XML Metadata Interchange (XMl)
Response to the RFP ad/2000-01-04 for

XMI production of XML Schema

Joint Revised SUbmission

International Busness Machines

Unisys
SofTeam

OMG Document ad/2001-06-12
June 18, 20001

Thissubmission isan extension to the XM 1.1 specification, ad/99-10-02

Copyright 1998, 1999, 2000, 2001 IBM Corporation
Copyright 1998, 1999, 2000, 2001 Unisys Corporation
Copyright 1998, 1999, 2000, 2001 Softeam

The companies listed above hereby grant aroyalty-free license to the Object Management Group,
Inc. (OMG) for worldwide distribution of this document or any derivative works thereof, so long as
the OM G reproduces the copyright notices and the below paragraphs on al distributed copies.

Themateria inthis document is submitted to the OMG for evaluation. Submission of this document
does not represent acommitment to implement any portion of this specification in the products of
the submitters.

WHILE THE INFORMATION IN THISPUBLICATION ISBELIEVED TO BE ACCURATE,THE
COMPANIES LISTED ABOVE MAKE NO WARRANTY OF ANY KIND WITH REGARD TO
THIS MATERIAL INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. The companieslisted
above shall not be liable for errors contained herein or for incidental or consequential damagesin
connection with the furnishing, performance or use of this material. Theinformation contained in
this document is subject to change without notice.

This document contains information which is protected by copyright. All Rights Reserved. Except

as otherwise provided herein, no part of thiswork may be reproduced or used in any form or by any
meansodgraphic, electronic, or mechanical, including photocopying, recording, taping, or
information storage and retrieval systemso without the permission of one of the copyright owners.
All copies of this document must include the copyright and other information contained on this

page.

The copyright owners grant member companies of the OMG permission to make a limited number
of copies of this document (up to fifty copies) for their internal use as part of the OMG evaluation
process.

RESTRICTED RIGHTS LEGEND. Use, duplication, or disclosure by government is subject to
restrictions as set forth in subdivision (c) (1) (ii) of the Right in Technical Data and Computer
Software Clause at DFARS 252.227.7013.

CORBA, OMG, and Object Request Broker are trademarks of Object Management Group.

Tableof Contents

1 Preface
1.1 Cosubmitting Companies and Supporters
12 Introduction i
1.3 Submissioncontactpoints.......................
14 Statusof thisDocument.........................
15 GuidetotheSubmission
16 Conventions.............ciiiiiiniinnnnn..
1.7 Changes Since Initial Submission
1.8 Changes Since Revised Submission................
2. Proofof Conceptt
21 Copyright Waiver.............. ...
22 Proofof Concept
3. Responseto RFP Requirements.
3.1 Mandatory Requirements.
3.1.1 Production of XML Schemas............
3.1.2 DTD compatibility
3.2 Optional Requirements.oouu...
321 DTDtoMOFmapping.
3.22 XML Schemato MOF mapping.
3.3 Issuesfordiscussion............... ...

ad/2001-03-10: XML Metadata Interchange

41 PUMPOSE. . oot e 4-21
42 Useof XML Schemas 4-22
4.2.1 XML Vadidation of XMI documents. 4-22
4.2.2 Requirementsfor XMI Schemas. 4-23
43 BasicPrinciples........... ... i 4-23
43.1 Required XML Declarations. 4-23
4.3.2 Metamodel Class Representation 4-24
4.3.3 Metamodel Extension Mechanism 4-24
44 XMI Schemaand Document Structure. 4-24
45 XMIModel 4-25
45.1 XML Schemafor the XMI Model 4-25
452 XMIModelclasses. 4-25
453 XMl .. 4-28
454 Extension................... ... 4-29
455 Documentation....................... 4-30
456 Model, Metamodel, and Import 4-31
457 Add, Replace, and Delete. 4-32
46 XMIAttributes. 4-33
46.1 Element Identification Attributes......... 4-33
4.6.2 Linking Attributes 4-35
46.3 VersionAttribute L, 4-35
4.6.4 TypeAttribute............. 4-36
4.7 Metamodel Class Specification 4-36
4.7.1 Namespace Qualified XML Element Names 4-36
4.7.2 Metamodel Multiplicities. 4-37
473 Classspecification.................... 4-37
4.7.4 Attribute Specification 4-38
475 Reference Specification 4-40
4.7.6 Containment Specification.............. 4-40
4.7.7 Inheritance Specification 4-40
4.7.8 Derived Information................... 4-41
4.8 Transmitting Incomplete Metadata. 4-41
4.8.1 Interchange of model fragments. 4-41
482 XMlencoding.............ccciviin... 4-41
483 Example......... i 4-42
49 LinKiNG. . ..o 4-42
49.1 Designprinciples...................... 4-42
492 Linking..........iiiiiii 4-43

ad/2001-03-10: XML Metadata I nterchange 4/2/2001

4/2/2001

493 ExamplefromUML................... 4-43

4,10 Tailoring SchemaProduction..................... 4-44
4101 XMITagVaues...................... 4-45

4.10.2 TagVaueConstraints.................. 4-47

410.3 SCOPE ..t vvt e 4-47

4.10.4 XML element vs XML attribute. 4-47

4.10.5 UML profilefor XML and XMI.......... 48

4.10.6 SOAPsgridization.................... 4-48

4.10.7 Effects on Document Production 4-48

4,11 Transmitting Metadata Differences 4-50
4.11.1 Definitions............ 4-50

4112 Differences........... i 4-51

4113 XMlencoding.............covvivvinn.. 4-51

4114 Example. ... 4-52

4.12 Document exchange with multipletools 4-53
4121 Definitions.. 4-53

4122 Procedures..c.iiii i 4-54

4123 Example........ ... 4-54

4.13 Genera datatypemechanism..................... 4-55
5. XML SchemaProduction.......................... 5-57
B.L PUMPOSE. . . et e e e e e e e e 5-57
52 XMILI1Schemas.........ouiireeniinnnnnnn.. 5-58
521 EBNF........ . 5-58

5.2.2 Fixed SchemaDeclarations 5-67

5.2.3 Optiona Fixed Schema Declarations. 5-76

53 XMI20Schemas.........cvviiiiiiiininn... 5-83
531 EBNF ... 5-83

5.3.2 Fixed SchemaDeclarations 5-91

6. XML Document Production........................ 6-99
6.1 PUMPOSE. . ..t 6-99
6.2 Introduction............... ... 6-99
6.3 EBNF RulesRepresentation. 6-99
6.3.1 Overal Document Structure. 6-100

6.3.2 Overal Content Structure. 6-101

6.3.3 ObjectStructure...................... 6-102

6.34 References............... 6-105

6.35 ObjectContents 6-107

ad/2001-03-10: XML Metadatalnterchange %

6.36 Packages............... 6-109

6.3.7 Attributes 6-109

6.3.8 Other Typesof Links 6-110

6.4 Additional Examples 6-111
641 Inheritance............... 6-111

6.4.2 NestedPackages...................... 6-112

6.4.3 Derived Typesand References........... 6-113

7. Production of MOF from XML 7-115
7.1 Introduction............ 7-115
72 DTDIOMOF ... 7-116
73 XMLtOMOF. e 7-117
74 XML SchematoMOF 7-119
8. XML SchemaModel 8-121
81 Introduction............. 8-121
82 XML SchemaStructuresccovvnn.. 8-121
821 XSDSchema......................... 8-134

8.22 XSDAttribute.............. 8-134

823 XSDElementRef...................... 8-134

8.2.4 XSDAttributeGroup 8-134

8.2.5 XSDAttributeGroupRef 8-135

826 XSDTypeoiviiiiiiiann. 8-135

8.2.7 XSDBuiltinType.cov.... 8-135

828 XSDComplexType.................... 8-135

8.2.9 XSDComplexTypeContent.............. 8-135

8.210 XSDSchemaContent................... 8-136

8211 XSDElement......................... 8-136

8212 XSDSimpleBase...................... 8-136

8213 XSDPattern................., 8-136

8.2.14 XSDEnumeration..................... 8-137

8215 XSDInclude 8-137

8216 XSDImport............ccoiiiiiinin... 8-137

8217 XSDGroup.......oviiviiiiiiii.. 8-137

8.218 XSDGroupKind 8-138

8.2.19 XSDGroupsScopeiiiii . 8-138

8.2.20 XSDGroupContent.................... 8-138

8.221 XSDGroupRef 8-138

8222 XSDKEy......oiviiiiiiiii 8-138

8223 XSDKeyRef......................... 8-139

ad/2001-03-10: XML Metadata I nterchange 4/2/2001

8.2.24 XSDUniquecciiiiin... 8-139

8.2.25 XSDUniqueContent 8-139
8.2.26 XSDSelector............ ... 8-139
8227 XSDFied..............iiii... 8-139
8.228 XSDObject......... ..o, 8-139
8.2.29 XSDAnnotatedElement 8-140
8.2.30 XSDDocumentation................... 8-140
8231 XSDAppINfO ... 8-140
8.2.32 XSDAnNnotation 8-140
8.2.33 XSDSimpleContent 8-140
8.2.34 XSDComplexContent.................. 8-141
8.2.35 XSDSimpleComplex 8-141
8.2.36 XSDSimpleTypeContent 8-141
8.2.37 XSDSimpleRestrict 8-141
8.2.38 XSDSimpleList 8-141
8.2.39 XSDSimpleUnion..................... 8-141
8.2.40 XSDSmpleType..............c.o.... 8-142
8241 XSDFacet.............cciiiiniinin... 8-142
8242 XSDLength.......................... 8-142
8.243 XSDMinLength 8-142
8.244 XSDMaxLength...................... 8-142
8.2.45 XSDMininclusive..................... 8-142
8.2.46 XSDMaxInclusive 8-143
8.2.47 XSDMinExclusive.................... 8-143
8.2.48 XSDMaxExclusive.................... 8-143
8.249 XSDTotalDigits 8-143
8.2.50 XSDFractionDigits. 8-143
8.251 XSDWhiteSpace. 8-143
8252 XSDANY. ... 8-144
8.253 XSDAnyAttribute. 8-144
8.2.54 XSDAttributeRef 8-144
8.2.55 XSDNamedElement................... 8-144
8.256 XSDOCCUIS.ot 8-144
8.2.57 XSDTopLevelAttrbute 8-145
8.2.58 XSDTopLevelElement 8-145
83 XML SchemaSimple Datatypes 8-145
831 XSDDatecoiiiiiiiniinan... 8-149
832 XSDDecima 8-149
8.3.3 XSDDecimaType...........cccovnvn... 8-150
834 XSDDouble, 8-150

4/2/2001 ad/2001-03-10: XML Metadatalnterchange vii

8.35 XSDCEMUMY . ..o oo, 8-150

836 XSDBinary..........oooiiiiiiiiin.. 8-150
8.3.7 XSDBinaryType........ovuviuninnnn.. 8-150
8.3.8 XSDBooleanType..................... 8-151
839 XSDBoolean......................... 8-151
8310 XSDByteiiiiiii 8-151
8.3.11 XSDDoubleType 8-151
8312 XSDFloatcovviiiiiiin... 8-151
8.3.13 XSDFloatTypecoviviin.n.. 8-152
8314 XSDInt........coi i 8-152
8.3.15 XSDinteger........... ... i, 8-152
8.3.16 XSDCDATA 8-152
8317 XSDID ... 8-152
8318 XSDIDREFt 8-152
8319 XSDIDREFS, 8-153
8320 XSDLIiStType cvvviiii i 8-153
8321 XSDList........ooiiiiiiii i, 8-153
8322 XSDLONG......o'iiiiiiiiii i 8-153
8323 XSDMonth.......... 8-153
8324 XSDNamecoiiiiininnn... 8-153
8325 XSDNCName........................ 8-154
8.3.26 XSDNegativelnteger 8-154
8.3.27 XSDNMTOKEN 8-154
8.3.28 XSDNonNegativelnteger 8-154
8.3.29 XSDNonPositivelnteger. 8-154
8.3.30 XSDPositivelnteger 8-154
8331 XSDQName........... ..., 8-154
8.3.32 XSDQNameTypecovvuvunn... 8-155
8.3.33 XSDRecurringDate. 8-155
8.3.34 XSDRecurringDay 8-155
8.3.35 XSDRecurringDuration 8-155
8.3.36 XSDRecurringDurationType 8-155
8337 XSDShort..........., 8-156
8338 XSDToken, 8-156
8.3.39 XSDSiNGcoviiii i 8-156
8.340 XSDStringTypecovvvnvninnn... 8-156
8341 XSDTime........... ..., 8-157
8.3.42 XSDTimeDuration.................... 8-157
8.3.43 XSDTimeDurationType 8-157
8.344 XSDTimelnstant. 8-157
8.3.45 XSDTimePeriod...................... 8-157

viii ad/2001-03-10: XML Metadata Interchange 4/2/2001

4/2/2001

8.3.46 XSDUnionTypecovvuun... 8-157
8.3.47 XSDUnsignedByte.................... 8-158
8.3.48 XSDUnsignedint 8-158
8.3.49 XSDUnsignedLong 8-158
8.3.50 XSDUnsignedShort 8-158
8.351 XSDURIReference.................... 8-158
8.3.52 XSDURIReferenceType................ 8-159
8.3.53 XSDVaueConstraint 8-159
8354 XSDYear..........oiiiiiiiiii. 8-159
8.355 XSDDecimalRange 8-159
8.3.56 XSDintegerRange. 8-159
8.3.57 XSDPatterned. 8-160
9. Conformancelssuescviiiiiiiinnnnnnn. 9-161
Introduction 9-161
Required Compliance. 9-161
9.2.1 XMI SchemaCompliance............... 9-161
9.2.2 XMI Document Compliance. 9-161
Optional CompliancePoints. 9-162
9.3.1 XMI Extension and Differences Compliance 9-162
9.3.2 Reverse engineering Compliance......... 9-162
9.3.3 XML SchemaModel Compliance 9-162

Refer ences Refer ences-163

ad/2001-03-10: XML Metadatalnterchange iX

ad/2001-03-10: XML Metadata I nterchange 4/2/2001

Preface 1

1.1 Cosubmitting Companiesand Supporters

6/18/2001

The following companies are pleased to revise the XML Metadata Interchange
specification (hereafter referred to as XMI) in response to the XMI Production of XML
Schema RFP:

* International Business Machines Corporation
e Unisys Corporation

* Softeam

Note — This submission is an addition to the XMI 1.1 specification, ad/99-10-02 which
defines the base technology. This document contains additions which build on XMI.

The following companies participated in the XMI 1.0 and 1.1 specification:
* Unisys Corporation

* International Business Machines Corporation

« Cooperative Research Centre for Distributed Systems Technology (DSTC)
» Oracle Corporation

« Platinum Technologies, Inc.

« Fujitsu

* Softeam

* Recerca Informatica

+ Daimler-Benz

« Cayenne Software

* Genesis Development

ad/2001-06-12: XML Metadata Interchange 1-11

1.2

1-12

I ntroduction

Inline Software

Rational Software Corporation
Select Software

Sprint Communications Company
Sybase, Inc.

