
Open XML Court Interface (OXCI)
Architecture Proposal

Document version: 1.0
Author: Richard Himes

Abstract

This document is a draft proposal for an approach to the design of the Open XML Court
Interface (OXCI). It is submitted as a seed for comments so that the design group can
discuss and agree on a general methodology.

Table of Contents

1.0 Introduction
2.0 Architectural Requirements
3.0 OXCI Requirements
4.0 Objects and Interfaces
5.0 Top Level Objects and Interfaces
6.0 XML Objects and Interfaces
7.0 Conclusion
8.0 Glossary

1. Introduction

The design of OXCI will be a team effort involving participants with a wide range of
experience and technical ability. It is desirable to tap into this experience at every
phase of development. The intent of this document is not to cast ideas in stone, but
rather to serve as a point of discussion. The goal is to use the best design practices.

2. Architectural Requirements

This system will be used by courts and vendors with vastly different architectures, so
the design needs to be flexible. It is desirable for the design to be language-
independent and object-oriented. The architecture should be defined in terms of a
generic API (application programming interface) rather than specific code. The
design should be clear, not mysterious. To some extent, these requirements
(abstraction and clarity) conflict. Thus, the design needs to be presented from several
different viewpoints.

3. OXCI Requirements

OXCI will serve as the Electronic Filing Manager (EFM) module in diagram 3.1.

EFP is the electronic filing provider. It represents the client (attorney) side of
electronic filing. The EFP wraps the filing(s) in a Legal XML envelope and transmits
it to the EFM. There can be many EFP systems communicating with a particular
EFM. The method of transmission is unspecified, but could be via e-mail, HTTP,
FTP, or other means. An EFP must submit filings using the Legal XML Court Filing
data format standard.

The CMS is the case management system. It represents the court side of electronic
filing. There will probably be only one CMS per EFM, but theoretically, the EFM
could distribute filings to multiple CMS systems in a state or region. The CMS is
responsible for accepting or rejecting a filing. Other standard CMS functions
(docketing, reporting, workflow, etc.) are outside the scope of this specification.

The requirements of OXCI (EFM) include:
Listen (or poll) for and accept a filing from an EFP
Authorize the EFP vendor and connection
Perform basic policy validity checking
Translate the filing for the CMS
Notify the CMS of the filing
Accept the confirmation or response from the CMS
Translate the CMS confirmation for the EFP
Forward the confirmation to the EFP

Basic policy validity checking will require project coordination with a separate design
effort know as Court Policy Management. Remaining policy will be enforced by the
CMS or human intervention. Sample basic policies are “Accept only one filing per
message”, “Do not accept external document references”, and “Must be on list of
accepted document types for this court”. The CMS or clerk staff may perform
further checks such as “The filing attorney is not a bar member”, “The filed document
doesn’t conform to court local rules”, or “The fee payment has not been authorized”.

Translating a filing for CMS may involve reformatting the XML and writing it to a
DMS (document management system). This will vary from court to court. Figure 3.2
includes the CPM (court policy management) and the DMS system objects.

4. Objects and Interfaces

Objects will be defined based on UML (Unified Modeling Language) constructs and
the OMG IDL (Object Management Group Interface Definition Language.) IDL will
occasionally be augmented with sample Java implementations for clarification.

5. Top Level Objects and Interfaces

From the diagram in figure 3.2 and the high level requirements, we can construct
figure 5.1, the top level class diagram:

Note: A generic response is indicated. As currently defined in the Legal XML Court
Filing specification, the response is a confirmation XML structure which indicates
that the filing was received (filed), accepted (docketed), partial (portions of the
filing(s) were rejected), deferred (waiting human review), and rejected (with reason
text).

Note: CMS and DMS are shown as “Interfaces” because these objects will not be the
actual court CMS and DMS. They will format information suitable for processing by
the local CMS and DMS and will be court-specific, but will process standardized
messages from the OXCI implementation. The word “interface” here has a different
meaning than the design specification application programming interfaces (APIs) of
OXCI. The context of the former is an interface by a particular OXCI
implementation to another system. The context of the later is a language independent
API for OXCI methods.

Figure 5.2 shows an interaction diagram for a filing. Forward time is directed
downward in the diagram. The asterisks before messages (e.g. * Store Filing)
indicate repetition. Note that there may be more than one filing in a CourtFiling
message, so these messages are repeated for each filing.

