5 allows a
scheme-definer to declare an itemValue and an itemName for each node, an optional levelCode and levelName for
each level, and a schemeName for each classification scheme S. A unique identifier for each node is assumed in order
to represent the node hierarchy, but that identifier may not be visible to the user and plays no role in the registry
services interface.

2.4.2 Representation

A classification scheme may be defined and represented by the ClassificationScheme DTD defined in Section 7.5. This
DTD will have a registry entry, i.e. to declare its URN and to describe its registration status and other metadata, in
every Oasis conformant registry/repository. This Oasis standard DTD, or some later upward compatible version of it,
can then be used to register and exchange many different classification scheme instances.

Every registered object that is classified according to a given registered classification scheme will have a registry entry
linked to a Classification instance that references a single node of that classification scheme. An XML Element to
represent a classification instance is defined in Section 6.3. A registered object may be classified according to any
number of different classification schemes.

2.4.3 Example

The following XML instance uses the ClassificationScheme DTD (Section 7.5) to define a 2-level named and coded
classification scheme for StudentStatus in a university. As an option, it names the two levels as Primary Classification
and Secondary Classification.

<ClassificationScheme schemeName="StudentStatus">
<ClassificationLevel levelCode="primary" levelName="Primary Classification" />
<ClassificationLevel levelCode="secondary" levelName="Secondary Classification/>
<ClassificationNode>
<ClassificationItem itemValue="FR" itemName="Freshman"/>
</ClassificationNode>
<ClassificationNode>
<ClassificationItem itemValue="SO" itemName="Sophomore"/>
</ClassificationNode>
<ClassificationNode>
<ClassificationItem itemValue="JR" itemName="Junior"/>
</ClassificationNode>
<ClassificationNode>
<ClassificationItem itemValue="SR" itemName="Senior"/>
</ClassificationNode>
<ClassificationNode>
<ClassificationItem itemValue="SP" itemName="Special"/>
 <ClassificationNode>
 <ClassificationItem itemValue="D" itemName="Degree Candidate"/>
 </ClassificationNode>
 <ClassificationNode>
 <ClassificationItem itemValue="N" itemName="Non-Degree Candidate"/>
 </ClassificationNode>

10

</ClassificationNode>
</ClassificationScheme>

The following XML instance uses the XML Classification Element (Section 6.3) to represent the classification of a
given student as a Special Student in Non-Degree Candidate status according to the StudentStatus classification
scheme.

<Classification schemeURN="StudentStatus">
<LevelValuePair levelCode="primary" itemValue="SP"/>
<LevelValuePair levelCode="secondary" itemValue="N"/>
</Classification>

2.5 Registry packages
A registry package is a set of pointers to registry entries. Note that there are two levels of indirection here! A package
is a set of pointers, not a set of registry entries; thus a registry entry can be represented as an element of many different
registry packages without being copied multiple times. A registry package will often represent a collection of registered
objects, but the registered objects can be determined only by first going to the registry entry that references that
registered object to get its URL. This indirection is purposeful. It allows registered objects to be withdrawn, or
superceded or replaced by other registered objects, without changing the content of the registry package. With this
convention, a registry package should remain stable for a longer period of time and its references will never be lost.
The user of a registry package always has the option to check to determine if a registry entry member of the package
still references the original object. The status of the registered object can be determined from the registrationStatus
attribute of the registry entry. The GetRegisteredObject registry service defined in Section 7.1 allows one to retrieve all
of the registered objects referenced by the member elements of a package, to an arbitrary level of recursion.

The XML representation of an existing registry package is given by the RegistryPackage DTD defined in Section 7.6.
This DTD will be used to return a registry package to a user as the result of a registry services request to get that
package. The DefineRegistryPackage request element, specified in Section 8.8, can be used to submit a collection of
metadata for different objects to a registry, with the result being that each object is registered individually and the
whole collection is registered as a registry package instance.

2.6 Other metadata
The OtherMetadata class in Figure 2 is just a place holder for a number of other dependent UML classes that contain
additional metadata for a registered object. This specification defines four other classes that give helpful structure for
capturing various kinds of additional information. The AlternateName class is needed to capture different names for a
registered object in different environments, including potentially different URN's assigned by other registries. The
Description class is needed to provide an opportunity for descriptions of the registered object in any number of
different human readable languages. The ExternalData class is very helpful for capturing references to other
informational items that are strongly related to the registered object but not important enough to be registered
themselves, and the Contribution class provides an opportunity to list the creators of a registered object. Figure 3
provides the details of the RegistryEntry class together with these other classes that are dependent on it. The following
paragraphs give additional discussion for the intended usage of these classes.

2.6.1 External data

External data is a conceptual notion used to reference data objects that are related to a registered object but are not
themselves registered objects in any conforming registry. This category of metadata is reserved for things like graphic
visualizations, example sets, white papers, usage scenarios, extended documentation, vendor propaganda, etc.
Sometimes such objects will be very important, e.g. usage documentation, and will themselves be registered objects. At
other times, these objects will be less important support information for a registered object and will not be registered.
In the later situation, the registry may maintain a simple list of references to the external data. Each such reference
becomes an instance of the ExternalData class. The registration authority will keep a list of the names and types of the
external data objects, with just enough additional information so that they can be presented as options on a web page.
The external data will be created, held, and maintained by the submitting organization or some other external, non-
conforming repository.

Each instance of the ExternalData class consists of a human readable name, a URL, a standardized classification or
related role as a supporting object, a MIME file representation type, the size of the file in bytes, and a short human

11

readable comment. The related role may be defined by the registry's sponsoring organization, thereby giving a very
specific reference to required or optional documentation. As with association roles, an advantage of the standard
information model is that even though the related roles are defined for specific purposes, they can be declared,
modified, or queried via standardized access methods.

Figure 3 - RegistryEntry with dependent classes

2.6.2 Alternate names

Alternate name is a conceptual notion used to represent alternate or alias names for a registered object. Especially
significant are names used in special circumstances, e.g. short names for local identifiers in a specific programming
language context, or globally unique qualified names that satisfy a specific hierarchical qualification structure. In many
cases the alternate names will include the globally unique names assigned to the registered object by other registration
authorities. Alternate names can also be used for names in different human languages with characters encoded in
unusual character sets.

An AlternateName instance consists of the alternate name, an abstract nameContext to identify the contextual category
in which that name is used, and a human readable comment that further explains how that name should be used. Each
AlternateName instance is tagged with a reference to its submitting organization, since alternate names may come from
many different sources. An alternate name is also tagged with optional language and character set codes that apply to
the alternate name and any optional comments. As with association roles and related roles, the nameContext of an

LevelValuePair

levelCode : CodeText
itemValue : CodeText
comment : String

Association

givenItem : RegistryEntry
assocItem : RegistryEntry
associationRole : CodeText
comment : String

Classification
schemeURN : URN
submittingOrg : Organization
comment : String

1..*1..*

ExternalData
dataName : String
dataLocation : URL
relatedRole : CodeText
mimeType : String
sizeBytes : Integer
comment : String

AlternateName
altName : String
nameContext : CodeText
language : CodeText
encoding : CodeText
submittingOrg:Organization
comment : String

Description

language : CodeText
encoding : CodeText
keywordList : String
abstract : String
fullDescription : String
submittingOrg : Organization

Contribution
contributorName : String
contributorRole : String
contributorURL : URL
roleCategory : CodeText
comment : String

RegistryEntry
assignedURN : URN
commonName : String
version : String
objectURL : URL
defnSource : CodeText
objectType : CodeText
fileType : CodeText
registrationStatus : CodeText
statusChgDate : Date
stability : CodeText
feeStatus : CodeText
propertyRights : CodeText
shortDescription : String
expirationDate : Date
submittingOrg : Organization
responsibleOrg : Organization

1

0..*

1

0..*

GivenItem

1

0..*

1

0..*

AssocItem

0..*0..*

0..*0..*

0..*0..*

0..*0..*

0..*0..*

12

alternate name may be defined by the sponsor of a registry specification, thereby allowing unique usage but retaining
standardized access methods.

2.6.3 Descriptions

A description is intended to play the role of an abstract and keyword list commonly required for library resources. The
shortDescription attribute of the RegistryEntry class is too short to satisfy this purpose. The Description class allows
longer and more complete plain text descriptions of registered objects in different human readable languages. The
intent is that all description instances for a given registered object are semantically equivalent; each being a direct
translation into a different human language of some source description in the original human language.

Each Description instance consists of a plain text fullDescription, as well as an optional keywordList and abstract. All
of these attributes are tagged with a human language code and a character set code that apply to any text in the instance.
In addition, each Description instance is tagged with a reference to its submitting organization, since descriptions may
come from many different sources.

2.6.4 Contribution

Contribution is an abstract notion used to identify people, places, or organizations that contribute in any way to the
creation of a registered object. This notion is particularly significant for library resources and educational or learning
materials. Contribution instances are different than Contact instances, although they could overlap. Contacts are more
like salespeople, who can speak to the final product, its availability, usage, registration status, and future plans, whereas
Contribution instances will be much more like movie credits, giving credit even for very specialized contributions to
the creation of the registered resource, e.g. editor, co-author, illustrator, technical support, etc. The intent is that
contributions be presented in much the same way as credits at the end of a motion picture. It usually suffices to give a
name and the role played.

A Contribution instance consists of the name of the entity deserving recognition, the role it played in the production, an
abstract roleCategory with valid values defined by the sponsor of the specialization being used, an optional URL to
help locate the home page of the named entity, and an optional comment that might further explain the role played by
that entity in the production of the registered object. As with association roles, an advantage of the proposed
information model is that the roleCategory can be defined by the sponsoring group so that contribution instances can be
categorized in very specific ways. In addition, contribution instances can be declared, modified, or queried via
standardized access methods.

2.7 Registry administration
An information model for a registry/repository is concerned with more than just the metadata for registered objects. It is
also expected to provide support for maintaining some degree of version control for these objects as well as
administrative accountability for the submission and management of registry entries. The UML class diagram in Figure
4 provides a structure whereby all of these administrative expectations can be met. Each class plays two roles: it
identifies the structure of each instance and it gives the name of a container for all persistent instances of that type.

The administration facility must keep track of the following:

! An organization contact for each Organization instance.
! A submission contact for each Submission instance.
! Optional administrative and technical contacts for each Request instance.
! A date and time for each request with an appropriate historical log of changes to registry content.
! An Impact instance for each impact that a Request has on any registry entry.
! Authentication criteria for each organization.

2.7.1 Submission privileges

Different registries will have quite different rules for who is allowed to submit objects for registration. Some
organizations will want to establish registries for presenting the intellectual efforts of their membership to the rest of the
world, so it will be open to their entire membership. Others may be very specific and have only a very limited number
of submitters. Some registries will be open to the public, soliciting and registering reviews of products or services. A

13

major application of Oasis registry/repository implementations will be for supporting the workflow and business
processes of electronic commerce. As such they will be open to new input from nearly any legitimate business or trade
organization.

Figure 4 - Registry Administration

An Oasis registry/repository implementation will maintain a list of all of the organizations it is prepared to do business
with, along with a minimal amount of contact information for each one. Any additional information needed could be
obtained by the required submittal of a company profile for registration. Minimal contact information for an
organization includes a full legal name, address, telephone, and one or more contact points with contact names and
email addresses. The registry will pre-load the organization container with known organizations and then let others
apply for status to make submissions. Any registry service request that will modify registry content must be
authenticated as from some known submitting organization before the request will be executed. There needs to be a
bootstrap registry service that allows organizations to request that they be recognized as submitting organizations. The
RegisterSubmittingOrg request defined in Section 8.19 satisfies this need.

RegistryEntry

assignedURN : URN
commonName : String
version : String
objectURL : URL
defnSource : CodeText
objectType : CodeText
fileType : CodeText
registrationStatus : CodeText
statusChgDate : Date
stability : CodeText
feeStatus : CodeText
description : String
expirationDate : Date
submittingOrg : Organization
responsibleOrg : Organization

RegisteredObject
Impact

regEntryId : RegistryEntry
impactCode : CodeText
comment : String

1..*1..*

Submission

submitTime : Timestamp
submitOrg : Organization
comment : String

Request

requestNbr : Integer
requestCode : CodeText
requestContent : XMLtext
comment : String

1..*1..*

0..*0..*

ToRepository

0..*0..*

Contact

contactName : String
orgId : Organization
internalAddress : String
orgRole : CodeText
availability : CodeText
contactRole : CodeText
email : EmailText
telephone : String
fax : String
comment : String

1..*1..*

SubmissionContacts

0..*0..*

RequestContacts

Organization

orgURN : URN
orgFullName : String
commonName : String
hasSOstatus : Boolean
hasRAstatus : Boolean
hasROstatus : Boolean
orgURL : URL
parentOrg : Organization
addrLine1 : String
addrLine2 : String
addrLine3 : String
city : String
stateProv : String
country : String
postalCode : CodeText
email : EmailTExt
telephone : String
fax : String
comment : String

1..*1..*

OrgContacts
0..10..1

HasParent

14

There are three types of organizations: registration authority (RA), responsible organization (RO), and submitting
organization (SO). A registration authority will be certified by some central authority to maintain a conforming
registry/repository. RA's will trust one another and freely share registry information. Responsible organizations will
often be standards committees, consortia, or trade associations that develop and maintain specifications. RO's may or
may not maintain registries for their own products. Submitting organizations will be involved with the bulk of registry
interaction by submitting new information.

2.7.2 Submission workflow

A Submission is a collection of requests, in the form of a message, sent from a submitting organization to a registry. An
assumption is that some transport service has delivered the message to the registry and that some authentication service
has authenticated the submitter as a legitimate submitting organization. This specification includes an authentication
token in the SubmitRequest DTD (Section 7.3) to assist in the authentication process. Once a SubmitRequest DTD has
been received and its sender authenticated, the main registry/repository component swings into action.

The registry logs each new submission, assigns it a persistent object identifier, timestamps it with the date and time
received, adds one new entry to the Submission container and one or more new entries to the Contact container. It then
considers each request separately. The details of this process are specified by the semantic rules of the SubmitRequest
DTD in Section 7.3, and its Request Elements specified in Section 8.

Each request is assigned a request number to distinguish it from other requests in the same submission. Since a request
is part of a submission it is not necessary to assign each request a separate unique object identifier, although a request
number is used to distinguish among requests. In addition, each request is assigned a request code from the
RequestType enumeration domain specified in Section 4.3. The request codes determine a simple 1-level classification
scheme for requests. They are in a one-to-one correspondence with registry service requests that can effect a change of
registry content. Maintaining this information as part of registry content supports queries to determine which requests
result in objects being superceded or replaced, or which requests alter other metadata content. The request code and the
XML content of each request are stored in the Request container. After some period of time, the XML content of each
request instance may be deleted, but the remainder of each request instance is kept permanently as part of the
administrative record.

2.7.3 Impact workflow

A request may have an impact on one or more registry entries. For example, a request to supercede registered object A
with a new registered object B will have impacts on the registry entries for both A and B. For accountability and
versioning control, the registry must retain a record of all such impacts, including identification of the submitting
organization, the date and time of the request, and the impact on registry content.

If a request creates a new registry entry, it is necessary to link that request to the entry it creates so that there will be an
administrative record of the date and time the entry was created and who owns it. Similarly, if new associations or new
external data items are submitted for an existing registry entry, it is necessary to maintain an administrative record of
the date and time of each addition. As part of registry version control requirements we especially want to maintain a
record of all requests that result in replacement of one registered object by another, the registration of a new version
that supercedes a previous version, or the deprecation or withdrawal of a registered object. The classification, alternate
name, and description instances may be submitted by organizations other than the owner of the registry entry they are
linked to, so the registry should maintain an administrative record of all such additions or modifications.

The registry maintains an administrative record of all new versions and replacements and all other additions or
modifications to registry content by supporting a many-to-many relationship between Request instances and
RegistryEntry instances. The Impact class records this information. The registry will populate the Impact container as it
performs the actions of each request. All impact instances are created and modified solely by the registration authority.
Each impact instance is assigned an impactCode from the ImpactCode enumeration domain specified in Section 4.4.

The impact codes determine a simple 1-level classification scheme for impact instances. They are in a one-to-one
correspondence with add, delete, and update operations on the ten basic classes that make up the registry/repository
information model. This classification will support queries on registry content to determine which requests result in
impacts of a given type on registered objects. All impact instances are permanently maintained as part of the
administrative record.

15

3. Registry Classes

3.1 RegistryEntry

Format

Attribute
Name

Datatype Presence Supplies
Value

Defines
Meaning

assignedURN URN Mandatory RA This Standard
commonName LongName Mandatoty SO SO
version CodeText SO SO
objectURL URL SO W3C
defnSource CodeText Mandatory RA This Standard
objectType CodeText Mandatory SO defnSource
fileType CodeText SO defnSource
registrationStatus CodeText Mandatory RA defnSource
statusChgDate Date Mandatory RA This Standard
stability CodeText Mandatory SO defnSource
feeStatus CodeText SO defnSource
propertyRights CodeText SO defnSource
shortDescription CommentText Mandatory SO SO
expirationDate Date Mandatory RA RA
submittingOrg Organization Mandatory RA This Standard
responsibleOrg Organization SO This Standard
regEntryId RegistryEntry Mandatory RA This Standard

Semantic Rules

1. The RegistryEntry class represents the set of all registry entries in the Registry. Each instance identifies a single
registry entry. A registry entry instance holds only some of the metadata for a registered object; other metadata is
held by other classes in the Registry.

2. Each registry entry instance is assigned a unique identifier by the Registration Authority (RA). This hidden
attribute, herein called regEntryId, is said to be of type RegistryEntry. It is used to represent relationships of this
instance with other information in the Registry.

3. The assignedURN is assigned by the RA. It is created to be a unique identifier for each RegistryEntry instance
within this Registry. In most cases it will be a natural construction derived from the commonName and version
attributes of the registry entry. The assignedURN may or may not be a unique identifier for the referenced
registered object within all OASIS conforming Registry/Repository implementations. When a Submitting
Organization (SO) makes a submission to the Registry, it may provide a suggested URN for that object. The RA
may create a new URN or use the suggested URN. If the registry entry references a registered object in some other
Oasis conforming registry, then the RA may choose to use the other registry's URN as the assignedURN for the
registry entry. If a group of registries are cooperating to all hold registry entries for the same registered object, then
all registries may choose to use the URN created by the registry in whose repository the original registered object
resides.

4. The commonName is provided by the SO. It is the name commonly used among humans to reference the
registered object.

5. The version is provided by the SO. It can have an arbitrary format and is used only to help distinguish one registry
entry from another having the same common name. The assignedURN will be different for different versions.

16

6. The objectURL is a URL that identifies the location of the registered object. If the RA is also a repository for the
item, then the RA will receive the object, store it in the Repository, and create an anonymous FTP locator as a
value for objectURL. If the Registry is not also a Repository, then the objectURL is provided by the SO and the
RA has no further responsibility. Depending on the value of the feeStatus attribute, the objectURL URL may need
to be supplemented with payment or password information before the file containing the object can be retrieved.
Some Registries may distinguish themselves by also being the Repository for any free, publicly available objects
described in the Registry.

7. The defnSource takes its value from the DefinitionSource enumeration domain defined in Section 4.1. It identifies
a collection of accredited Registry/Repository development organizations. If the Registry claims conformance the
OASIS Registry/Repository, then the defnSource is OASIS.

8. The objectType is provided by the SO and takes its value from the ObjectType enumeration domain defined in
Section 5.1.

9. The fileType is provided by the SO and takes its value from the FileType enumeration domain defined in Section
5.2. EDITOR's NOTE: How do we handle Other?

10. The registrationStatus is provided by the RA with its value taken from the RegistrationStatus enumeration domain
defined in Section 5.3.

11. The stability attribute is provided by the SO with its value taken from the Stability enumeration domain defined in
Section 5.4. There is no default value for stability. The SO is required to declare a stability categorization for each
submittal by choosing from among the codes for Static, Dynamic, or Compatible.

12. The feeStatus attribute is provided by the SO with its value taken from the FeeStatus enumeration domain defined
in Section 5.5. The default value is the code for Free, meaning that the registered object is freely available with no
password or payment required.

13. The propertyRights attribute is provided by the SO with its value taken from the PropertyRights enumeration
domain defined in Section 5.6. The default value is the code for None, meaning that there are no property rights
specified for this registered object.

14. The shortDescription is provided by the SO. It is a very abbreviated description of the registered object. More
complete descriptions in various human readable languages are held in the Description class.

15. The expirationDate is assigned by the RA upon suggestion from the SO. Some RA's may follow very definite
procedures for the length of time an object can remain registered before an affirmation or withdrawal action is
required. If the Expiration date passes without an SO action, then the RA may initiate an expiration action.

16. The submittingOrg identifies the organization submitting the registered object. It points to a unique instance of the
Organization class whose hasSOstatus attribute is true. An organization can achieve SO status via the
RegisterSubmittingOrg request (Section 8.19).

17. The responsibleOrg identifies the organization responsible for creation and maintenance of the registered object. It
points to a unique instance of the Organization class. The RO may be a formal accredited standards development
organization or it may be the SO. If it is not the SO, then its hasROstatus attribute must be true. The procedure for
an organization to achieve RO status is not part of this specification.

18. Let SO be the original submitting organization of a registry entry RE that was submitted with some registered
object R. Then SO is the owner of both RE and R. Some other submitting organization SO' may submit a registry
entry RE' whose objectURL points to R. SO' is the owner of RE', but SO remains the owner of R. Only the owner
of R may change the following attributes in any registry entry whose objectURL is a locator for R:
registrationStatus, stability, feeStatus, or propertyRights.

17

3.2 Association

Format

Attribute
Name

Datatype Presence Supplies
Value

Defines
Meaning

givenItem RegistryEntry Mandatory RA This Standard
associationRole CodeText Mandatory SO defnSource
assocItem RegistryEntry Mandatory RA This Standard
comment CommentText SO SO

Semantic Rules

1. The Association class represents a many-to-many relationship from the RegistryEntry class to itself. Each
association instance relates a given registry entry instance to an associated registry entry instance. The given item
plays the specified associationRole with the associated item.

2. The givenItem attribute identifies the given item in the association instance. The given item identifies the parent
registry entry upon which the association instance is dependent.

3. The associationRole is provided by the SO with its value taken from the AssociationType enumeration domain
defined in Section 5.7.

4. The assocItem attribute identifies the associated item in the association instance. The association instance is not
dependent upon the assocItem; if a referenced assocItem should be deleted, then this reference may point to a non-
existent object, but the association instance remains. The RA may provide a warning message to the deleter of the
associated item and may choose to append information about the deleted item to the comment.

5. The triple (givenItem, associationRole, assocItem) uniquely determines an association instance.

6. The comment is provided by the SO. It may explain in more detail the relationship between the given and
associated items.

18

3.3 Classification and LevelValuePair

Format

 Classification

Attribute
Name

Datatype Presence Supplies
Value

Defines
Meaning

schemeURN URN Mandatory SO RA
submittingOrg Organization Mandatory RA This Standard
comment CommentText SO SO

 LevelValuePair

Attribute
Name

Datatype Presence Supplies
Value

Defines
Meaning

levelCode CodeText Mandatory SO This Standard
itemValue CodeText Mandatory SO This Standard
comment CommentText SO SO

Semantic Rules

1. The Classification class identifies all classifications of a registry entry.

2. Each Classification instance has an implicit value, regEntryId, of type RegistryEntry that links this instance to its
parent registry entry. The classification instance is dependent on that registry entry.

3. The schemeURN is provided by the SO. It identifies the assignedURN of some registry entry in the same Registry
as the classification instance, and the object referenced by that registry entry must be a classification scheme.

4. The submittingOrg is provided by the RA. It identifies the organization that submits the classification for the
parent registry entry; it may differ from the organization that owns the parent registry entry.

5. The pair (schemeURN, submittingOrg) uniquely determines a classification instance for the parent registry entry.

6. The optional Classification comment attribute is provided by the SO. It may explain why this particular
classification scheme was chosen to classify the registered object and it may identify the context of the
classification.

7. Each LevelValuePair instance has implicit values for schemeURN and submittingOrg that link this instance to its
parent Classification instance.

8. The set of LevelValuePair instances linked to a Classification instance identify a branch in a classification scheme
hierarchy that terminates in a specific node. The registry entry maps to that node.

9. The levelCode is provided by the SO, or the RA fills in "leaf" by default, depending on the type of classification
scheme identified by the schemeURN.

10. The itemValue attribute is provided by the SO. It must be a legal itemValue as defined by the registered
classification scheme.

11. The optional LevelValuePair comment is supplied by the SO. It might further explain the meaning of the
itemValue.

19

3.4 Organization

Format

Attribute
Name

Datatype Presence Supplies
Value

Defines
Meaning

orgURN URN Mandatory RA This Standard
orgFullName LongName Mandatory SO This Standard
commonName ShortName SO SO
orgURL URL SO W3C
hasSOstatus Boolean RA This Standard
hasROstatus Boolean RA This Standard
hasRAstatus Boolean RA Higher Authority
parentOrg Organization RA This Standard
addrLine1 AddrLineText SO This Standard
addrLine2 AddrLineText SO This Standard
addrLine3 AddrLineText SO This Standard
city ShortName SO This Standard
stateProv ShortName SO This Standard
country ShortName Mandatory SO This Standard
postalCode CodeText SO This Standard
email EmailText SO Internet
telephone TelephoneText SO This Standard
fax TelephoneText SO This Standard
comment CommentText SO SO
orgId Organization Mandatory RA This Standard

Semantic Rules

1. The Organization class represents the set of all companies and organizations known to a Registry. Each instance
represents a single organization or company. If an organization is part of another organization, or if a company is
a sub-unit of another company, then that organization is linked to its parent.

2. Each Organization instance is assigned a unique identifier by the Registration Authority (RA). This hidden
attribute, herein called orgId, is said to be of type Organization. It is used to represent relationships of this instance
with other information in the Registry.

3. Each organization instance has a relationship with one or more Contact instances. The registry services defined
herein may provide a method to access these contact(s) for each organization.

4. The orgURN is assigned by the Registration Authority (RA). In most cases it will be a natural construction
derived from the commonName of the company. The orgURN attribute uniquely determines an Organization
instance in this Registry. It may or may not be a unique identifier for this organization within all OASIS
conforming Registry/Repository implementations; however, cooperating registries may choose to make it so.