Xerox

EDS

Boeing

Ardent

Aviatis

ICONIX

Integrated Systems

Verilog

Telefonica 1+D

Universitat Politecnica de Catalunya
NCR

Nihon Unisys

NTT

XMl is a widely used interchange format for sharing objects using XML. Sharing
objects in XML is a comprehensive solution that build on sharing data with XML.
XMl is applicable to a wide variety of objects: analysis (UML), software (Java, C++),
components (EJB, IDL, Corba Component Model), and databases (CWM). Over 30
companies have XMI implementations.

XMI defines many of the important aspects involved in describing objects in XML:

The representation of objects in terms of XML elements and attributes is the
foundation.

Since objects are typically interconnected, XMI includes standard mechanisms to
link objects within the same file or across files.

Object identity allows objects to be referenced from other objects in terms of IDs
and UUIDs.

The versioning of objects and their definitions is handled by the XMI model.

Validation of XMI documents using DTDs and Schemas

ad/2001-06-12: XML Metadata I nterchange 6/18/2001

1

XMI describes solutions to the above issues by specifying EBNF production rules to
create XML documents, DTDs, and Schemas that share objects consistently. XMI 1.1
defines production two kinds of production rules for sharing objects with XML

e Production of XML DTDs starting from an object model.

* Production of XML documents starting from objects.

In addition to generating XMI 1.1 compliant Schemas, we have produced a mapping
for how XMI looks if we used new features in Schemas that are not available in
DTDs. Based on these experiences, we can recommend a course for XMI as well as
suggest improvements to XML Schema. This new form, called XMl 2.0, is a
successor to the XMI 1.1 form.

With the recent work by the W3C in XML Schemas, a more comprehensive form of
XML document validator, this submission adds these production rules:

* Production of XML Schemas starting from an object model. Chapters 4 and 5.
e Production of XML Documents compatible with XML Schemas. Chapter 6.

« Reverse engineering from XML to an object model. Chapter 7.

MOF is the foundation technology for describing object models, which cover the wide
range of object domains: analysis (UML), software (Java, C++), components (EJB,
IDL, Corba Component Model), and databases (CWM).

XMl is applicable to all levels of objects and metaobjects. Although this document
focuses on MOF metaobjects, general objects may be serialized and interchanged with
XMIL.

The term "XML document" in this specification is equivalent to a general stream of
XML data.

Note — XML Schema is now a full recommendation of the W3C.

Note — References to MOF in this submission are to MOF 1.4. The MOF 1.4 RTF has
not yet released the final report for MOF 1.4. We expect that the differences between
the draft MOF 1.4 baseline to the final MOF 1.4 version will not affect this
submission, and any that occur are small enough to be handled in the FTF.

1.3 Submission contact points
Please send comments on this submission to xmi-rtf@omg.org.
All questions about this submission should be directed to:

Stephen A. Brodsky, Ph.D.
International Business Machines Corporation
555 Bailey Ave., JBRA/F320

| 6/18/2001 ad/2001-06-12: XML Metadata Interchange 1-13

San Jose, CA 95141
Phone: +1 408 463 5659
E-mail: SBrodsky@us.ibm.com

Sridhar lyengar

Unisys Corporation

25725 Jeronimo Rd.

Mission Vigjo, CA 92691

Phone: +1 949 380 5692

E-mail: sridhar.iyengar2@unisys.com

Philippe Desfray
Softeam
E-mail: phd@softeam.fr

Tim Grose
International Business Machines Corporation
E-mail: TGrose@us.ibm.com

Dr. Gene Mutschler
Unisys Corporation
E-mail: Gene.Mutschler@unisys.com

The co-submitters and supporters of the XMI submission appreciate the contributions
of the following individuals during the submission process:

Don Baisley, Aditya Bansod, Robert Blum, Dan Chang, Dilhar DeSilva, Keith
Duddy, Michael Golding, Craig Hayman, Gary Karasiuk, Kurt Kirkey, Suresh
Kumar, Bruce Mclean, Lee Nackman, Martin Nally, Kevin Poole, Barbara Price,
Jim Rhyne, Harm Sluiman, Dave Stringer, Celia Tung, and Shu Wang.

1.4 Satusof thisDocument

This document is arevised joint submission to the XMI production of XML Schema
RFP. Refer to the OMG web site, http://www.omg.org for additional information and
the status of the adoption process.

1.5 Guidetothe Submission

This proposal is presented in the following chapters:

Chapter 1 Preface

Introduces the submission and provides the context for the XMI technology within
the OMG architecture

Chapter 2 Proof of Concept

1-14 ad/2001-06-12: XML Metadata I nterchange 6/18/2001

http://www.omg.org

1

Describes proof of concept efforts and results, in demonstration of the proposal’s
technical viability.

Chapter 3 Response to RFP Requirements

Identifies the specific RFP requirements and this proposal’s response to each
requirement.

Chapter 4 XMI production of XML Schema Design Principles
Provides a discussion of the design of the production of XML Schemas.

Chapter 5 XML Schema Production
Specifies the production rules for XML Schemas in the XMI 1.1 and XMI2 formats.

Chapter 6 XML Document Production
Specifies the production rules for encoding any model in the XMl 2 format.

Chapter 7 Production of MOF from XML
Specifies the production rules to reverse engineer MOF models from XML.

Chapter 8 XML Schema Metamodel
Defines a metamodel for the XML Schema specification.

Chapter 9 Conformance Issues

Discusses conformance - mandatory and optional; compliance points in the XMI
specification.

References

Lists the references used in this specification

1.6 Conventions

XML appears using this font.

Caution — Cautionary information appears with this prefix, framing, and in this font.

Note — Items of note appear with this prefix, framing, and in this font

Please note that any change bars have no semantic meaning. They show the places that
errata were discovered since the last submission. They are present for the convenience
of readers and submitters so that the final edits can be identified.

1.7 ChangesSncelnitial Submission

The following changes have been made since the initial submission:

| 6/18/2001 ad/2001-06-12: XML Metadata Interchange 1-15

1. The schema grammars have been updated to conform to the XML Schema Proposed
Recommendation, 16 March 2001.

2. The XMI serialization has been streamlined by reducing the number of XML

elements that are required. Previously, there was an XML element to represent a

feature and another XML element to represent the feature’s value; now there is only
one XML element. The XML Document Production Grammar and the XMl 2.0
Schema Production Grammar reflect this change.

3. You may specify tag value pairs in MOF metamodels to tailor the schemas that are
produced; you are not required to do so, however.

4. Several of the XMI elements defined by XMI and specified in the header of XMl
documents are now defined by a MOF model, so the XML Document Production
Grammar does not include special rules to serialize them.

5. Examples of XMI 2 have been included in the text.

6. Reverse engineering for XML Schemas has been added. Reverse engineering of
DTDs from XML has been removed.

1.8 Changes Snce Revised Submission

1-16

1. XML schema is now a full recommendation of the W3C. Small changes have been
made to match the final syntax.

2. XML Schema Model has been added.

3. The XMI model has been changed to more succinctly encode differences.

ad/2001-06-12: XML Metadata I nterchange 6/18/2001

Proof of Concept 2

2.1 Copyright Waiver

In the event that this specification is adopted by OMG, the XMI cosubmitters grant to
the OMG, a non-exclusive, royalty-free, paid-up, worldwide license to copy and
distribute this specification document and to modify the document and distribute
copies of the modified version. For more detailed information, see the disclaimer on
the inside of the cover page of this submission.

2.2 Proof of Concept

6/18/2001

XMI cosubmitters and supporters have extensive experience in the areas of objects,
metadata repositories, modeling tools, CORBA and the related problems of
interchange of metadata across tools in distributed heterogeneous environments.
Representative portions of their experience are highlighted below:

IBM has created a wide range of XMI software that is shipping in the WebSphere
and VisualAge for Java product lines, and is being incorporated into a wide variety
of products, from business intelligence to messaging to servers to integrated
development tools. Free XMI software is available at http://alphaworks.ibm.com.

IBM has implemented key portions of the XMI production of XML Schema
software to be posted at http://alphaworks.ibm.com.

Unisys has implemented several mappings from MOF to various technologies like
IDL, XML DTDs, XML documents. Currently we are using XML documents
(based on XMI 1.1 spec) as semantically rich schemas expressed in XML.

Over 30 companies have implemented XMI in their products.

UML 1.4, MOF 1.3, the Corba Components Model (CCM) and Common
Warehouse Metadata Interchange (CWMI) use XMI.

JMI, Java Metadata Interfaces. A specification of the Sun Java Community Process
(JSR-40) specifies XMI as the XML interchange format.

ad/2001-06-12: XML Metadata Interchange 2-17

The submitters expect to demonstrate some of these proof of concepts in upcoming
OMG meetings.

2-18 ad/2001-06-12: XML Metadata I nterchange 6/18/2001

Responseto RFP Requirements 3

3.1 Mandatory Requirements

3.1.1 Production of XML Schemas

Proposals shall specify an XM1 production mechanism for creating XML Schemas
(here after called 'XM1 Schemas') from M OF-based models compatible with the
existing XM1 1.1 document production rules.

This submission includes the generation of XML Schemas that match existing XMI 1.1
documents. In addition, this submission adds generation of XMI documents that take
advantage of new XML Schema features not available in DTDs. This additional
generation is called XMI 2.

The XML Schema model has been added to facilitate model-based generation of XML
Schemas and to enable MOF objects to directly refer to the XML Schema type
declarations and data types.

3.1.2 DTD compatibility
XMI 1.1 documents shall validate with both XM1 1.1 DTDs and XM| Schemas.

This submission includes the generation of XML Schemas in Chapter 5 that match
existing XMI 1.1 documents.

3.2 Optional Requirements

3.2.1 DTD to MOF mapping.

Proposals may include a DTD to M OF mapping.

6/18/2001 ad/2001-06-12: XML Metadata Interchange 3-19

This proposal includes a DTD to MOF mapping and an XML to MOF mapping in
Chapter 7.

3.2.2 XML Schema to MOF mapping.

Proposals may include an XML Schema to M OF mapping.
This proposal includes an XML Schema to MOF mapping in Chapter 7.

3.3 Issuesfor discussion

Submissions shall discuss the design choices that are made with XM| Schema
production.

Chapter 4, XM1 Schema Design Principles, describes the design choices.

Submissions shall discuss how closely the generated XM | Schemas match the XM
DTDs and any differences in the set of valid XMI documents. Note that this does
not contradict the validation mandatory requirement because a given document
can be successfully validated by multiple DTDs or Schemas.

The XMI 1.1 compatible XML Schemas validate the same set of XMI 1.1 documents
produced following the XMI 1.1 Document production rules.

Submissions shall discuss the relationship between their proposal and the ongoing
XML schema work occurring within the W3C.

Since XML Schemas are now a full Recommendation by the W3C, this submission
reflects the final syntax.

Submissions shall discuss the design choices for XML DTD to MOF and XML
Schema to MOF mappings, if included in the submission.

Chapter 7 includes a XML to MOF production design choice explanation.

3-20 ad/2001-06-12: XML Metadata I nterchange 6/18/2001

4.1 Purpose

6/18/2001

XMI SchemaDesign Principles 4

This chapter contains a description of the XML Schemas that may be used with the
XMI specification to allow some metamodel information to be verified through XML
validation. The use of schemas in XMI is described first, followed by a brief
description of some basic principles, which includes a short description of each XML
attribute and XML element defined by XMI. Those descriptions are followed by more
complete descriptions that provide examples illustrating the motivation for the XMI
schema design in the areas of metamodel class specification, transmitting incomplete
metadata, linking, tailoring schema production, transmitting metadata differences, and
exchanging documents between tools.

It is possible to define how to automatically generate a schema from the MOF
metamodel to represent any MOF-compliant metamodel. That definition is presented
in chapter 5.

This chapter describes XMI 2.0 schemas; chapter 5 describes how to create XMI 2.0
schemas as well as XML schemas that are semantically equivalent to XMI 1.1 DTDs.
See the XM 1.1 specification for a complete description of the elements and attributes
that can be validated with XMI 1.1 schemas.

You may specify tag value pairs as part of the MOF metamodel to tailor the schemas
that are generated, but you are not required to do so. Using these tag value pairs
requires some knowledge of XML schemas, but the schemas that are produced might
perform more validation than the default schemas. See chapter 5 for a complete
description of how to generate XML schemas using these tag value pairs. Section 4.9,
"Tailoring Schema Production”, describes the tag values, their affect on schema
production, and their impact on document serialization.

ad/2001-06-12: XML Metadata Interchange 4-21

4

4.2 Useof XML Schemas

4-22

An XML schema provides a means by which an XML processor can validate the
syntax and some of the semantics of an XML document. This specification provides
rules by which a schema can be generated for any valid XMI-transmissible M OF-based
metamodel. However, the use of schemas is optional; an XML document need not
reference a schema, even if one exists. The resulting document can be processed more
quickly, at the cost of some loss of confidence in the quality of the document.

It can be advantageous to perform XML validation on the XML document containing
MOF metamodel data. If XML validation is performed, any XML processor can
perform some verification, relieving import/export programs of the burden of
performing these checks. It is expected that the software program that performs
verification will not be able to rely solely on XML validation for all of the verification,
however, since XML validation does not perform all of the verification that could be
done.

Each XML document that contains metamodel data conforming to this specification
contains: XML elements that are required by this specification, XML elements that
contain data that conform to a metamodel, and, optionally, XML elements that contain
metadata that represent extensions of the metamodel. Metamodels are explicitly
identified in XML elements required by this specification. Some metamodel
information can also be encoded in an XML schema. Performing XML validation
provides useful checking of the XML elements which contain metadata about the
information transferred, the transfer information itself, and any extensions to the
metamodel .

The XML Namespace specification has been adopted by the W3C, allowing XMI to
use multiple metamodels at the same time. XML schema validation works with XML
namespaces, so you can choose your own namespace prefixes in an XML document
and use a schemato validate it. The namespace URIs, not the namespace prefixes, are
used to identify which schemas to use to validate an XML document.

4.2.1 XML Validation of XMI documents

XML validation can determine whether the XML elements required by this
specification are present in the XML document containing metamodel data, whether
XML attributes that are required in these XML elements have values for them, and
whether some of the values are correct.

XML validation can also perform some verification that the metamodel data conforms

to a metamodel. Although some checking can be done, it is impossible to rely solely

on XML validation to verify that the information transferred satisfies all of a

metamodel’'s semantic constraints. Complete verification cannot be done through

XML validation because it is not currently possible to specify all of the semantic
constraints for a metamodel in an XML schema, and the rules for automatic generation
of a schema preclude the use of semantic constraints that could be encoded in a schema
manually, but cannot be automatically encoded.

ad/2001-06-12: XML Metadata I nterchange 6/18/2001

4

4.3 Basic Principles

6/18/2001

Finally, XML validation can be used to validate extensions to the metamodel, because
extensions must be represented as elements; if those elements are defined in a schema,
the schema can be used to verify the elements.