The interface Oxci shown below contains a submitCourtFiling member function (also
known as a message or a method.) It is passed a CourtFiling object (see section 6.) It
returns a Confirmation object (not detailed in this document.) The “in” means that
courtFiling is an input parameter, that is, it is read only.

interface Oxci {
Confirmation submitCourtFiling (in CourtFiling courtFiling);

}

The other top level interfaces will be defined in a similar fashion. Note that a
program invoking this object doesn’t need to know how this function is implemented
(coded) internally, the programming language that is being used (IDL can be
compiled into numerous languages), or even the location of the object (it could reside
anywhere on the Internet.) The only visible portion for systems using this object is
that it contains a function called submitCourtFiling that accepts a CourtFiling object
and returns a Confirmation object. Thus, we only know how to invoke this function,
and what we can expect in return. The CourtFiling and Confirmation objects, of
course, will represent the corresponding XML documents defined in the Electronic
Court Filing standard. In actuality, what is received at the court server is a message
in LegalEnvelope format, which may contain a CourtFiling element. Thus, there is
another level of processing that has been omitted in this discussion for sake of
simplicity.

6.0 XML Objects and Interfaces

All of these system objects will need to access portions of the CourtFiling XML
elements. To facilitate this access, each element in the XML document should be
defined as an object. All XML elements will be derived from an OxciElement, which
implements the DOM interface Element (see http://www.w3.org/TR/REC-DOM-
Level-1/level-one-core.html) There will be a similar definition for OxciDocument,
which isn’t discussed here.

The member functions are:
setElement – Set this object to represent a specific instance of an element
getElement – Retrieve the element represented by this object
getFirstChildElement – Get the first child element having this tag name
getNextSiblingElement – Get the next sibling element having this name

These are just sample member functions, and more will be defined.

The CourtFiling element is defined as:

interface OxciElement : Element {
void setElement (in Element element);
Element getElement ();
Element getFirstChildElement (in wstring tagName);
Element getNextSiblingElement (in wstring tagName);

}

interface CourtFiling : OxciElement {
ElementEnumerator getFilingEnumerator();

}

The CourtFiling interface implements (is a subclass of) the OxciElement
interface, so it inherits all of OxciElement functions. Other elements of the Legal
XML Court Filing Standard will be defined in a similar manner. The function
getFilingEnumerator returns an object of type ElementEnumerator, which allows
the multiple Filing elements contained within CourtFiling to easily be obtained
one at a time:

Below is sample Java code using the concepts that have been discussed. It is
assumed that if there is an error, a function will throw an exception (this facility is
beyond the scope of this discussion.)

Note that confirmation is passed to checkPolicy and notify as an input object.
This is because Java doesn’t use output parameters for integrity control. Thus, all
parameters will be defined as “in” in IDL. The confirmation object is constructed
during different steps in the process. For example, confirmation for a single filing
will be set as each filing is processed (the Confirmation object “confirms”
multiple filings.)

interface ElementEnumerator() {
boolean hasMoreElements();
OxciElement nextElement();

}

public class Oxci_ implements Oxci {

public Confirmation submitCourtFiling(CourtFiling courtFiling) {
//* Setup code omitted
confirmation = cpm.checkPolicy (courtFiling, confirmation);
filingEnumerator = courtFiling.getFilingEnumerator();
while (filingEnumerator.hasMoreElements()){

filing = (Filing)filingEnumerator.nextElement();
dms.storeFiling(filing);
confirmation = cms.notify(filing, confirmation);

}
return confirmation;

}
}

7.0 Conclusion

This document presents the basic design concepts proposed for OXCI architecture.
The sample architecture was simplified to enhance communication of the ideas, and
the final design will differ from these examples. An attempt was made to use tools
that represent best of practice to define the architecture. However, this is a moving
target, and suggestions are welcome.

8.0 Glossary

CMS – Case Management System
CPM – Court Policy Management
DMS – Document Management System
EFM – Electronic Filing Manager
EFP – Electronic Filing Provider
IDL – Interface Definition Language
OMG – Object Management Group
OXCI – Open XML Court Interface (serves as EFM)
UML - Unified Modeling Language
XML – Extensible Markup Language

Please send comments to Richard Himes <rhimes@nmia.com>