5. The orgFullName is provided by the Submitting Organization (SO) or by the Responsible Organization (RO). It is
intended to be the full legal name of the organization in the home country of its existence. The orgFullName and
country values together uniquely determine an organization instance.

6. The commonName is provided by the SO. It is the name or symbol that is used in common discourse to identify
the company or organization.

20

7. The hasSOstatus attribute identifies whether the organization is properly registered for submitting requests to this
registry that have the effect of changing registry content. The RA determines this status based on published criteria
that are not part of this specification. See definition of Submitting Organization in Section 4.2.

8. The hasROstatus attribute identifies whether the organization can have responsibility for registered objects that
they have not themselves submitted to the registry. The RA determines this status based on published criteria that
are not part of this specification. .See definition of Responsible Organization in Section 4.2.

9. The hasRAstatus attribute identifies whether the organization is recognized as a Registration Authority. This
determination is made by a higher authority than the RA and the criteria are not part of this specification. See
definition of Registration Authority in Section 4.2.

10. The orgURL is provided by the SO. It is the locator for the home page of that company or organization on the
world wide web.

11. The parentOrg is provided by the SO or the RA. If the company or organization is a subsidiary of a company
already listed in this entity, then parentOrg is the identifier of the parent organization. If the organization has no
known parent, then this attribute is null.

12. The three addressLine attributes identify the street or post office address of the company or organization.
addressLines that are not needed are set to null. They are provided by the SO.

13. The city is provided by the SO. It identifies the city associated with the AddressLines.

14. The stateProv is provided by the SO. It identifies the state, province, territory, or some other political unit between
the city and country.

15. The country is provided by the SO. It identifies the home country of the company or organization.

16. The postalCode is provided by the SO. Together with the street address, city, and country, it is the mailing address
of the company or organization headquarters.

17. The email is provided by the SO. It identifies the best email address to use when trying to reach the company or
organization headquarters.

18. The telephone attribute is provided by the SO. It identifies the best international telephone number to use when
trying to reach the company or organization headquarters.

19. The fax attribute is provided by the SO. It identifies the best international facsimile telephone number to use when
trying to reach the company or organization headquarters.

20. The comment is provided by the SO or RA. It conveys any important information not captured by the other
attributes.

21

3.5 Contact

Format

Attribute
Name

Datatype Presence Supplies
Value

Defines
Meaning

contactName ShortName Mandatory SO SO
orgId Organization Mandatory RA This Standard
internalAddr AddrLineText SO This Standard
orgRole CodeText Mandatory SO This Standard
availability CodeText Mandatory SO defnSource
contactRole CodeText Mandatory SO defnSource
email EmailText Mandatory SO Internet
telephone TelephoneText SO This Standard
fax TelephoneText SO This Standard
comment CommentText SO SO
contactId Contact Mandatory RA RA

Semantic Rules

1) The Contact class identifies all of the contacts known to the Registry. A Contact instance is a single contact. A
contact may be a person, a company office, or a job title that can respond to Registry related issues.

2) Each Contact instance is assigned a unique identifier by the Registration Authority (RA). This hidden attribute,
herein called contactId, is said to be of type Contact. It is used to represent relationships of this instance with other
information in the Registry.

3) Each contact instance is linked to a single organization. However, the contact instance is not dependent on that
organization instance.

4) The contactName is provided by the SO. It identifies a person or office associated with the SO able to speak to
technical or administrative questions about registered objects. The name need not be globally unique, but it is
intended that it be recognized by whoever may answer the telephone number or email address provided in this
instance.

5) The orgId is provided by the RA. It is derived from the orgURN provided by the SO as part of a submission or
request. Each contact instance is linked to a single organization; however, that organization need not be the same
as the submitting organization if the contact is named in a submission or request.

6) The internalAddr is provided by the SO. It identifies the mail stop, building, or room number of the contact. When
appended to the organization address it provides a complete mailing address for the contact.

7) The orgRole is provided by the SO, with its value taken from the OrganizationRole enumeration domain defined in
Section 4.2. The default value is the code for Submitting Organization, meaning that the contact is from the same
organization as the one making the submission that contains this contact instance.

8) The availability code is provided by the SO with its value taken from the ContactAvailability enumeration domain
defined in Section 5.9. The default value is the code for Public, meaning that the contact name and email address
are available to all users of the registry.

9) The contactRole is provided by the SO with its value taken from the ContactRole enumeration domain defined in
Section 5.10. The default value is the code for All Issues, meaning that the contact is able to respond to all issues,
e.g. both technical and administrative, involving each registry entry the contact is associated with.

22

10) The email address is provided by the SO. It is a global email address that is the best address to use when trying to
contact someone who can respond to issues involving registered items. NOTE: The email address is mandatory in
this specification because we anticipate follow-on subscription services that may require notification of certain
identified contacts based on registry actions.

11) The telephone number is provided by the SO. It is a single international telephone number, possibly with an
extension, that is the best number to use when trying to contact a person who can speak to issues involving
registered items.

12) The fax number is provided by the SO. It is the best facsimile telephone number to use when trying to contact a
person who can speak to issues involving registered items.

13) The comment is provided by the SO. It explains in natural language the relationship of the contact to the item or
items submitted for registration. It may explain further the role of the contact.

23

3.6 Submission

Format

Attribute
Name

Datatype Presence Supplies
Value

Defines
Meaning

submitTime Datetime Mandatory RA This Standard
submittingOrg Organization Mandatory RA This Standard
comment CommentText SO SO
submitId Submission Mandatory RA RA

Semantic Rules

1. The Submission class represents a set of submissions made to a Registration Authority (RA) from a Submitting
Organization (SO). The RA will keep a record of all submissions for an indefinite period of time determined by
some higher authority.

2. Each instance of the Submission class represents a single submission. If the SO is not known to the RA, then the
Submission must consist of a single request, RegisterSubmittingOrg, that asks the RA to certify the submitter as an
SO for that Registry (see Section 8.19).

3. Each Submission instance is assigned a unique identifier by the Registration Authority (RA). This hidden attribute,
herein called submitId, is said to be of type Submission. It is used to represent relationships of this instance with
other information in the Registry. This identifier is locally determined by the RA, but will often be a timestamp.

4. A submission must be related to one or more contacts. Each contact is represented as an instance of the Contact
class.

5. A submission must be related to one or more requests. Each request is represented as an instance of the Request
class.

6. The submitTime attribute is provided by the RA. It identifies the time, with precision to the minute or finer, that
the submission was first received. In many cases this attribute will just be a truncation of the more accurate
timestamp used for the submission identifier.

7. The submittingOrg attribute identifies the Submitting Organization. If this is not a submission requesting
certification of a company or an organization as a new SO, then the submitting organization must be previously
known to the RA. The SO and RA will identify themselves to one another by using their respective orgURN's.

1. The comment attribute is provided by the SO. It may describe the purpose of the submission or give a human
readable introduction to the containing requests.

8. Each Submission instance has a relationship with one or more Contact instances. The registry services defined
herein may provide a method to access these contact(s) for each submission.

24

3.7 Request

Format

Attribute
Name

Datatype Presence Supplies
Value

Defines
Meaning

requestNbr SmallInt Mandatory RA This Standard
requestCode CodeText Mandatory SO defnSource
contentXML XMLtext Mandatory SO This Standard
comment CommentText SO SO

Semantic Rules

2. The Request class represents a set of requests made to a Registration Authority (RA) from Submitting
Organizations (SO).

3. Each Request instance must be received by the RA as part of a submission package. Each Request instance has an
implicit value, submitId, of type Submission that identifies the submission package.

4. Each submission may consist of multiple requests. The requestNbr attribute is a positive integer provided by the
RA to distinguish among multiple requests in the same submission. If there are N requests in a submission
package, then the requestNbr's will vary from 1 to N inclusive. The requestNbr may make it easier to locate the
request in the contentXML.

5. The requestCode attribute is provided by the RA after receiving an XML Request element from an SO. Its value is
the code defined by the RegistryRequest enumeration domain specified in Section 4.3. The list of valid
requestCode's will likely expand in an upward compatible fashion as registry services expand.

6. The contentXML attribute is provided by the SO. It is the exact XML Request element provided by the SO as part
of a submission package. The RA will keep a record of all such requests for an indefinite period of time
determined by some higher authority.

7. The comment attribute is provided by the SO. It may provide further explanation about the purpose of the request.

8. Each Request instance has a relationship with zero or more Contact instances. The registry services defined herein
may provide a method to access these contact(s) for each request.

25

3.8 AlternateName

Format

Attribute
Name

Datatype Presence Supplies
Value

Defines
Meaning

altName LongName Mandatory SO This Standard
nameContext CodeText Mandatory SO defnSource
submittingOrg Organization Mandatory RA This Standard
language LanguageCode SO W3C
encoding CharEncoding SO W3C
comment CommentText SO SO

Semantic Rules

1. The AlternateName class is the set of alternate names that are associated with registered objects. Each instance
gives the alternate name, its language and encoding, and its context.

2. Each AlternateName instance has an implicit value, regEntryId, of type RegistryEntry that links this instance to its
associated registry entry. The alternate name instance is dependent on that registry entry.

3. The altName attribute is provided by the SO.

4. The nameContext attribute is provided by the SO. It is a code value that identifies an item from the NameContext
enumeration domain defined in Section 5.8. EDITOR's NOTE: How to represent Other values?

5. The submittingOrg attribute is provided by the RA. It identifies the organization that submits the alternate name
for the parent registry entry; it may differ from the organization that owns the parent registry entry.

6. The triple (altName, nameContext, submittingOrg) uniquely determines an alternate name instance for each
registry entry.

7. The language attribute is provided by the SO. It is of datatype LanguageCode, defined in Section 3.14. The default
value is the default language of the submission, if known.

8. The encoding attribute is provided by the SO. It is of datatype CharEncoding, defined in Section 3.14. The default
value is the default encoding of the submission, if known.

9. The comment is provided by the SO. It may give further details about how the name should be used.

10. All attribute values for an AlternateName instance are encoded in the encoding scheme identified by the encoding
attribute.

26

3.9 ExternalData

Format

Attribute
Name

Datatype Presence Supplies
Value

Defines
Meaning

dataName ShortName Mandatory SO SO
dataLocation URL Mandatory SO W3C
relatedRole CodeText Mandatory SO defnSource
mimeType MIMEtype SO IANA
sizeBytes Integer SO This Standard
comment CommentText SO SO

Semantic Rules

1. The ExternalData class represents the set of non-registered objects that are related to registered objects. Each
instance is a pairwise relationship between a single registry entry and a single external data item. A registry entry
may map to many external data items.

2. Each instance of ExternalData depends upon a RegistryEntry instance. This dependency is represented by an
implicit value, regEntryId, of type RegistryEntry.

3. The dataName attribute is provided by the SO. It is intended that this be the link name for the dataLocation if
external data items are presented visually to a user. The dataName uniquely identifies an ExternalData instance for
each registry entry.

4. The dataLocation is provided by the SO. This link is not under the control of the RA and it may point anywhere.
The RA is under no obligation to ensure that the URL is a valid one.

5. The relatedRole is provided by the SO and takes its value from the RelatedRole enumeration domain defined in
Section 5.11. EDITOR's NOTE: How to represent Other values?

6. The mimeType is provided by the SO. It identifies the MIME type (see Section 3.14) of the external data item.
The RA is under no obligation to ensure that the declared mimeType is consistent with the actual file type of the
file referenced by dataLocation. The default value is text.

7. The comment is provided by the SO. It may further explain the relationship between the external data instance and
the registry entry it is linked to.

27

3.10 Description

Format

Attribute
Name

Datatype Presence Supplies
Value

Defines
Meaning

language LanguageCode Mandatory SO W3C
submittingOrg Organization Mandatory RA This Standard
abstract CommentText SO SO
keywordList CommentText SO SO
fullDescription DescriptionText Mandatory SO SO
encoding CharEncoding SO W3C

Semantic Rules

1. The Description class is a set of descriptions in various human languages that are associated with registered
objects. Each instance is a single description associated with a single registry entry, with the human language and
character encoding identified.

2. Each Description instance has an implicit value, regEntryId, of type RegistryEntry that links this instance to its
associated registry entry. The description instance is dependent on that registry entry.

3. The language attribute is provided by the SO. It is of datatype LanguageCode, defined in Section 3.14. The default
value is the default language of the submission.

4. The submittingOrg attribute is provided by the RA. It identifies the organization that submits the alternate name
for the parent registry entry; it may differ from the organization that owns the parent registry entry.

5. The pair (language, submittingOrg) uniquely determines a Description instance for the parent registry entry.

6. The abstract attribute presents a short description of the parent registry entry. It may or may not be a direct
translation of the shortDescription attribute of the parent registry entry into the language identified by the language
attribute.

7. The keywordList attribute is a text string of words or short phrases, separated by a semicolon character and the
space character, i.e. "; ". The words or phrases should be understandable in the language identified by the
language attribute.

8. The fullDescription is provided by the SO. The intent is that each description is a direct translation of the
fullDescription attribute of the associated registry entry into the language and encoding identified by the language
and encoding attributes.

9. The encoding attribute is provided by the SO. It is of datatype CharEncoding, defined in Section 3.14 The default
encoding is the default encoding of the submission.

28

3.11 Contribution

Format

Attribute
Name

Datatype Presence Supplies
Value

Defines
Meaning

contributorName LongName Mandatory SO SO
contributorRole LongName Mandatory SO SO
contributorURL URL SO W3C
roleCategory CodeText SO defnSource
comment CommentText SO SO

Semantic Rules

1. The Contribution class is the set of contributors that are associated with registered objects. Each instance gives the
name and role of a contributor.

2. Each Contribution instance has an implicit value, regEntryId, of type RegistryEntry that links this instance to its
associated registry entry. The contribution instance is dependent on that registry entry.

3. The contributorName attribute is provided by the SO. It identifies the name of a contributor to the creation or
maintenance of the associated registered object.

4. The contributorRole attribute is provided by the SO. It identifies the role played by the contributorName in the
creation or maintenance of the registered object.

5. The contributorName and contributorRole pair uniquely determine a contribution instance for each registry entry.

6. The roleCategory is provided by the SO. It is a code value that identifies an item from the RoleCategory
enumeration domain defined in Section 5.12. EDITOR's NOTE: These roles are still undefined!

7. The comment is provided by the SO. It may give further details about the role played by the contributor.

29

3.12 Impact

Format

Attribute
Name

Datatype Presence Supplies
Value

Defines
Meaning

regEntryId RegistryEntry Mandatory RA This Standard
impactCode CodeText Mandatory RA This standard
comment CommentText RA RA

Semantic Rules

1. The Impact class represents a many-to-many relationship between the Request class and the RegistryEntry class.
Each Impact instance relates a single Request instance to a single RegistryEntry instance.

2. A request, e.g. RegisterSubmittingOrg, may not have an impact on any registry entry, whereas other requests, e.g.
AddAssociation, will have an impact on both the given and associated items. Thus the need for a many-to-many
mapping.

3. An Impact instance has implicit values for submitId and requestNbr that link this instance to its parent Request
instance and its grandparent Submission instance. An impact instance is dependent upon its parent request.

4. The Impact class, together with its parent Submission and Request classes, will maintain a historical record of all
SO-initiated modifications of a registry entry from first creation to final deletion.

5. Every registry entry must derive from at least one request, e.g. the request that created it. But it can be impacted by
many subsequent requests, e.g. a sequence of updates over time.

6. The regEntryId attribute is provided by the RA. It identifies the impacted registry entry.

7. The impactCode attribute is provided by the RA. This code identifies one of the impacts specified by the
RegistryImpact enumeration domain defined in Section 4.4.

8. The regEntryId and impactCode pair uniquely determine an Impact instance for each Request instance.

9. The comment is provided by the RA. It may explain some unusual operational consideration.

30

3.13 ClassificationScheme

Format

 ClassificationScheme

Attribute
Name

Datatype Presence Supplies
Value

Defines
Meaning

schemeURN URN Mandatory RA RA
comment CommentText Mandatory SO SO
regObjectId RegisteredObject Mandatory RA This Standard
regEntryId RegistryEntry Mandatory RA This Standard

 ClassificationNode

Attribute
Name

Datatype Presence Supplies
Value

Defines
Meaning

nodeId ClassificationNode Mandatory RA RA
itemValue CodeText Mandatory SO This Standard
itemName LongName SO This Standard
parentId ClassificationNode Mandatory RA RA
levelNbr Integer Mandatory RA ThisStandard
comment CommentText SO SO

 ClassificationLevel

Attribute
Name

Datatype Presence Supplies
Value

Defines
Meaning

levelCode CodeText Mandatory SO This Standard
levelName LongName SO This Standard
levelNbr Integer Mandatory RA This Standard
comment CommentText SO SO

Semantic Rules

1. The ClassificationScheme class identifies the classification schemes known to a Registry. Each instance of this
class identifies one classification scheme. Each classification scheme is a registered object and thus has a hidden
regObjectId attribute that is an object identifier of type RegisteredObject.

2. Since each registered object has an associated registry entry, the hidden regEntryId attribute maps the classification
scheme to its registry entry. NOTE: A registered object may have multiple registry entries that point to it; this
reference is to the original registry entry submitted with the registered object.

3. The schemeURN attribute is a dependent copy of the assignedURN attribute of the associated registry entry. This
value is assigned by the RA and cannot be updated by any SO.

4. The comment attribute of the ClassificationScheme class is provided by the SO. It may expand upon the
description provided by the shortDescription attribute of the associated registry entry.

31

5. The ClassificationNode class represents the classification hierarchy of a classification scheme. Each instance
represents a node in that hierarchy.

6. Each instance of a ClassificationNode depends upon a ClassificationScheme. This dependency is represented by
an implcit value of regObjectId that links each node to its parent classification scheme.

7. The nodeId attribute identifies each node of the classification hierarchy. The nodeId values are provided locally by
the RA and are not visible to registry services; they are said to be of datatype ClassificationNode. The root of each
classification hierarchy is the classification scheme itself. The root is a virtual node, not represented by a
ClassificationNode instance, that is assumed to have a nodeId that maps to the parent classification scheme. This
special nodeId may be referenced in registry services by the keyword ROOT.

8. The itemValue is provided by the SO. It identifies the value that will be referenced as the itemValue in a
Classification.

9. The optional itemName, if present, is provided by the SO. It may be a longer descriptive name that more
completely identifies the item. The itemName is not required in an XML Classification element (Section 6.3);
instead, the itemValue is always required.

10. The parentId is supplied by the RA. It references the nodeId of the parent node in the classification hierarchy. If
the node is at Level 1 in the classification hierarchy, then the ParentId is zero, to indicate that its parent node is the
virtual root of the hierarchy. This special nodeId may be referenced in registry services by the keyword ROOT.

11. The comment in the ClassificationNode class is provided by the SO. It may further describe the node.

12. According to the mathematical defintion of classification scheme in Section 2.4, each node in the classification
hierarchy is assigned a level. That level is represent by the levelNbr attribute in both the ClassificationNode class
and the ClassificationLevel class.

13. The ClassificationLevel class identifies the levels of a classification scheme. Each instance represents a single
level of the scheme. The number of levels must match the maximum level number of all nodes in the hierarchy.
The levels are numbered consecutively as they would appear in the ClassificationLevel element of the
ClassificationScheme DTD (Section 7.5).

14. Each instance of the ClassificationLevel class depends upon a ClassificationScheme instance. This dependency is
represented by an implcit value of regObjectId that links each level to its parent classification scheme

15. The levelCode is provided by the SO. It identifies the value that will be referenced as the level Code in a
classification (see Section 2.4.1).

16. The optional levelName, if present, is provided by the SO. It may be a longer descriptive name that more
completely identifies the level. The levelName is not required in an XML Classification element (Section 6.3);
instead, the levelCode is always used.

17. The comment in the ClassificationLevel class is provided by the SO. It may further describe the level.

32

3.14 Attribute type definitions
Some attribute values in the information model are references to class instances, some are codes that reference values
of enumeration domains, and some are primitive types representable as character strings, numbers, dates, or dates and
times. All codes that reference a value of an enumeration domain are of the type CodeText defined below.

The reference types are:

RegistryEntry
RegisteredObject
Organization
Contact
Submission
ClassificationNode

The following are base types used in this specification:

CodeText -- a character string consisting entirely of visible characters from an implied character set. The presence of
non-visible characters, even blank spaces, is an error. The length of a CodeText string is between 1 and 32 characters,
inclusive. In most cases, CodeText characters will be from the International Reference Version of ISO 646 so that they
will be interpreted identically in all encodings. In XML environments, CodeText may not contain XML characters with
special meaning. These include the ampersand (&), forward slash (/), special sequences like ++, etc. EDITOR's NOTE:
Need to be more specific here!

ShortName -- a character string consisting of visible characters from an implied character set, together with optional
use of blank spaces. Any other non-visible characters are ignored during processing, and other non-visible characters
are stripped out before acceptance as a value of an attribute having this datatype. The length of a ShortName string is
between 1 and 50 characters, inclusive. The first and last characters must be visible characters that are not the space
character.

LongName -- a character string consisting of visible characters from an implied character set, together with optional
use of blank spaces. Any other non-visible characters are ignored during processing, and other non-visible characters
are stripped out before acceptance as a value of an attribute having this datatype. The length of a LongName string is
between 1 and 150 characters, inclusive. The first and last characters must be visible characters that are not the space
character.

EmailText -- a character string consisting entirely of visible characters from an implied character set. The presence of
non-visible characters, even blank spaces, is an error. The length of an EmailText string is between 1 and 50 characters,
inclusive.

TelephoneText -- a character string consisting of visible characters from an implied character set, together with optional
use of blank spaces. Any other non-visible characters are ignored during processing, and other non-visible characters
are stripped out before acceptance as a value of an attribute having this datatype. The length of a TelephoneText string
is between 1 and 50 characters, inclusive. The first and last characters must be visible characters that are not the space
character.

AddrLineText -- a character string consisting of visible characters from an implied character set, together with optional
use of blank spaces. Any other non-visible characters are ignored during processing, and other non-visible characters
are stripped out before acceptance as a value of an attribute having this datatype. The length of an AddrLineText string
is between 1 and 50 characters, inclusive. The first and last characters must be visible characters that are not the space
character.

CommentText -- a character string consisting of visible characters from an implied character set, together with optional
use of blank spaces, tab characters, and return or line feed characters. Any other non-visible characters are ignored
during processing, and other non-visible characters are stripped out before acceptance as a value of an attribute having
this datatype. The length of a CommentText string is between 1 and 250 characters, inclusive. The first and last
characters must be visible characters that are not the space character.

33

DescriptionText -- a character string consisting of visible characters from an implied character set, together with
optional use of blank spaces, tab characters, and return or line feed characters. Any other non-visible characters are
ignored during processing, and other non-visible characters are stripped out before acceptance as a value of an attribute
having this datatype. The length of a DescriptionText string is between 1 and 5000 characters, inclusive. The first and
last characters must be visible characters that are not the space character.

XMLtext -- a character string of indefinite length conforming to some XML document or type definition.

Date -- a value that represents a calendar date, constrained by the natural rules for dates using the Gregorian calendar.
A Registry will be able to respond to queries involving minimal date arithmetic, e.g. finding all instances of an entity
having dates for a given attribute that fall within a given range, or finding all instances having dates in the past 30 days,
or finding all registry entries whose registration is scheduled to expire in the next 3 months, etc. More advanced date
arithmetic or date manipulation is at the discretion of the Registry.

Date Literal -- a character string value that identifies a specific date. A date literal string is of the form YYYY-MM-DD
where YYYY is an integer literal for the year, MM is an integer literal for the month of the year, and DD is an integer
literal for the day of the month. Whenever a date value is presented to a user, or requested from a user, the date value is
presented or transmitted as the equivalent date literal.

Datetime -- a value that represents a calendar date and a time within that date, with time precision to the minute, or
finer. Unless otherwise indicated time is Universal Coordinated Time based on a 24-hour clock. A Registry has the
capability to convert a Datetime type to a Date type, with the expected loss of precision. Any other datetime arithmetic
or datetime manipulation is at the discretion of the Registry.

Datetime Literal -- a character string value that identifies a specific datetime. A datetime literal string is of the form
YYYY-MM-DD HH:MM:SS where YYYY is an integer literal for the year, MM is an integer literal for the month of
the year, DD is an integer literal for the day of the month, HH is an integer literal for the hour (assuming 24-hour
clock), MM is an integer literal for the minute within the hour, and SS is an integer literal for the second within the
minute. Whenever a datetime value is presented to a user, or requested from a user, the datetime value is presented or
transmitted as the equivalent datetime literal.

Integer -- As used in this specification, a non-negative integer with value less than 2**32.

URN -- a character string that conforms to the format of a Uniform Resource Name (URN) as specified by IETF RFC
1241. The length of a URN string is less than or equal to 150 characters.
(See http://www.ietf.cnri.reston.va.us/rfc/rfc2141.txt?number=2141)

URL -- a character string that conforms to the format of a Uniform Resource Locator (URL) as specified by W3C. The
length of a URL string is less than or equal to 150 characters.
(See http://www.w3.org/Addressing/URL/5_BNF.html)

FTP -- a character string that conforms to the format of a File Transfer Protocol (FTP) Uniform Resource Locator
(URL) as specified by W3C. The default user name is "anonymous". The length of an FTP string is less than or equal
to 150 characters. (See http://www.w3.org/Addressing/URL/5_BNF.html)

MIMEtype – a character string that identifies a MIME type, as listed in the official list of all MIME media-types
assigned by the IANA (Internet Assigned Number Authority). NOTE: The slash character "/" is not legal in XML
CDATA attributes, so the hyphen character "-" is used instead. The length of a MIMEtype string is less than or equal to
150 characters. (See ftp://ftp.isi.edu/in-notes/iana/assignments/media-types/media-types)

LanguageCode -- a character string that identifies a human language and a country where that language has evolved. In
general, it is of the form "xx-CC", where xx is a two character code (lowercase) for a human language and CC is a two
character country code (uppercase). Legal strings are specified by Language Identifier, definitions [33] through [38] in
W3C XML 1.0. (http://www.w3.org/TR/REC-xml#sec-lang-tag).