4.2.2 Requirements for XMI Schemas

Each schema used by XMI must satisfy the following requirements:

« All XML elements and attributes defined by the XMI specification must be
imported in the schema. They cannot be put directly in the schema itself, since
there is only one target namespace per schema.

* Metamodel constructs have corresponding element declarations, and may have an
XML attribute declaration, as described below. In addition, some constructs also
have a complexType declaration. The declarations may utilize groups, attribute
groups, and types, as described below.

< Any XML elements that represent extensions to the metamodel may be declared in
a schema, although it is not necessary to do so.

By default, XMI schemas allow incomplete metadata to be transmitted, but you can
enforce the lower bound of multiplicities if you wish. See Section 4.8, “Transmitting
Incomplete Metadata” below for further details.

This section discusses the basic organization of an XML schema for XMI. Detailed
information about each of these topics is included later in this chapter.

4.3.1 Required XML Declarations

This specification requires that XML element declarations, types, attributes, and
attribute groups be included in schemas to enable XML validation of metadata that
conforms to this specification. Some of these XML elements contain metadata about
the metadata to be transferred, for example, the identity of the metamodel associated

with the metadata, the tool that generated the metadata, whether the metadata has been

verified, etc.

All XML elements defined by this specification are in the namespace
"http://www.omg.org/XMI". The XML namespace mechanism can be used to avoid
name conflicts between the XMI elements and the XML elements from your MOF
models.

In addition to required XML element declarations, there are some attributes that must
be defined according to this specification. Every XML element that corresponds to a
metamodel class must have XML attributes that enable the XML element to act as a

proxy for a local or remote XML element. These attributes are used to associate an

XML element with another XML element. There are also other required attributes to

let you put data in XML attributes rather than XML elements. You may customize the

declarations using MOF tag values.

ad/2001-06-12: XML Metadata I nterchange 4-23

4.3.2 Metamodel Class Representation

Every metamodel class is represented in the schema by an XML element whose name
is the class name, as well as a complexType whose name is the class name. The
declaration of the type lists the attributes of the class; references to association ends
relating to the class; and the classes that this class contains, either explicitly or through
composition associations. By default, the content models of XML elements
corresponding to metamodel classes do not impose an order on the attributes and
references.

By default, XMI allows you to serialize features using either XML elements or XML
attributes; however, XMI alows you to specify how to serialize them if you wish.
Containment references and multivalued attributes always are serialized using XML
elements.

4.3.3 Metamoddl Extension Mechanism

Every XMI schema contains a mechanism for extending a metamodel class. Zero or
more extension elements are included in the content model of each class. These
extension elements have a content model of ANY, allowing considerable freedom in
the nature of the extensions. The processContents attribute is lax, which means that
processors will validate the elements in the extension if a schema s available for them,
but will not report an error if there is no schema for them. In addition, the top level
XMI element may contain zero or more extension elements, which provides for the
inclusion of any new information. One use of the extension mechanism might be to
associate display information for a particular tool with the metamodel class represented
by the XML element. Another use might be to transmit data that represents extensions
to a metamodel.

Tools that rely on XMI are expected to store the extension information and export it
again to enable round trip engineering, even though it is unlikely they will be able to
process it further. XML elements that are put in the extension elements may be
declared in schemas, but are not required to be.

4.4 XMl Schemaand Document Sructure

4-24

Every XMI schema consists of the following declarations:
* An XML version processing instruction. Example: <? XML version="1.0" ?>

< An optional encoding declaration which specifies the character set, which follows
the 1SO-10646 (also called extended Unicode) standard. Example: <? XML
version="1.0" ENCODING="UCS-2" ?>.

e Any other valid XML processing instructions.
* A schema XML element.
* An import XML element for the XMI namespace.

« Declarations for a specific metamodel.

ad/2001-06-12: XML Metadata I nterchange 6/18/2001

Every XMI document consists of the following declarations, unless the XMlI is
embedded in another XML document;

< An XML version processing instruction.
< An optional encoding declaration that specifies the character set.

* Any other valid XML processing instructions.

XMI imposes no ordering requirements beyond those defined by XML. XML
Namespaces may also be declared in the XMI element as described below.

The top element of the XMI information structure is either the XMl element, or an
XML element corresponding to an instance of a class in the MOF metamodel. An
XML document containing only XMI information will have XMI as the root element
of the document. It is possible for future XML exchange formats to be developed
which extend XMI and embed XMI elements within their XML elements.

4.5 XMI Model

This section describes the model for XMI document structure, called the XMI model.
The XMI model is an instance of MOF for describing the XMI-specific information in
an XMI document, such as the version, documentation, extensions, and differences.

Using an XMI model enables XMI document metadata to be treated in the same
fashion as other MOF metadata, allowing use of standard MOF APIs for access to and
construction of XMI-specific information in the same manner as other MOF objects.

A valid XMI document may contain XMI metadata but is not required to.

45.1 XML Schema for the XMI Model

When the XMI model is generated as an XML Schema following the XMI schema
production rules, the result is a set of XML element and attribute declarations. These
declarations are shown in Chapter 5 and given the XML namespace
"http://www.omg.org/XMI". Every XMI-compliant schema must include the
declarations of the following XML elements by importing the declarations in the XMl
namespace "http://www.omg.org/XMI".

In addition, there are attribute declarations and attributeGroup declarations that must
be imported also. These include the id attribute, and the IdentityAttribs, LinkAttribs,
and ObijectAttribs attribute groups. These constructs are not defined in the XMl
model.

In the declarations that follow, the XML Schema namespace, whose URI is
"http://www.w3.0rg/2001/XMLSchema”, has the namespace prefix "xsd"; the XMl
namespace is the default namespace.

45.2 XMI Modedl classes

There are three diagrams that describe the XMI model. The details of the classes are
described in the sections below. This section gives an overview of the model.

| 6/18/2001 ad/2001-06-12: XML Metadata Interchange 4-25

Figure 4-1 shows the XMI element, documentation, and extension elements. The XMI
classis an overall default container for XMI document metadata and contents. The
attributes of the XM class are the version, package information (model, metamodel,
import in Figure 4-2), documentations, differences (add, replace, delete in Flgure 4-3),
and extensions. The Documentation class contains many fields to describe the
document for non-computational purposes. The Extension class contains the metadata
for external information. The String datatype is the data type for strings in the MOF
model with XML Schema data type of "http://www.w3.0rg/2001/X M L Schemat#string".
The Integer datatype is the data type for integers in the MOF model with XML Schema
data type of "http://www.w3.0rg/2001/X ML Schema#integer".

XMI

Documentation

<<0.
<<0.
<<0.
<<0.
<<0.
<<0.

version : String

.1>> model : Model

.*>> metaModel : MetaModel

*>> import : Import

.1>> documentation : Documentation
.*>> difference : Difference

.*>> extension : Extension

<<0..
<<0..
<<0..
<<0..
<<0..
<<0..
<<0..

*>> contact : String

*>> exporter : String

*>> exportervVersion : String
*>> longDescription : String
*>> shortDescription : String
*>> notice : String

*>> owner : String

Extension
extender : String <<datatype>>
<<0..1>> extenderlID : String String

4-26

Figure4-1 The XMI Model for the XMI element, documentation, and extension.

The package information (Figure 4-2) consists of the Model, Metamodel, and Import
classes, al of which reference a MOF package using their href, name, and version
fields. This information provides document-cached information about the packages
used in the model. The definitive package information is contained in the package
references found in the XML Namespace (xmiIns) logical URIs.

ad/2001-06-12: XML Metadata I nterchange 6/18/2001

PackageReference

name : String
<<0..1>> ersion : String

7
/
/
/
/
%

Import MetaModel Model

Figure4-2 The XMI Model for package references.

The differences information (Figure 4-3) is described as additions, deletions, and
replacements to target objects. The objects referenced by the differences may be in the
same or different documents. The differences information consists of the Add, Delete,
and Replace classes, which specify a set of differences and refer to MOF objects that
are added or removed. Note that the RefBaseObject class is a placeholder for
specifying that a Difference has a target that can refer to any objects. The RefObject
classis not included in the required element declarations.

The XML Schema declarations for each element of the XML model are given in the
following sections. They may be generated by following the XMI production of XML
Schema rules defined in Chapter 5, except for the XM1I class and the XMI attributes
described in the section "4.6 XMI Attributes".

| 6/18/2001 ad/2001-06-12: XML Metadata Interchange 4-27

+addition | RefBaseObject +replacement
= (from MOF) —

0..* 0..*
0..*/)\ +target

Difference | _*container
D a—
0.1
0..*
+difference
Add Delete Replace
<<0..1>> position : Integer <<0..15> position - integer

<<datatype>>
Integer

Figure4-3 The XMI Model for differences.

4.5.3 XMl

The top level XML element for XMI documents containing only XMI data is the XMl
element. Its declaration is:

<xsd:complexType name="XMI">
<xsd:choice minOccurs="0" maxOccurs="unbounded">
<xsd:any processContents="strict"/>
</xsd:choice>
<xsd:attribute ref="id"/>
<xsd:attributeGroup ref="IdentityAttribs"/>
<xsd:attributeGroup ref="LinkAttribs"/>
<xsd:attribute name="type" type="xsd:QName" use="optional"
form="qualified" />
<xsd:attribute name="version" type="xsd:string" use="required" fixed="2.0"

4-28 ad/2001-06-12: XML Metadata I nterchange 6/18/2001

form="qualified"/>
</xsd:complexType>

<xsd:element name="XMI" type="XMI"/>

The version attribute is required to be set to “2.0". This indicates that the metadata
conforms to this version of the XMI specification. Revised versions of this standard
will have another number assigned by the OMG.

The XMI element need not be the root element of an XML document; you can include
it inside any XML element that was not serialized according to this specification. If a
document contains only XMl information, the XMI element is typically not present
when there is only a single top-level object. The xmi:version attribute is used to
denote the start of XMl information when the XMI element itself is not present.
Chapter 6 contains examples of the use of the XMI element.

The XMI class has the tag contentType set to "any" to indicate that any XMI element
may be present in the XMI stream.

The attribute version has the tag form set to "qualified", the tag fixedValue set to "2.0",
the tag attribute set to "true", and the tag enforceMinimumMultiplicity set to "true".

Because of the declaration of the version attribute in the xmi namespace, the default
serialization rules result in two declarations for the version attribute. Therefore, the
version attribute that belongs to the ObjectAttribs attribute group must be excluded
from the XMI type declaration.

The serialization of the XMI element is special--it is defined by the XML Document
Production rules in Chapter 6.

The XMI model package has the following tags settings:
e tag nsURI set to "http://www.omg.org/XMI"

» tag nsPrefix set to "xmi"

« tag superClassFirst set to "true"

« tag useSchemaExtension set to "true"

45.4 Extension

The Extension class is designed to contain extended information outside the scope of
the user metamodel. Extensions are a multivalued attribute of the XMI class and may
also be embedded in specific locations in an XMI document. The Schema for
extension is:

<xsd:complexType name="Extension">
<xsd:choice minOccurs="0" maxOccurs="unbounded">
<xsd:any processContents="lax"/>
</xsd:choice>
<xsd:attribute ref="id"/>
<xsd:attributeGroup ref="0ObjectAttribs"/>

| 6/18/2001 ad/2001-06-12: XML Metadata Interchange 4-29

4-30

<xsd:attribute name="extender" type="xsd:string" use="optional"/>
<xsd:attribute name="extenderID" type="xsd:string" use="optional"/>
</xsd:complexType>

<xsd:element name="Extension" type="Extension"/>

The extender attribute should indicate which tool made the extension. It is provided
so that tools may ignore the extensions made by other tools before the content of the
extensions element is processed. The extender|D is an optional internal 1D from the
extending tool. The other attributes allow individual extensions to be identified and to
act as proxies for local or remote extensions.

The Extension class in the MOF model has the tag contentType set to "any" and the
processContents tag set to "lax". The extender and extenderID attributes have the tag
attribute set to "true".

455 Documentation

The Documentation class contains information about the XMI document or stream
being transmitted, for instance the owner of the document, a contact person for the
document, long and short descriptions of the document, the exporter tool which created
the document, the version of the tool, and copyright or other legal notices regarding the
document. The data type of all the attributes of Documentation is string. The XML
Schema generated for Documentation is:

<xsd:complexType name="Documentation">

<xsd:choice minOccurs="0" maxOccurs="unbounded">

<xsd:element name="contact" type="xsd:string"/>

<xsd:element name="exporter" type="xsd:string"/>

<xsd:element name="exporterVersion" type="xsd:string"/>

<xsd:element name="longDescription" type="xsd:string"/>

<xsd:element name="shortDescription" type="xsd:string"/>

<xsd:element name="notice" type="xsd:string"/>

<xsd:element name="owner" type="xsd:string"/>

<xsd:element ref="Extension"/>
</xsd:choice>
<xsd:attribute ref="id"/>
<xsd:attributeGroup ref="0ObjectAttribs"/>
<xsd:attribute name="contact" type="xsd:string" use="optional"/>
<xsd:attribute name="exporter" type="xsd:string" use="optional"/>
<xsd:attribute name="exporterVersion" type="xsd:string" use="optional"/>
<xsd:attribute name="longDescription" type="xsd:string" use="optional"/>
<xsd:attribute name="shortDescription" type="xsd:string" use="optional"/>
<xsd:attribute name="notice" type="xsd:string" use="optional"/>
<xsd:attribute name="owner" type="xsd:string" use="optional"/>

</xsd:complexType>

<xsd:element name="Documentation" type="Documentation"/>

ad/2001-06-12: XML Metadata I nterchange 6/18/2001

4.5.6 Model, Metamodel, and Import

The PackageReferenceType class is the superclass for the Model, Metamodel, and
Import classes. Its declarations are:

<xsd:complexType name="PackageReference">
<xsd:choice minOccurs="0" maxOccurs="unbounded">
<xsd:element name="name" type="xsd:string"/>
<xsd:element name="version" type="xsd:string"/>
<xsd:element ref="Extension"/>
</xsd:choice>
<xsd:attribute ref="id"/>
<xsd:attributeGroup ref="0ObjectAttribs"/>
<xsd:attribute name="name" type="xsd:string" use="optional"/>
<xsd:attribute name="version" type="xsd:string" use="optional"/>
</xsd:complexType>

<xsd:element name="PackageReference" type="PackageReference"/>

The Model class identifies the model to which the instance data being transferred
defines. The declaration is:

<xsd:complexType name="Model">
<xsd:complexContent>
<xsd:extension base="PackageReference"/>
</xsd:complexContent>
</xsd:complexType>

<xsd:element name="Model" type="Model"/>

The name and version attributes are the name and version of the model described in
the enclosed content, respectively. The href attribute of the LinkAttribs group may
contain a physical URI that contains model data.

The Metamodel class identifies the packages containing the metamodel for objects in
this document.

<xsd:complexType name="MetaModel">
<xsd:complexContent>
<xsd:extension base="PackageReference"/>
</xsd:complexContent>
</xsd:complexType>

<xsd:element name="MetaModel" type="MetaModel"/>

The Import class defines the packages of other models imported in this document.
Imports can states the existence of dependencies on other documents needed to process
the current document; it points to other documents that define metadata that defines the
metadata in the document in which it appears. Its declaration is:

<xsd:complexType name="Import">
<xsd:complexContent>

6/18/2001 ad/2001-06-12: XML Metadata I nterchange 4-31

<xsd:extension base="PackageReference"/>
</xsd:complexContent>
</xsd:complexType>

<xsd:element name="Import" type="Import"/>

4.5.7 Add, Replace, and Delete

The Add class represents an addition to atarget set of objects in this document or other
documents. The position attribute indicates where to place the addition relative to
other XML elements. The default, -1, indicates to add the new elements at the end of
the target element. The addition attribute refers to the set of objects to be added.
Both of these attributes have the tag attribute set to "true".

The Replace class represents the deletion of the target set of objects and the addition of
the objects referred to in the replacement attribute. The position attribute indicates
where to place the replacement relative to other XML elements. The default, -1,
indicates to add the replacing elements at the end of the target element. The
replacement attribute refers to the object that will replace the target element. Both of
these attributes have the tag attribute set to "true".

The Delete class represents a deletion to a target set of objects in this document or
other documents.

The Difference class is the superclass for the Add, Replace, and Delete classes.

The declarations for these classes are:

<xsd:complexType name="Difference">
<xsd:choice minOccurs="0" maxOccurs="unbounded">
<xsd:element name="target">
<xsd:complexType>
<xsd:choice minOccurs="0" maxOccurs="unbounded">
<xsd:any processContents="skip"/>
</xsd:choice>
<xsd:anyAttribute processContents="skip"/>
</xsd:complexType>
</xsd:element>
<xsd:element name="difference" type="Difference"/>
<xsd:element name="container" type="Difference"/>
<xsd:element ref="Extension"/>
</xsd:choice>
<xsd:attribute ref="id"/>
<xsd:attributeGroup ref="0ObjectAttribs"/>
<xsd:attribute name="target" type="xsd:IDREFS" use="optional"/>
<xsd:attribute name="container" type="xsd:IDREFS" use="optional"/>
</xsd:complexType>

<xsd:element name="Difference" type="Difference"/>

4-32 ad/2001-06-12: XML Metadata I nterchange 6/18/2001

4.6 XMI Attributes

<xsd:complexType name="Add">
<xsd:complexContent>
<xsd:extension base="Difference">
<xsd:attribute name="position" type="xsd:string" use="optional"/>
<xsd:attribute name="addition" type="xsd:IDREFS" use="optional"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

<xsd:element name="Add" type="Add"/>

<xsd:complexType name="Replace">
<xsd:complexContent>
<xsd:extension base="Difference">
<xsd:attribute name="position" type="xsd:string" use="optional"/>
<xsd:attribute name="replacement" type="xsd:IDREFS" use="optional"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

<xsd:element name="Replace" type="Replace"/>

<xsd:complexType name="Delete">
<xsd:complexContent>
<xsd:extension base="Difference"/>
</xsd:complexContent>
</xsd:complexType>

<xsd:element name="Delete" type="Delete"/>

This section describes the XML attributes that are used in the production of XML
documents and Schemas. By defining a consistent set of XML attributes, XMl
provides an consistent architectural structure enabling consistent object identity and
linking across al assets.

4.6.1 Element Identification Attributes

6/18/2001

Three XML attributes are defined by this specification to identify XML elements so
that XML elements can be associated with each other. The purpose of these attributes
isto allow XML elements to reference other XML elements using XML IDREFs,
XLinks, and XPointers.

Two of these attributes are declared in an attribute group called I dentityAttribs; theid
attribute is declared globally, because you may change the name of the id attribute
using the idName tag. Placing these attributes in an attribute group prevents errorsin
the declarations of these attributes in schemas. Its declaration is as follows:

ad/2001-06-12: XML Metadata I nterchange 4-33

4-34

<xsd:attribute name="id" type="xsd:ID"/>

<xsd:attributeGroup name="IldentityAttribs">
<xsd:attribute name="label" type="xsd:string" use="optional"
form="qualified"/>
<xsd:attribute name="uuid" type="xsd:string" use="optional"
form="qualified"/>
</xsd:attributeGroup>

id

XML semantics require the values of this attribute to be unique within an XML
document; however, the value is not required to be globally unique. This attribute may
be used as the value of the idref attribute defined in the next section. It may also be
included as part of the value of the href attribute in XLinks. An example of the use of

this attribute and the other attributes in this section can be found in Section 4.9.3,
“Example from UML".

|abel

This attribute may be used to provide a string label identifying a particular XML
element. Users may put any value in this attribute.

uuid

The purpose of this attribute is to provide a globally unique identifier for an XML
element. The values of this attribute should be globally unique strings prefixed by the
type of identifier. If you have access to the UUID assigned in MOF, you may put the
MOF UUID in the uuid XML attribute when encoding the MOF data in XMI. For
example, to include a DCE UUID as defined by The Open Group, the UUID would be
preceded byDCE:". The values of this attribute may be used intithef attribute in
simple XLinks. XMI does not specify which UUID convention is chosen.

The form of the UUID (Universally Unique Identifier) is taken from a standard defined
by the Open Group (was Open Software Foundation). This standard is widely used,
including by Microsoft for COM (GUIDs) and by many companies for DCE, which is
based on CORBA. The method for generating these 128-bit IDs is published in the
standard and the effectiveness and uniqueness of the IDs is not in practice disputed.

When a UUID is placed in an XMl file, the form is "id nhamespace:uuid." The id
namespace of UUIDs is typically DCE. An example is "DCE:2fac1234-31f8-11b4-
a222-08002b34c003".

The MOF reflD() is often used as the uuid in XMI implementations.

ad/2001-06-12: XML Metadata I nterchange 6/18/2001

6/18/2001

4.6.2 Linking Attributes

XMI requires the use of several XML attributes to enable XML elements to refer to
other XML elements using the values of the attributes defined in the previous section.
The purpose of these attributesisto allow XML elements to act as simple XLinks or to
hold a reference to an XML element in the same document using the XML IDREF
mechanism. See section 6.8 on linking.

The attributes described in this section are included in an attribute group called
LinkAttribs. The attribute group declaration is:

<xsd:attributeGroup name="LinkAttribs">
<xsd:attribute name="href" type="xsd:string" use="optional"/>
<xsd:attribute name="idref" type="xsd:IDREF" use="optional"
form="qualified"/>
</xsd:attributeGroup>

Thelink attributes act as a union of two linking mechanisms, any one of which may be
used at one time. The mechanisms are the XLink href for advanced linking across or
within a document, or the idref for linking within a document.

Smple XLink Attributes

The href attribute declared in the above entity enable an XML element to act in a
fashion compatible with the simple XLink according to the XLink and XPointer W3C
recommendations. The declaration and use of href is defined in the XLink and
XPointer specifications. XMI enables the use of simple XLinks. XMI does not
preclude the use of extended XLinks. The XLink specification defines many
additional XML attributes, and it is permissible to use them in addition to the attributes
defined in the LinkAttribs group.

To use simple XLinks, set href to the URI of the desired location. The href attribute
can be used to reference XML elements whose id attributes are set to particular values.
The id attribute value can be specified using a special URI form for X Pointers defined
in the XLink and XPointer recommendations.

idref

This attribute allows an XML element to refer to another XML element within the
same document using the XML IDREF mechanism. In XMI documents, the value of
this attribute should be the value of theid attribute of the XML element being
referenced.

4.6.3 \ersion Attribute

The version attribute must be present for XM| objects that are not serialized in an XMl
XML element and are not serialized in an XML element representing another object.
The attribute value, if present, must be 2.0, indicating that the object was serialized
according to this specification:

ad/2001-06-12: XML Metadata I nterchange 4-35

<xsd:attribute name="version" type="xsd:string" fixed="2.0"/>

4.6.4 Type Attribute

The type attribute is used to specify the type of object being serialized, when the type
is not known from the model. This can occur if the type of areference has subclasses,
for instance. The declaration of the attribute is:

<xsd:attribute name="type" type="xsd:QName" form="qualified"/>

Rather than including the IdentityAttribs, and LinkAttribs attribute groups, and the
version and type attributes in the declarations for each MOF class, the XMI| namespace
includes the following declaration of the ObjectAttribs attribute group for the
attribute declarations that pertain to objects:

<xsd:attributeGroup name="0bjectAttribs">
<xsd:attributeGroup ref="ldentityAttribs"/>
<xsd:attributeGroup ref="LinkAttribs"/>
<xsd:attribute name="version" type="xsd:string" use="optional" fixed="2.0"
form="qualified"/>
<xsd:attribute name="type" type="xsd:QName" use="optional"
form="qualified"/>
</xsd:attributeGroup>

4.7 Metamodel Class Specification

4-36

This section describes in detail how to represent information about metamodel classes

in a XMI compliant schema. It uses the EBNF grammar in the “XML Schema

Production” chapter to describe the manner in which attributes, associations, and
containment relationships are represented in an XML schema, including how
inheritance between metamodel classes is handled. It uses a short example to explain
the encoding.

4.7.1 Namespace Qualified XML Element Names

When the official schema for a metamodel is produced, the schema generator must
choose one or more namespace URIs that uniquely identify the XML namespaces in
the metamodel. XML processors will may use those namespace URIs to identify the
schemas to use for XML validation, as described in the XML schema specification.

The XML element name for each metamodel class, package, and association in a
document is its short name. The name for XML tags corresponding to metamodel
attributes and references is the short name of the attribute or reference. The name of
XML attributes corresponding to metamodel references and metamodel attributes is the
short name of the reference or attribute, since each tag in XML has its own namespace.

Each namespace is assigned a logical and a physical URI. The logical URI is placed
in the namespace declaration of the XMI element in XML documents that contain
instances of the metamodel and the physical URI is placed in the metamodel tag. The

ad/2001-06-12: XML Metadata I nterchange 6/18/2001

XML namespace specification assigns logical names to namespaces which are
expected to remain fixed throughout the life of all uses of the namespace since it
provides a permanent global name for the resource. An example is
"org.omg/standards’UML". Thereis no requirement or expectation by the XML
Namespace specification that the logical URI be resolved or dereferenced during
processing of XML documents. The physical URI is the mechanism for resolving
where the actual document may be found. The physical URI could be local, asin
"UML14.xml" or remote as in "ftp://server.omg.org/resources/xmi/UML14.xml". The
namespace prefix links the logical URI declared in the XMI element with the physical
URI in the metamodel element.

The following is an example of a UML model in an XMI document using hamespaces.

<xmi: XMl version="2.0" xmIns:UML="org.omg/standards/UML"
xmlns:xmi="http://www.omg.org/XMI">
<xmi:Metamodel name="UML" version="1.4" href="UML.xmlI"/>
<xmi:Model name="example" version="1" href="example.xml"/>
<UML:Class name="C1">
<feature xmi:type="UML:Attribute" name="al" visibility="private"/>

</UML:Class>

</xmi:XMI>

The model has a single class named C1 that contains a single attribute named al with
visibility private. The XMI element declares the version of XMI and the namespace
for UML with the logical URI. The metamodel has the same name "UML" and an href
to the physical location where the UML.xml fileis located. The model name is
"example".

4.7.2 Metamodel Multiplicities

In XMI 1.1, the multiplicities from the metamodel were ignored, since DTDs were not
able to validate multiplicities without ordering the content of XML elements. By
default, XMI produces schemas that ignore multiplicities also.

You may tailor the schemas produced by XMl by specifying tag values in the MOF
metamodel. Two of the tags, "org.omg.xmi.enforceMaximumMultiplicity" and
"org.omg.xmi.enforceMinimumMultiplicity" allow you to specify that multiplicities
are to be used in a schema rather than being ignored.

Metamodel multiplicities map directly from the MOF definition of multiplicity, which
is alower bound and an upper bound, to schema XML attributes called "minOccurs’
and "maxOccurs'. The minOccurs XML attribute corresponds to the lower bound for
the multiplicity, and the maxOccurs XML attribute corresponds to the upper bound for
the multiplicity.

4.7.3 Class specification

Every metamodel class is decomposed into three parts: attributes, associations, and
compositions. A class is represented by an XML element, with an XML element for

| 6/18/2001 ad/2001-06-12: XML Metadata Interchange 4-37

each attribute, reference, and composition. The XML element for the class includes
the inherited attributes, associations, and composition.

In the examples that follow in this section, "xsd" is the namespace prefix for the XML
schema namespace (" http://www.w3.0rg/2001/ XML Schema"), and "xmi" is the
namespace prefix for the XMI namespace.

The representation of a metamodel class named “c” is shown below for the simplest
case where “c” does not have any attributes, associations, or containment relationships:

<xsd:element name="c" type="c"/>

<xsd:complexType name="c">
<xsd:choice minOccurs="0" maxOccurs="unbounded">
<xsd:element ref="xmi:Extension"/>
</xsd:choice>
<xsd:attribute ref="xmi:id"/>
<xsd:attributeGroup ref="xmi:ObjectAttribs"/>
</xsd:complexType>

If the class has attributes, associations, or compositions, the XML elements for them
are put in the all group of the content model, as explained below.

4.7.4 Attribute Specification

The representation of attributes of metamodel class “c” uses XML elements and XML
attributes. If the metamodel attribute types are primitives or enumerations, XML
attributes are declared for them as well as XML elements. The reasons for this
encoding choice are several, including: the values to be exchanged may be very large
values and unsuitable for XML attributes, and may have poor control of whitespace
processing with options which apply only to element contents.

The declaration of each attribute named “a” is as follows:
<xsd:element name="a" type="type specification" />

The XML element corresponding to the attribute is declared in the content of the
complexType corresponding to the class that owns the attribute. The type specification
is either an XML schema data type, an enumeration data type, or a class from the
metamodel.

For attributes whose types are string type and whose upper bound multiplicity is 1, an
XML attribute must also be declared in the XML element corresponding to metamodel
class "c", and the XML element must be put in the content model of the XML element
for class "c"; the declaration of "c" appears as follows without multiplicity
enforcement:

<xsd:element name="c" type="c"/>

<xsd:complexType name="c">
<xsd:choice minOccurs="0" maxOccurs="unbounded">

4-38 ad/2001-06-12: XML Metadata I nterchange 6/18/2001

6/18/2001

<xsd:element name="a" type="xsd:string" nillable="true"/>
<xsd:element ref="xmi:Extension"/>

</xsd:choice>

<xsd:attribute ref="xmi:id"/>

<xsd:attributeGroup ref="xmi:ObjectAttribs"/>

<xsd:attribute name="a" type="xsd:string" use="optional"/>

</xsd:complexType>
</xsd:element>

An element is also declared to be of XML type string if the class contains a Tag
org.omg.xmi.schemaType with value "string".

For multi-valued attributes, no XML attributes are declared; each value is encoded as
an XML element.