CharEncoding -- a character string that identifies the encoding of a character set. It is specified by the encoding name
(EncName) of an Encoding Declaration, definition [81] in W3C XML 1.0.
(http://www.w3.org/TR/REC-xml#charencoding).

34

4. General Enumeration Domains

4.1 DefinitionSource

Format

Code Organization Description

ebXML ebXML Owner of the ebXML Registry/Repository
specification.

LTSC_LOM IEEE Learning Technology Standards
Committee - Learning Object Model

Owner of the IEEE LOM Registry
specification.

IMS IMS Owner of the IMS Registry specification.

OASIS Organization for the Advancement of
Structured Information Standards

Owner of the OASIS Registry/Repository
Technical Specification.

 ***** Other

Semantic Rules

1. The format for DefinitionSource identifies a potentially expanding list of organizations that may adopt the
information model of this standard, but specify other or additional values for specific enumeration domains.

2. The defnSource attribute of the RegistryEntry class (Section 3.1) takes its value from the code column.

3. The symbol ***** for Code indicates that other values will be defined in future versions of this specification.

35

4.2 OrganizationRole

Format

Code Name Description

RA Registration Authority
RO Responsible Organization
SO Submitting Organization

Semantic Rules

1. The names specified in the second column are defined and explained by International Standard ISO 11179.

2. The orgRole attribute of the Contact class (Section 3.5) takes its value from the Code column.

36

4.3 RequestCode

Format

requestCode Request Service Name

addAssoc AddAssociation
addClassif AddClassification
addAltName AddAlternateName
addContrib AddContribution
addExtData AddExternalData
addDescrip AddDescription
defClassSchm DefineClassificationScheme
defRegPkg DefineRegistryPackage
delAssoc DeleteAssociation
delClassif DeleteClassification
delAltName DeleteAlternateName
delContrib DeleteContribution
delExtData DeleteExternalData
delDescrip DeleteDescription
modClassif ModifyClassificationScheme
modRegPkg ModifyRegistryPackage
modRegEntry ModifyRegistryEntry
regObj RegisterObject
regSO RegisterSubmittingOrganization
reaffRegObj ReaffirmRegisteredObject
repRegObj ReplaceRegisteredObject
supRegObj SupercedeRegisteredObject
wdrRegObj WithdrawRegisteredObject
 ***** Others under development

Semantic Rules

1. Each requestCode identifies an OASIS registry services request.

2. The requestCode attribute of the Request class (Section 3.6) takes its value from the requestCode column.

3. The symbol ***** for itemValue indicates that other values are possible. The values added will always be done in
an upward compatible fashion as registry services expand.

37

4.4 ImpactCode

Format

impactCode Impact Name

AAS Add Association
ACF Add Classification
ACT Add Contact
AAN Add Alternate Name
ACB Add Contribution
ARO Add Registered Object
ARE Add Registry Entry
AED Add External Data
ASO Add Submitting Organization
ADS Add Description
DAS Delete Association
DCF Delete Classification
DCT Delete Contact
DAN Delete Alternate Name
DCB Delete Contribution
DRO Delete Registered Object
DRE Delete Registry Entry
DED Delete External Data
DSO Delete Submitting Organization
DDS Delete Description
UAS Update Association
UCF Update Classification
UCT Update Contact
UAN Update Alternate Name
UCB Update Contribution
URO Update Registered Object
URE Update Registry Entry
UED Update External Data
USO Update Submitting Organization
UDS Update Description

Semantic Rules

1. Each impactCode identifies an OASIS registry services impact on some class of the information model.

2. The impactCode attribute of the Impact class (Section 3.12) takes its value from the impactCode column.

3. These values are fixed unless the Information Model itself expands to include new features not representable in
existing structures.

38

5. OASIS Enumeration Domains

5.1 ObjectType

Format

Source Code Name Description
OASIS defn Definition An XML or SGML definition document.

OASIS inst Instance An XML or SGML instance document.

OASIS rpkg Registry Package A registry package instance. Validates to
RegistryPackage DTD.

OASIS schm Classification Scheme A classification scheme instance. Validates to
ClassificationScheme DTD.

OASIS mime MIME type A MIME type as specified by IANA.

OASIS othr Other A document with no specific object type.

Semantic Rules

1. The ObjectType enumeration domain provides the set of coded values for the objectType attribute of the
RegistryEntry class (Section 3.1). Each code in the Code column represents the object type in the Name column.

2. Let E be a registry entry whose defnSource attribute identifies OASIS as the defining organization. Let R be the
registered object referenced by the objectURL attribute of E. The objectType attribute of E specifies the object
type of R. The object types named above have the following meaning:

Case:

a) If the object type of R is Definition, then R is an XML or SGML definition document. The FileType
enumeration domain in Section 5.2 identifies the valid XML and SGML definition file types.

b) If the object type of R is Instance, then R is an XML or SGML document that validates to some XML or
SGML definition. A registry entry for the definition document it validates to must be present in the same
registry. Call that registry entry D. There must be a Validates To association instance in the registry with E as
the given item and D as the associated item.

c) Registry Package is a specialization of Instance. If the object type of R is Registry Package, then R is a
registry package that validates to the RegistryPackage DTD defined in Section 7.6. E must have a Validates
To association with a registry entry for that DTD.

d) Classification Scheme is a specialization of Instance. If the object type of R is Classification Scheme, then R is
a classification scheme that validates to the ClassificationScheme DTD defined in Section 7.5. E must have a
Validates To association with a registry entry for that DTD.

e) If the object type of R is MIME type, then R is a document that can be classified by one of the MIME types
enumerated by the Internet Assigned Number Authority (IANA) as identified in Section 3.14. The specific
MIME classification will be given by the fileType attribute of E.

f) If the object type of R is Other, then R is of no specific type. Instead, the fileType of R may specify that R is
an HTML or some other type of document.

3. More?

39

5.2 FileType

Format

Source Code Name Description

OASIS charEntSet character-entity-set

OASIS rdfSchema rdf-schema This is a permitted fileType when the
objectType is Definition.

OASIS sgmlAttrib sgml-attribute

OASIS sgmlAttSet sgml-enumerated-attribute-set

OASIS sgmlAttVal sgml-enumerated-attribute-value

OASIS sgmlDTD sgml-dtd This is a permitted fileType when the
objectType is Definition.

OASIS sgmlElement sgml-element This is a permitted fileType when the
objectType is Definition.

OASIS sgmlEntity sgml-parameter-entity This is a permitted fileType when the
objectType is Definition.

OASIS soxSchema sox-schema This is a permitted fileType when the
objectType is Definition.

OASIS xdrSchema xdr-schema This is a permitted fileType when the
objectType is Definition.

OASIS xmlAttrib xml-attribute

OASIS xmlAttSet xml-enumerated-attribute-set

OASIS xmlAttVal xml-enumerated-attribute-value

OASIS xmlDTD xml-dtd This is a permitted fileType when the
objectType is Definition.

OASIS xmlElement xml-element This is a permitted fileType when the
objectType is Definition.

OASIS xmlEntity xml-parameter-entity This is a permitted fileType when the
objectType is Definition.

OASIS xmlSchema xml-schema This is a permitted fileType when the
objectType is Definition.

OASIS xml XML text document This is a permitted fileType when the
objectType is Instance.

OASIS zip zip This is a permitted fileType when the
objectType is Other.

OASIS ***** MIME type declaration Any valid mime type specified by IANA. With
hyphen (-) as separator in place of slash (/).
This is a permitted fileType when the
objectType is MIME.

OASIS sgml SGML text document This is a permitted fileType when the
objectType is Instance.

OASIS html-1 HTML Level 1 This is a permitted fileType when the
objectType is Instance. The implementation will
create an appropriate ValidatesTo association.

OASIS html-2 HTML Level 2 This is a permitted fileType when the
objectType is Instance. The implementation will
create an appropriate ValidatesTo association.

OASIS html-3 HTML Level 3 This is a permitted fileType when the
objectType is Instance. The implementation will
create an appropriate ValidatesTo association.

OASIS html-4 HTML Level 4 This is a permitted fileType when the
objectType is Instance. The implementation will

40

create an appropriate ValidatesTo association.

OASIS html-iso ISO/IEC 15445:2000 This is a permitted fileType when the
objectType is Instance. The implementation will
create an appropriate ValidatesTo association.

OASIS xhtml W3C Extensible HyperText
Markup Language (XHTML)
http://www.w3.org/TR/xhtml1).

This is a permitted fileType when the
objectType is Instance. The implementation will
create an appropriate ValidatesTo association.

OASIS ***** User provided file type Any text supplied by the user that is of type
CodeText as defined in Section 3.14.

Semantic Rules

1. The FileType enumeration domain provides a set of coded values for the fileType attribute of the RegistryEntry
class (Section 3.1). The fileType attribute may be dependent on the value declared for the objectType attribute.
Four asterisks indicate any valid string of type CodeText as defined in Section 3.14.

2. More?

41

5.3 RegistrationStatus

Source Code Name Description

OASIS sub Submitted Result of the RegisterObject request.
OASIS urw Under Review Submitted object is under review by panel.
OASIS reg Registered Object is registered.
OASIS sup Superceded Object is superceded by another object.
OASIS dep Deprecated Object is deprecated.
OASIS rep Replaced Object is replaced by another object.
OASIS wth Withdrawn Object is withdrawn.
OASIS exp Expired Registration of object has expired.

Semantic Rules

1. The RegistrationStatus enumeration domain provides the set of coded values for the registrationStatus attribute of
the RegistryEntry class (Section 3.1).

2. Let E be a registry entry whose defnSource attribute identifies OASIS as the defining organization. Let R be the
registered object referenced by the objectURL attribute of E. The registrationStatus attribute of E specifies the
registration status of R. The registration status alternatives named above have the following meaning:

Case:

a) If the registration status of R is Submitted, then neither E nor R are visible to outside users. E and its
associated metadata are visible only to the SO and the RA.

b) If the registration status of R is Under Review, then both E and R are visible to a select group of reviewers.
The structure and design of that review process is beyond the scope of this specification. E and R may not be
available to other users during this review process. At some point the review process is complete and R
receives a new registration status. If Registry conformance is with Validation (see Section 10.4), then this
review process may include validating R to its specification.

c) If the registration status of R is Registered, then E and R are available to the general public subject to other
conditions of this specification.

d) If the registration status of R is Superceded, then the RA has received and acted upon a request from the SO
that submitted E and R to supercede them with a new registered object and a new registry entry. The original
registered object remains available for continued use. The objectURL attribute of E continues to reference R,
and a new registry entry E' will reference the new object R'. In addition there will be an Is Supercede By
association instance with E and the given item and E' as the associated item. See the
SupercedeRegisteredObject request (Section 8.22) for details.

e) If the registration status of R is Replaced, then the RA has received and acted upon a request from the SO that
submitted E and R to replace R with a new registered object. The original registered object R is no longer
available, although its metadata E will remain in the registry for an indefinite period of time. The objectURL
attribute of E will now reference the new object R', and a new registry entry E' will also point to R'. In
addition there will be an Is Replaced By association instance with E and the given item and E' as the
associated item. See the ReplaceRegisteredObject request (Section 8.21) for details.

f) If the registration status of R is Deprecated, then the SO has indicated that R will soon be replaced or
withdrawn. No other metadata changes. Some organizations have a policy that an object must be deprecated
for a certain period of time before it can be withdrawn or replaced. Enforcement of such a policy is beyond the
scope of this specification. EDITOR's NOTE: There is no registry service yet to achieve this registration
status.

42

g) If the registration status of R is Withdrawn, then the RA has received and acted upon a request from the SO
that submitted R to withdraw it (Section 8.23). The original registered object is no longer available, although
its metadata will remain in the registry for an indefinite period of time. The objectURL attribute of E will now
have no value.

h) If the registration status of R is Expired, then the expirationDate attribute of E has passed with no
reaffirmation action (Section 8.20) from the SO. The original registered object R may or may not still be
available, although the registry entry E and other relevant metadata will remain in the registry for an indefinite
period of time.

3. Let R be any registered object and let SO be the owner of R as defined in Section 3.1. The registration status of R
may only be modified by SO.

43

5.4 Stability

Format

Source Code Name Description

OASIS comp Compatible Registered object may be replaced only by an
upward compatible object.

OASIS dynm Dynamic Registered object may change at any time.

OASIS stat Static Registered object will not change before
expiration.

Semantic Rules

1. The Stability enumeration domain provides the set of coded values for the stability attribute of the RegistryEntry
class (Section 3.1).

2. Let E be a registry entry whose defnSource attribute identifies OASIS as the defining organization. Let R be the
registered object referenced by the objectURL attribute of E. The stability attribute of E specifies the stability of R.
The stability alternatives named above have the following meaning:

Case:

a) If the stability of R is Static, then the SO declares that R will not be replaced or withdrawn before the
expiration date identified by the expirationDate attribute of E. It is the responsibility of the RA to ensure as
best it can that this declaration is not violated.

b) If the stability of R is Dynamic, then the SO declares that R may change without notice, possibly in
incompatible ways.

c) If the stability of R is Compatible, then the SO declares that R will not be replaced with an incompatible
object before the expiration date identified by the expirationDate attribute of E.

3. There is no default for stability. Each SO is required to declare an appropriate stability categorization for each
submission.

4. Let R and R' be XML or SGML definition objects (Section 5.1 and Section 5.2). R' is said to be compatible with R
if an XML document that validates to R also validates to R'.

5. Let R and R' be classification scheme instances (Section 7.5). R' is said to be compatible with R if every level of R
is a level of R' and if every node of R is a node of R' at the same level.

6. Let R and R' be registry package instances (Section 7.6). R' is said to be compatible with R if every package
member E of R is a package member of R' and if the stability attribute of every such E is not Dynamic.

7. Let R and R' be abstract data types. R' is said to be compatible if every attribute of R is an attribute of R' and if
every method of R is a method of R' having the same effect.

8. Let R be any registered object and let SO be the owner of R as defined in Section 3.1. The stability of R may only
be modified by SO.

9. EDITOR's NOTE: The notion of compatibility still needs to be examined for all other instance, html, mime, and
other object types!

44

5.5 FeeStatus

Format

Source Code Name Description

OASIS debit Debit The registered object is available on-line, but
requires payment of a fee before access is granted.

OASIS free Free The registered object is freely available with no
password or payment required.

OASIS pswd Password The registered object is free, but password is
required for retrieval.

Semantic Rules

1. The FeeStatus enumeration domain provides the set of coded values for the feeStatus attribute of the RegistryEntry
class (Section 3.1).

2. Let E be a registry entry whose defnSource attribute identifies OASIS as the defining organization. Let R be the
registered object referenced by the objectURL attribute of E. The feeStatus attribute of E specifies the fee status of
R. The fee status alternatives named above have the following meaning:

Case:

a) If the feeStatus of R is Free, then the URL identified by the objectURL attribute of E follows an anonymous
protocol that allows retrieval of R with no password or payment obstructions.

b) If the feeStatus of R is Password, then the URL identified by the objectURL attribute of E may require a
password, but access to R is free. The procedure for obtaining a password is not part of this specification; it
may include agreeing to property rights specified by the submitting organization.

c) If the feeStatus of R is Debit, then the URL identified by the objectURL attribute of E may require a payment
before it is activated. The procedure for handling the payment is not part of this specification.

3. The default FeeStatus is Free.

4. Let R be any registered object and let SO be the owner of R as defined in Section 3.1. The feeStatus of R may only
be modified by SO.

45

5.6 PropertyRights

Format

Source Code Name Description

OASIS xxx XXX TO BE DETERMINED

OASIS none None There are no property rights for this registered
object. It can be used by any user as desired.

Semantic Rules

1. The PropertyRights enumeration domain provides the set of coded values for the propertyRights attribute of the
RegistryEntry class (Section 3.1).

2. Let E be a registry entry whose defnSource attribute identifies OASIS as the defining organization. Let R be the
registered object referenced by the objectURL attribute of E. The propertyRights attribute of E specifies the
property rights of R. The property rights alternatives named above have the following meaning:

Case:

a) [NOT FINISHED]

b) [NOT FINISHED]

c) If the property rights of R is None, then there are no restrictions on the use of R by any user of registry
services.

3. The default PropertyRights is None. [NOTE: Some other default may be more appropriate!]

4. Let R be any registered object and let SO be the owner of R as defined in Section 3.1. The property rights of R
may only be modified by SO.

46

5.7 AssociationRole

Format

Source Code Name Description

OASIS val Validates To
The given item validates to the specification
provided by the associated item.

OASIS req Requires
The given item requires the presence of the
associated item before it can be processed or used.

OASIS cnt Contains
The given item is a package that contains the
associated item.

OASIS sup Is Superceded By
The given item supercedes associated item, but
associated item remains intact.

OASIS rep Is Replaced By
The given item replaces associated item, and
associated item is no longer available.

OASIS rel Is Related To
The given item is related to and provides
supplemental information for the associated item.

Semantic Rules

1. The AssociationRole enumeration domain provides the set of coded values for the associationRole attribute of the
Association class (Section 3.2).

2. Let E be a registry entry whose defnSource attribute identifies OASIS as the defining organization. Let X be an
Association instance linked to E with E as the given item of X and E' as the associated item of X. Let R and R' be
the registered objects referenced by the objectURL attributes of E and E', respectively. The associationRole
attribute of X specifies the association role of R with respect to R'. The association role alternatives named above
have the following meaning:

Case:

a) If the association role of R with respect to R' is Validates To, then the SO declares that R validates to the
definition of R'. The RA is under no obligation to check whether this declaration is or remains true.

b) If the association role of R with respect to R' is Requires, then the SO declares that use of R requires the
presence of R'.

c) If the association role of R with respect to R' is Contains, then the SO declares that R is a registry package that
contains E' as a package member.

d) If the association role of R with respect to R' is Is Superceded By, then the SO declares that R is superceded by
R'. The effect is that E remains in the registry, its registrationStatus attribute now indicates Superceded, and its
objectURL attribute still references R. For processing details see Section 8.22.

e) If the association role of R with respect to R' is Is Replaced By, then the SO declares that R is replaced by R'.
The effect is that E remains in the Registry and its registrationStatus attribute now indicates Replaced, but the
objectURL attributes of both E and E' now reference R'. For processing details see Section 8.21.

f) If the association role of R with respect to R' is Is Related To, then the SO declares that R is related to R'.

3. There is no default AssociationRole; an explicit role must be declared for each association.

47

5.8 NameContext

Format

Source Code Name Description

OASIS cpp C++ Name For Programming Language C++ usage.
OASIS code Code Name A name consisting of visible characters

only, i.e. no embedded space characters.
OASIS java Java Name For Programming Language Java usage.
OASIS lang Language Name For use in a specified human language.
OASIS long Long Name 1 to 150 characters
OASIS short Short Name 1 to 8 characters
OASIS sql SQL Name For Database Language SQL usage.
OASIS urn Uniform Resource Name Name conforms to W3C URN syntax

Semantic Rules

1. The NameContext enumeration domain provides the set of coded values for the nameContext attribute of the
AlternateName class (Section 3.8).

2. Let E be a registry entry whose defnSource attribute identifies OASIS as the defining organization. Let R be the
registered object referenced by the objectURL attribute of E. Let X be an AlternateName instance linked to E and
let AN be the name specified by the altName attribute of X. The nameContext attribute of X specifies the context
of AN as an alternate name for R. The NameContext alternatives named above have the following meaning:

Case:

a) If the name context of AN is Uniform Resource Name, then AN satisfies the syntactic requirements of a W3C
URN. The intent is that this context be used when it is discovered that R has been registered in some other
conforming Registry with an assignedURN, equal to AN, that differs from the one assigned by this Registry.

b) If the name context of AN is Code Name, then AN satisfies the syntactic constraints of the CodeText datatype
defined in Section 3.14. The intent is that AN become the name for R in programming environments with
strict limitations on name format and name length.

c) Short Name is a specialization of Code Name, restricting the length of AN to 8 characters.

d) C++ Name is a specialization of Code Name, restricting the length and format of AN to a name acceptable for
use in C++ programming environments.

e) Java Name is a specialization of Code Name, restricting the length and format of AN to a name acceptable for
use in Java programming environments.

f) SQL Name is a specialization of Code Name, restricting the length and format of AN to a name acceptable for
use in SQL programming environments.

g) If the name context of AN is Long Name, then AN satisfies the syntactic constraints of the LongName
datatype defined in Section 3.14. The intent is that this context be declared when AN is just another alternate
name for R with no special usage expectations.

h) If the name context of AN is Language Name, then AN is an alternate name for R expressed in the explicit
human language identified by the language attribute of X.

3. The default NameContext is Long Name.

48

5.9 ContactAvailability

Format

Source Code Name Description

OASIS pri Private Contact available only to SO and RA.

OASIS pro Protected Contact available only to RA's.

OASIS pub Public Contact available to all users of registry.

Semantic Rules

1. The ContactAvailability enumeration domain provides the set of coded values for the availability attribute of the
Contact class (Section 3.5).

2. Let X be a Contact instance. In order of precedence, X will be associated with a Request instance, a Submission
instance, or an Organization instance. The availability attribute of X specifies the availability of X with respect to
answering questions related to the Request, the Submission, or the Organization (see Figure 4 in Section 2.7). The
ContactAvailability alternatives named above have the following meaning:

Case:

a) If the availability of X is Private, then the RA will not reveal X to any other organization.

b) If the availability of X is Protected, then the RA may reveal X to other legitimate authorities, where legitimate
authorities for Oasis implementations are other Oasis approved Registration Authorities, or individuals or
organizations involved in the review or approval process for registry entries or registered objects.

c) If the availability of X is Public, then the RA may reveal X to any user of the registry maintained by the RA.

3. The default ContactAvailability is Public.

49

5.10 ContactRole

Format

Source Code Name Description

OASIS admn Administrative Contact addresses administrative issues.

OASIS all All Issues Contact addresses all issues.

OASIS tech Technical Contact addresses technical issues.

Semantic Rules

1. The ContactRole enumeration domain provides the set of coded values for the contactRole attribute of the Contact
class (Section 3.5).

2. Let X be a Contact instance. In order of precedence, X will be associated with a Request instance, a Submission
instance, or an Organization instance. The contactRole attribute of X specifies the role of X with respect to
answering administrative questions related to the Request, the Submission, or the Organization (see Figure 4 in
Section 2.7). The ContactRole alternatives named above have the following meaning:

Case:

a) If the role of X is Administrative, then the contact is prepared to address administrative questions or issues
related to the associated request, submission, or organization.

b) If the role of X is Technical, then the contact is prepared to address technical questions or issues related to the
associated request, submission, or organization.

c) If the role of X is All Issues, then the contact is prepared to address all questions or issues related to the
associated request, submission, or organization.

3. The default ContactRole is All Issues.

50

5.11 RelatedRole

Format

Source Code Name Description

OASIS Changelog changelog
OASIS CvrLetter cover-letter
OASIS DistribHP distribution-home-page
OASIS DocSet documentation-set
OASIS DocSetInfo documentation-set-information
OASIS DSSLSS dssl-style-sheet
OASIS DSSLSSinfo dssl-style-sheet-information
OASIS EmailInfo email-discussion-list-information
OASIS Example example
OASIS ExpSet example-set
OASIS ExpSetInfo example-set-information
OASIS FAQ faq
OASIS Other other
OASIS PublicText public-text
OASIS ReadMe readme
OASIS RefMan reference-manual
OASIS RegInfo registration-information
OASIS RelDataGrp related-data-group
OASIS SchemaHP schema-home-page
OASIS SGMLdeclar sgml-declaration
OASIS SGMLopnCat sgml-open-catalogue
OASIS StyleSinfo style-sheet-information
OASIS ToolInfo tool-information
OASIS UserGuide user-guide
OASIS WhitePaper white-paper
OASIS XSLSS xsl-style-sheet
OASIS XSLSSinfo xsl-style-sheet-information

Semantic Rules

1. The RelatedRole enumeration domain provides the set of coded values for the relatedRole attribute of the
ExternalData class (Section 3.9).

2. Let E be a registry entry whose defnSource attribute identifies OASIS as the defining organization. Let R be the
registered object referenced by the objectURL attribute of E. Let X be an ExternalData instance linked to E. The
relatedRole attribute of X specifies the relationship role of the ExternalData instance to R. Each of these roles is
self-explained by the Name and/or Description given above.

3. EDITOR's NOTE: It seems that many of the above XML and SGML-related items could be deleted, since style
sheets and SGML declarations would likely be registered objects, not external data references. Also, ChangeLog
replicates the intent of the Impact class, and Cover Letter has very little meaning.

4. More? EDITOR's NOTE: Is this an open or closed list?

51

5.12 RoleCategory

Format

Source Code Name Description

OASIS creation Creation Authors, Co-authors, or others directly
responsible for creation of the registered object.

OASIS approval Approval Individuals or organizations responsible for
approval of the registered object.

OASIS support Support Administrative or technical staff or functions
helpful to development of the registered object.

OASIS review Review Individuals or functions involved in critical review
of the registered object but not in its approval.

OASIS other Other The contribution has no specific categorization.

Semantic Rules

1. The RoleCategory enumeration domain provides the set of coded values for the roleCategory attribute of the
Contribution class (Section 3.11).

2. Let E be a registry entry whose defnSource attribute identifies OASIS as the defining organization. Let R be the
registered object referenced by the objectURL attribute of E. Let X be a Contribution instance linked to E. The
roleCategory attribute of X specifies the role category of the contribution to R. The RoleCategory alternatives
named above have the following meaning:

Case:

a) If the role category of X to R is Creation, then X had an important role in the creation of R. This may include
authors, co-authors, editors, co-editors, producers, members of specification development committees, etc.

b) If the role category of X to R is Approval, then X had an important role in the approval process that led to
registration of R. This may include voting members of the group that votes a specification up or down. The
contributorRole attribute of X may distinguish approval, disapproval, and abstention positions of voting
members since those positions could have important consequences for implementation of a specification.

c) If the role category of X to R is Support, then X had a support role in the creation of R. This may include
administrative support staff, illustrators, technicians, etc.

d) If the role category of X to R is Review, then X had an important role in reviewing the content of R. This may
include independent technical reviews, quality reviews, usability reviews, conformance reviews, etc. In
general, such reviewers do not actually vote on approval or disapproval of R's acceptance.

e) If the role category of X to R is Other, then X has no specific categorization. In this case, the contributorRole
attribute identifies the specific role of X to R, with possible use of the comment attribute for additional
explanation.