When “a” is an attribute with enumerated values, the type used for the declaration of
the XML element and XML attribute corresponding to the metamodel attribute is as
follows:

<xsd:simpleType base="enumName" >
<xsd:restriction base="xsd:string">
<xsd:enumeration value="v1"/>
<xsd:enumeration value="v2"/>
</xsd:restriction>
</xsd:simpleType>

where enumName is the hame of the enumeration type, and v1 and v2 are the
enumeration literals.

If an attribute has enumerated values, an XML element and an XML attribute is put in
the complexType for the class "c"; their declaration is as follows:

<xsd:element name="a" type="enumName"/>
<xsd:attribute name="a" type="enumName" use="optional"/>

If an attribute is a multi-valued enumeration attribute, the declaration of the XML
attribute is omitted.

In some MOF models, enumerations have a prefix substring that should be removed
before placing the enumeration literals in the schema. The Tag
"org.omg.xmi.xmiName" indicates the name for the enumeration literal that should be
used in XMI documents and schemas.

Default values for property and enumeration attributes may be specified in schemas
using the Tag "org.omg.xmi.defaultValue" attached to the attribute. The default value
should be the XML string representation to be placed in the schema. Default values
for attributes should be specified in schemas with care since XML allows the processor
reading the document the option of not processing a schema as an optional
optimization. When tools skip processing the schema, they do not obtain the default
value of XML attributes. Instead, they would have to know the default value from
understanding the metamodel. The form for specifying defaults, where "d" is the
default, is:

ad/2001-06-12: XML Metadata I nterchange 4-39

For string attributes, the corresponding XML attribute declaration in the XML element
corresponding to the classis:

<xsd:attribute name="a" type="xsd:string" default="d"/>

For enumeration attributes, the corresponding XML attribute declaration in the XML
element corresponding to the classis:

<xsd:attribute name="a" type="enumTypeName" default="d"/>

Note: When reading documents with XML elements specifying model attribute values,
be sure to use the value in the XML element rather than the default value from the
unused XML attribute.

4.7.5 Reference Specification

Each reference is represented in an XML element and/or an XML attribute. The XML
element declaration for a reference named “r” for a metamodel class “c” of type
"classType" is:

<xsd:element name="r" >
<xsd:complexType>
<xsd:choice minOccurs="0" maxOccurs="unbounded">
<xsd:any processContents="skip"/>
</xsd:choice>
<xsd:anyAttribute processContents="skip"/>
</complexType>
</xsd:element>

This element is declared in the content of the complexType for the class that owns the
reference. This declaration enables any object to be serialized, enhancing the
extensibility of models. A user can override this declaration using the
useSchemaExtension tag or the contentType tag.

The attribute declaration for the reference, which also is included in the complexType
declaration for the class that owns the reference, is as follows:

<xsd:attribute name="r" type="xsd:IDREFS" use="optional"/>

4.7.6 Containment Soecification

Each association end that represents containment is represented by an XML element,
but not by an XML attribute. The form of the XML element is identical to that for
association roles.

4.7.7 Inheritance Specification

XML schemas have a mechanism for extending types, but it does not support
extending from more than one type, and using that mechanism imposes an order on the
content models of the types that are derived from other types. Since XMI attempts to
minimize order dependencies, XMI by default does not use schema extension to

4-40 ad/2001-06-12: XML Metadata I nterchange 6/18/2001

4

represent inheritance. In its place, XMI specifies that inheritance will be copy-down
inheritance. For attributes and compositions, copy-down inheritance is required. For
associations (AssociationEnds with references), the actual class referenced is used, and
subclasses may be used on the other end of the reference.

Multiple inheritance is treated in such a way that the attributes, associations, and
compositions of classes that occur more than once in the inheritance hierarchy are only
included once in their subclasses. For associations (AssociationEnds with references),
the actual class referenced is used, and subclasses may be used on the other end of the
reference.

4.7.8 Derived Information

Derived information is orthogonal to serialization. The serialization tag is provided to
optionally suppress serialized data. This capability provides more control to the end
users, allowing them to customize exactly which information is present in their files.

4.8 Transmitting Incomplete Metadata

In XMI 2.0 a schema generator can decide whether to support the exchange of model
fragments.

4.8.1 Interchange of model fragments

In practice, most information is related. The ability to transfer a subset of known
information is essential for practical information interchange. In addition, as
information models are devel oped, they will frequently need to be interchanged before
they are complete.

The following guidelines apply for interchanging incomplete models via XMlI:

* Information may be missing from a model. The transmission format should not
require the addition or invention of new information.

* Model fragments may be disjoint sets. Each set may be transmitted in the same
XMl file or in different XMl files.

« "Incomplete" indicates a quantity of information less than or equal to "complete.”
Additional information beyond that which the metamodel prescribes may be
transmitted only via the extension mechanism.

< Semantic verification is performed on the metadata that is actually present as if it
was included in complete metadata.

4.8.2 XMI encoding

The interchange of model fragments is accomplished by lowering the lower bound of
multiplicities whose lower bound is greater than 0.

| 6/18/2001 ad/2001-06-12: XML Metadata Interchange 4-41

4.8.3

4.9 Linking

4.9.1

4-42

Example
The following is an example of an incomplete UML model:
<UML:Model name="model1" xmi:id="id1">
<ownedElement xmi:type="UML:Class" name="class1" xmi:id="id2">
<feature xmi:type="UML:Attribute" name="attributel"
type="typel"/>
</ownedElement>
<ownedElement xmi:type="UML:Datatype" name="Integer" xmi:id="typel"/>
</UML:Model>
The goal is to provide a mechanism for specifying references within and across
documents. Although based on the XLinks standard, it is downwards compatible and
does not require XLinks as a prerequisite.
Design principles:

« Links are based on XLinks to navigate to the document (which may be the current
document) and XPointers to navigate to the element within the document.

« Link definitions are encapsulated in the attribute group LinkAttribs defined in
Section 6.5.1.

« Elements act as a union, where they are either a definition or a proxy. Proxies use
the LinkAttribs attribute group to define the link, and contain no nested elements.

« LinkAttribs supports external links through the XLink attributes, and internal links
through the xmi:idref and xmi:id attributes.

« Links are always to elements of the same type or subclasses of that type.
Restricting proxies to reference the same element type reduces complexity,
enhances reliability and type safety, and promotes caching. In XMI 2.0, subclasses
are also allowed, to permit more flexibility in combining models and metamodels.

« When acting as a proxy, XML attributes may be defined, but not contents. The
XML attributes act as a cache which gives an indication if the link should be
followed.

« Proxies may be chained.

« When following the link from a proxy, the definition of the proxy is replaced by the
referenced element.

« It is efficient practice for maximizing caching and encapsulation to use local
proxies of the same element within a document to link to a single proxy that holds
an external reference.

« Association role elements typically contain proxies which link to the definitions of
the classes that participate in the association.

ad/2001-06-12: XML Metadata I nterchange 6/18/2001

6/18/2001

4.9.2 Linking

XLinks

When specifying a XLink, the “href” attribute may be used to specify an optional URI
and XPointer that identify an XML element in another XML document. Hrieé

attribute must contain a locator for the model construct referred to. This model
construct should be of the form URI "#" NAME, where URI locates the file that
contains the model construct, and NAME is the value of the ID attribute of the
referenced model construct. If the URI is not given, then NAME must be the value of
an ID attribute in the current file. NAME is a shorthand for XPointer id(NAME). The
href could refer to another element id in the same XML file ubiref="#id".

When navigating into an XML document using an XPointer, the href="URI#XPointer"
form for locating an element by xmi:id is: URI + "#" + id. For example,
href="mydoc.xml#xxxx-yyyy..." The form for locating an element is: URI +
"#xpointer(descendent(1,type,attribute,value))" where type is the expected element
type or "#element" for any type, attribute is the name of the attribute in the desired
element, and value is the value of the attribute. For example,
href="#xpointer(descendent(1,#elememtj:label,classl))" . The URI specifies the
document to search and is the empty string when using the current document.

The XPointer part of a Reference uses the ID to find the construct. The XPointer
specification also has relative addressing capabilities within a document that may be
used. The choice of absolute ID-based addressing or relative addressing is made by
the document creator on a per-reference basis.

IDrefs

Theidref attribute may be used to specify the XML ID of an XML element within the
current XML document. Every construct that can be referred to has a local XML ID,
a string that is locally unique within a single XML file.

4.9.3 Example from UML

There is an association between ModelElements and Constraints in UML. Operations
are a subclass of ModelElements. This example shows an association between
Operations and four Constraints with roles constraint and constrainedElement. Each of
the methods of linking is shown. The Constraints are shown in both definition and
proxy form.

Document 1:
<UML:Operation xmi:id="idO1" xmi:label="opl" xmi:uuid="DCE:1234">

<constraint xmi:id="idC1" xmi:label="co01" xmi:uuid="DCE:abcd">
<body>First Constraint definition</body>
<constrainedElement xmi:idref="idO1"/>

</constraint>

<constraint xmi:idref="idC2" />

<constraint xmi:idref="idC3" />

ad/2001-06-12: XML Metadata I nterchange 4-43

<constraint href="doc2.xml#idC4" />

</UML:Operation>

<UML:Constraint xmi:id="idC2" xmi:label="c02" xmi:uuid="DCE:efgh">
<body>Second Constraint definition</body>
<constrainedElement xmi:idref="idO1" />

</UML:Constraint>

<UML:Constraint xmi:id="idC3" xmi:label="c03" xmi:uuid="DCE:ijkl">
<body>Third Constraint definition</body>
<constrainedElement

href="#xpointer(descendent(1,0Operation,xmi:label,op1))"/>
</UML:Constraint>

Document 2:
<UML:Constraint xmi:id="idC4" xmi:label="co04" xmi:uuid="DCE:mnop">
<body>Fourth Constraint definition</body>
<constrainedElement href="docl.xml#idO1"/>
</UML:Constraint>

Thefirst constraint is a definition. The constrainedElement role contains an Operation
proxy which has alocal reference to the initial Operation definition using xmi:idref.

The second constraint is a proxy referencing a constraint definition using the xmi:idr ef
of "idC2." The third constraint is a proxy reference to the definition using xmi:idr ef
to the constraint "idC3". The fourth constraint is an XPointer reference proxy to the

definition of the constraint using the href to the file doc2.xml with id "idC4".

Following the definition of the operation and its 3 constraint proxies are the definitions
of two of the constraints. The second document contains the third constraint
definition.

The use and placement of references is freely determined by the document creator. It
is likely that most documents will make internal and external references for a number
of reasons: to minimize the amount of duplicate declarations, to compartmentalize the
size of the document streams, or to refer to useful information outside the scope of
transmission. For example, the href of an XLink could contain a query to a repository
which will recall additional related information. Or there may be a set of XMI
documents created, one file per package to be transferred, where there are relationships
between the packages.

4.10 Tailoring Schema Production

4-44

This section describes how to tailor schema production by specifying particular MOF
tags as part of a MOF metamodel. It also explains the impact the tailored schemas
have on document production. With the exception of the defaultValue tag, these tags
apply only to XMI 2.0. The defaultValue tag was used in XMI 1.1 to specify default
values for attributes.

ad/2001-06-12: XML Metadata I nterchange 6/18/2001

4.10.1 XMI Tag Values

The following table specifies the XM| tags that allow you to tailor the schemas that are
produced and the documents that are produced using XMI. Each of the names has a
prefix of "org.omg.xmi.", but the prefix is not included in the names to make the table
easier to read.

XMI Tag Values Summary

Tag Name Value Type Default value Description
Naming tags
xmiName string nil Provides an alternate name from

the MOF name for writing to
XMI. Useful in cases where the
MOF name has characters that
conflict with XML. Thisvalueis
used rather than the MOF name.

idName string xmi:id The value is the name of the id
attribute. Use "id" for SOAP
serialization.

nsURI string nil The namespace URI of the MOF
package.

nsPrefix string nil The namespace prefix of the MOF

package; thisis used in schemas.
(Any legal XML prefix may be
used in documents.)

XML Syntax tags

serialize boolean true If false, suppresses serialization of
the MOF construct. Typicaly
applied to derived features.

attribute boolean false If true, serialies the MOF
construct as an XML attribute.

element boolean false If true, serializes the MOF
construct as an XML element.

remoteOnly boolean false If set on one end of abidirectional
relationship, only serializes that
end if it is remote.

href boolean false If true, use the href attribute rather
than the idref attribute for links
within a document

Ordering

| 6/18/2001 ad/2001-06-12: XML Metadata Interchange 4-45

XMI Tag Values Summary

Tag Name Value Type Default value Description

superClassFirst boolean false If true, serialize the super class
content first.

ordered boolean false If true, serialize object content in
the order it is defined in a MOF
metamodel.

Content
includeNils boolean false If false, do not serialize nil values.

XML Schema Production

enforceMaximumMultiplicity | boolean false If true, enforce maximum
multiplicities; otherwise, they are
"unbounded”

enforceMinimumMultiplicity | boolean false If true, enforce minimum
multiplicities; otherwise, they are
IIOII

useSchemaExtensions boolean false If true, use schema extensions to
represent inheritance in the MOF
metamodel.

schemaType string nil The name of a datatype defined in
the XML Schema Datatype
specification

contentType string complex Defines the schema content type.
Other valid values are: any,
mixed, empty, complex, and
simple

processContents string strict If the contentType is any, this tag
is used to specify the value of the
processContents attribute of the
any element. Other valid values
are: lax, skip.

form string nil Specifies the value of the form
attribute for attributes. Other
valid values are qualifed and

unqualified.

defaultValue string nil Specifies the default value for
attributes.

fixedValue string nil Specifies the fixed value for
attributes.

4-46 ad/2001-06-12: XML Metadata I nterchange 6/18/2001

6/18/2001

4.10.3 Scope

4.10.2 Tag Value Constraints

There are constraints on the values of the XM tags in addition to the ones specified in
the above table. Hereisalist of them:

« If includeNils is true, and the value of an attribute is nil, the value must be
represented by an XML element regardless of the value of the attribute tag. Note
that MOF references cannot be set to nil.

 If enforceMinimumMultiplicity or enforceMaximumMultiplicity is true, the ordered
tag must be true as well (to validate multiplicities, schemas require element content
to be serialized in a particular order). The multiplicity tags require the use of
serializing in elements.

« If useSchemaExtensions is true, the MOF metamodel must not have multiple
inheritance.

« If useSchemaExtensions is true, superClassFirst must be true also.
< If href is true, element must be true as well for every reference that is serialized.

» The attribute tag may not be specified on containment references, multi-valued
attributes, attributes without simple data types, or features with the following tags
as true: element, includeNils, enforceMinimumMultiplicity,
enforceMaximumMultiplicity, and href.

With the exception of xmiName, serialize, and remoteOnly, all of these tags apply to
all constructs within the scope of the construct they are assigned to. If they are
specified for a MOF package, they apply to constructs within the scope of the MOF
package. If they are specified for a MOF class, they apply to the MOF class and the
features of the class. For example, if you set the element tag to true for a MOF class,
you should serialize the values of all features of the class using XML elements rather
than XML attributes.