3. The default RoleCategory is Creation.

52

6. XML Representations
The OASIS Information Model specifies the logical structures of an OASIS Registry/Repository in terms of a UML
specified data model. The XML definitions specified in this section, and the semantic rules associated with them, are
defined in terms of the classes and attributes of that data model. The attributes of those classes are represented either as
XML elements or as XML attributes, whichever seems most appropriate.

These ELEMENT's and DTD's are intended to be the basis of communication between a Submitting Organization and
an OASIS conformant registry/repository, or between two conforming registry/repositories. The slightly different
versions of each element provide an appropriate structure for each purpose.

There are at most three versions of each important class instance, one for use in a submission of that instance from a
submitting organization to a registry, one for representation of that instance in a nested XML document for registry-to-
registry exchange, and one for representation of a set of class instances in a flat file. The flat file representations
generally require identifiers for each instance and pointers among instances to represent their relationships, whereas the
submission and nested forms represent the relationships in the structured nesting of elements.

NOTE: The authors of this document do not feel confident about when it is best to represent something as an XML
element and when it is better to represent it as an XML attribute. It will be straight-forward to do the right thing after
some good discussions. EDITOR's NOTE: Act on this in December or delete!!

53

6.1 RegistryEntry Elements

Purpose

To define or represent a registry entry.

Definition

<!ELEMENT RegistryEntrySubmit
(CommonName, ShortDescription)>

<!ATTLIST RegistryEntrySubmit
suggestedURN CDATA #IMPLIED
version CDATA #IMPLIED
objectURL CDATA #REQUIRED
defnSource (%defnSourceList;) #REQUIRED
objectType (%objectTypeList;) #REQUIRED
fileType CDATA #IMPLIED
stability (%stabilityList;) #REQUIRED
feeStatus (%feeStatusList;) "free"
propertyRights (%propRightsList;) "none"
expirationDate CDATA #IMPLIED
respOrgURN CDATA #IMPLIED
regEntryId ID #IMPLIED >

<!ELEMENT CommonName (#PCDATA)>

<!ELEMENT ShortDescription (#PCDATA)>

<!ELEMENT RegistryEntryInstance
(CommonName, ShortDescription)>

<!ATTLIST RegistryEntryInstance
regEntryId ID #REQUIRED
assignedURN CDATA #REQUIRED
version CDATA #IMPLIED
objectURL CDATA #IMPLIED
defnSource (%defnSourceList;) #REQUIRED
objectType (%objectTypeList;) #REQUIRED
fileType CDATA #IMPLIED
registrationStatus (%regStatusList;) #REQUIRED
statusChgDate CDATA #REQUIRED
stability (%stabilityList;) #REQUIRED
feeStatus (%feeStatusList;) #REQUIRED
propertyRights (%propRightsList;) #REQUIRED
expirationDate CDATA #REQUIRED
submitOrgURN CDATA #REQUIRED
submitOrgREF IDREF #IMPLIED
respOrgURN CDATA #IMPLIED
respOrgREF IDREF #IMPLIED >

Semantic Rules

1. A submission of a proposed new registry entry from a Submitting Organization (SO) to a Registry uses the
RegistryEntrySubmit element. An exchange or representation of an existing registry entry uses the
RegistryEntryInstance element. The RegistryEntry class definition is in Section 3.1. All XML ENTITY definitions
are in Section 6.18.

2. The suggestedURN attribute in RegistryEntrySubmit is only a suggestion by the SO as to what the assignURN
attribute of a registry entry should be. The final determination is made by the RA.

54

3. The expirationDate attribute in RegistryEntrySubmit is only a suggestion by the SO. The RegistrationAuthority
decides the expirationDate based on Registry policy. The expirationDate is represented by the Date Literal
datatype (see Section 3.14).

4. The objectURL attribute in RegistryEntrySubmit may be a URL or FTP reference to a remote file, or it may be a
local file reference to a file provided with the same submission.

5. Depending on the value of the objectType, the fileType may sometimes be required. See the Semantic Rules for
the FileType enumeration domain in Section 5.2. If it is required, its value may come from the fileTypeList entity
specified in Section 6.18.

6. If the registry entry describes a registered object that has been withdrawn, then the objectURL is not required in
the RegistryEntryInstance element. In all other cases, objectURL is required.

7. The submitOrgURN attribute represents the submittingOrg attribute of the RegistryEntry class. It is a URN that
identifies an organization known to the RA and whose hasSOstatus attribute is true.

8. The respOrgURN attribute represents the responsibleOrg attribute of the RegistryEntry class. If present, it is a
URN that identifies an Organization instance known to the RA. If it is not the SO, then its hasROstatus attribute
must be true.

9. The submitOrgREF and responsibleOrgREF attributes in RegistryEntryIinstance represent the submittingOrg and
responsible Org attributes of the RegistryEntry class. If present, each must identify an Organization element in the
same XML document.

10. The regEntryId attribute corresponds to the hidden regEntryId attribute of the RegistryEntry class. It need be
unique only within a given XML document.

55

6.2 Association Elements

Purpose

To define or represent an association instance.

Definition

<!ELEMENT Association (Comment?)>
<!ATTLIST Association

assocRole (%assocRoleList;) #REQUIRED
assocItemURN CDATA #IMPLIED
assocItemREF IDREF #IMPLIED >

<!ELEMENT AssociationFlat (Comment?)>
<!ATTLIST AssociationFlat

givenItemURN CDATA #REQUIRED
givenItemREF IDREF #IMPLIED
assocRole (%assocRoleList;) #REQUIRED
assocItemURN CDATA #REQUIRED
assocItemREF IDREF #IMPLIED >

<!ELEMENT Comment (#PCDATA)>

Semantic Rules

1. A submission of a proposed new association instance from a Submitting Organization (SO) to a Registry uses the
Association element. An exchange or representation of an existing association instance in a nested format, where
the given item instance is known, uses the Association element. An exchange or representation of an existing
association instance as a flat file uses the Association Flat element. The Association class definition is in Section
3.2 and all XML ENTITY definitions are in Section 6.18.

2. In the Association element, one of the attributes, either assocItemURN or assocItemREF, is required.

3. The assocRole attribute represents the associationRole attribute of the Association class.

4. The assocItemURN and assocItemREF attributes represent the assocItem attribute of the Association class.

5. The givenItemURN and givenItemREF attributes represent the givenItem attribute of the Association class.

6. The givenItemREF attribute, if present, must identify a RegistryEntry element in the same XML document.

7. The assocItemREF attribute, if present, must identify a RegistryEntry element in the same XML document.

56

6.3 Classification Elements

Purpose

To define or represent a classification instance.

Definition

<!ELEMENT Classification (LevelValuePair+, Comment?)>
<!ATTLIST Classification

schemeURN CDATA #REQUIRED
schemeName CDATA #IMPLIED
submitOrgURN CDATA #IMPLIED
submitOrgREF IDREF #IMPLIED >

<!ELEMENT LevelValuePair (Comment?)>
<!ATTLIST LevelValuePair

levelCode CDATA "leaf"
itemValue CDATA #REQUIRED
levelNbr CDATA #IMPLIED
itemName CDATA #IMPLIED >

<!ELEMENT ClassificationFlat (Comment?)>
<!ATTLIST ClassificationFlat

regEntryId IDREF #REQUIRED
regEntryURN CDATA #IMPLIED
schemeURN CDATA #REQUIRED
schemeId IDREF #IMPLIED
levelCode CDATA #REQUIRED
itemValue CDATA #REQUIRED
itemName CDATA #IMPLIED
submitOrgURN CDATA #IMPLIED
submitOrgREF IDREF #IMPLIED >

Semantic Rules

1. A submission of a proposed new classification from a Submitting Organization (SO) to a Registry uses the
Classification element. An exchange or representation of an existing classification in a nested format, where the
given item instance is known, uses the Classification element. An exchange or representation of an existing
classification instance as a flat file uses the ClassificationFlat element. The Classification class definition is in
Section 3.3.

2. The schemeName , if present, matches the commonName attribute of the registry entry identified by schemeURN.

3. The levelNbr attribute, if present, must match the levelNbr of the level identified by levelCode.

4. The itemName attribute, if present, must match the itemName of the item identified by itemValue.

5. The regEntryId attribute corresponds to the regEntryId attribute of the Classification class in the information
model. It must identify a RegistryEntry element in the same XML document.

6. The regEntryURN attribute, if present, must match the assignedURN of the registry entry identified by regEntryId.

57

6.4 ExternalData Elements

Purpose

To define or represent an external data instance.

Definition

<!ELEMENT ExternalData (DataName , Comment?)>
<!ATTLIST ExternalData

relatedRole (%relatedRoleList;) #REQUIRED
dataLocation CDATA #REQUIRED
mimeType CDATA "text" >

<!ELEMENT DataName (#PCDATA)>

<!ELEMENT ExternalDataFlat (DataName , Comment?)>
<!ATTLIST ExternalDataFlat

regEntryId IDREF #REQUIRED
regEntryURN CDATA #IMPLIED
relatedRole (%relatedRoleList;) #REQUIRED
dataLocation CDATA #REQUIRED
mimeType CDATA #REQUIRED >

Semantic Rules

1. A submission of a proposed new external data instance from a Submitting Organization (SO) to a Registry uses the
ExternalData element. An exchange or representation of an existing external data instance in a nested format,
where the given item instance is known, uses the ExternalData element. An exchange or representation of an
existing association instance as a flat file uses the ExternalDataFlat element. The ExternalData class definition is in
Section 3.9 and all XML ENTITY definitions are in Section 6.18.

2. The regEntryId attribute corresponds to the implicit regEntryId attribute of the ExternalData class in the
information model. It must identify a RegistryEntry element in the containing XML document.

3. The regEntryURN attribute, if present, must match the assignedURN of the registry entry identified by regEntryId.

4. A DataName element must have at least 1 visible character, and must uniquely identify that element within its
containing XML document.

5. EDITOR's NOTE: Is the RelatedRole enumeration domain an open list or a closed list? If open, then the
relatedRoleList entity must be replaced above.

58

6.5 Organization Elements

Purpose

To define or represent an organization instance.

Definition

<!ELEMENT OrganizationSubmit (Comment?)>
<!ATTLIST OrganizationSubmit

orgFullName CDATA #REQUIRED
commonName CDATA #IMPLIED
orgURL CDATA #IMPLIED
parentOrgURN CDATA #IMPLIED
addrLine1 CDATA #IMPLIED
addrLine2 CDATA #IMPLIED
addrLine3 CDATA #IMPLIED
city CDATA #IMPLIED
stateProv CDATA #IMPLIED
postalCode CDATA #IMPLIED
country CDATA #REQUIRED
email CDATA #IMPLIED
telephone CDATA #IMPLIED
fax CDATA #IMPLIED >

<!ELEMENT OrganizationInstance (Comment?)>
<!ATTLIST OrganizationInstance

orgId ID #REQUIRED
orgURN CDATA #REQUIRED
orgFullName CDATA #IMPLIED
commonName CDATA #REQUIRED
hasSOstatus CDATA #IMPLIED
hasROstatus CDATA #IMPLIED
hasRAstatus CDATA #IMPLIED
orgURL CDATA #IMPLIED
parentOrgURN CDATA #IMPLIED
parentOrgId IDREF #IMPLIED
addrLine1 CDATA #IMPLIED
addrLine2 CDATA #IMPLIED
addrLine3 CDATA #IMPLIED
city CDATA #IMPLIED
stateProv CDATA #IMPLIED
postalCode CDATA #IMPLIED
country CDATA #REQUIRED
email CDATA #IMPLIED
telephone CDATA #IMPLIED
fax CDATA #IMPLIED >

Semantic Rules

1. A submission for registration of an organization as a Submitting Organization (SO) to a Registry uses the
OrganizationSubmit element. An exchange or representation of an organization already recognized by the
Registration Authority (RA) uses the OrganizationInstance element. Organization class definition is in Section 3.4.

2. The parentOrgURN and parentOrgId attributes represent the parentOrg attribute of the Organization class.

3. The parentOrgURN attribute of the OrganizationSubmit element, if present, must identify the orgURN of an
organization already known to the RA.

59

4. The parentOrgId attribute of the OrganizationInstance, if present, must identify an OrganizationInstance element in
the containing XML document.

5. The orgId attribute corresponds to the orgId attribute of the Organization class in the information model. It need be
unique only within a given XML document.

60

6.6 Contact Elements

Purpose

To define or represent a contact instance.

Definition

<!ELEMENT Contact (Comment?)>
<!ATTLIST Contact

contactName CDATA #REQUIRED
email CDATA #REQUIRED
telephone CDATA #IMPLIED
fax CDATA #IMPLIED
orgURN CDATA #IMPLIED
orgRole (%orgRoleList;) "SO"
availability (%contactAvailList;) "pub"
contactRole (%contactRoleList;) "all" >

<!ELEMENT ContactNested (Comment?)>
<!ATTLIST ContactNested

contactName CDATA #REQUIRED
orgURN CDATA #REQUIRED
orgRole (%orgRoleList;) #REQUIRED
submitId IDREF #IMPLIED
requestNbr CDATA #IMPLIED
availability (%contactAvailList;) #REQUIRED
contactRole (%contactRoleList;) #REQUIRED
email CDATA #REQUIRED
telephone CDATA #IMPLIED
fax CDATA #IMPLIED >

<!ELEMENT ContactInstance (Comment?)>
<!ATTLIST ContactInstance

contactId ID #REQUIRED
contactName CDATA #REQUIRED
orgId IDREF #REQUIRED
orgURN CDATA #IMPLIED
orgRole (%orgRoleList;) #REQUIRED
submitId IDREF #IMPLIED
requestNbr CDATA #IMPLIED
availability (%contactAvailList;) #REQUIRED
contactRole (%contactRoleList;) #REQUIRED
email CDATA #REQUIRED
telephone CDATA #IMPLIED
fax CDATA #IMPLIED >

Semantic Rules

1. A submission of a proposed new contact instance from a Submitting Organization (SO) to a Registry uses the
Contact element. An exchange or representation of an existing contact instance in a nested format, where some
parent item instance is known, uses the ContactNested element. An exchange or representation of an existing
contact instance as a flat file uses the ContactInstance element. The Contact class definition is in Section 3.5.

2. The orgURN attribute corresponds to the orgId attribute of the Contact class in the information model. If present,
it is a URN that identifies an organization known to the RA. All XML entities are defined in Section 6.18.

3. The contactId attribute corresponds to the contactId attribute of the Contact class in the information model. It need
be unique only within a given XML document.

61

4. The submitId attribute corresponds to the implicit submitId attribute of the Submission class in the information
model. If present, it must identify a SubmissionInstance element in the containing XML document.

5. The requestNbr attribute corresponds to the requestNbr attribute of the Request class in the information model. If
present, it must identify a Request element in the containing XML document.

62

6.7 AlternateName Elements

Purpose

To define or represent an alternate name instance.

Definition

<!ELEMENT AlternateName
 (AltName, Comment?)>
<!ATTLIST AlternateName
 nameContext (%nameContextList;) #REQUIRED

submittingOrg CDATA #IMPLIED
 language CDATA #IMPLIED
 encoding CDATA #IMPLIED >

<!ELEMENT AltName (#PCDATA)>

<!ELEMENT AlternateNameFlat
 (AltName, Comment?)>
<!ATTLIST AlternateNameFlat
 regEntryId IDREF #REQUIRED
 regEntryURN CDATA #IMPLIED
 nameContext (%nameContextList;) #REQUIRED

submittingOrg CDATA #IMPLIED
 language CDATA #IMPLIED
 encoding CDATA #IMPLIED >

Semantic Rules

1. A submission of a proposed new alternate name instance from a Submitting Organization (SO) to a Registry uses
the AlternateName element. An exchange or representation of an existing alternate name instance in a nested
format, where some parent item instance is known, uses the AlternateName element. An exchange or
representation of an existing alternate name instance as a flat file uses the AlternateNameFlat element. The
AlternateName class definition is in Section 3.8 and all XML ENTITY definitions are in Section 6.18.

2. The regEntryId attribute corresponds to the regEntryId attribute of the RegistryEntry class in the information
model. It must identify a RegistryEntry element in the same XML document.

3. The regEntryURN attribute, if present, must match the assignedURN of the registry entry identified by regEntryId.

4. The altName attribute must contain at least 1 visible character.

63

6.8 Description Elements

Purpose

To define or represent a description instance.

Definition

<!ELEMENT Description (FullDescription, KeywordList?, Abstract?)>
<!ATTLIST Description

language CDATA #REQUIRED
encoding CDATA #REQUIRED
submittingOrg CDATA #IMPLIED >

<!ELEMENT DescriptionFlat (FullDescription, KeywordList?, Abstract?)>
<!ATTLIST DescriptionFlat

regEntryId IDREF #REQUIRED
regEntryURN CDATA #IMPLIED
language CDATA #REQUIRED
encoding CDATA #REQUIRED
submittingOrg CDATA #IMPLIED >

<!ELEMENT FullDescription (#PCDATA)>

<!ELEMENT KeywordList (#PCDATA)>

<!ELEMENT Abstract (#PCDATA)>

Semantic Rules

1. A submission of a proposed new description instance from a Submitting Organization (SO) to a Registry uses the
Description element. An exchange or representation of an existing description instance in a nested format, where
some parent item instance is known, uses the Description element. An exchange or representation of an existing
description instance as a flat file uses the DescriptionFlat element. The Description class definition is in Section
3.10.

2. The regEntryId attribute corresponds to the regEntryId attribute of the RegistryEntry class in the information
model. It must identify a RegistryEntry element in the same XML document.

3. The regEntryURN attribute, if present, must match the assignedURN of the registry entry identified by regEntryId.

4. The Description element must contain at least 1 visible character.

64

6.9 Contribution Elements

Purpose

To define or represent a constribution instance.

Definition

<!ELEMENT Contribution
(ContributorName,
 ContributorRole,
 Comment?)>

<!ATTLIST Contribution
contributorURL CDATA #IMPLIED
roleCategory CDATA #IMPLIED >

<!ELEMENT ContributionFlat (Comment?)>
<!ATTLIST ContributionFlat

regEntryId IDREF #REQUIRED
contributorURL CDATA #IMPLIED
roleCategory CDATA #IMPLIED >

<!ELEMENT ContributorName (#PCDATA)>

<!ELEMENT ContributorRole (#PCDATA)>

Semantic Rules

1. A submission of a proposed new contribution instance from a Submitting Organization (SO) to a Registry uses the
Contribution element. An exchange or representation of an existing contribution instance in a nested format, where
some parent registry entry instance is known, uses the Contribution element. An exchange or representation of
existing contribution instances as a flat file uses the ContributionFlat element. The Contribution class definition is
in Section 3.11.

2. The regEntryId attribute corresponds to the regEntryId attribute of the RegistryEntry class in the information
model. It must identify a registry entry element in the same XML document.

3. The ContributorName element corresponds to the contributorName attribute of the Contribution class in the
information model.

4. The ContributorRole element corresponds to the contributorRole attribute of the Contribution class in the
information model.

5. The contributorURL attribute corresponds to the contributorURL attribute of the Contribution class in the
information model.

6. The ContributorName, ContributorRole, and Comment elements must each contain at least 1 visible character.

65

6.10 SubmissionInstance Element

Purpose

To represent a submission instance. It does not include the requests that make up the content of a submission.

Definition

<!ELEMENT SubmissionInstance (Comment?)>
<!ATTLIST SubmissionInstance

submitId ID #REQUIRED
submitTime CDATA #REQUIRED
submitOrgId IDREF #IMPLIED
submitOrgURN CDATA #REQUIRED >

Semantic Rules

1. The SubmissionInstance element is intended for use by Registration Authorities (RA) for Registry information
representation and exchange. It should not be used by a Submitting Organization to specify a submission. Instead,
the SubmitRequest DTD should be used. The Submission class definition is in Section 3.6.

2. The submitId attribute corresponds to the hidden submitId attribute of the Submission class in the information
model. It need be unique only within a given XML document.

3. The submitOrgId attribute corresponds to the submittingOrg attribute of the Submission class in the information
model. If present, it must identify an Organization element in the containing XML document.

4. The submitOrgURN attribute corresponds to the submittingOrg attribute of the Submission class in the
information model. It must identify an organization known to the RA.

66

6.11 Request Elements

Purpose

To represent a request instance.

Definition

<!ELEMENT RequestNested (Comment?)>
<!ATTLIST RequestNested

requestCode (%requestCodeList;) #REQUIRED
contentXML CDATA #IMPLIED >

<!ELEMENT RequestFlat (Comment?)>
<!ATTLIST RequestFlat

submitId IDREF #REQUIRED
requestNbr CDATA #REQUIRED
requestCode (%requestCodeList;) #REQUIRED
contentXML CDATA #IMPLIED >

Semantic Rules

1. The RequestInstance element is intended for use by Registration Authorities for Registry information
representation and exchange. It should not be used by a Submitting Organization to specify a request as part of a
submission. Instead, the Request element should be used as part of a SubmitRequest DTD. The Request class
definition is in Section 3.7 and all XML ENTITY definitions are in Section 6.18.

2. The submitId attribute corresponds to the submitId attribute of the Submission class in the information model. It
must reference a SubmissionInstance element in the containing XML document.

3. The requestNbr attribute corresponds to the requestNbr attribute of the Request class in the information model.

67

6.12 Impact Element

Purpose

To represent an impact instance.

Definition

<!ELEMENT Impact (Comment?)>
<!ATTLIST Impact

regEntryId IDREF #IMPLIED
regEntryURN CDATA #REQUIRED
submitId IDREF #IMPLIED
requestNbr CDATA #IMPLIED
impactCode (%impactCodeList;) #REQUIRED >

Semantic Rules

1. The Impact element is intended for use by Registration Authorities for Registry information representation and
exchange. It is completely determined by the Registration Authority and should not be used by a Submitting
Organization as any part of a submission. The Impact class definition is in Section 3.12 and all XML ENTITY
definitions are in Section 6.18.

2. The regEntryId attribute corresponds to the regEntryId attribute of the RegistryEntry class in the information
model. If present, it must identify a RegistryEntry element in the same XML document.

3. The regEntryURN attribute must match the assignedURN of the registry entry identified by regEntryId.

4. The (submitId, requestNbr) pair, if present, must identify a Request element in the containing XML document.

68

6.13 ClassifSchemeInstance Element

Purpose

To represent a classification scheme instance. It does not include the levels or items of the classification scheme.

Definition

<!ELEMENT ClassifSchemeInstance (Comment?)>
<!ATTLIST ClassifSchemeInstance

schemeURN CDATA #REQUIRED
commonName CDATA #IMPLIED
schemeId IDREF #IMPLIED >

Semantic Rules

1. The ClassifSchemeInstance element is intended for use by Registration Authorities for Registry information
representation and exchange. It cannnot be used by a Submitting Organization to define a classification scheme as
part of a submission request. Instead, the DefineClassificationScheme request element must be used. The
ClassificationScheme class definition is in Section 3.13.

2. The schemeURN attribute corresponds to the schemeURN attribute of the ClassificationScheme class in the
information model. It must be equal to the assignedURN of a registry entry in the Registry.

3. The commonName attribute, if present, must be equal to the commonName of the registry entry identified by the
schemeURN.

4. The schemeId attribute corresponds to the implicit regEntryId attribute of the ClassificationScheme class in the
information model. If present, it must match the regEntryId of a registry entry element in the containing XML
document.

69

6.14 ClassificationLevel Elements

Purpose

To define, identify, or exchange a classification level instance. It does not include the item values defined for that level.

Definition

<!ELEMENT ClassificationLevel (Comment?)>
<!ATTLIST ClassificationLevel
 levelCode CDATA #REQUIRED
 levelName CDATA #IMPLIED

levelNbr CDATA #IMPLIED >

<!ELEMENT ClassificationLevelFlat (Comment?)>
<!ATTLIST ClassificationLevelFlat
 schemeURN CDATA #REQUIRED
 schemeId IDREF #IMPLIED
 levelCode CDATA #REQUIRED
 levelName CDATA #IMPLIED
 levelNbr CDATA #IMPLIED >

Semantic Rules

1. A submission of a proposed new classification level instance from a Submitting Organization (SO) to a Registry
uses the ClassificationLevel element. An exchange or representation of an existing classification level instance in a
nested format, where the parent classification scheme is known, uses the ClassificationLevel element. An
exchange or representation of an existing classification level instance as a flat file uses the ClassificationLevelFlat
element. The ClassificationLevel class definition is in Section 3.13.

2. If a ClassificationLevel element is part of a DefineClassificationScheme element, then the levelCode and
levelName attributes define a level code and a level name for the indicated level of the classification scheme. The
levelNbr, if present, is superfluous and will be ignored by the registry.

3. If a ClassificationLevel element is not part of a DefineClassificationScheme element, then the levelName attribute,
if present, must be the levelName of the level identified by the levelCode.

4. If a ClassificationLevel element is not part of a DefineClassificationScheme element, then the levelNbr attribute, if
present, must be the levelNbr of the level identified by the levelCode.

5. The schemeURN attribute corresponds to the schemeURN attribute of the ClassificationScheme class in the
information model. It must be equal to the assignedURN of a registry entry in the Registry.

6. The schemeId attribute corresponds to the regEntryId attribute of the RegistryEntry class in the information model.
If present, it must match the regEntryId of some registry entry element in the containing XML document.

70

6.15 ClassificationNode Elements

Purpose

To define, identify, or represent the itemValue and itemName of a classification node instance.

Definition

<!ELEMENT ClassificationItem (Comment?)>
<!ATTLIST ClassificationItem
 itemValue CDATA #REQUIRED
 itemName CDATA #IMPLIED
 levelNbr CDATA #IMPLIED
 levelCode CDATA #IMPLIED >

<!ELEMENT ClassificationItemFlat (Comment?)>
<!ATTLIST ClassificationItemFlat
 schemeURN CDATA #REQUIRED
 schemeId IDREF #IMPLIED
 regEntryId ID #REQUIRED

nodeId ID #REQUIRED
 itemValue CDATA #REQUIRED
 parentId IDREF #REQUIRED
 itemName CDATA #IMPLIED
 levelNbr CDATA #IMPLIED
 levelCode CDATA #IMPLIED >

Semantic Rules

1. A submission of a proposed new classification item instance from a Submitting Organization (SO) to a Registry
uses the ClassificationItem element. An exchange or representation of an existing classification item instance in a
nested format, where the parent classification scheme is known, uses the ClassificationItem element. An exchange
or representation of an existing classification item instance in a flat file uses the ClassificationItemFlat element.
The ClassificationNode class definition is in Section 3.13.

2. If a ClassificationItem element is part of a DefineClassificationScheme element, then the itemValue and
itemName attributes define an item value and an item name for the parent classification scheme.

3. If a ClassificationItem element is not part of a DefineClassificationScheme element, then the itemName must
match the itemName for the classification item determined by the itemValue.

4. The levelCode and levelNbr attributes, if present in a ClassificationItem element, identify the level of the
classification item in the parent classification scheme.

5. The levelCode and levelNbr attributes, if present in a ClassificationItemFlat element, identify the level of the
classification item in the classification scheme identified by the schemeURN.

6. The itemName attribute, if present, must match the itemName of the classification item identified by itemValue.

7. The regEntryId attribute, if present, corresponds to the regEntryId attribute of the RegistryEntry class in the
information model. It must identify a RegistryEntry element in the same XML document.

8. The regEntryURN attribute must match the assignedURN of the registry entry identified by regEntryId.

71

6.16 RegistryMetadata Elements
Purpose

To define or represent the public metadata, in a nested format, for a single registry entry.

Definition

<!ELEMENT RegistryMetadataSubmit
(RegistryEntrySubmit ,
 Association* ,
 Classification* ,
 ExternalData* ,
 AlternateName* ,
 Contribution* ,
 Description*)>

<!ELEMENT RegistryMetadataInstance
(RegistryEntryInstance ,
 Association* ,
 Classification* ,
 ExternalData* ,
 AlternateName* ,
 Contribution* ,
 Description*)>

Semantic Rules

1. The association instances represented by the Association elements are all related to the registry entry instance
represented by the RegistryEntrySubmit or the RegistryEntryInstance element.

2. The classification instances represented by the Classification elements are all related to the registry entry instance
represented by the RegistryEntrySubmit or the RegistryEntryInstance element.

3. The external data instances represented by the ExternalData elements are all related to the registry entry instance
represented by the RegistryEntrySubmit or the RegistryEntryInstance element.

4. The alternate name instances represented by the AlternateName elements are all related to the registry entry
instance represented by the RegistryEntrySubmit or the RegistryEntryInstance element.

5. The contribution instances represented by the Contribution elements are all related to the registry entry instance
represented by the RegistryEntrySubmit or the RegistryEntryInstance element.

6. The description instances represented by the Description elements are all related to the registry entry instance
represented by the RegistryEntrySubmit or the RegistryEntryInstance element.

72

6.17 Repository Element

Purpose

To represent or exchange zero or more registered objects.

Definition

<!ELEMENT Repository (RegisteredObject*) >

Semantic Rules

1. A registered object is only materialized when an object is submitted to a Registry/Repository for storage or
safekeeping or when it is extracted from a repository for repository exchange or as the response to a query.

2. The representation of a registered object as part of a submission is specified in the RegisterObject request defined
in Section 8.18.

3. The representation of a registered object as part of a Query response is specified in the GetRegisteredObject DTD
defined in Section 7.1.

73

6.18 XML Entity Definitions

assocRoleList -- to identify a value of the AssociationRole enumeration domain (see Section 5.7).

<!ENTITY % assocRoleList
"val | req | cnt | sup | rep | rel" >

contactAvailList -- to identify a value of the ContactAvailability enumeration domain (see Section 5.9).

<!ENTITY % contactAvailList
"pub | pri | pro " >

contactRoleList -- to identify a value of the ContactRole enumeration domain (see Section 5.10).

<!ENTITY % contactRoleList
"admn | all | tech" >

defnSourceList -- to identify a value of the DefinitionSource enumeration domain (see Section 4.1).

<!ENTITY % defnSourceList
" ebXML | LTSC_LOM | IMS | OASIS " >

impactCodeList -- to identify a value of the ImpactCode enumeration domain (see Section 4.4).

<!ENTITY % impactCodeList
" AAS | ACF | ACT | AAN | ACB | ARO | ARE | AED | ASO
| ADS | DAS | DCF | DCT | DAN | DCB | DRO | DRE | DED
| DSO | DDS | UAS | UCF | UCT | UAN | UCB | URO | URE
| UED | USO | UDS " >

contextTypeList -- to identify a value of the NameContext enumeration domain (see Section 5.8).

<!ENTITY % nameContextList
"cpp | code | java | lang | long | short | sql | urn" >

orgRoleList -- to identify a value of the OrganizationRole enumeration domain (see Section 4.2).

<!ENTITY % orgRoleList
" SO | RO | RA " >

feeStatusList -- to identify a value of the FeeStatus enumeration domain (see Section 5.5).

<!ENTITY % feeStatusList
"debit | free | pswd" >

propRightsList -- to identify a value of the PropertRights enumeration domain (see Section 5.6)

<!ENTITY % propRightsList
 "none | ANY" >

74

objectTypeList -- to identify a value of the ObjectType enumeration domain (see Section 5.1).

<!ENTITY % objectTypeList
"defn | inst | rpkg | schm | mime | othr" >

regStatusList -- to identify a value of the RegistrationStatus enumeration domain (see Section 5.3).

<!ENTITY % regStatusList
"sub | urw | reg | sup | dep | rep | wth | exp " >

relatedRoleList -- to identify a value of the RelatedRole enumeration domain (see Section 5.11).

<!ENTITY % relatedRoleList
 "Changelog | CvrLetter | DistribHP | DocSet |
 DocSetInfo | DSSLSS | DSSLSSInfo |
 EmailInfo | Example | ExpSet | ExpSetInfo | FAQ | Other |
 PublicText | ReadMe | RefMan | RegInfo | RelDataGrp |
 SchemaHP | SGMLDeclar | SGMLOpnCat | StyleSinfo | ToolInfo |
 UserGuide | WhitePaper | XSLSS | XSLSSinfo " >

requestCodeList -- to identify a value of the RequestCode enumeration domain (see Section 4.3).

<!ENTITY % requestCodeList
" addAssoc | addClassif | addAltName | addContrib | addExtData |
 addDescrip | defClassSchm | defRegPkg | delAssoc | delClassif |
 delAltName | delContrib | delExtData | delDescrip | modClassif |
 modRegPkg | modRegEntry | regObj | regSO | refRegObj |
 repRegObj | subRegObj | wdrRegObj ">

fileTypeList -- to identify a value of the FileType enumeration domain (see Section 5.2).

<!ENTITY % fileTypeList
" xmlDTD | sgmlDTD | xmlSchema | xdrSchema |
 soxSchema | rdfSchema | sgmlElement |
 xmlElement | sgmlAttrib| xmlAttrib |
 sgmlAttSet | xmlAttSet | sgmlAttVal |
 xmlAttVal | sgmlParm | xmlParm | charEntSet |
 sgml | zip | xml | html-1 | html-2 | html-3 | html-4 |
 html-iso | xhtml " >

stabilityList -- to identify a value of the Stability enumeration domain (see Section 5.4).

<!ENTITY % stabilityList
"comp | dynm | stat">

75

7. Registry Services

7.1 GetRegisteredObject DTD's

Purpose

To obtain one or more registered objects, and some associated metadata, by submitting a RegistryEntryQuery to the
registry/repository that holds the desired objects.

NOTE: Initially, the RegistryEntryQuery is a single AssignedURN!

Definitions

Get Request DTD

<!ELEMENT GetRegisteredObject
(RegistryEntryQuery,

RecursiveAssocOption?,
WithShortDescription?)>

<!ELEMENT RecursiveAssocOption (AssociationRole+)>
<!ATTLIST RecursiveAssocOption

depthLimit CDATA #IMPLIED >

<!ELEMENT AssociationRole EMPTY >
<!ATTLIST AssociationRole

role CDATA #REQUIRED >

<!ELEMENT WithShortDescription EMPTY >

Get Result DTD

<!ELEMENT GetRegisteredObjectResult
(RegisteredObject*, StatusResult)> [Should StatusResult be

separate?]

<!ELEMENT RegisteredObject
(ClassificationScheme

| RegistryPackage
| UnknownObject
| WithdrawnObject
| RemoteObject)>

<!ATTLIST RegisteredObject
assignedURN CDATA #REQUIRED
commonName CDATA #REQUIRED
objectURL CDATA #REQUIRED
objectType CDATA #REQUIRED
fileType CDATA #IMPLIED
registrationStatus CDATA #REQUIRED
stability CDATA #REQUIRED
shortDescription CDATA #IMPLIED >

<!ELEMENT UnknownObject (#PCDATA) >
<!ATTLIST UnknownObject

byteEncoding CDATA #IMPLIED >

<!ELEMENT WithdrawnObject EMPTY >

<!ELEMENT RemoteObject EMPTY >

76

Semantic Rules

1. If the RecursiveOption element is not present , then set Limit=0. If the RecursiveOption element is present,
interpret its depthLimit attribute as an integer literal. If the depthLimit attribute is not present, then set Limit = -1.
If a depthLimit value is presnt, but it cannot be interpreted as a positive integer, then stop execution and raise the
exception: invalid depth limit; otherwise, set Limit=N, where N is that positive integer.

2. Set Depth=0. Let Result denote the set of RegisteredObject elements to be returned as part of the
GetRegisteredObjectResult. Initially Result is empty.

3. If the WithShortDescription element is present, then set WSD="yes"; otherwise, set WSD="no".

4. Execute the RegistryEntryQuery according to the Semantic Rules of RegistryEntryQuery specified in Section
7.4.1. Let R be the set of RegistryEntryReference elements returned by the RegistryEntryQResult and let S be the
set of status elements returned in the StatusResult. If any status element in S is an exception condition, then stop
execution and return the same StatusResult.

5. Execute Semantic Rules 6 and 7 with X as the set of RegistryEntry instances referenced by R. If Depth is now
equal to Limit, then return the content of Result as the set of RegisteredObject elements in the
GetRegisteredObjectResult element; otherwise, continue with Semantic Rule 8.

6. Let X be a set of RegistryEntry instances. For each registry entry E in X, do the following:

a) If E.objectURL references a registered object in this registry/repository, then create a new RegisteredObject
element, with values for its attributes derived as specified in Semantic Rule 7.

1) If E.objectType="scheme", then put the referenced ClassificationScheme DTD as the subelement of this
RegisteredObject.

2) If E.objectType="rpkg", then put the referenced RegistryPackage DTD as the subelement of this
RegisteredObject.

3) Otherwise, i.e., if the object referenced by E has an unknown internal structure, then put the content of the
registered object as the #PCDATA of a new UnknownObject subelement of this RegisteredObject.

b) If E.objectURL references a registered object in some other registry/repository, then create a new
RegisteredObject element, with values for its attributes derived as specified in Semantic Rule 7, and create a
new RemoteObject element as the subelement of this RegisteredObject.

c) If E.objectURL is void, i.e. the object it would have referenced has been withdrawn, then create a new
RegisteredObject element, with values for its attributes derived as specified in Semantic Rule 7, and create a
new WithdrawnObject element as the subelement of this RegisteredObject.

7. Let E be a registry entry and let RO be the RegisteredObject element created in Semantic Rule 6. Set the attributes
of RO to the values derived from the corresponding attributes of E. If WSD="yes", include the value of the
shortDescription attribute; otherwise, do not include it. Insert this new RegisteredObject element into the Result
set.

8. Let R be defined as in Semantic Rule 4. Execute Semantic Rule 9 with Y as the set of RegistryEntry instances
referenced by R. Then continue with Semantic rule 10.

9. Let Y be a set of RegistryEntry instances. Let NextLevel be an empty set of RegistryEntry instances. For each
registry entry E in Y, and for each AssociationRole A of the RecursiveAssocOption, do the following:

a) Let Z be the set of associated items E' linked to E under association instances having E as the given item, E' as
the associated item, and A as the association role.

77

b) Add the elements of Z to NextLevel.

10. Let X be the set of new registry entries that are in NextLevel but are not yet represented in the Result set.

Case:

a) If X is empty, then return the content of Result as the set of RegisteredObject elements in the
GetRegisteredObjectResult element.

b) If X is not empty, then execute Semantic Rules 6 and 7 with X as the input set. When finished, add the
elements of X to Y and set Depth=Depth+1. If Depth is now equal to Limit, then return the content of Result
as the set of RegisteredObject elements in the GetRegisteredObjectResult element; otherwise, repeat Semantic
Rules 9 and 10 with the new set Y of registry entries.

11. If any exception, warning , or other status condition results during the execution of the above, then return
appropriate status elements as the StatusResult of the GetRegisteredObjectResult element created in Semantic Rule
5 or Semantic Rule 10.

78

7.2 GetRegistryEntry DTD's

Purpose

To obtain selected registry metadata associated with one or more registry entries, by submitting a RegistryEntryQuery
to the registry/repository that holds the registry entries.

NOTE: Initially, the RegistryEntryQuery is a single AssignedURN!

Definition

Request DTD

<!ELEMENT GetRegistryEntry
 (RegistryEntryQuery,

 (| WithClassifications
| WithAssociations
| WithExternalData
| WithAlternateNames
| WithContributions
| WithDescriptions)*)>

<!ELEMENT WithClassifications (ClassificationFilter?)>
<!ELEMENT WithAssociations (AssociationFilter?)>
<!ELEMENT WithExternalData (ExternalDataFilter?)>
<!ELEMENT WithAlternateNames (AlternateNameFilter?)>
<!ELEMENT WithContributions (ContributionFilter?)>
<!ELEMENT WithDescriptions (DescriptionFilter?)>

Response DTD

<!ELEMENT GetRegistryEntryResult
(RegistryMetadataInstance*, StatusResult)> [Should Status Result be

separate?]

Semantic Rules

1. Execute the RegistryEntryQuery according to the Semantic Rules of RegistryEntryQuery specified in Section
7.4.1. Let R be the set of RegistryEntryReference elements returned by the RegistryEntryQResult and let S be the
set of status elements returned in the StatusResult. If any status element in S is an exception condition, then stop
execution and return the same StatusResult element in the GetRegistryEntryResult.

2. If the set R is empty, then do not return a RegistryMetadataInstance subelement in the GetRegistryEntryResult.
Instead, raise the warning: no resulting registry entry. Add this warning to the StatusResult returned by the
RegistryEntryQResult and return this enhanced StatusResult with the GetRegistryEntryResult

3. For each registry entry E referenced by an element of R, use the attributes of E to create a new
RegistryEntryInstance element as defined in Section 6.1. Then create a new RegistryMetadataInstance element as
defined in Section 6.16.

4. If no With option is specified, then the resulting RegistryEntryInstance element has no Classification, Association,
ExternalData, AlternateName, Contribution, or Description subelements. The set of RegistryMetadataInstance
elements, with the StatusResult from the RegistryEntryQResult, is returned as the GetRegistryEntryResult.

5. If WithClassifications is specified, then for each E in R do the following: If a ClassificationFilter is not present,
then let C be any classification instance linked to E; otherwise, let C be a classification instance linked to E that
satisfies the ClassificationFilter (Section 9.3). For each such C, create a new Classification element as defined in
Section 6.3. Add these Classification elements to their related RegistryEntryInstance as defined in Section 6.16.

79

6. If WithAssociations is specified, then for each E in R do the following: If an AssociationFilter is not present, then
let A be any association instance linked to E; otherwise, let A be an association instance linked to E that satisfies
the AssociationFilter (Section 9.2). For each such A, create a new Association element as defined in Section 6.2.
Add these Association elements to their related RegistryEntryInstance as defined in Section 6.16.

7. If WithExternalData is specified, then for each E in R do the following: If an ExternalDataFilter is not present,
then let D be any external data instance linked to E; otherwise, let D be an external data instance linked to E that
satisfies the ExternalDataFilter (Section 9.4). For each such D, create a new ExternalData element as defined in
Section 6.4. Add these ExternalData elements to their related RegistryEntryInstance as defined in Section 6.16.

8. If WithAlternateNames is specified, then for each E in R do the following: If an AlternateNameFilter is not
present, then let N be any alternate name instance linked to E; otherwise, let N be an alternate name instance linked
to E that satisfies the AlternateNameFilter (Section 9.5). For each such N, create a new AlternateName element as
defined in Section 6.7. Add these AlternateName elements to their related RegistryEntryInstance as defined in
Section 6.16.

9. If WithContributions is specified, then for each E in R do the following: If a ContributionFilter is not present, then
let C be any contribution instance linked to E; otherwise, let C be a contribution instance linked to E that satisfies
the ContributionFilter (Section 9.7). For each such C, create a new Contribution element as defined in Section 6.9.
Add these Contribution elements to their related RegistryEntryInstance as defined in Section 6.16.

10. If WithDescriptions is specified, then for each E in R do the following: If a DescriptionFilter is not present, then let
D be any description instance linked to E; otherwise, let D be a description instance linked to E that satisfies the
DescriptionFilter (Section 9.6). For each such D, create a new Description element as defined in Section 6.8. Add
these Description elements to their related RegistryEntryInstance as defined in Section 6.16.

11. If any warning or exception condition results, then add the code and the message to the StatusResult that came
from the RegistryEntryQResult.

12. Return the set of RegistryMetadataInstance elements and the revised StatusResult as the GetRegistryEntryResult.

80

7.3 SubmitRequest DTD

Purpose

To submit a collection of one or more requests to a Registry, to identify one or more contacts able to address issues
related to that submission, and optionally, to identify one or more specific contacts for each request.

Definition

<!ELEMENT SubmitRequest (AuthenticationToken?, Request+, Contact+)>
<!ATTLIST SubmitRequest

submitOrgURN CDATA #REQUIRED >

<!ELEMENT AuthenticationToken (#PCDATA) >

<!ELEMENT Request
 ((
 AddAssociation
 | AddClassification
 | AddAlternateName
 | AddContribution
 | AddDescription
 | AddExternalData
 | DefineClassificationScheme
 | DefineRegistryPackage
 | DeleteAssociation
 | DeleteClassification
 | DeleteAlternateName
 | DeleteContribution
 | DeleteDescription
 | DeleteExternalData
 | ModifyClassificationScheme
 | ModifyRegistryPackage
 | ModifyRegistryEntry
 | RegisterObject
 | RegisterSubmittingOrg
 | ReaffirmRegisteredObject
 | ReplaceRegisteredObject
 | SupercedeRegisteredObject
 | WithdrawRegisteredObject),
 Contact*,
 Comment?)>

Semantic Rules

1. A SubmitRequest DTD flows from a Submitting Organization (SO) to a Registration Authority (RA).

2. The RA treats the submission atomically - it is either completely successful or it fails with no effect on the
Registry.

3. The AuthenticationToken may or may not be required by the RA. It's content is specified separately by the RA and
is not part of this specification.

4. If the SubmitRequest element contains a RegisterSubmittingOrg subelement, then the content of assignedURN is
superfluous; otherwise, the submitOrgURN identifies an SO known to the RA. If no RegisterSubmittingOrg
subelement is present, and if the assignedURN is not known to the RA, then the RA returns an error: unknown
submitting organization.

81

5. If successful, the SubmitRequest results in a new instance of the Submission class, and each Request element
results in a new instance of the Request class. Each Contact in SubmitRequest determines a Contact instance
linked to the submisssion and each Contact in a Request determines a contact linked to that request instance.

6. Each Comment in a Request element is intended as further information from the SO to the RA regarding that
request instance; it is not intended for access by registry users, although the RA may include some portion of the
Comment as the comment attribute of the Request instance.

82

7.4 RegistryQuery DTD's

Purpose

To propose a query to a Registry/Repository implementation, with the expectation of receiving back a query result and
a status result. The query result for each query type is a set of references to registry instances of the implied class. The
status result is a success indication or a collection of warnings and/or exceptions.

NOTE: A Registry/Repository may conform at the lowest level by supporting only a RegistryEntryQuery that consists
of a single AssignedURN. Other query support is required at higher levels of conformance.

Definition

Query DTD

<!ELEMENT RegistryQuery
 (RegistryEntryQuery

| ContactQuery
| RequestQuery
| ImpactQuery
| OrganizationQuery)>

QueryResult DTD

<!ELEMENT RegistryQueryResult
 (

RegistryEntryQResult
| ContactQResult
| RequestQResult
| ImpactQResult
| OrganizationQResult)>

<!ELEMENT RegistryEntryQResult (RegistryEntryReference*)>

<!ELEMENT RegistryEntryReference EMPTY >
<!ATTLIST RegistryEntryReference

assignedURN CDATA #REQUIRED
objectURL CDATA #IMPLIED
regEntryId ID #IMPLIED >

<!ELEMENT ContactQResult (ContactReference*)>

<!ELEMENT ContactReference EMPTY >
<!ATTLIST ContactReference

contactName CDATA #REQUIRED
orgURN CDATA #REQUIRED
email CDATA #REQUIRED
contactID ID #IMPLIED >

<!ELEMENT RequestQResult (RequestReference*)>

<!ELEMENT RequestReference EMPTY >
<!ATTLIST RequestReference

submitTime CDATA #REQUIRED
requestNbr CDATA #REQUIRED
requestCode CDATA #REQUIRED
requestId ID #IMPLIED >

<!ELEMENT ImpactQResult (ImpactReference*)>

<!ELEMENT ImpactReference EMPTY >

83

<!ATTLIST ImpactReference
submitTime CDATA #REQUIRED
requestNbr CDATA #REQUIRED
submitId ID #IMPLIED
regEntryURN CDATA #REQUIRED
objectURL CDATA #IMPLIED
regEntryID ID #IMPLIED
impactCode CDATA #REQUIRED
impactId ID #IMPLIED >

StatusResult

<!ELEMENT StatusResult
(Success | (Exception | Warning)+ >

<!ELEMENT Success EMPTY >

<!ELEMENT Exception (#PCDATA)>
<!ATTLIST Exception

code CDATA #REQUIRED >

<!ELEMENT Warning (#PCDATA)>
<!ATTLIST Warning

code CDATA #REQUIRED >

Semantic Rules

1. The semantic rules for each RegistryQuery alternative are specified in subsequent Subsections.

2. [NOT COMPLETE] -- Specify distinctions among Warnings and Exceptions!

3. If any exception or warning results, then it is returned as the appropriate alternative of the StatusResult element.

84

7.4.1 RegistryEntryQuery

Purpose

To identify a set of registry entry instances by a query over selected registry metadata.

Definition

<!ELEMENT RegistryEntryQuery
 (AssignedURN+

 | MetadataFilter
 | RegistryEntrySQL
 | RegistryEntryXML
 | RegistryEntryOQL)>

<!ELEMENT AssignedURN EMPTY >
<!ATTLIST AssignedURN

URN CDATA #REQUIRED >

<!ELEMENT MetadataFilter
 (RegistryEntryFilter?,
 (AssociationGivenFilter | AssociationAssocFilter)?,
 ClassificationFilter?,
 ExternalDataFilter?,
 AlternateNameFilter?,
 DescriptionFilter?,
 ContributionFilter?,
 SubmittingOrgFilter?,

ImpactFilter?,
 RequestFilter?,
 ContactFilter?)>

<!ELEMENT AssociationGivenFilter (Association Filter)>

<!ELEMENT AssociationAssocFilter (Association Filter)>

<!ELEMENT SubmittingOrgFilter (Organization Filter)>

<!ELEMENT RegistryEntrySQL (#PCDATA)>

<!ELEMENT RegistryEntryXML (#PCDATA)>

<!ELEMENT RegistryEntryOQL (#PCDATA)>

Semantic Rules

1. If a list of AssignedURN elements is specified as a RegistryEntryQuery, then:

a) Each AssignedURN should identify an existing RegistryEntry instance in some registry managed by the
Registration Authority (RA). If any registry entry does not exist, then raise the warning: assigned urn does not
exist; otherwise, let E identify the registry entry.

b) For each E, create a new RegistryEntryReference element as defined in Section 7.4, with the assignedURN
and objectURL attributes of E as the corresponding attributes of the new element. Optionally, an
implementation may include a persistent object identifier as the value of the regEntryId attribute.

c) Return the set of RegistryEntryReference elements as the RegistryEntryQResult.

d) Return the set of warnings as the StatusResult associated with the RegistryEntryQResult.