The xmiName, serialize, contentType, schemaType, and remoteOnly tags apply only to
the constructs for which they are specified. For example, setting the xmiName of a
MOF class to "c" means that the name "c" should be used in XMl schemas and
documents for that class; it does not constrain the names of the features of the class.

4.10.4 XML element vs XML attribute

You may chose features (MOF attribute or reference) to appears as a XML attributes,
XML elements, or both, based on the model and tags in the model. The following is a
list of the conditions for mapping a feature to an XML construct:

XML attribute only

* The feature has an attribute tag set to true.

ad/2001-06-12: XML Metadata Interchange 4-47

4-48

XML element only

* The feature is a containment reference, or

e The feature has an element tag set to true, or
* The feature has an href tag set to true, or

* The feature is a multi-valued attribute, or

e The feature is an attribute whose type is not a simple data type.

Both XML attribute and element
e The default.

4.10.5 UML profile for XML and XMl

The tags defined above define a UML profile for XML and XMI. The tags placed on
a UML element are transferred directly to the corresponding MOF element when
converting UML to MOF. In addition, a UML element with a stereotype of one of the
above non-prefixed tag names are transferred to a MOF tag of the same name and
value true. A UML profile for MOF supplements this profile by providing exact
mappings from UML models to MOF models.

An example of the UML profile for XML and XMI would be placing the <<element>>
stereotype on a UML attribute that should always be written as an XML element. The
corresponding MOF tag would have value true

4.10.6 SOAP serialization

To encode XMI following the SOAP specification, set the following tags to true in
your models: element, href. Set the idName to "id." This allows XMI to encode
objects in the body of a SOAP XML message using the SOAP default serialization.
Even if you do not choose this encoding, you may always serialize XMl objects in the
body of a SOAP XML message.

4.10.7 Effects on Document Production

The values of the XMI tags affect how documents are serialized. In general, the more
validation a schema performs, the more restrictions there are on the XMI documents
that validate using the schemas. There are two reasons for this. First, schemas cannot
validate multiplicities without imposing an order on element content. Second, if the
schema extension mechanism is used, superclass elements must be serialized in
element content before subclass elements.

Here are some examples of how the XMI tags affect document production. Assume
that there is a MOF metamodel with class "Super" and class "Sub". Sub inherits from
Super. Super has attribute a of type string, and Sub has attribute b with of type string.
If the namespace URI is "URI", and the prefix is "p", here is the default schema
produced from the MOF metamodel:

ad/2001-06-12: XML Metadata I nterchange 6/18/2001

6/18/2001

<xml version="1.0" encoding="UTF-8"?>
<xsd:schema
targetNamespace="URI"
xmlns:xmi="http://www.omg.org/XMI"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:p="URI">

<xsd:import
namespace="http://www.omg.org/XMI"
schemalocation="xmi20.xsd"/>

<xsd:complexType name="Super">
<xsd:choice minOccurs="0" maxOccurs="unbounded">
<xsd:element name="a" type="xsd:string"/>
<xsd:element ref="xmi:Extension"/>
</xsd:choice>
<xsd:attribute ref="xmi:id"/>
<xsd:attributeGroup ref="xmi:ObjectAttribs"/>
<xsd:attribute name="a" type="xsd:string" use="optional"/>
</xsd:complexType>

<xsd:element name="Super" type="p:Super"/>

<xsd:complexType name="Sub">
<xsd:choice minOccurs="0" maxOccurs="unbounded">
<xsd:element name="a" type="xsd:string"/>
<xsd:element name="b" type="xsd:string"/>
<xsd:element ref="xmi:Extension"/>
</xsd:choice>
<xsd:attribute ref="xmi:id"/>
<xsd:attributeGroup ref="xmi:ObjectAttribs"/>
<xsd:attribute name="a" type="xsd:string" use="optional"/>
<xsd:attribute name="b" type="xsd:string" use="optional"/>
</xsd:complexType>

<xsd:element name="Sub" type="p:Sub"/>

</xsd:schema>

Note that the content model for Sub allows attribute a or attribute b to be serialized
first if they are serialized as elements. For example, if p is the namespace prefix for a
namespace whose uri is "URI" in an XML document, the following instance of Sub
validates against the default schema:

<p:Sub>
Valuel
<a>Value2

</p:Sub>

The following is also legal:

ad/2001-06-12: XML Metadata I nterchange 4-49

<p:Sub>
<a>Value2
Valuel

</p:Sub>

If useSchemaExtensions is true, the declaration of the Sub complexType uses the XML
schema extension mechanism, as follows:

<xsd:complexType name="Sub">
<xsd:complexContent>
<xsd:extension base="p:Super">
<xsd:choice minOccurs="0" maxOccurs="unbounded">
<xsd:element name="b" type="xsd:string"/>
</xsd:choice>
<xsd:attribute name="b" type="xsd:string" use="optional"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

This declaration of the Sub type imposes an ordering on the content of Sub instances.
With this declaration, attribute a must be serialized before attribute b, so the first
instance of Sub above does not validate with this schema, but the second does validate.
Also, any xmi:extension elements must be serialized in Sub instances before elements
corresponding to attribute b.

4.11 Transmitting Metadata Differences

The goal is to provide a mechanism for specifying the differences between documents
so that an entire document does not need to be transmitted each time. This design does
not specify an algorithm for computing the differences, just a form for transmitting
them.

Up to now we have seen how to transmit an incomplete or full model. This way of
working may not be adequate for al environments. More precisely, we could mention
environments where there are many model changes that must be transmitted very
quickly to other users. For these environments the full model transmission can be very
resource consuming (time, network traffic, ...) making it very difficult or even not
viable for finding solutions for cooperative work.

The most viable way to solve this problem is to transmit only the model changes that
occur. In this way different instances of a model can be maintained and synchronized
more easily and economically. Concurrent work of a group of users becomes possible
with a simple mechanism to synchronize models. Transmitting less information allows
synchronizing models more efficiently.

4.11.1 Definitions:

Theideais to transmit only the changes made to the model (differences between new
and old model) together with the necessary information to be able to apply the changes
to the old model.

4-50 ad/2001-06-12: XML Metadata I nterchange 6/18/2001

A. New - Old = Difference

Model differencing is the comparison of two models and identifying the differences
between them in areversible fashion. The difference is expressed in terms of changes
made to the old document to arrive at the new document.

B. New = Old + Difference

Model merging is the ability to combine difference information plus a common
reference model to construct the appropriate new model.

4.11.2 Differences

Differences must be applied in the order defined. A later difference may refer to
information added by a previous difference by linking to its contents. Model integrity
requires that all the differences transmitted are applied. The following are the types of
differences recognized, the information transmitted, and the changes they represent:

« Delete (reference to deleted element): The delete operation refers to a particular
element of the old model and specifies a deep removal of the referenced element
and all of its contents.

« Add (reference to containing element, new element, optional position): The add
operation refers to a particular element of the old model and specifies a deep
addition. The element and its contents are added. The contents of the new element
are added at the optional position specified, the default being as the last element of
the contents. The optional position form is based on XPointer's position form. 1
means the first position, -1 means the last position, and higher numbers count
across the contents in the specified direction.

» Replace (reference to replaced element, replacement element, optional position):
This operation deletes the old element but not its contents. The new element and
its contents are added at the position of the old element. The original contents of the
old element are then added to the contents of the new element at the optional
position specified, the default being at the end.

4.11.3 XMI encoding

The following are the elements used to encode the differences:

delete

The delete element’s link attributes contain a link to the element to be deleted.
add

The contents of add is the element to be added. The link attributes contain a link to the
element to be deleted and an optional position element. The numbering corresponds to
XPointer numbering, where 1 is the first and -1 is the last element.

replace

| 6/18/2001 ad/2001-06-12: XML Metadata Interchange 4-51

4-52

The contents of replace is the element to replace the old element with. The attributes
contain a link to the element to be replaced and an optional position element for the

replacing element’s contents. The numbering corresponds to X Pointer numbering,
where 1 is the first and -1 is the last element.

4.11.4 Example

This example will delete a class and its attributes, add a second class, and rename a
package.

The original document:

<xmi:XMI version="2.0" xmIns:UML="org.omg/UML"
xmlns:xmi="http://www.omg.org/XMI">
<UML:Package xmi:id="ppp" xmi:label="p1">
<ownedElement xmi:type="UML:Class" xmi:id="ccc" xmi:label="c1">
<feature xmi:type="UML:Attribute" xmi:label="al"/>
<feature xmi:type="UML:Attribute" xmi:label="a2"/>
</ownedElement>
</UML:Package>
</xmi:XMI>

The differences document:

<xmi:XMI version="2.0" xmIns:UML="org.omg/UML"
xmlns:xmi="http://www.omg.org/XMI">
<difference xmi:type="xmi:Delete">
<target href="original.xml#ccc"/>
</difference/>
<difference xmi:type="xmi:Add" addition="Class_1">
<target href="original.xml#ppp"/>
</difference>

<UML:Class xmi:id="Class_1" xmi:label="c2"/>
<difference xmi:type="xmi:Replace" replacement="ppp">

<target href="original.xml#ppp"/>
</difference>

<UML:Package xmi:id="ppp" xmi:label="p2"/>
</xmi:XMI>

Here's how the 3 differences change the document as they're applied. The delete:

<xmi:XMI version="2.0" xmIns:UML="org.omg/UML"

xmlns:xmi="http://www.omg.org/XMI">
<UML:Package xmi:id="ppp" xmi:label="p1"/>
</Xmi:XMI>

Next, the add:

<xmi: XMl version="2.0" xmIns:UML="org.omg/UML"

xmlns:xmi="http://www.omg.org/XMI">
<UML:Package xmi:id="ppp" xmi:label="p1">

ad/2001-06-12: XML Metadata I nterchange 6/18/2001

<ownedElement xmi:type="UML:Class" xmi:label="c2"/>
</UML:Package>
</xmi:XMI>

Finally, the replace:

<xmi:XMI version="2.0" xmIns:UML="org.omg/UML"
xmlns:xmi="http://www.omg.org/XMI">
<UML:Package xmi:id="ppp" xmi:label="p2">
<ownedElement xmi:type="UML:Class" xmi:label="c2"/>
</UML:Package>
</Xmi:XMI>

4.12 Document exchangewith multipletools

This section contains a recommendation for an optional methodology which can be
used when multiple tools interchange documents. In this methodology, the xmi:uuid
and extensions are used together to preserve tool-specific information. In particular,
tools may have particular requirements on their |Ds which makes ID interchange
difficult. Extensions are used to hold tool-specific information, including tool-specific
IDs.

The basic policy is that the XML ID is assigned by the tool that initialy creates a
construct. The UUID will most likely be the same as the ID the tool would chose for
its own use. Any other modifiers of the document must preserve the original UUID,
but may add their own as part of their extensions.

4.12.1 Definitions:
General:

« MC - Model construct. An XML element that contains an xmi.uuid attribute

« Extension - Extensions use the extension element. Extensions to MCs may be
nested in MCs, linked to the extensions section(s) of the document, or linked
outside the document. Each extension contains a tool-specific identifier in the
extender attribute. extensions are considered private to a particular tool. An MC
may have zero or more extensions. extensions may be nested.

IDs:

e xmi:uuid - The universally unique ID of an MC, expressed asxtheuuid
attribute. Example: <Clasani:uuid="ABCDEFGH">

« extenderID - The tool-specific ID of an MC. The extenderID is stored in an
extension of the MC when it differs from tleni:uuid.

Tool ID policies:

Every tool is either Open or Closed.

« Open tool - A tool that will accept amymi:uuid as it's own. Open tools do not
need to add extensions to contain a tool-specific id.

| 6/18/2001 ad/2001-06-12: XML Metadata Interchange 4-53

» Closed tool - A tool that will not accept ami:uuid created by another tool.
Closed tools store their ids in tlegtender D attribute of an XMl.extension. The
extender attribute of the XMI.extension is set to the name of the closed tool.

4.12.2 Procedures:

Document Creation:

e The Creating Tool writes a new XMI document. Each MC is assign&cthanuid.
If the xmi:uuid differs from theextender|D, anextension for that tool is added
containing the extenderID.

Document Import:

e The importing tool reads an existing XMI document. Extensions from other tools
may be stored internally but not interpreted in the event a Modification will occur at
a later time. One of the following cases occurs:

1. If the importing tool is an Open tool, tlkeni:uuids are accepted internally and no
conversion is needed.

2. If the importing tool is a closed tool, the tool looks for a contamédnsion
(identified byextender) with aextenderID. If one does not exist, the importing
tool creates its own internal id.

Document Modification:
« The modifying tool writes the MCs and any extensions preserved from import.
e For new MCs, the MC is assigned xami:uuid.

» Closed tools add aextension including their internal id in thextender|D.

4.12.3 Example

This section describes a scenario in which Tooll creates an XMI document which is
imported by Tool2, then exported to Tooll, and then a third tool imports the document.
All the tools are closed tools.

1. A model is created in Tooll with one class and written in XMI.
<UML:Class xmi:label="c1" xmi:uuid="abcdefgh"/>

2. The class is imported into Tool2. Tool2 assigns extenderID "JKLMNOPQRST". A
second class is added with name "c2" and extenderID "X012345678"

3. The model is merged back to XMI:

<UML:Class xmi:label="c1" xmi:uuid="abcdefgh">

<xmi:Extension extender="Tool2" extenderID="JKLMNOPQRST"/>
</UML:Class>
<UML:Class xmi:label="c2" xmi:uuid="X012345678"/>

4-54 ad/2001-06-12: XML Metadata I nterchange 6/18/2001

4

4. The model isimported into Tooll. Tooll assigns extenderID "ijklmnop" to "c2"
and a new class "c3" is created with extenderID "grstuvwxyz".

5. The model is merged back to XMI:

<UML:Class xmi:label="c1" xmi:uuid="abcdefgh">
<xmi:Extension extender="Tool2" extenderID="JKLMNOPQRST"/>
</UML:Class>
<UML:Class xmi:label="c2" xmi:uuid="X012345678">
<xmi:Extension extender="Tooll" extenderID="ijkimnop"/>
</UML:Class>
<UML:Class xmi:label="¢3" xmi:uuid="qrstuvwxyz"/>

6. A third closed tool, Tool3, adds its ids:

<UML:Class xmi:label="c1" xmi:uuid="abcdefgh">
<xmi:Extension extender="Tool2" extenderID="JKLMNOPQRST"/>
‘ <xmi:Extension extender="Tool3" extenderID="s1234"/>
</UML:Class>
<UML:Class xmi:label="c2" xmi:uuid="X012345678">
<xmi:Extension extender="Tooll" extenderID="ijkimnop"/>
‘ <xmi:Extension extender="Tool3" extender|D="s5678"/>
</UML:Class>
<UML:Class xmi:label="c3" xmi:uuid="qrstuvwxyz">
<xmi:Extension extender="Tool3" extenderlD="s90ab" />
</UML:Class>

7. An open tool imports and modifies the file. There are no changes because the
Xmi:uuids are used by the tool.

4.13 General datatype mechanism

The ability to support general data types in XMI has significant benefits. The
applicability of XM is significantly expanded since domain metamodels are likely to
have a set of domain-specific data types. This genera solution allows the user to
provide a domain datatype metamodel with a defined mapping to the XML data types.

Data types are defined in the model and the XML serialization of the datatypes is
described in terms of the XML schema datatypes.

MOF complex data types are treated as MOF classes with each field treated as a MOF
attribute with a primitive type mapped to XML schema.

The Tag org.omg.xmi.schemaType indicates that this class is a datatype with XML
schema mapping. The value of the tag indicates the schema type. For example,
http://www.w3.0rg/2001/X ML Schema#int is the int datatype.

| 6/18/2001 ad/2001-06-12: XML Metadata Interchange 4-55

4-56 ad/2001-06-12: XML Metadata I nterchange 6/18/2001

5.1 Purpose

6/18/2001

XML Schema Production 5

This section describes the rules for creating a schema from a MOF-based metamodel.
There are two kinds of schemas, XMI 1.1 schemas and XMI 2.0 schemas. You can use
either an XMI 1.1 DTD or an XMI 1.1 schemato validate any XMI 1.1 document. XMI
2.0 schemas validate XM1 2.0 documents.

The conformance rules are stated in Chapter 9.

Notation for EBNF

The rule sets are stated in EBNF notation. Each rule is numbered for reference. Rules
are written as rule number, rule name, for example 1la. SchemaStart. Text within
guotation marks are literal values, for example "<xsd:element”. Text enclosed in double
slashes represents a placeholder to be filled in with the appropriate external value, for
example //Name of Attribute//. Literals should be enclosed in single or double quotation
marks when used as the values for XML attributesin XML documents. The suffix "*" is
used to indicate repetition of an item O or more times. The suffix "?" is used to indicate
repetition of an item 0 or 1 times. The suffix "+" is used to indicate repetition of an item
1 or moretimes. The vertical bar "[" indicates a choice between two items. Parentheses
"()" are used for grouping items together.

EBNF ignores white space; hence these rules do not specify white space treatment.
However, since white space in XML is significant, the actual schema generation process
must insert white space at the appropriate points.

The XML element names generated for XMI 1.1 schemas are qualified names. A
qualified name consists of a Class, Package, or Association name. Attributes or

References are further prefixed by a period (".") delimiter. You may use XML
namespaces with the qualified names.

ad/2001-06-12: XML Metadata Interchange 5-57

5.2 XMl 1.1 Schemas

5-58

5.2.1 EBNF

The EBNF for XMI 1.1 schemas is listed below with rule descriptions between
sections:

1. Schema ;.= la: SchemaSt art
1d: I nport sAndl ncl udes?
le: Fi xedDecl arati ons
2: PackageSchema+
1f : SchenmaEnd
la. SchemaStart ;= "<xsd: schenn
xmins:xsd="http://www.w3.0rg/2001/XMLSchema™
<1b:NamespaceDecl>*
<lc:TargetNamespace>?
s

1b. NamespaceDecl ::="xmins:" //[Namespace name// "="
""" [INamespace URI// "™
1c. TargetNamespace ::="targetNamespace="//Namespace URI// ""

1d. ImportsAndincludes ::= // Imports and includes //
le. FixedDeclarations :=//Fixed declarations//

1f. SchemaEnd .= "</xsd:schema>"

1g. XMIFixedAttribs ::= "<xsd:attributeGroup ref="XMlldentityAttribs'/>
<xsd:attributeGroup ref="XMILinkAttribs'/>"

1h. Namespace ::= (//Name of namespace// ":")?

1. A schema consists of a schema XML element that contains import and include
statements, fixed declarations, plus declarations for the contents of the Packages in the
metamodel.

la. The schema XML element consists of the schema namespace attribute, nhamespace
attributes for the other namespaces used in the schema, if any, and an optional target
namespace attribute. These rules are written as if the namespace name for the schema
namespace is "xsd", but you can substitute another name for the schema namespace
name and still conform to this specification.

1b. Each namespace used in the schema must have a namespace attribute that
identifies the namespace name and the namespace URI. If the namespace name is
the attribute name should be "xmins".

1c. If the schema has a target namespace, the targetNamespace attribute is present.

1d. If the schema uses declarations from other schemas, the appropriate include or
import statements must be present.

le. The fixed declarations are listed in section 5.2.2. They can either be physically
present in the schema or imported or included into the schema.

ad/2001-06-12: XML Metadata I nterchange 6/18/2001

1f. The end of the schema XML element.

1g. The fixed XMI attributes present on the major elements provide element identity
and element linking.

1h. A namespace is a nhamespace name followed by a":". If no hamespace name is
given, the rule is a blank.

2. PackageSchema ::= (2:PackageSchenmn
| 3:d assSchema
| 4:AttributeEl nt Def
| 7: ComnpositionSchema
| 10: Associ ati onSchema
| 13: EnunSchema) *
9: PackageEl enment Def

2. The schema contribution from a Package consists of the declarations for any
contained Packages, Classes, classifier level Attributes, containment aggregations,
Associations without References, enumerations, and an XML element declaration for
the Package itself.

3. dassSchenn c:= (4:AttributeEl ntDef | 5:ReferenceEl mt Def)*
6: G assEl ement Def

3. The class schema contribution consists of the element definitions for any Attributes
and References of the Class and an element definition for the Class itself.

6/18/2001 ad/2001-06-12: XML Metadata I nterchange 5-59

5-60

Attribut eEl nt Def ::="<xsd:element name=""'4a:AttribEImtName "'>"

4c:AttribContents
"</xsd:element>"

4a. AttribEImtName ::= 6a:ClassElmtName "." 4b:AttribName
4b. AttribName .= /[Name of Attribute//
4c. AttribContents ::= 4d:AttribData

| 4e:AttribEnum
| 4f:AttribClasses

4d. AttribData = "<xsd:complexType mixed="true'>

<xsd:sequence>
<xsd:element ref="XMI.reference’ minOccurs="0’
maxOccurs="unbounded'/>
</xsd:sequence>
</xsd:complexType>"

4e. AttribEnum = "<xsd:complexType>

<xsd:attribute name="xmi.value’
type=""13a:EnumTypeName """
"use="required’>

</xsd:complexType>"

4f, AttribClasses ::= "<xsd:complexType>

<xsd:choice minOccurs='0" maxOccurs="unbounded’>"
4g:AttribClass
"</xsd:choice>
</xsd:complexType>"

4g. AttribClass ::= ("<xsd:element ref="" 6a:ClassEImtName "'/>")+

4. These rules define the declaration of an Attribute of a Class in the metamodel as an
XML element. These metamodel Attributes can, in some cases, be expressed as XML
attributes rather than XML elements. This is specified in rule 6h and gives the
document writer the ability to choose which representation is most convenient in a
particular use in an XML document.

4a, 4b. The name of the XML element representing an Attribute of a Classis the
element name of the Class containing the Attribute followed by a dot separator and the
name of the Attribute.

4c. An Attribute which can be expressed as a data value is expressed in terms of a
string or reference to its content (4d) or an enumeration (4e, 4g, 4h). An Attribute
which has a Class asits value is expressed in terms of the possible Class types that can
be instances of its value (4f). If the Class has subclasses, the element name of each of
its subclasses is included in the declaration.

ad/2001-06-12: XML Metadata I nterchange 6/18/2001

Note — If the MOF Tag "org.omg.xmi.enumerationUnprefix" is attached to the
DataType where the enumerated values of the Attribute are defined, the value of this
Tag contains a prefix which will be removed from the values of enumeration literals
before they are written in the schema.

Note — Although the schema as produced by this grammar cannot restrict the
interspersing of other Attribute values among the instances of the values of a multi-
valued Attribute, the XML document production rules state that all values for the
Attribute should be consecutive elements and not interspersed with other Attribute
values.

5. ReferenceEl m Def ::="<xsd:element name=""//Name of class//"."
5h:ReferenceName "'>"
"<xsd:complexType>
<xsd:choice minOccurs="0’ maxOccurs="unbounded’>"
5c:RefContents
"</xsd:choice>
</xsd:complexType>
</xsd:element>"
5a. ReferenceEImtName ::= 6a:ClassElImtName "." 5b:ReferenceName
5b. ReferenceName ::=//Name of Reference//
5c. RefContents .= ("<xsd:element ref="" 6a:ClassElmtName "'/>")+

5. These rules define the declaration of a metamodel Reference as XML element
content for linking by proxy. It is also possible to place the Reference in an XML
attribute, as defined in rule 6i. This provides the ability to more conveniently
represent References when the limited linking facilities available in such a case are
sufficient.

5a, 5b. The name of the XML element representing a Reference is the element name of
the Class containing the Reference, a dot separator, and the name of the Reference.

5c. The element name of the type of the Reference is given in the declaration. Any
subclass of the type can, but need not, appear in the declaration as well. An XML
linkage to a Class element will work if the target of the linkage is a member of a Class
or one of its subclasses.

6/18/2001 ad/2001-06-12: XML Metadata I nterchange 5-61

6. C assEl enent Def . 1= "<xsd:element name=""//Name of class// "'>"
"<xsd:complexType>
<xsd:choice minOccurs="0’ maxOccurs="unbounded’>"
6b:ClassContents
"</xsd:choice>"
69:ClassAttListltems
"</xsd:complexType>
</xsd:element>"
6a. ClassEImtName ::= 1h:Namespace //Name of Class//
6b. ClassContents ::= 6d:ClassAttributes
6e:ClassReferences
6f:ClassCompositions
6c:Extension
6c. Extension ::= "<xsd:element ref="XMl.extension’/>"
6d. ClassAttributes ::= ("<xsd:element ref="" 4a:AttribEImtName "'/>")+
6e. ClassReferences ::= ("<xsd:element ref=" 5a:ReferenceEImtName
">+
6f. ClassCompositions ::= ("<xsd:element ref=" 6a:ClassEImtName
S)+
6g. ClassAttListltems ::= 1g:XMIFixedAttribs 6h:ClassAttribAtts
6h. ClassAttribAtts ::= (6i:ClassAttribRef
| 6j:ClassAttribData
| 6k:ClassAttribEnum)*

6i. ClassAttribRef ::= "<xsd:attribute name=""4b:AttribName ™"
"type="xsd:IDREFS’ use="optional’/>"
6j. ClassAttribData ::="<xsd:attribute name="" 4b:AttribName ""

1

"type="xsd:string
"use="optional’
(default="" 6l.ClassAttribDflt """)?
njsm

6k. ClassAttribEnum ::= "<xsd:attribute name=""4b:AttribName "
"type="" 13a:EnumTypeName ""
"use='optional’
(default="" 6l:ClassAttribDflt ") ?
"

6l. ClassAttribDflt ::=//Default value//

6. These rules describe the declaration of a Class in the metamodel as an XML element
with XML attributes.

6a. The name of references to the XML element for the Class is the name of the Class
prefixed by the namespace, if present.

5-62 ad/2001-06-12: XML Metadata I nterchange 6/18/2001

5

6b, 6¢. The XML element for the Class contains XML elements for the contained non-
derived Attributes, References and Compositions of the Class, plus an extension
element.

6d. The XML element name for each non-derived Attribute of the Class is listed as
part of the content model of the Class element. This includes the Attributes defined
for the Class itself as well as all of the non-derived Attributes inherited from
superclasses of the Class.

6e. The XML element name for each Reference of the Class is listed in the content
model of the Class. Thelist includes the References defined for the Class itself, as well
as all References inherited from the superclasses of the Class.

6f. The XML element name for each Class contained in this Class in the content model
of the Class element. Here, containment means that the contained Class is directly
owned as an ownedElement of the Class. In addition to the element name of the
contained Class, the el ement name of each subclass of the contained Class must also be
listed.

64, 6h. In addition to the standard identification and linkage attributes, the attribute list
of the Class element can contain XML attributes for the Attributes and non-composite
References of the Class, when the limited facilities of the XML attribute syntax allow
expression of the necessary values.

6i. References (either directly owned by the Class or inherited) can be expressed as
XML id reference XML attributes.

6. Single-valued Attributes (direct or inherited) of a Class that have a string
representation for their data are mapped to CDATA XML attributes. Multi-valued
Attributes of a Class cannot be so expressed, since the XML attribute syntax does not
allow repetition of values.

6k. Single-valued Attributes (direct or inherited) that have enumerated values are
mapped to enumerated XML attributes in the same manner as in an AttributeElmtDef
(4, 4e).

6l. If an Attribute is expressed as an XML attribute, its default value may be expressed
in the schema if there is a MOF Tag "org.omg.xmi.defaultValue" attached to the
Attribute. The value of this Tag must be expressible as an XML attribute string.

7. ConpositionSchema ;= 8: Conposi tionEl nt Def *

7. Elements for Associations that represent compositions are described using rule 8.

6/18/2001 ad/2001-06-12: XML Metadata I nterchange 5-63

8. CompositionElmtDef ::= "<xsd:element name=""//Name of class//
"." 5b:ReferenceName "'>"
"<xsd:complexType>
<xsd:choice minOccurs="0" maxOccurs="unbounded’>"
6f:ClassCompositions
"</xsd:choice>
</xsd:complexType>
</xsd:element>"

8. The composition element is generated for each Reference in the Package which has
an exposedEnd whose aggregation is composite. This element is used in the class
contents XML element (6). Itisalist of the Class which is the type of the Reference,
aswell asall of its subclasses. The name of the Reference XML element is the element
name of the Class containing the Reference, followed by a dot and the name of the
Reference.

9. PackageElementDef ::= "<xsd:element name=""' 9b:PkgName "'>"
"<xsd:complexType>
<xsd:choice minOccurs="0' maxOccurs="unbounded’>"

9c:PkgContents

"</xsd:choice>"

9h:PkgAttListitems

"</xsd:complexType>

</xsd:element>"

9a. PkgEImtName ::= 1h:Namespace 9b:PkgName
9b. PkgName ::= /[Name of Package//
9c. PkgContents .= 9d:PkgAttributes ?

9e:PkgClasses ?
9f:PkgAssociations ?
9g:PkgPackages ?
6c:Extension

9d. PkgAttributes ::= ("<xsd:element ref="" 4a:AttribElImtName "/>")+
9e. PkgClasses ii= ("<xsd:element ref="" 6a:ClassEImtName "/>")+
9f. PkgAssociations ::= ("<xsd:element ref=" 12a:AssnEImtName "'/>")+
9g. PkgPackages ii= ("<xsd:element ref="" 9b:PkgEImtName "'/>")+
9h. PkgAttListltems ::= 1g:XMIFixedAttribs 9i:PkgAttribAtts

9i. PkgAttribAtts ::= 6h:ClassAttribAtts

9. The schema contribution from the Package consists of an XML element definition
for the Package, with a content model specifying the contents of the Package.

5-64 ad/2001-06-12: XML Metadata I nterchange 6/18/2001

6/18/2001

10. Associ

11. Associ

9a, 9b. The name of the Package XML element.