85

2. If a MetadataFilter element is specified as a RegistryEntryQuery, then:

a) Let RE denote the set of all persistent RegistryEntry instances in the Registry. The following steps will
eliminate instances in RE that do not satisfy the conditions of the specified filters.

b) If a RegistryEntryFilter is not specified, or if RE is empty, then continue below; otherwise, let x be a registry
entry in RE. If x does not satisfy the RegistryEntryFilter as defined in Section 9.1, then remove x from RE.

c) If an AssociationGivenFilter is not specified, or if RE is empty, then continue below; otherwise, let x be a
remaining registry entry in RE. Let AF be the set of Association instances that satisfy the AssociationFilter of
the AssociationGivenFilter element as defined in Section 9.2. If x is not the given item of some association
instance in AF, then remove x from RE.

d) If an AssociationAssocFilter is not specified, or if RE is empty, then continue below; otherwise, let x be a
remaining registry entry in RE. Let AF be the set of Association instances that satisfy the AssociationFilter of
the AssociationAssocFilter element as defined in Section 9.2. If x is not the associated item of some
association instance in AF, then remove x from RE.

e) If a ClassificationFilter is not specified, or if RE is empty, then continue below; otherwise, let x be a
remaining registry entry in RE. Let CF be the set of Classification instances that satisfy the ClassificationFilter
as defined in Section 9.3. If x is not the parent of some classification in CF, then remove x from RE.

f) If an ExternalDataFilter is not specified, or if RE is empty, then continue below; otherwise, let x be a
remaining registry entry in RE. Let EDF be the set of ExternalData instances that satisfy the
ExternalDataFilter as defined in Section 9.4. If x is not the parent of some external data instance in EDF, then
remove x from RE.

g) If an AlternateNameFilter is not specified, or if RE is empty, then continue below; otherwise, let x be a
remaining registry entry in RE. Let ANF be the set of AlternateName instances that satisfy the
AlternateNameFilter as defined in Section 9.5. If x is not the parent of some alternate name in ANF, then
remove x from RE.

h) If a DescriptionFilter is not specified, or if RE is empty, then continue below; otherwise, let x be a remaining
registry entry in RE. Let DF be the set of Description instances that satisfy the DescriptionFilter as defined in
Section 9.6. If x is not the parent of some description in DF, then remove x from RE.

i) If a ContributionFilter is not specified, or if RE is empty, then continue below; otherwise, let x be a remaining
registry entry in RE. Let CF be the set of Contribution instances that satisfy the ContributionFilter as defined
in Section 9.7. If x is not the parent of some contribution instance in CF, then remove x from RE.

j) If a SubmittingOrgFilter is not specified, or if RE is empty, then continue below; otherwise, let x be a
remaining registry entry in RE. Let OF be the set of Organization instances that satisfy the OrganizationFilter
of the SubmittingOrgFilter element as defined in Section 9.8. If the submittingOrg attribute of x does not
reference some organization instance in OF, then remove x from RE.

k) If an ImpactFilter is not specified, or if RE is empty, then continue below; otherwise, let x be a remaining
registry entry in RE. Let IF be the set of Impact instances that satisfy the ImpactFilter as defined in Section
9.9. Let RegistryEntry(IF) be the set of RegistryEntry instances that are linked to some impact instance of IF.
If x is not a member of RegistryEntry(IF), then remove x from RE.

l) If a RequestFilter is not specified, or if RE is empty, then continue below; otherwise, let x be a remaining
registry entry in RE. Let RF be the set of Request instances that satisfy the RequestFilter as defined in Section
9.10. Let ImpactedBy(RF) be the set of RegistryEntry instances that are linked to some element of RF
through an Impact instance. If x is not a member of ImpactedBy(RF), then remove x from RE.

m) If a ContactFilter is not specified, or if RE is empty, then continue below; otherwise, let x be a remaining
registry entry in RE. Let CF be the set of Contact instances that satisfy the ContactFilter as defined in Section

86

9.11. Let FromSubmissions(CF) be the set of Submission instances whose set of submission contacts
intersects any element of CF. Let Requests(FromSubmissions(CF)) be the set of Request instances that have
one of the identified submissions as a parent. Let ImpactedBy(Requests(FromSubmissions(CF))) be the set of
RegistryEntry instances that are linked to one of the identified requests through an Impact instance. If x is not
a member of ImpactedBy(Requests(FromSubmissions(CF))), then remove x from RE.

n) If RE is empty, then raise the warning: query result is empty, and return a RegistryEntryQResult with no
RegistryEntryReference elements. Otherwise, for each remaining x in RE, create a new
RegistryEntryReference element as defined in Section 7.4, with the assignedURN and objectURL attributes of
x as the corresponding attributes of the new element. Optionally, an implementation may include a persistent
object identifier as the value of the regEntryId attribute.

o) Return the set of RegistryEntryReference elements as the RegistryEntryQResult.

p) Return the set of warnings as the StatusResult associated with the RegistryEntryQResult.

3. If a RegistryEntrySQL element is specified as a RegistryEntryQuery, then the PCDATA contained in the
RegistryEntrySQL element shall conform to an SQL <query expression> as defined in International Standard
ISO/IEC 9075 - Database Language SQL. A Registry/Repository implementation may require that the <query
expression> be constrained by the rules for Minimal SQL as specified in Annex A1.3.

a) The <from clause> of a <query expression> contained in a RegistryEntryQuery may be restricted to a single
<table reference> referencing exactly one of the following views defined in Annex A1.2:

REGISTRY_ENTRY REGENTRY_LJ_GIVENITEM REGENTRY_LJ_ASSOCITEM
REGENTRY_LJ_EXTDATA REGENTRY_LJ_ALTNAME REGENTRY_LJ_DESCRIPTION
REGENTRY_LJ_CONTRIBUTION REGENTRY_LJ_SUBMITORG REGENTRY_LJ_IMPACT
REGENTRY_LJ_CONTACT REGENTRY_LJ_LEVELVALUEPAIR REGENTRY_LJ_LVPEXTENDED

b) The <select list> of a <query expression> contained in a RegistryEntryQuery shall include the assignedURN
column from REGISTRY_ENTRY, and that column shall uniquely identify a row of the resulting table R.

c) For each row x of R, create a new RegistryEntryReference element as defined in Section 7.4. Set the attributes
of this RegistryEntryReference with the attributes of the registry entry identified by the assignedURN column
of x. A correct value for the objectURL attribute of the RegistryEntryReference is required even if
objectURL was not included as a column in the <select list> of the <query expression>. Optionally, an
implementation may include a persistent object identifier as the value of the regEntryId attribute.

d) Set the values of the StatusResult with any exceptions or warnings returned by the SQL processor. The
SQLSTATE shall be returned as the code attribute of the Exception or Warning subelement of StatusResult,
and associated exception or warning messages shall be returned as the PCDATA of each element.

e) Return the set of RegistryEntryReference elements as the RegistryEntryQResult and return the StatusResult as
specified by the communications protocol being used.

4. If a RegistryEntryXML element is specified as a RegistryEntryQuery, then the PCDATA contained in the
RegistryEntrySQL element shall conform to an XML Query as defined by the XML Query technical committee in
W3C. [NOT FINISHED].

5. If a RegistryEntryOQL element is specified as a RegistryEntryQuery, then the PCDATA contained in the
RegistryEntrySQL element shall conform to an Object query as defined by ODMG. [NOT FINISHED].

87

7.4.2 ContactQuery

Purpose

To identify a set of contact instances by a query over selected registry metadata.

Definition

<!ELEMENT ContactQuery [NOT FINISHED!]
 (MetadataFilter

 | ContactSQL
 | ContactEntryXML

 | ContactEntryOQL)>

<!ELEMENT ContactSQL (#PCDATA)>

<!ELEMENT ContactXML (#PCDATA)>

<!ELEMENT ContactOQL (#PCDATA)>

Semantic Rules

[NOT FINISHED!]

88

7.4.3 RequestQuery

Purpose

To identify a set of request instances by a query over selected registry metadata.

Definition

<!ELEMENT RequestQuery [NOT FINISHED!]
 (MetadataFilter

 | RequestSQL
 | RequestXML
 | RequestOQL)>

<!ELEMENT RequestSQL (#PCDATA)>

<!ELEMENT RequestXML (#PCDATA)>

<!ELEMENT RequestOQL (#PCDATA)>

Semantic Rules

[NOT FINISHED!]

89

7.4.4 ImpactQuery

Purpose

To identify a set of impact instances by a query over selected registry metadata.

Definition

<!ELEMENT ImpactQuery [NOT FINISHED!]
 (MetadataFilter

 | ImpactSQL
 | ImpactXML
 | ImpactOQL)>

<!ELEMENT ImpactSQL (#PCDATA)>

<!ELEMENT ImpactXML (#PCDATA)>

<!ELEMENT ImpactOQL (#PCDATA)>

Semantic Rules

[NOT FINISHED!]

90

7.4.5 OrganizationQuery

Purpose

To identify a set of organization instances by a query over selected registry metadata.

Definition

<!ELEMENT OrganizationQuery [NOT FINISHED!]
 (MetadataFilter

 | OrganizationSQL
 | OrganizationXML
 | OrganizationOQL)>

<!ELEMENT OrganizationSQL (#PCDATA)>

<!ELEMENT OrganizationXML (#PCDATA)>

<!ELEMENT OrganizationOQL (#PCDATA)>

Semantic Rules

[NOT FINISHED!]

91

7.5 ClassificationScheme DTD

Purpose

To define or represent a complete classification scheme as a hierarchy of nodes.

Definition

<!ELEMENT ClassificationScheme
 (Comment?,
 ClassificationLevel*,
 ClassificationNode+) >
<!ATTLIST ClassificationScheme
 schemeName CDATA #IMPLIED >

<!ELEMENT ClassificationNode
 ((ClassificationItem, ClassificationNode*) | USER_INPUT)>

<!ELEMENT USER_INPUT EMPTY >

Semantic Rules

1. The nested hierarchy of ClassificationNode elements determines the partial ordering of a classification scheme over
those nodes. The mathematical definition of classification scheme is in Section 2.4. The itemValue and itemName
attributes identify the itemValue and itemName of each node.

2. The ClassificationLevel elements, if present, must be equal in number to the number of levels in the classification
scheme derived from the nested hierarchy of ClassificationNode's. The levelCode and levelName attributes identify the
levelCode and levelName of each level.

3. The schemeName, if present, identifies the commonName of the classification scheme.

4. If USER_INPUT is specified as a ClassificationNode sub-element, then the itemValue in any classification that
references this classification scheme can be any value that satisfies the datatype for itemValue as an attribute of the
LevelValuePair class defined in Section 3.3.

5. The ClassificationLevel element is defined in Section 6.14.

6. The ClassificationItem element is defined in Section 6.15.

EDITOR's NOTE: It is desirable that one be able to define a new classification scheme from parts of existing
classification schemes. For example, an existing GeographyClassifScheme might be used as the basis of a
new classification scheme that classifies commercial vendors by the geography of their sales regions and the
geographic locations of their raw resources. This capability is not yet included in the ClassificationScheme
DTD.

92

7.6 RegistryPackage DTD

Purpose

To represent a registered registry package as a collection of registry entry URN's and other optional identifiers.

Definition

<!ELEMENT RegistryPackage (PackageMember*)>
<!ATTLIST RegistryPackage
 packageURN CDATA #REQUIRED
 packageName CDATA #IMPLIED
 pkgID ID #IMPLIED >

<!ELEMENT PackageMember EMPTY >
<!ATTLIST PackageMember
 memberURN CDATA #REQUIRED
 memberURL CDATA #IMPLIED
 memberID ID #IMPLIED >

Semantic Rules

1. The packageURN identifies a registry entry whose objectType attribute is registry package.

2. The packageName, if present, is the commonName of the registry entry identified by packageURN.

3. The objectURL of the registry entry identified by packageURN points to a registry package in a Repository
managed by the RA.

4. Each memberURN identifies a registry entry in a Registry managed by the RA.

5. Each registry entry identified by a memberURN participates as the assocItem in an association instance where the
associationRole is Contains and the givenItem is the registry entry identified by the packageURN.

6. The pkgId, if present, is an object reference to the registry entry identified by the packageURN.

7. Each memberId, if present, is an object reference to the registry entry identified by the member URN.

93

7.7 RegistryContentFlat DTD

Purpose

To represent a complete and consistent subset of a Registry as a collection of flat tables.

Definition

<!ELEMENT RegistryContentFlat
(

RegistryEntryInstance* ,
AssociationFlat* ,
ExternalDataFlat* ,
AlternateNameFlat* ,
DescriptionFlat* ,
ClassifSchemeInstance* ,
ClassificationLevelFlat* ,
ClassificationItemFlat* ,
ClassificationFlat* ,
OrganizationInstance* ,
ContactInstance* ,
SubmissionInstance* ,
RequestFlat* ,
Impact*)>

<!ATTLIST RegistryContentFlat
RegistryURN CDATA #REQUIRED >

Semantic Rules

1. [NOT COMPLETE]

2. [NOT COMPLETE]

94

7.8 RegistryContentNested DTD

Purpose

To represent a complete and consistent subset of a Registry as a collection of hierarchically structured elements.

Definition

<!ELEMENT RegistryContentNested
(RegistryMetadataInstance* ,

OrganizationAndContacts* ,
ClassificationScheme* ,
SubmissionHistory*,
Impact*)>

<!ATTLIST RegistryContentNested
RegistryURN CDATA #REQUIRED >

<!ELEMENT OrganizationAndContacts
(OrganizationInstance, ContactNested+)>

<!ELEMENT SubmissionHistory
(SubmissionInstance, ContactNested+, RequestSummary+)>

<!ELEMENT RequestSummary
(RequestNested, ContactNested*)>

Semantic Rules

1. [NOT COMPLETE]

2. [NOT COMPLETE]

95

8. Request Elements

8.1 AddAssociation

Purpose

To add one or more new associations for an existing registry entry.

Definition

<!ELEMENT AddAssociation (Association+)>
<!ATTLIST AddAssociation
 assignedURN CDATA #REQUIRED>

Semantic Rules

1. The assignedURN attribute shall identify an existing RegistryEntry instance in some registry managed by the
Registration Authority (RA). If it does not, then raise theexception: assigned urn does not exist.

2. Each Association element shall satisfy the semantic rules for an Association. If any does not, then raise
theexception: invalid association.

3. For each Association element, using the contained information of that element, the RA shall create an association
instance linked to the registry entry instance referenced by assignedURN.

4. The RA shall insert a new Impact instance for the registry entry instance referenced by assignedURN to indicate
that this request had an Insert Association (IAS) impact on that registry entry.

5. For each Association element, if its AssociatedItem subelement references a registry entry in the same Registry,
then the RA shall insert a new Impact instance to indicate that this request had an Insert Association (IAS) impact
on that registry entry. NOTE: If the AssociatedItem references a registry entry in some other Registry, do we want
to send a message to that Registry?

96

8.2 AddClassification

Purpose

To add one or more new classifications to an existing registry entry.

Definition

<!ELEMENT AddClassification (Classification+)>
<!ATTLIST AddClassification
 assignedURN CDATA #REQUIRED>

Semantic Rules

1. The assignedURN attribute shall identify an existing RegistryEntry instance in some registry managed by the
Registration Authority (RA). If it does not, then raise theexception: assigned urn does not exist.

2. Each Classification element shall satisfy the semantic rules for a Classification. If any does not, then raise
theexception: invalid classification.

3. For each Classification element, using the contained information of that element, the RA shall create a
classification instance linked to the registry entry instance referenced by assignedURN.

4. The RA shall insert a new Impact instance for the registry entry instance referenced by assignedURN to indicate
that this request had an Insert Classification (ICF) impact on that registry entry.

97

8.3 AddAlternateName

Purpose

To add one or more new alternate names to an existing registry entry.

Definition

<!ELEMENT AddAlternateName (AlternateName+)>
<!ATTLIST AddAlternateName
 assignedURN CDATA #REQUIRED>

Semantic Rules

1. The assignedURN attribute shall identify an existing RegistryEntry instance in some registry managed by the
Registration Authority (RA). If it does not, then raise theexception: assigned urn does not exist.

2. Each AlternateName element shall satisfy the semantic rules for an AlternateName. If any does not, then raise
theexception: invalid alternate name.

3. For each AlternateName, using the contained information of that element, the RA shall create an alternate name
instance linked to the registry entry instance referenced by assignedURN.

4. The RA shall insert a new Impact instance for the registry entry instance referenced by assignedURN to indicate
that this request had an Insert Alternate Name (IAN) impact on that registry entry.

98

8.4 AddContribution

Purpose

To add one or more new contribution instances to an existing registry entry.

Definition

<!ELEMENT AddContribution (Contribution+)>
<!ATTLIST AddContribution
 assignedURN CDATA #REQUIRED>

Semantic Rules

1. The assignedURN attribute shall identify an existing RegistryEntry instance in some registry managed by the
Registration Authority (RA). If it does not, then raise theexception: assigned urn does not exist.

2. Each ExternalData element shall satisfy the semantic rules for ExternalData. If any does not, then raise
theexception: invalid contribution.

3. For each Contribution element, using the contained information of that element, the RA shall create a contribution
instance linked to the registry entry instance referenced by assignedURN.

4. The RA shall insert a new Impact instance for the registry entry instance referenced by assignedURN to indicate
that this request had an Add Contribution (ACB) impact on that registry entry.

99

8.5 AddDescription

Purpose

To add one or more new Description instances to an existing registry entry.

Definition

<!ELEMENT AddDescription (Description+)>
<!ATTLIST AddDescription
 assignedURN CDATA #REQUIRED>

Semantic Rules

1. The assignedURN attribute shall identify an existing RegistryEntry instance in some registry managed by the
Registration Authority (RA). If it does not, then raise theexception: assigned urn does not exist.

2. Each Description element shall satisfy the semantic rules for a Description. If any does not, then raise
theexception: invalid description.

3. For each Description, using the contained information of that element, the RA shall create a description instance
linked to the registry entry instance referenced by assignedURN.

4. The RA shall insert a new Impact instance for the registry entry referenced by assignedURN to indicate that this
request had an Add Description (ADS) impact on that registry entry.

100

8.6 AddExternalData

Purpose

To add one or more new external data items to an existing registry entry.

Definition

<!ELEMENT AddExternalData (ExternalData+)>
<!ATTLIST AddExternalData
 assignedURN CDATA #REQUIRED>

Semantic Rules

1. The assignedURN attribute shall identify an existing RegistryEntry instance in some registry managed by the
Registration Authority (RA). If it does not, then raise theexception: assigned urn does not exist.

2. Each ExternalData element shall satisfy the semantic rules for ExternalData. If any does not, then raise
theexception: invalid external data.

3. For each ExternalData element, using the contained information of that element, the RA shall create an external
data instance linked to the registry entry instance referenced by assignedURN.

4. The RA shall insert a new Impact instance for the registry entry instance referenced by assignedURN to indicate
that this request had an Add External Data (AED) impact on that registry entry.

101

8.7 DefineClassificationScheme

Purpose

To define and register a single new classification scheme.

Definition

<!ELEMENT DefineClassificationScheme
 (ClassificationSchemeMetadata, ClassificationScheme)>

<!ELEMENT ClassificationSchemeMetadata (RegistryMetadataSubmit) >

Semantic Rules

1. The ClassificationScheme element shall satisfy the semantic rules of the ClassificationScheme DTD. It defines the
node hierarchy for the resulting classification scheme. If it contains any illegal values, then raise theexception:
invalid classification scheme hierarchy.

2. The RegistryMetadataSubmit element shall satisfy semantic rules as if it were a subelement of a RegisterObject
element. If it does not, then the RA returns the identified error.

3. The RA shall create a new registry entry as if a RegisterObject request were executed with this
RegistryMetadataSubmit element.

4. For each ClassificationLevel subelement of ClassificationScheme, the RA creates a new instance of the
ClassificationLevel class.

5. For each ClassificationNode subelement directly contained in ClassificationScheme, the RA creates a new instance
of the ClassificationItem class with 0 as its ParentId.

6. For each ClassificationNode subelement directly contained in another ClassificationNode element, the RA creates
a new instance of the ClassificationItem class, with the nodeId of its parent element as its parentId.

7. For each ClassificationLevel subelement of the ClassificationScheme element, the RA creates a new instance of
the ClassificationLevel class. The levelNbr attribute of each level is its numerical position in the list of
ClassificationLevel elements, beginning with 1.

102

8.8 DefineRegistryPackage

Purpose

To define and register a single new package of registry entries.

Definition

<!ELEMENT DefineRegistryPackage
 (RegistryPackageMetadata,
 RegistryPackageSubmit)>

<!ELEMENT RegistryPackageSubmit (PackageMemberSubmit*)>

<!ELEMENT PackageMemberSubmit
 (assignedURN | PkgItemRef | PackageMemberMetadata)>

<!ELEMENT assignedURN (#PCDATA)>

<!ELEMENT PkgItemRef EMPTY >
<!ATTLIST PkgItemRef
 regEntryId IDREF #REQUIRED >

<!ELEMENT RegistryPackageMetadata (RegistryMetadataSubmit) >

<!ELEMENT PackageMemberMetadata (RegistryMetadataSubmit) >

Semantic Rules

1. The Submitting Organization (SO) is defining a single, complete package of registry entries. The package may be
empty, or it may consist of references to previously registered items, or it may consist of references to registration
requests in the same submission, or it may consist of new registration requests for its elements, or it may be a
combination of these alternatives.

2. The SO owns the package, even if it references registry entries owned by other submitting organizations.

3. The RegistryMetadataSubmit element directly contained in RegistryPackageMetadata shall satisfy semantic rules
as if it were a RegistryMetadataSubmit subelement of a RegisterObject element. If it does not satisfy these
semantic rules, then the RA returns the identified error; otherwise, the RA shall create a new registry entry as if a
RegisterObject request were executed with this RegistryMetadataSubmit.

4. If a PackageMember is an assignedURN, then the assignedURN shall be identical to the assignedURN of some
existing RegistryEntry instance in some registry managed by the RA. If the assigned URN does not exist, then
raise theexception: assigned urn does not exist. NOTE: We may want to allow the possibility that the
assignedURN is in some remote registry, but this may put too much of a checking burden on the RA; for now lets
allow an RA to refuse this reference if it does not identify a registry entry in the same registry.

5. If a PackageMember is a PkgItemRef, then the regEntryId attribute shall reference the regEntryId of some
RegistryEntrySubmit element in the containing XML document. If this attribte does not reference a metadata
element, then raise theexception: illegal package item reference. NOTE: A SubmitRequest document could
validate to the SubmitRequest DTD if the IDREF references any ID in the same document; this rule ensures that it
references a proposed registry entry.

6. A RegistryMetadataSubmit element directly contained in a PackageMemberSubmit element shall satisfy semantic
rules as if it were a subelement of a RegisterObject element. If it does not satisfy these semantic rules, then the RA
returns the identified error; otherwise, the RA shall create a new registry entry as if a RegisterObject request were
executed with each RegistryMetadataSubmit.

103

7. For each PackageMember, the RA creates a new instance of Association with the newly created package as the
GivenItem, with Contains as the associationRole, and with the referenced or newly created package element as the
AssociatedItem.

104

8.9 DeleteAssociation

Purpose

To delete one or more associations from the metadata for an existing registry entry.

Definition

<!ELEMENT DeleteAssociation
((associationRole, AssociatedItemURN)*)>

<!ATTLIST DeleteAssociation
 assignedURN CDATA #REQUIRED>

<!ELEMENT associationRole (#PCDATA)>

<!ELEMENT AssociatedItemURN (#PCDATA)>

Semantic Rules

1. The assignedURN attribute shall identify an existing RegistryEntry instance in some registry managed by the
Registration Authority (RA). If it does not, then raise theexception: assigned urn does not exist.

2. Each associationRole and AssociatedItemURN pair, if present, shall identify a unique association instance linked
to the registry entry identified by the assignedURN. If it does not, then raise theexception: referenced association
does not exist.

3. Case:

a. If no associationRole and AssociatedItemURN pair exists, then the RA shall delete every association linked to
the registry entry identified by the assignedURN as the GivenItem.

b. Otherwise, the RA shall delete each association identified by a associationRole and AssociatedItemURN pair.

4. The RA shall insert a new Impact instance for the registry entry referenced by assignedURN to indicate that this
request had a Delete Association (DAS) impact on that registry entry.

5. The RA shall insert a new Impact instance for each registry entry identified by the AssociatedItemURN in any
deleted association instance to indicate that this request had a Delete Association (DAS) impact on that registry
entry.

105

8.10 DeleteClassification

Purpose

To delete one or more classifications from the metadata for an existing registry entry.

Definition

<!ELEMENT DeleteClassification (SchemeURN*)>
<!ATTLIST DeleteClassification
 assignedURN CDATA #REQUIRED>

<!ELEMENT SchemeURN (#PCDATA)>

Semantic Rules

1. The assignedURN attribute shall identify an existing RegistryEntry instance in some registry managed by the
Registration Authority (RA). If it does not, then raise theexception: assigned urn does not exist.

2. The SchemeURN element shall identify a collection of one or more classification instances linked to the registry
entry identified by the assignedURN. If it does not, then raise theexception: referenced classification does not
exist.

3. The RA shall delete each classification instance in the collection identified by SchemeURN.

4. The RA shall insert a new Impact instance for the registry entry referenced by assignedURN to indicate that this
request had a Delete Classification (DCF) impact on that registry entry.

106

8.11 DeleteAlternateName

Purpose

To delete one or more alternate names from the metadata for an existing registry entry.

Definition

<!ELEMENT DeleteAlternateName ((AltName, NameContext)*)>
<!ATTLIST DeleteAlternateName
 assignedURN CDATA #REQUIRED>

<!ELEMENT NameContext (#PCDATA)>

Semantic Rules

1. The assignedURN attribute shall identify an existing RegistryEntry instance in some registry managed by the
Registration Authority (RA). If it does not, then raise theexception: assigned urn does not exist.

2. Each AltName and NameContext pair, if present, shall identify a unique alternate name instance linked to the
registry entry identified by the assignedURN. If it does not, then raise theexception: referenced alternate name
does not exist.

3. Case:

a. If no AltName and NameContext pair exists, then the RA shall delete every alternate name linked to the
registry entry identified by the assignedURN.

b. Otherwise, the RA shall delete each alternate name identified by an AltName and NameContext pair.

4. The RA shall insert a new Impact instance for the registry entry referenced by assignedURN to indicate that this
request had a Delete Alternate Name (DAN) impact on that registry entry.

107

8.12 DeleteContribution

Purpose

To delete one or more contribution instances from the metadata for an existing registry entry.

Definition

<!ELEMENT DeleteContribution ((ContributorName, ContributorRole)*)>
<!ATTLIST DeleteContribution
 assignedURN CDATA #REQUIRED
 roleCategory CDATA #IMPLIED >

Semantic Rules

1. The assignedURN attribute shall identify an existing RegistryEntry instance in some registry managed by the
Registration Authority (RA). If it does not, then raise theexception: assigned urn does not exist.

2. The ContributorName and ContributorRole pair, if present, shall identify a unique contribution instance linked to
the registry entry identified by the assignedURN. If it does not, then raise theexception: referenced contribution
does not exist.

3. Case:

a. If a ContributorName and ContributorRole pair exists, then the value of the roleCategory attribute, if present,
is superfluous because the name and role pair identifies a unique contribution instance. The RA shall delete
that contribution instance.

b. If no ContributorName and ContributorRole pair exists, and if no roleCategory attribute is present, then the
RA shall delete every contribution instance linked to the registry entry identified by the assignedURN.

c. If no ContributorName and ContributorRole pair exists, and if a roleCategory attribute has a specific value,
then the RA shall delete every contribution instance having that roleCategory value that is linked to the
registry entry identified by the assignedURN.

4. The RA shall insert a new Impact instance for the registry entry referenced by assignedURN to indicate that this
request had a Delete Contribution (DCB) impact on that registry entry.

108

8.13 DeleteDescription

Purpose

To delete one or more descriptions from the metadata for an existing registry entry.

Definition

<!ELEMENT DeleteDescription (Language*)>
<!ATTLIST DeleteDescription
 assignedURN CDATA #REQUIRED>

<!ELEMENT Language (#PCDATA)>

Semantic Rules

1. The assignedURN attribute shall identify an existing RegistryEntry instance in some registry managed by the
Registration Authority (RA). If it does not, then raise theexception: assigned urn does not exist.

2. The Language element shall identify a unique description instance linked to the registry entry identified by the
assignedURN. If it does not, then raise theexception: referenced description does not exist.

3. The RA shall delete the referenced description.

4. The RA shall insert a new Impact instance for the registry entry instance referenced by assignedURN to indicate
that this request had a Delete Description (DDS) impact on that registry entry.

109

8.14 DeleteExternalData

Purpose

To delete one or more external data items from the metadata for an existing registry entry.

Definition

<!ELEMENT DeleteExternalData (DataName*)>
<!ATTLIST DeleteExternalData
 assignedURN CDATA #REQUIRED>

Semantic Rules

1. The assignedURN attribute shall identify an existing RegistryEntry instance in some registry managed by the
Registration Authority (RA). If it does not, then raise theexception: assigned urn does not exist.

2. The DataName element, if present, shall identify a unique external data instance linked to the registry entry
identified by the assignedURN. If it does not, then raise theexception: referenced external data does not exist.

3. Case:

a. If no DataName element exists, then the RA shall delete every external data instance linked to the registry
entry identified by the assignedURN.

b. Otherwise, the RA shall delete each external data instance identified by a DataName.

4. The RA shall insert a new Impact instance for the registry entry referenced by assignedURN to indicate that this
request had a Delete External Data (DED) impact on that registry entry.

110

8.15 ModifyClassificationScheme

Purpose

To modify the definition of an existing classification scheme.

Definition

<!ELEMENT ModifyClassificationScheme
 ((AddLevels | AddNodes | DeleteLevels | DeleteNodes)+)>
<!ATTLIST ModifyClassificationScheme
 assignedURN CDATA #REQUIRED>

<!ELEMENT AddLevels (ClassificationLevel+)>

<!ELEMENT AddNodes (ClassificationNode+)>

<!ELEMENT DeleteLevels (LevelRef)>

<!ELEMENT DeleteNodes ((LevelRef, ItemRef)+)>

<!ELEMENT LevelRef EMPTY >
<!ATTLIST LevelRef
 levelCode CDATA "leaf" >

<!ELEMENT ItemRef EMPTY >
<!ATTLIST ItemRef
 itemValue CDATA #REQUIRED >

Semantic Rules

1. [NOT COMPLETE]

2. [NOT COMPLETE]

111

8.16 ModifyRegistryPackage

Purpose

To modify the contents of an existing package.

Definition

<!ELEMENT ModifyRegistryPackage ((AddItem | DeleteItem)+)>
<!ATTLIST ModifyRegistryPackage
 assignedURN CDATA #REQUIRED>

<!ELEMENT AddItem (PackageMember+)>

<!ELEMENT DeleteItem (assignedURN+)>

Semantic Rules

1. [NOT COMPLETE]

2. [NOT COMPLETE]

112

8.17 ModifyRegistryEntry

Purpose

To modify the attributes of an existing registry entry.

Definition

<!ELEMENT ModifyRegistryEntry (RegistryEntrySubmit)>
<!ATTLIST ModifyRegistryEntry
 assignedURN CDATA #REQUIRED>

Semantic Rules

1. The assignedURN attribute shall identify an existing RegistryEntry instance in some registry managed by the
Registration Authority (RA). If it does not, then raise theexception: assigned urn does not exist. If the assigned
URN does identify a registry entry, then let RE represent that entry.

2. Each subelement of the RegistryEntrySubmit shall satisfy the semantic rules associated with that element. If they
do not satisfy these semantic rules, then raise theexception: invalid registry entry subelements.

3. Each attribute of the RegistryEntrySubmit shall satisfy the semantic rules of RegistryEntry. If they do not satisfy
these semantic rules, then raise theexception: invalid registry entry attributes.

4. The content of each subelement of the RegistryEntrySubmit element shall replace the value of the corresponding
attribute of RE.

5. The value of each attribute of the RegistryEntrySubmit element shall replace the value of the corresponding
attribute of RE.

113

8.18 RegisterObject

Purpose

To provide all of the necessary metadata to register a new object in a Registry. The object itself may or may not be
included, depending on whether the Registry is also acting as a Repository for that object.

Definition

<!ELEMENT RegisterObject (RegistryMetadataSubmit, ObjectFile?)>

<!ELEMENT ObjectFile (#PCDATA)>
<!ATTLIST ObjectFile

mimeType CDATA #IMPLIED
toCharMethod CDATA #IMPLIED >

Semantic Rules

1. The RegistryMetadataSubmit element directly contained in the RegisterObject element contains the metadata that
describes the object to be registered. If it contains any illegal values, then raise theexception: registry metadata
submit failure.

2. If the registry is acting in tandem with a repository for specific types of documents, and if submission of the object
to be registered is required by the published rules and procedures of the registry/repository, then the ObjectFile
element shall be present. If ObjectFile is not present, or if the objectURL attribute of the RegistryEntrySubmit
element in the RegistryMetadataSubmit element does not identify a file location accessible to the RA, then the RA
may return the error: object file required.

3. The mimeType attribute of the ObjectFile identifies the MIME type (Section 3.14) of the ObjectFile.

4. If the ObjectFile is a binary file, then the toCharMethod attribute identifies the method used to convert bytes to
characters that can be transported as XML PCDATA. The specification of the meaning of any value for this
attribute is beyond the scope of this specification.

5. If the registry is acting in tandem with a repository for specific types of documents, and if the ObjectFile, or the
file referenced by objectURL, does not validate to a published schema definition for objects to be registered, then
the RA may return the error: object does not validate.

6. The RA shall create a new registry entry using the information from the RegistryEntrySubmit subelement of the
RegistryMetadataSubmit element.

7. The RA shall insert a new Impact instance for the newly created registry entry to indicate that this request had an
Insert Registry Entry (IRE) impact on that registry entry.

8. For every Association subelement of the RegistryMetadataSubmit element, the RA shall execute the rules of
AddAssociation, with the URN of the newly created registry entry as the assignedURN.

9. For every Classification subelement of the RegistryMetadataSubmit element, the RA shall execute the rules of
AddClassification, with the URN of the newly created registry entry as the assignedURN.

10. For every ExternalData subelement of the RegistryMetadataSubmit element, the RA shall execute the rules of
AddExternalData, with the URN of the newly created registry entry as the assignedURN.

11. For every AlternateName subelement of the RegistryMetadataSubmit element, the RA shall execute the rules of
AddAlternateName, with the URN of the newly created registry entry as the assignedURN.

12. For every Description subelement of the RegistryMetadataSubmit element, the RA shall execute the rules of
AddDescription, with the URN of the newly created registry entry as the assignedURN.

114

8.19 RegisterSubmittingOrg

Purpose

To request certification from a Registration Authority to be a Submitting Organization for a Registry managed by that
Registration Authority.

Definition

<!ELEMENT RegisterSubmittingOrg
(OrganizationSubmit, Contact+)>

Semantic Rules

1. The RegisterSubmittingOrg element provides information about the intended Submitting Organization (SO). That
information is evaluated by the Registration Authority (RA) against its published policies and procedures for
certification as an SO.

2. If the information provided is not satisfactory, then the RA returns an error: certification not successful.

3. If the orgFullName and country attributes match an already registered SO, then the RA returns an error:
organization already certified. [NOTE: we may want to use this element to allow an SO to modify some of its
contact information, but right now this error assumes that such modifications are accomplished by a different
communication element.]

4. [NOT COMPLETE] Add Impact Rules, Set Organization class attributes.

115

8.20 ReaffirmRegisteredObject

Purpose

To reaffirm the registration of a registered object and suggest a new expirationDate.

Definition

<!ELEMENT ReaffirmRegisteredObject EMPTY >
<!ATTLIST ReaffirmRegisteredObject
 assignedURN CDATA #REQUIRED
 expirationDate CDATA #IMPLIED >

Semantic Rules

1. The assignedURN attribute shall identify an existing RegistryEntry instance in some registry managed by the
Registration Authority (RA). If it does not, then raise theexception: assigned urn does not exist. If the assigned
URN does identify a registry entry, then let RE represent that entry.

2. The expirationDate, if present, is a suggestion by the SO of a new expirationDate for the registered object
referenced by RE. The new value is set by the RA depending on its own policies and this suggestion.

3. [NOT COMPLETE] Add Impact Rules, Set Organization class attributes.

116

8.21 ReplaceRegisteredObject

Purpose

To replace an existing registered object with a new object having new metadata, leaving a modified version of the
metadata for the old object in the Registry.

Definition

<!ELEMENT ReplaceRegisteredObject
(RegistryMetadataSubmit, ObjectFile?)>

<!ATTLIST ReplaceRegisteredObject
 assignedURN CDATA #REQUIRED>

Semantic Rules

1. The assignedURN attribute shall identify an existing RegistryEntry instance in some registry managed by the
Registration Authority (RA). If it does not, then raise theexception: assigned urn does not exist.

2. If the SO submitting this request is not also the SO of the registry entry instance referenced by assignedURN, then
raise theexception: insufficient privileges.

3. If the stability attribute of the registry entry instance referenced by assignedURN does not allow replacement, then
raise theexception: replacement not allowed.

4. The RegistryMetadataSubmit element and the ObjectFile element shall satisfy the semantic rules of
RegisterObject, as if they were part of a RegisterObject element. If they do not, then the RA returns the identified
error. The RA shall create a new registry entry as if a RegisterObject request were executed with these elements.

5. The RA shall create a new association instance, with the newly created registry entry as the parent GivenItem, with
assignedURN as the AssocItemURN, with the regEntryId of the assignedURN as the AssocItemId, and with the
associationRole set to supercedes.

6. The RA shall insert two new Impact instances, one for the newly created registry entry and one for the registry
entry referenced by assignedURN, to indicate that this request had an Insert Association (IAS) impact on each
registry entry.

7. The registry entry instance referenced by assignedURN shall have its registrationStatus attribute changed to
Replaced, its objectURL attribute shall be modified to point to the location of the replacement object, and the
statusChgDate attribute shall be changed to indicate the Datetime that this registry action takes place.

8. The RA shall insert a new Impact instance for the registry entry instance referenced by assignedURN to indicate
that this request had an Update Registry Entry (URE) impact on that registry entry.

117

8.22 SupercedeRegisteredObject

Purpose

To supercede an existing registered object with a new object having new metadata, leaving the old object in its
Repository, and a modified version of the metadata for the old object in the Registry.

Definition

<!ELEMENT SupercedeRegisteredObject (RegistryMetadataSubmit)>
<!ATTLIST SupercedeRegisteredObject
 assignedURN CDATA #REQUIRED>

Semantic Rules

1. The assignedURN attribute shall identify an existing RegistryEntry instance in some registry managed by the
Registration Authority (RA). If it does not, then raise theexception: assigned urn does not exist.

2. If the SO submitting this request is not also the SO of the registry entry instance referenced by assignedURN, then
raise theexception: insufficient privileges.

3. The RegistryMetadataSubmit element and the ObjectFile element shall satisfy the semantic rules of
RegisterObject, as if they were part of a RegisterObject element. If they do not, then the RA returns the identified
error. The RA shall create a new registry entry as if a RegisterObject request were executed with these elements.

4. The RA shall create a new association instance, with the newly created registry entry as the parent GivenItem, with
assignedURN as the AssocItemURN, with the regEntryId of the assignedURN as the AssocItemId, and with the
associationRole set to supercedes.

5. The RA shall insert two new Impact instances, one for the newly created registry entry and one for the registry
entry referenced by assignedURN, to indicate that this request had an Insert Association (IAS) impact on each
registry entry.

6. The registry entry instance referenced by assignedURN shall have its registrationStatus attribute changed to
Superceded, and the statusChgDate attribute shall be changed to indicate the Datetime that this registry action
takes place. NOTE: Unlike for ReplaceRegisteredObject, the objectURL attribute of the registry entry referenced
by assignedURN does not change.

7. The RA shall insert a new Impact instance for the registry entry instance referenced by assignedURN to indicate
that this request had an Update Registry Entry (URE) impact on that registry entry.

118

8.23 WithdrawRegisteredObject

Purpose

To withdraw a registered object, leaving a modified version of its metadata in the Registry.

Definition

<!ELEMENT WithdrawRegisteredObject EMPTY>
<!ATTLIST WithdrawRegisteredObject
 assignedURN CDATA #REQUIRED>

Semantic Rules

1. The assignedURN attribute shall identify an existing RegistryEntry instance in some registry managed by the
Registration Authority (RA). If it does not, then raise theexception: assigned urn does not exist.

2. If the SO submitting this request is not also the SO of the registry entry instance referenced by assignedURN, then
raise theexception: insufficient privileges.

3. If the stability attribute of the registry entry instance referenced by assignedURN does not allow withdrawal, then
raise theexception: withdrawal not allowed.

4. The registry entry instance referenced by assignedURN shall have its registrationStatus attribute changed to
Withdrawn, and the statusChgDate attribute shall be changed to indicate the Datetime that this registry action takes
place.

5. The RA shall insert a new Impact instance for the registry entry instance referenced by assignedURN to indicate
that this request had an Update Registry Entry (URE) impact on that registry entry.

6. The RA shall delete any External Data instances that link to the registry entry referenced by assignedURN.

7. The RA shall delete any association instances that have the registry entry referenced by assignedURN as the
GivenItem in that association.

8. The RA shall insert a new Impact instance for each registry entry that has any remaining association instance
where the registry entry referenced by assignedURN is the AssocItem in that instance to indicate that this request
had a Delete Association (DAS) impact on that registry entry. Note: these association instances themselves are not
modified in any way; they still point to the registry entry of the now withdrawn object.

119

8.24 Request by unique identifier
An interoperable network of registries requires at least one agreed-upon protocol for obtaining resources and their
metadata. Fortunately, such a protocol was specified in the course of URN development work in the IETF. Resolution
of requests by URL and URN are discussed in RFC 2483, URI Resolution Services Necessary for URN Resolution.
This an experimental specification appears to be well suited to the purposes of the OASIS Registry and Repository
Technical Committee. Its typology of requests, results, errors, and security considerations is well considered.

As the OASIS Registry and Repository Technical Committee is willing to limit the protocols supported to HTTP, the
syntax proposed in RFC 2169, “A Trivial Convention for using HTTP in URN Resolution” (THTTP) is specified here,
with revisions to bring it in line with the later RFC 2483, to wit, replacement of the L2* and N2* requests with a
generic I2* request. Thus emended, section 2.0 of RFC 2169 reads:

 The general approach used to encode resolution service requests in THTTP is quite simple:

 GET /uri-res/<service>?<uri> HTTP/1.0

 For example, if we have the URN "urn:foo:12345-54321" and want a URL, we would send the request:

 GET /uri-res/I2L?urn:foo:12345-54321 HTTP/1.0

 The request could also be encoded as an HTTP 1.1 request. This would look like:

 GET /uri-res/I2L?urn:foo:12345-54321 HTTP/1.1
 Host: <whatever host we are sending the request to>

Responses from the HTTP server follow standard HTTP practice. Status codes, such as 200 (OK) or 404 (Not Found)
shall be returned. The normal rules for determining cachability, negotiating formats, etc. apply.

To use this syntax in general, one would follow the pattern (cast as a URL rather than a full HTTP request):

 http://someregistry.org/<function>?argument

To obtain an entity such as the Docbook DTD (the URN is imaginary):

 http://someregistry.org/I2R?urn:x-oasis:dtds:Docbook-v3.1

To obtain the composite metadata document for the Docbook DTD (the URN is again imaginary):

 http://someregistry.org/I2C?urn:x-oasis:dtds:Docbook-v3.1

RFC 2483 defines an “I2C” request (section 4.5), for resolution of a URL or URN to a description of a resource (URC).
As this is a generic request, the OASIS Registry and Repository Technical Committee chooses not to require registries
conformant with this specification to return an entity's registration document in response to this request; registries are
free to supply whatever their preferred metadata is, which may extend that specified here. (An RA may set its own
policy with respect to what metadata it will accept beyond that specified here.) Instead, an additional request, I2X, is
specified as returning the entity's registration document as defined here. Some information, such as personal contact
information, may be withheld by the RA, perhaps on the basis of the identity of the requestor, if such is its policy.

The “I2CS” request, section 4.6, allows a request for multiple documents; in the absence of agreement on XML
packaging, it is not clear that it
would be useful to implement it at the present time.

120

9. Registry Filters

9.1 RegistryEntryFilter

Purpose

To select a set of RegistryEntry instances from the set of all persistent RegistryEntry instances.

Definition

<!ELEMENT RegistryEntryFilter (RegistryPredicate)>

Semantic Rules

1. The RegistryPredicate element is defined in Section 9.13.

2. Any attribute referenced in the RegistryPredicate shall be a class attribute of the RegistryEntry class.

3. A RegistryEntry instance is said to satisfy the RegistryEntryFilter if the RegistryPredicate evaluates to true for the
class attributes of that instance.

121

9.2 AssociationFilter

Purpose

To select a set of Association instances from the set of all persistent Association instances.

Definition

<!ELEMENT AssociationFilter (RegistryPredicate)>

Semantic Rules

1. The RegistryPredicate element is defined in Section 9.13.

2. Any attribute referenced in the RegistryPredicate shall be a class attribute of the Association class.

3. An Association instance is said to satisfy the AssociationFilter if the RegistryPredicate evaluates to true for the
class attributes of that instance.

122

9.3 ClassificationFilter

Purpose

To select a set of Classification instances from the set of all persistent Classification instances.

Definition

<!ELEMENT ClassificationFilter (RegistryPredicate)>

Semantic Rules

1. The RegistryPredicate element is defined in Section 9.13.

2. Any attribute referenced in the RegistryPredicate shall be an attribute of the Classification class or an attribute of
the LevelValuePair class; however attributes from the one class may not be compared with attributes from the
other class.

3. NOTE: Also need a way to distinguish among the two "comment" attributes!

4. A Classification instance is said to satisfy the ClassificationFilter if the RegistryPredicate evaluates to true for the
classification instance linked to at least one of its dependent LevelValuePair instances.

123

9.4 ExternalDataFilter

Purpose

To select a set of ExternalData instances from the set of all persistent ExternalData instances.

Definition

<!ELEMENT ExternalDataFilter (RegistryPredicate)>

Semantic Rules

1. The RegistryPredicate element is defined in Section 9.13.

2. Any attribute referenced in the RegistryPredicate shall be a class attribute of the ExternalData class.

3. An ExternalData instance is said to satisfy the ExternalDataFilter if the RegistryPredicate evaluates to true for the
class attributes of that instance.

124

9.5 AlternateNameFilter

Purpose

To select a set of AlternateName instances from the set of all persistent AlternateName instances.

Definition

<!ELEMENT AlternateNameFilter (RegistryPredicate)>

Semantic Rules

1. The RegistryPredicate element is defined in Section 9.13.

2. Any attribute referenced in the RegistryPredicate shall be a class attribute of the AlternateName class.

3. An AlternateName instance is said to satisfy the AlternateNameFilter if the RegistryPredicate evaluates to true for
the class attributes of that instance.

125

9.6 DescriptionFilter

Purpose

To select a set of Description instances from the set of all persistent Description instances.

Definition

<!ELEMENT DescriptionFilter (RegistryPredicate)>

Semantic Rules

1. The RegistryPredicate element is defined in Section 9.13.

2. Any attribute referenced in the RegistryPredicate shall be a class attribute of the Description class.

3. A Description instance is said to satisfy the DescriptionFilter if the RegistryPredicate evaluates to true for the class
attributes of that instance.

126

9.7 ContributionFilter

Purpose

To select a set of Contribution instances from the set of all persistent Contribution instances.

Definition

<!ELEMENT ContributionFilter (RegistryPredicate)>

Semantic Rules

1. The RegistryPredicate element is defined in Section 9.13.

2. Any attribute referenced in the RegistryPredicate shall be a class attribute of the Contribution class.

3. A Ccontribution instance is said to satisfy the ContributionFilter if the RegistryPredicate evaluates to true for the
class attributes of that instance.

127

9.8 OrganizationFilter

Purpose

To select a set of Organization instances from the set of all persistent Organization instances.

Definition

<!ELEMENT OrganizationFilter (RegistryPredicate)>

Semantic Rules

1. The RegistryPredicate element is defined in Section 9.13.

2. Any attribute referenced in the RegistryPredicate shall be a class attribute of the Organization class.

3. An Organization instance is said to satisfy the OrganizationFilter if the RegistryPredicate evaluates to true for the
class attributes of that instance.

128

9.9 ImpactFilter

Purpose

To select a set of Impact instances from the set of all persistent Impact instances.

Definition

<!ELEMENT ImpactFilter (RegistryPredicate)>

Semantic Rules

1. The RegistryPredicate element is defined in Section 9.13.

2. Any attribute referenced in the RegistryPredicate shall be a class attribute of the Impact class.

3. An Impact instance is said to satisfy the ImpactFilter if the RegistryPredicate evaluates to true for the class
attributes of that instance.

129

9.10 RequestFilter

Purpose

To select a set of Request instances from the set of all persistent Request instances.

Definition

<!ELEMENT RequestFilter (RegistryPredicate)>

Semantic Rules

1. The RegistryPredicate element is defined in Section 9.13.

2. Any attribute referenced in the RegistryPredicate shall be a class attribute of the Request class.

3. A Request instance is said to satisfy the RequestFilter if the RegistryPredicate evaluates to true for the class
attributes of that instance.

130

9.11 ContactFilter

Purpose

To select a set of Contact instances from the set of all persistent Contact instances.

Definition

<!ELEMENT ContactFilter (RegistryPredicate)>

Semantic Rules

1. The RegistryPredicate element is defined in Section 9.13.

2. Any attribute referenced in the RegistryPredicate shall be a class attribute of the Contact class.

3. A Contact instance is said to satisfy the ContactFilter if the RegistryPredicate evaluates to true for the class
attributes of that instance.

131

9.12 SubmissionFilter

Purpose

To select a set of Contact instances from the set of all persistent Contact instances.

Definition

<!ELEMENT SubmissionFilter (RegistryPredicate)>

Semantic Rules

1. The RegistryPredicate element is defined in Section 9.13.

2. Any attribute referenced in the RegistryPredicate shall be a class attribute of the Submission class.

3. A Submission instance is said to satisfy the SubmissionFilter if the RegistryPredicate evaluates to true for the class
attributes of that instance.

132

9.13 RegistryPredicate

Purpose

To specify a predicate over attibutes defined by classes in the Registry/Repository Information Model. The predicate
uses 2-value logic to return a true or false result.

Definition

<!ELEMENT RegistryPredicate [NOT FINISHED!])>

Semantic Rules

[NOT FINISHED]

133

10. Conformance
An implementation may claim conformance to this specification at any of several different levels, including
RegistryOnly, RegistryRepositoryBasic, and RegistryRepositoryQuery. In addition, the two repository levels may be
specified with or without Validation. Optionally, a conforming implementation at any level of conformance may claim
conformance to additional alternatives for SQL Query, XML Query, or OQL Query.

10.1 RegistryOnly
If an implementation claims conformance at the RegistryOnly level, then it must suppport the RegistryEntry,
Association, Classification, ExternalData, AlternateName, Contribution, Description, Organization, Contact, and
Submission classes via implementation of the XML SubmitRequest DTD with explicit support for the following
registry services:

! RegisterSubmittingOrganization, RegisterObject without an ObjectFile, ReaffirmRegisteredObject,
ReplaceRegisteredObject, SupercedeRegisteredObject, WithdrawRegisteredObject, ModifyRegistryEntry,
AddAssociation, AddClassification, AddAlternateName, AddExternalData, AddProductionCreddit,
AddDescription, DeleteAssociation, DeleteClassification, DeleteAlternateName, DeleteExternalData,
DeleteContribution, DeleteDescription, and

! GetRegistryEntry (AssignedURN+)

10.2 RegistryRepositoryBasic
If an implementation claims conformance at the RegistryRepositoryBasic level, then it must satisfy the requirements
for RegistryOnly conformance. In addition, it must support the RegisteredObject, RegistryPackage, and
ClassificationScheme classes via implementation of the following additional registry services:

! RegisterObject with ObjectFile specified, DefineRegistryPackage, DefineClassificationScheme,
ModifyRegistryPackage, and

! GetRegisteredObject(AssignedURN+)

10.3 RegistryRepositoryQuery
If an implementation claims conformance at the RegistryRepositoryQuery level, then it must satisfy the requirements
for RegistryRepositoryBasic conformance. In addition, it must support full implementation of the Impact class and
implementation of the following registry services:

! ModifyClassificationScheme, GetSchemeSubtree [NOT SPECIFIED YET], and
NOTE: GetSchemeSubtree will allow options to specify the number of levels to retrieve, from one to all.

! RegistryQuery() with support for each of the following alternatives:

RegistryEntryQuery (MetadataFilter)
ContactQuery (MetadataFilter)
RequestQuery (MetadataFilter)
ImpactQuery (MetadataFilter)
OrganizationQuery (MetadataFilter)

10.4 with Validation option
An implementation may claim conformance at any RegistryRepository level either with or without Validation. If with
Validation is specified, then the implementation must support validation of any registered object whose objectType is
Instance, whose fileType is text/xml, whose registry entry has a Validates To association with another registered object

134

whose objectType is Definition, and whose fileType is xml/dtd or xml/schema. In addition the implementation shall
state any other objectType's for which it supports validation.

10.5 with Query options
An implementation may claim conformance at any RegistryRepository level either with or without any of the following
options:

! with SQL Query
! with OQL Query
! with XML Query

If any of these options is specified, then the implementation shall support each of the requirements for that alternative
as specified in Section 7.4.

10.6 Normative policy requirements
This specification declares the need for certain policies, but may not specify their contents.

Intellectual Property Notices. The registry and repository shall have published policies relating to their provision of
intellectual property notices for entities in the repository; that is, whether the interface to the registry or repository
warns of the existence of copyright notices, asserted licenses, or other intellectual property restrictions or
encumbrances, or leaves it to the user to discover them.

Integrity. The registry and repository shall have published policies relating to their use of methods to guarantee the
integrity of entities in repository and metadata in the registry; for example, does the repository employ digital
signatures to ensure against corruption? if transformations of registered entities are served are they signed as well?

Security. The registry and repository shall have security policies sufficient to engender confidence in the registry and
repository.

Disaster Recovery. The complete content of both the registry and repository shall be backed up offsite, and the
backup tested. Some plan shall be made for reconstituting the registry and repository from the backup should the
original site be rendered inoperable.

Persistence. The registry and repository shall have published policies relating to its plans for continuing in operation
and the outcomes to be expected should it cease operation or should business relationships with the owners of its
content change. A point of departure for describing archival longevity is the “Reference Model for an Open Archival
Information System” (OAIS) which is a draft ISO standard. It shall be possible for an SO to request that an entity be
kept available for a given length of time, also that it be withdrawn after a given length of time.

Retraction. It shall be possible for an SO to request the retraction of an entity.

Privacy. The registry and repository shall have published policies relating to the privacy of users and the sale or other
distribution of usage information.

Quality Control. ISO/IEC 11179 defines a data element status value, “certified” (Part 6, p. 9) for a “recorded data
element [that] has met the quality requirements specified in this and other parts of ISO/IEC 11179.” If the registry
provides this or other quality control checking, it shall provide metadata about what specifications an entity conforms
to and who did the testing to determine that conformance. (XML validity vs. well-formedness falls under this heading.)

Limitation of Legal Liability. A registry shall have a statement of limitation of legal liability (disclaiming
responsibility for the use of information in the repository, for example).

Notice of Quality of Service. A registry shall have a statement of the quality of service it can be expected to provide.

135

11. Terminology and Relevant Specs
Glossed here are relevant terms, including acronyms, with entries for some specifications relevant to the registry and
the repository.

FPI - Formal Public Identifier, defined in the SGML Standard, ISO/IEC 8879, section 10.2, and further in ISO/IEC
9070.

ISO/IEC 8879 - The SGML Standard, “Information processing—Text and office systems—Standard Generalized
Markup Language (SGML)”.

ISO/IEC 9070 - Further specifies PIs and FPIs, first defined in the SGML Standard, “Information technology—SGML
support facilities—Registration procedures for public text owner identifiers”.

ISO/IEC 11179 - ISO/IEC 11179 is online at http://www.sdct.itl.nist.gov/~ftp/l8/11179/ . The home page of the
relevant committee is http://sdct-sunsrv1.ncsl.nist.gov/~ftp/l8/sc32wg2/projects/11179content/content-home.htm with a
link to an HTML representation of the stanadard. It is proposed to replace Part 3 of 11179 with ANSI X3.285,
“Metamodel for the Management of Shareable Data”, which you can find in HTML at
http://www.lbl.gov/~olken/X3L8/drafts/Metamodel/MetaModel_ToC.html and in Word and PDF format (filenames
beginning dpX3-285) at ftp://sdct-sunsrv1.ncsl.nist.gov/x3l8/x3l8docs/x3.285/docs/ .

OAIS - “Reference Model for an Open Archival Information System”, a draft ISO standard.

PI - Public Identifier, defined in the SGML Standard, ISO/IEC 8879, section 10.1.6, and further in ISO/IEC 9070.

RA - Registration Authority (ISO/IEC 11179).

Repository - a location or set of distributed locations where documents pointed at by a registry reside, and from which
they can be retrieved by conventional (http, ftp) means, perhaps with an additional authentication/permissions layer.

RO - Responsible Organization (ISO/IEC 11179).

SO - Submitting Organization (ISO/IEC 11179).

UML - Unified Modelling Language, an Object Management Group specification for visual modelling of object-
oriented systems, see UML Resource Page.

URC - Uniform Resource Characteristics, a general term for any metadata about a resource identified by a URL or
URN.

URL - Uniform Resource Locator.

URN - Uniform Resource Name. This is a list of IETF (and other) documents relating to URNs, originally drawn up by
Murray Altheim of Sun Microsystems and updated by Terry Allen. The documents he thinks most important are
marked with an asterisk.

 Charter of the current IETF WG
 Some history
 Requests For Comments
 *Uniform Resource Identifiers (URI): Generic Syntax (RFC 2396)
 *URN syntax
 *Resolution of Uniform Resource Identifiers using the Domain Name System (RFC 2168)
 A Trivial Convention for using HTTP in URN Resolution (RFC 2169)
 Architectural Principles of Uniform Resource Name Resolution (RFC 2276)
 Using Existing Bibliographic Identifiers as Uniform Resource Names (RFC 2288)
 Internationalized Uniform Resource Identifiers (IURI)
 *URI Resolution Services Necessary for URN Resolution (RFC 2483)
 *A URN Namespace for IETF Documents (RFC 2648)

136

 Internet Drafts
 *Resolution of Uniform Resource Identifiers using the Domain Name System
 *The Naming Authority Pointer (NAPTR) DNS Resource Record
 URN Namespace Definition Mechanisms
 Requirements for Human Friendly Identifiers
 An Architecture for Supporting Human Friendly Identifiers

XMI - XML Metadata Interchange, an Object Management Group specification of XML formats for interchange of
UML models, see UML Resource Page.

XML - Extensible Markup Language, an application profile (that is, an application) of SGML, specified by the W3C,
Extensible Markup Language (XML) 1.0.

XML-related entity - In this document, “XML-related entity” means any XML or SGML entity necessary for the
processing of an XML document, or documentation of such an entity.

137

Annex 1 - Database Language SQL Representations

A1.1 - Information Model via SQL Views

If the Registry/Repository Information Model is implemented in a relational database, then the UML classes of the
model, or some combination of classes, may be implemented as SQL base tables. These base tables may be private to
the implementation with no access to ouside users. However, the implementation may choose to make the information
described by each of the UML classes in the model accessible to public users as SQL view tables.

The following SQL view tables are in a one-to-one correspondence with the UML classes of the Information Model.
The rows of each table contain the persistent instances in the registry of the corresponding UML class. The non-
reference attributes of each class are exposed as columns in the tables and the REF columns are also exposed as
columns using the appropriate identifier from the referenced class, i.e. orgURN for an Organization instance,
regEntryURN for a RegistryEntry instance, etc. The WHERE clause of each view definition is not visible because it is
private to the implementation, and may vary considerably from one implementation to another.

If implementations of the Registry/Repository choose to provide an SQL interface to registry information, they should
do so using the following view table names and view column names:

create view ALTERNATE_NAME as
SELECT
 Entry.AssignedURN as "regEntryURN",
 Alt.AltName as "altName",
 Alt.NameContext as "nameContext",
 Org.OrgURN as "submittingOrg",
 Alt.Comments as "comment",
 Alt.Language as "language",
 Alt.Encoding as "encoding"
FROM
 REGISTRY_ENTRY_TBL Entry,
 ALTERNATE_NAME_TBL Alt,
 ORGANIZATION_TBL Org
WHERE privileged-information;

create view ASSOCIATION as
SELECT
 GivenEntry.AssignedURN as
"givenItemURN",
 AssocEntry.AssignedURN as
"assocItemURN",
 Assoc.AssociationRole as
"associationRole",
 Assoc.Comments as "comment"
FROM
 ASSOCIATION_TBL Assoc,
 REGISTRY_ENTRY_TBL GivenEntry,
 REGISTRY_ENTRY_TBL AssocEntry
WHERE privileged-information;

create view CLASSIFICATION as
SELECT
 Entry.AssignedURN as "regEntryURN",
 Scheme.AssignedURN as "schemeURN",
 Org.OrgURN as "submittingOrgURN",
 Classif.Comments as "comment"
FROM
 CLASSIFICATION_TBL Classif,

 REGISTRY_ENTRY_TBL Entry,
 REGISTRY_ENTRY_TBL Scheme,
 ORGANIZATION_TBL
WHERE privileged-information;

create view CLASSIFICATION_LEVEL as
SELECT
 Object.SourceURN as "schemeURN",
 Lev.LevelNbr as "levelNbr",
 Lev.LevelCode as "levelCode",
 Lev.LevelName as "levelName",
 Lev.Comments as "comment"
FROM
 CLASSIFICATION_LEVEL_TBL Lev,
 REGISTERED_OBJECT_TBL Object
WHERE privileged-information;

create view CLASSIFICATION_NODE as
SELECT
 Object.SourceURN as "schemeURN",
 Node.NodeId as "nodeId",
 Node.ItemValue as "itemValue",
 Node.ItemName as "itemName",
 Node.ParentId as "parentId",
 Node.LevelNbr as "levelNbr",
 Node.Comments as "comment"
FROM
 CLASSIFICATION_NODE_TBL Node,
 REGISTERED_OBJECT_TBL Object
WHERE privileged-information;

create view CLASSIFICATION_SCHEME as
SELECT
 Object.SourceURN as "schemeURN",
 Scheme.Comments as "comment"
FROM
 CLASSIFICATION_SCHEME_TBL Scheme,

138

 REGISTERED_OBJECT_TBL Object
WHERE privileged-information;
create view CONTACT as
SELECT
 Con.ContactName as "contactName",
 Org.OrgURN as "orgURN",
 Con.InternalAddr as
"internalAddress",
 Con.OrgRole as "orgRole",
 Con.Availability as "availability",
 Con.ContactRole as "contactRole",
 Con.Email as "email",
 Con.Telephone as "telephone",
 Con.Fax as "fax",
 Sub.SubmitId as "submitTimestamp",
 Req.RequestNbr as "requestNbr",
 Entry.AssignedURN as "regEntryURN",
 Con.Comments as "comment"
FROM
 CONTACT_TBL Con,
 SUBMISSION_TBL Sub,
 REQUEST_TBL Req,
 ORGANIZATION_TBL Org,
 REGISTRY_ENTRY_TBL
WHERE privileged-information;

create view CONTRIBUTION as
SELECT
 Entry.AssignedURN as "regEntryURN",
 Cont.ContributorName as
"contributorName",
 Cont.ContributorRole as
"contributorRole",
 Cont.RoleCategory as
"roleCategory",
 Cont.ContributorURL as
"contributorURL",
 Cont.Comments as "comment"
FROM
 REGISTRY_ENTRY_TBL Entry,
 CONTRIBUTION_TBL Cont
WHERE privileged-information;

create view DESCRIPTION as
SELECT
 Entry.AssignedURN as "regEntryURN",
 Des.Language as "language",
 Des.Encoding as "encoding",
 Org.OrgURN as "submittingOrg",
 Des.Abstract as "abstract",
 Des.KeywordList as "keywordList",
 Des.FullDescription as
"fullDescription"
FROM
 REGISTRY_ENTRY_TBL Entry,
 DESCRIPTION_TBL Des,
 ORGANIZATION_TBL Org
WHERE privileged-information;

create view EXTERNAL_DATA as

SELECT
 Entry.AssignedURN as "regEntryURN",
 Ext.DataName as "dataName",
 Ext.DataLocation as "dataLocation",
 Ext.RelatedRole as "relatedRole",
 Ext.MimeType as "mimeType",
 Ext.SizeBytes as "sizeBytes",
 Ext.Comments as "comment"
FROM
 REGISTRY_ENTRY_TBL Entry,
 EXTERNAL_DATA_TBL Ext
WHERE privileged-information;

create view IMPACT as
SELECT
 Imp.SubmitId as "submitTimestamp",
 Imp.RequestNbr as "requestNbr",
 Entry.AssignedURN as "regEntryURN",
 Imp.ImpactCode as "impactCode",
 Imp.Comments as "comment"
FROM
 REGISTRY_ENTRY_TBL Entry,
 IMPACT_TBL Imp
WHERE privileged-information;

create view LEVELVALUEPAIR as
SELECT
 Entry.AssignedURN as "regEntryURN",
 Scheme.AssignedURN as "schemeURN",
 Org.OrgURN as "submittingOrgURN",
 Lvp.LevelCode as "levelCode",
 Lvp.ItemValue as "itemValue",
 Lvp.Comments as "comment"
FROM
 LEVELVALUEPAIR_TBL Lvp,
 CLASSIFICATION_TBL Classif,
 REGISTRY_ENTRY_TBL Entry,
 REGISTRY_ENTRY_TBL Scheme,
 ORGANIZATION_TBL Org
WHERE privileged-information;

create view ORGANIZATION as
SELECT
 Org.OrgURN as "orgURN",
 Org.OrgFullName as "orgFullName",
 Org.CommonName as "commonName",
 Org.HasSOstatus as "hasSOstatus",
 Org.HasROstatus as "hasROstatus",
 Org.HasRAstatus as "hasRAstatus",
 Parent.OrgUrn as "parentOrg",
 Org.AddrLine1 as "addrLine1",
 Org.AddrLine2 as "addrLine2",
 Org.AddrLine3 as "addrLine3",
 Org.City as "city",
 Org.StateProv as "stateProv",
 Country.ShortName as "country",
 Org.PostalCode as "postalCode",
 Org.Email as "email",
 Org.Telephone as "telephone",

139

 Org.Fax as "fax",
 Org.Comments as "comment"
FROM
 ORGANIZATION_TBL Org,
 ORGANIZATION_TBL Parent,
 COUNTRY_CODE_TBL Country
WHERE privileged-information;

create view REGISTRY_ENTRY as
SELECT
 Reg.AssignedURN as "assignedURN",
 Reg.CommonName as "commonName",
 Reg.Version as "version",
 Reg.ObjectURL as "objectURL",
 Reg.DefnSource as "defnSource",
 Reg.ObjectType as "objectType",
 Reg.FileType as "fileType",
 Reg.RegistrationStatus as
"registrationStatus",
 Reg.StatusChgDate as
"statusChgDate",
 Reg.Stability as "stability",
 Reg.FeeStatus as "feeStatus",
 Reg.PropertyRights as
"propertyRights",
 Reg.ShortDescription as
"shortDescription",
 Reg.ExpirationDate as
"expirationDate",
 SubmitOrg.OrgURN as
"submittingOrg",
 RespOrg.OrgURN as "responsibleOrg",
 Reg.Comments as "comment"
FROM
 REGISTRY_ENTRY_TBL Reg,
 ORGANIZATION_TBL SubmitOrg,

 ORGANIZATION_TBL RespOrg
WHERE privileged-information;

create view REGISTRY_PACKAGE as
SELECT
 Object.SourceURN as "packageURN",
 Rpkg.Comments as "comment"
FROM
 REGISTRY_PACKAGE_TBL Rpkg,
 REGISTERED_OBJECT_TBL Object
WHERE privileged-information;

create view REQUEST as
SELECT
 Req.SubmitId as "submitTimestamp",
 Req.RequestNbr as "requestNbr",
 Req.RequestCode as "requestCode",
 Req.ContentXML as "contentXML",
 Req.Comments as "comment"
FROM
 REQUEST_TBL Req
WHERE privileged-information;;

create view SUBMISSION as
SELECT
 Sub.SubmitTime as "submitTime",
 Org.OrgURN as "submittingOrg",
 Sub.Comments as "comment"
FROM
 SUBMISSION_TBL Sub,
 ORGANIZATION_TBL Org
WHERE privileged-information;

A1.2 - Additional Registry Views

The following views represent typical requirements of Registry users. They should be supported by all
Registry/Repository implementations that claim to support an SQL interface. The view definitions may use features
from upper conformance levels of SQL as definitional mechanisms, but queries against those views may still be limited
to Minimal SQL facilites as specified in Annex A1.3.

create view REGENTRY_LJ_GIVENITEM as
SELECT
 Entry.*, Given.* (List out and
rename)
FROM
 REGISTRY_ENTRY as Entry LEFT JOIN
 ASSOCIATION as Given ON
 Entry.assignedURN =
Given.givenItemURN;

create view REGENTRY_LJ_ASSOCITEM as
SELECT

 Entry.*, Assoc.* (List out and
rename)
FROM
 REGISTRY_ENTRY as Entry LEFT JOIN
 ASSOCIATION as Assoc ON
 Entry.assignedURN =
Assoc.assocItemURN;

create view REGENTRY_LJ_EXTDATA as
SELECT
 Entry.*, Data.* (List out and
rename)
FROM

140

 REGISTRY_ENTRY as Entry LEFT JOIN
 EXTERNAL_DATA as Data ON
 Entry.assignedURN =
Data.regEntryURN;

create view REGENTRY_LJ_ALTNAME as
SELECT
 Entry.*, Name.* (List out and
rename)
FROM
 REGISTRY_ENTRY as Entry LEFT JOIN
 ALTERNATE_NAME as Name ON
 Entry.assignedURN =
Name.regEntryURN;

create view REGENTRY_LJ_DESCRIPTION
as
SELECT
 Entry.*, Desc.* (List out)
FROM
 REGISTRY_ENTRY as Eentry LEFT JOIN
 DESCRIPTION as Desc ON
 Entry.assignedURN =
Desc.regEntryURN;
create view REGENTRY_LJ_CONTRIBUTION
as
SELECT
 Entry.*, Cont.* (List out!)
FROM
 REGISTRY_ENTRY as Entry LEFT JOIN
 CONTRIBUTION as Cont ON
 Entry.assignedURN =
Cont.regEntryURN;

create view REGENTRY_LJ_SUBMITORG as
SELECT
 Entry.*, Org.* (List out!)
FROM
 REGISTRY_ENTRY as Entry LEFT JOIN
 ORGANIZATION as Org ON
 Entry.submittingOrg = Org.orgURN;

create view REGENTRY_LJ_IMPACT as

SELECT
 Entry.*, Imp.* (List out!)
FROM REGISTRY_ENTRY as RE LEFT JOIN
IMPACT as IM ON RE.assignedURN =
IM.regEntryURN

create view REGENTRY_LJ_CONTACT as
SELECT
 Entry.*, Contact.* (List out!)
FROM
 REGISTRY_ENTRY as Entry LEFT JOIN
 CONTACT as Contact ON
 Entry.assignedURN =
Contact.regEntryURN;

create view LVP_EXPANSION as
SELECT
 Pair.*
FROM
 LEVELVALUEPAIR Pair,
 CLASSIFICATION_NODE Node
WHERE
[Do Full Recursion on Nodes to get
all parent pairs represented in the
result];
create view REGENTRY_LJ_LVPEXTENDED
as
SELECT
 Entry.*, Classif.*, Pairs.* (List
out!)
FROM
 (REGISTRY_ENTRY as Entry LEFT JOIN
 CLASSIFICATION as Classif ON
 Entry.assignedURN =
Classif.regEntryURN)
 LEFT JOIN LVP_EXPANSION as Pairs
ON
 (Classif.schemeURN =
Pairs.schemeURN AND

Classif.regEntryURN=Pairs.regEntryUR
N);

141

A1.3 - Minimal SQL
[Must be updated to reference ISO/IEC 9075:1999 instead of ISO/IEC 9075:1992]

The International Standard for Database Language SQL, ISO/ISO 9075:1992, specifies three levels of conformance for
SQL language and SQL implementations:

Entry SQL,
Intermediate SQL, and
Full SQL.

Each of these existing SQL conformance levels requires the facilities of a full-function SQL processor, i.e. schema
definition, data manipulation, transaction management, and access control. New conformance alternatives are needed
for non-SQL processors that wish to claim conformance to only a portion of the SQL language. Such processors may
be able to provide very sophisticated data retrieval capabilities, but may not be able to allow update of data instances or
creation of new schema objects. Since existing SQL levels cut across both the schema definition and data manipulation
facilities in the SQL standard, it is necessary to consider each SQL level separately as applied to schema definition or
data manipulation.

Consider the SQL leveling rules separately for schema definition and data manipulation. Use the term Schema
Definition Language (SDL) to identify SQL language features defined in Clause 11, "Schema definition and
manipulation", in the SQL'92 standard, and use the term Data Manipulation Language (DML) to identify SQL
language features defined in Clause 13, "Data Manipulation". One is then able to discuss the following alternatives for
partial support of the SQL language:

Entry DML Entry SDL
Intermediate DML Intermediate SDL
Full DML Full SDL

There is an additional requirement to specify new Minimal DML and Minimal SDL levels to be used exclusively in the
definition of application interfaces that do not pretend to support all of the functionality of a full-function SQL
processor. These Minimal definitions are intended for use only by non-SQL processors and cannot be used to claim
conformance to the SQL standard as an SQL processor.

Minimal DML will support SQL operations on a single table, with no joins and no subqueries, and with severe
limitations on derived columns and set functions. Minimal SDL will support specification of only the simplest views
and the simplest SQL tables, using only character string, integer, decimal, and real data types, with no table constraints
and with only very limited column constraints.

Levels of conformance in the SQL standard are specified by Leveling Rules in each clause of the specification. Using
the style of the SQL standard, the following subsections specify restrictions that apply for Minimal SDL and Minimal
DML in addition to any restrictions for Entry SQL. All Clause and Subclause references, and all syntactic terms
delimited by angle brackets (i.e. <...>) are from ISO/IEC 9075:1992.

Minimal Schema Definition Language

1. A <schema element> contained in a <schema definition> shall be a <table definition> or a <view definition>.

2. A <table element> contained in a <table definition> shall be a <column definition>.

3. A <column constraint> shall not be a <unique specification>, a <references specification>, or a <check constraint
definition>; thus a <column constraint> may only specify NOT NULL.

4. In some cases, an SQL/ERI Server implementation at the Minimal SDL level or below may choose not to provide
support for SQL null values; if every column of every accessible table is constrained to be NOT NULL, then the
implementation may require that every <column definition> in a new <table definition> have an explicit or
implicit NOT NULL constraint.

142

5. The <data type> of a <column definition> shall not specify NUMERIC, FLOAT, or DOUBLE PRECISION; thus
a <column definition> may only specify DECIMAL, REAL, INTEGER, SMALLINT, and fixed length
CHARACTER string <data type>s. [Note: Must relax this to include VarChar character strings!!]

6. A <view definition> shall not specify WITH CHECK OPTION.

7. The <query expression> contained in a <view definition> shall satisfy the restrictions specified by the Minimal
Data Manipulation Language leveling rules below.

Minimal Data Manipulation Language

1. A <query expression> shall be a <query specification>.

2. A <derived column> in the <select list> of a <query specification> shall be a <value expression primary> that is
either a <column reference> or a <set function specification>, and the <derived column> shall not contain an <as
clause>.

3. A <set function specification> that is a <derived column> in the <select list> of a <query specification> shall be
either COUNT(*) or a <general set function> whose directly contained <value expression> is a <column
reference>.

4. A <table expression> shall not contain a <group by clause> or a <having clause>.

5. The <from clause> contained in a <table expression> shall contain exactly one <table reference>, and that <table
reference> shall be a single <table name> without an associated <correlation name>. A <table name> may be
qualified to include a <schema name>.

6. A <search condition> contained in an <SQL data statement> shall not contain any <subquery>. Any <predicate>
contained in a <search condition> shall be a <comparison predicate> without subqueries, a <between predicate>, a
<like predicate>, a <null predicate>, or an <in predicate> whose <in predicate value> is a parenthesized list of
<value specification>s.

7. A <row value constructor> contained in any <predicate> shall have exactly one <row value constructor element>
that is a <value expression>.

8. A <value expression> in a <search condition> shall be either a <numeric value expression> or a <string value
expression> that is a <character primary>.

9. A <value expression primary> in a <search condition> shall be either a <column reference> or an <unsigned value
specification>; thus it may not be a <set function specification> or a <scalar subquery>.

10. A <numeric primary> shall not be a <numeric value function>.

11. A <character primary> shall not be a <character value function>.

12. A <sort key> in a <declare cursor> shall be a <column name>; thus it may not be an <unsigned integer>.

143

Index

AddAlternateDescription, 99
AddAlternateName, 97
AddAssociation, 95
AddClassification, 96
AddItem, 111
AddLevels, 110
AddNodes, 110
AddRelatedData, 98, 100
AltDescriptionFlat, 63, 64
AlternateDescription, 63, 64
AlternateName, 62
AlternateNameFilter, 124
AlternateNameFlat, 62
AltName, 62
AssociatedItemURN, 104
Association, 55
AssociationFilter, 121
AssociationFlat, 55
assocTypeList, 73
CertifySubmittingOrg, 114
ClassificationFilter, 122
ClassificationFlat, 56
ClassificationItem, 70
ClassificationItemFlat, 70
ClassificationLevel, 69
ClassificationLevelFlat, 69
ClassificationNode, 91
ClassificationScheme, 91
ClassifNested, 56
ClassifSchemeInstance, 68
Comment, 55
CommonName, 53
Conformance, 133
Contact, 60
contactAvailList, 73
ContactFilter, 130
ContactInstance, 60
ContactNested, 60
contactRoleList, 73
ContributionFilter, 126
DataName, 57
DefineClassificationScheme, 101
DefinePackage, 102
defnSourceList, 73
DeleteAlternateDescription, 108
DeleteAlternateName, 106
DeleteAssociation, 104
DeleteClassification, 105
DeleteItem, 111
DeleteLevels, 110
DeleteNodes, 110
DeleteRelatedData, 107, 109
Description, 53
DescriptionFilter, 125

ExternalDataFilter, 123
Filters, 120
GivenItemRole, 104
Impact, 67
impactCodeList, 73
ImpactFilter, 128
ItemRef, 110
LevelItemValue, 56
LevelRef, 110
ModifyClassificationScheme, 110
ModifyPackage, 111
ModifyRegistryItem, 112, 115
NameContext, 106
nameContextList, 73
ObjectFile, 113
OrganizationandContacts, 94
OrganizationFilter, 127
OrganizationInstance, 58
OrganizationSubmit, 58
orgRoleList, 73
Package, 102
PackageItem, 102
payStatusList, 73
PkgItemRef, 102
primaryClassList, 74
Query, 82
RegisterObject, 113
Registry Filters, 120
RegistryContentFlat, 93
RegistryContentNested, 94
RegistryEntryFilter, 120
RegistryItemInstance, 53
RegistryItemSubmit, 53
RegistryMetadataInstance, 71
RegistryMetadataSubmit, 71
regStatusList, 74
RelatedData, 57
RelatedDataFlat, 57
relatedTypeList, 74
ReplaceRegisteredObject, 116
Request, 80
requestCodeList, 74
RequestFilter, 129
RequestFlat, 66
RequestNested, 66
RequestSummary, 94
stabilityList, 74
subClassList, 74
Submission, 80
SubmissionFilter, 131
SubmissionHistory, 94
SubmissionInstance, 65
SupersedeRegisteredObject, 117
WithdrawRegisteredObject, 118

144