9c. The Package contents consists of any classifier level Attributes, Associations
without References, Classes, nested Packages and an extension.

9d. Classifier level Attributes of a Package are also known as static attributes. Such
Attributes inherited from Packages from which this Package is derived are aso
included.

9e. Each Class in the Package is listed. Classes contained in Packages from which this
Package is derived are also included.

of. It is possible that the Package contains Associations which have no References, i.e.
no Class contains a Reference which refers to an AssociationEnd owned by the
Association. Every such Association contained in the Package or Package from which
the Package is derived is listed as part of the Package contents in order that its
information can be transmitted as part of the XML document.

9g. Nested Packages are listed. Nested Packages included in Packages from which this
Package is derived are also included.

9h, 9i. The XML attributes for the Package are the fixed identity and linking XML
attributes.

ati onSchenma ;.= 11: Associ at i onEndDef
11: Associ at i onEndDef
12: Associ at i onDef

10. The XML elements for unreferenced Associations consist of definitions for its
AssociationEnds and for the Association itself.

at i onEndDef : :="<xsd:element name=""12b:AssnName "."
11b:AssocEndName ">
<xsd:complexType>"
11c:AssocEndAtts
"</xsd:complexType>
</xsd:element>"

11a. AssocEndEImtName ::= 12b:AssnEImtName "." 11b:AssocEndName
11b. AssocEndName .:= //[Name of AssociationEnd//
11c. AssocEndAtts ::= 1g:XMIFixedAttribs

11. The declaration for an AssociationEnd XML element has no content model, though
it has the standard set of XML attributes.

ad/2001-06-12: XML Metadata I nterchange 5-65

5-66

113, 11b. The name of the AssociationEnd XML element is the element name of the
association containing the AssociationEnd, a dot separator, and the name of the
AssociationEnd.

11c. The fixed identity and linking XML attributes are the AssociationEnd’s only XML
attributes.

12. Associ ati onDef . 1= "<xsd:element name="" 12b:AssnName "">"

"<xsd:complexType>
<xsd:choice minOccurs="0’ maxOccurs="unbounded’>"
12c:AssnContents
"</xsd:choice>"
12d:AssnAtts
"</xsd:complexType>
</xsd:element>"

12a. AssnElImtName ::= 1h:Namespace 12b:AssnName
12b. AssnName ::= //IName of Association//
12c. AssnContents ;= "<xsd:element ref="" 11a:AssocEndEImtName "'/>"

"<xsd:element ref=" 11a:AssocEndElmtName "'/>"
6¢:Extension

12d. AssnAtts = 1g:XMIFixedAttribs

12, 12c. The declaration of an unreferenced Association consists of the names of its
AssociationEnd XML elements.

12a, 12b. The name of the XML element representing the Association.

12d. The fixed identity and linking XML attributes are the Association XML attributes.

13. EnumSchema ::="<xsd:simpleType name=""13b:EnumName "'>"

"<xsd:restriction base="xsd:string’>"
13c:EnumlLiterals
"</xsd:restriction>"
"</xsd:simpleType>"

13a. EnumTypeName ::= 1h:Namespace 13b:EnumName

13b. EnumName .=/l Name of enumeration //

13c. EnumlLiterals ::= ("<xsd:enumeration value="" 13d:EnumLiteral "'/>")+
13d. EnumLiteral ::=// Name of enumeration literal //

13. The enumeration schema contribution consists of a simple type derived from string
whose legal values are the enumeration literals.

13a. The name of the enumeration type in schema references

13c. Each enumeration literal is put in the value XML attribute of an enumeration
XML element.

ad/2001-06-12: XML Metadata I nterchange 6/18/2001

13d. The name of the enumeration literal

5.2.2 Fixed Schema Declarations

There are some elements of the schema which are fixed, constituting a form of

“boilerplate” necessary for every MOF schema. These elements are described in this
section. They should be physically included at the beginning of the generated schema,
or placed in their own schema and included or imported into the generated schema.

Only the schema content of the fixed declarations is given here. For a complete
description of the semantics of these declarations, see the XMI 1.1 specification.

The fixed declarations are included in three separate xsd files, since the linking
attributes use the "xlink" and "xml" namespaces.

Here is the xmill.xsd schema, which imports the xlink.xsd and xml.xsd schemas:

<?xm version="1.0" encodi ng="UTF-8"?>
<schema xmins="http://www.w3.0rg/2001/XMLSchema’
xmins:xlink="http://www.w3.org/XLink"

xmins:xml="http://www.w3.0rg/XML">

<annotation>
<documentation>
This schema, used in conjunction with XMI 1.1 schemas produced
according to the rules in the XMI 2.0 specification, will
validate the same set of documents as XMI 1.1 DTDs.
</documentation>

</annotation>

<import namespace="http://www.w3.org/XLink" schemalocation="xlink.xsd"/>

<import namespace="http://www.w3.0rg/XML" schemalLocation="xml.xsd"/>

<element name="XMI">
<annotation>
<documentation>
This element declaration should match the DTD declaration:
IELEMENT XMI (XMl.header?, XMl.content?, XMl.difference*,
XMl.extensions*)
IATTLIST XMI
xmi.version CDATA #FIXED "1.1"
timestamp CDATA #IMPLIED
verified (true | false) #IMPLIED
</documentation>

</annotation>

6/18/2001 ad/2001-06-12: XML Metadata I nterchange 5-67

<conpl exType>
<sequence>

<el ement nanme="XM . header" type="header" m nQccurs="0"
maxCccurs="1"/>

<el ement name="XM.content" m nCccurs="0" maxOccurs="1">
<conpl exType>
<sequence>
<any m nOccurs="0" maxOccurs="unbounded"/>
</ sequence>
</ conpl exType>
</ el ement >

<el ement nane="XM . difference" type="difference" m nCccurs="0"
maxQccur s="unbounded"/ >

<el ement nane="XM . extensi ons" type="extensions" m nOccurs="0"
maxCOccur s="unbounded"/ >

</ sequence>

<attribute nanme="xm .version" type="string" use="required"
fixed="1.1"/>

<attribute name="tinestanp" type="string" use="optional"/>
<attribute nane="verified" type="bool ean" use="optional"/>
</ compl exType>

</ el emrent >

<conpl exType nane="header">
<annot ati on>
<docunent ati on>
This el ement declaration should match the DTD decl aration:

' ELEMENT XM . header (XM . docunentation?, XM . nodel*,
XM . met anodel *,

XM . met anet anpdel *, XM . i nport?*)
</ docunent ati on>
</ annot ati on>
<sequence>

<el ement nanme="XM . docunent ation" type="docunentation"
m nCccurs="0" maxCOccurs="1"/>

<el ement name="XM . nodel" type="nodel" m nCccurs="0"
maxQccur s="unbounded"/ >

<el ement nanme="XM . net anodel " type="nodel" m nCccurs="0"
maxQccur s="unbounded"/ >

<el ement name="XM . net anet anodel " type="nodel" m nOccurs="0"
maxQccur s="unbounded"/ >

<el ement name="XM.inport" type="nodel" m nOccurs="0"
maxQccur s="unbounded"/ >

</ sequence>

</ conpl exType>

<conpl exType nanme="docunentation" m xed="true">

<annot ati on>

5-68 ad/2001-06-12: XML Metadata I nterchange 6/18/2001

6/18/2001

<docunent ati on>
This type definition should match the DTD decl arations:

I ELEMENT XM . docunentati on (#PCDATA | XM .owner |
XM . contact |

XM .| ongDescription |
XM . shortDescription |

XM . exporter |
XM . exporterVersion |

XM . notice)*
' ELEMENT XM . owner ANY
I ELEMENT XM . contact ANY
' ELEMENT XM .| ongDescri ption ANY
' ELEMENT XM . shortDescripti on ANY
I ELEMENT XM . exporter ANY
' ELEMENT XM . exporterVersion ANY
I ELEMENT XM . notice ANY
</ docunent ati on>
</ annot ati on>
<choice m nQOccurs="0" nmaxCccur s="unbounded" >
<el ement name="XM . owner" >
<conpl exType m xed="true">
<sequence>
<any mnCccurs="0" maxOccurs="unbounded"/>
</ sequence>
</ conpl exType>
</ el enent >
<el ement name="XM . contact">
<conmpl exType m xed="true">
<sequence>
<any m nQccurs="0" maxOccurs="unbounded"/>
</ sequence>
</ conpl exType>
</ el enent >
<el ement name="XM .| ongDescription">
<conmpl exType m xed="true">
<sequence>
<any mnCccurs="0" maxCOccurs="unbounded"/>
</ sequence>
</ conmpl exType>
</ el enent >
<el ement name="XM . short Descri ption">
<conpl exType mi xed="true">
<sequence>
<any mnCccurs="0" maxCOccurs="unbounded"/>

</ sequence>

ad/2001-06-12: XML Metadata I nterchange 5-69

5-70

</ conpl exType>
</ el ement >
<el ement nane="XM . exporter">
<conmpl exType m xed="true">
<sequence>
<any mnCccurs="0" maxCOccurs="unbounded"/>
</ sequence>
</ conpl exType>
</ el ement >
<el ement name="XM . exporter Version">
<conmpl exType m xed="true">
<sequence>
<any m nQccurs="0" maxOccurs="unbounded"/>
</ sequence>
</ conmpl exType>
</ el ement >
<el ement nanme="XM . notice">
<conpl exType m xed="true">
<sequence>
<any mnCccurs="0" maxOccurs="unbounded"/>
</ sequence>
</ conmpl exType>
</ el ement >
</ choi ce>

</ conpl exType>

<conpl exType nane="nodel" m xed="true">
<annot ati on>
<docunent ati on>
This type definition is used for elenments XM . nodel
XM . met anodel , XM . net amet anodel, and XM .i nport. It
shoul d be equivalent to an element with content nodel of
ANY and the following attributes
XM . link.att;
xm . name CDATA #REQUI RED
xm .version CDATA #l MPLI ED
</ docunent ati on>
</ annot ati on>
<sequence>
<any m nCccurs="0" nmaxOccurs="unbounded"/>
</ sequence>
<attributeG oup ref="XM LinkAttribs"/>
<attribute name="xm .name" type="string" use="required"/>

<attribute nane="xm .version" type="string" use="optional"/>

ad/2001-06-12: XML Metadata I nterchange 6/18/2001

6/18/2001

</ conpl exType>

<conpl exType nanme="extensions" m xed="true">

<annot at i on>

<docunent ati on>

This type definition corresponds to the follow ng declaration:
' ELEMENT XM . extensions ANY
I ATTLI ST XM . ext ensi ons
xm . ext ender CDATA #REQUI RED

</ docunent ati on>
</ annot ati on>
<sequence>

<any m nCccurs="0" maxOccurs="unbounded"/>
</ sequence>
<attribute name="xm .extender" type="string" use="required"/>

</ conpl exType>

<el ement nanme="XM . extension" type="extension"/>

<conpl exType nanme="extension" m xed="true">
<annot ati on>
<docunent ati on>
This type definition corresponds to the content nodel and
attributes of the followi ng elenment declaration:
I ELEMENT XM . ext ension ANY
I ATTLI ST XM . ext ensi on
%M . el enent . att;
%M . link.att;
xm . ext ender CDATA #REQUI RED
xmi . ext ender | D CDATA #| MPLI ED
</ docunent ati on>
</ annot ati on>
<sequence>
<any m nCccurs="0" maxOccurs="unbounded"/>
</ sequence>
<attributeGoup ref="XMIdentityAttribs"/>
<attributeG oup ref="XM LinkAttribs"/>
<attribute nane="xm .extender" type="string" use="required"/>
<attribute name="xm .extender| D' type="string" use="optional"/>

</ conpl exType>
<conpl exType nane="difference">

<annot ati on>

<docunent ati on>

ad/2001-06-12: XML Metadata I nterchange 5-71

This type definition corresponds to the content nodel and
attributes of the followi ng el ement declaration:
' ELEMENT XM .difference (XM .difference | XM .delete | XM . add |
XM . repl ace) *
' ATTLI ST XM . difference
9XM . el ement . att;

%M . link.att;
</ docunent ati on>

</ annot ati on>
<choice m nOccurs="0" nmaxCccurs="unbounded" >
<el ement name="XM . difference" type="difference"/>
<el ement name="XM . del ete" type="delete"/>
<el ement nanme="XM . add" type="add"/>
<el ement name="XM . replace" type="replace"/>
</ choi ce>
<attributeGoup ref="XMIdentityAttribs"/>
<attributeG oup ref="XM LinkAttribs"/>
</ conpl exType>

<conpl exType nanme="del ete">
<annot ati on>
<docunent ati on>

This type definition corresponds to the content nodel and

attributes of the follow ng el ement declaration:
I ELEMENT XM . del ete EMPTY
I ATTLI ST XM . del ete

%M . el enent . att;

%M . link.att;
</ docunent ati on>

</ annot ati on>
<attributeGoup ref="XMIdentityAttribs"/>
<attributeG oup ref="XM LinkAttribs"/>

</ conpl exType>

<conpl exType nanme="add" m xed="true">
<annot ati on>
<docunent ati on>
This type definition corresponds to the content nodel and
attributes of the follow ng el ement declaration:
' ELEMENT XM .add ANY
' ATTLI ST XM . add
%M . el ement . att;
%M . link. att;
Xxm . posi tion CDATA "-1"

5-72 ad/2001-06-12: XML Metadata I nterchange 6/18/2001

</ docunent ati on>
</ annot ati on>
<sequence>

<any m nCccurs="0" maxQOccurs="unbounded"/>
</ sequence>
<attributeGoup ref="XM IdentityAttribs"/>
<attributeG oup ref="XM Li nkAttribs"/>

<attribute name="xm .position" type="string" use="optional" default="-
1"/ >

</ conpl exType>

<conpl exType nane="repl ace">
<annot ati on>
<docunent ati on>
This type definition corresponds to the content nodel and
attributes of the follow ng el ement declaration:
I ELEMENT XM .replace ANY
P'ATTLI ST XM .repl ace
9%XM . el ement . att;
%KM . link. att;
xm . position CDATA "-1"
</ docunent ati on>
</ annot ati on>
<sequence>
<any m nCccurs="0" maxOccurs="unbounded"/>
</ sequence>
<attributeGoup ref="XMIdentityAttribs"/>
<attributeG oup ref="XM LinkAttribs"/>

<attribute name="xm .position" type="string" use="optional" default="-
1"/ >

</ conpl exType>

<attributeG oup name="XM Il dentityAttribs">
<annot ati on>
<docunent ati on>
This attribute group corresponds to the following entity:
TENTITY % XM . el enent. att
'xmi.id ID #IMPLIED xmi.label CDATA #IMPLIED xmi.uuid
CDATA #IMPLIED ’
</documentation>
</annotation>
<attribute name="xmi.id" type="ID" use="optional"/>
<attribute name="xmi.label" type="string" use="optional"/>

<attribute name="xmi.uuid" type="string" use="optional"/>

6/18/2001 ad/2001-06-12: XML Metadata I nterchange 5-73

</attributeG oup>

<attributeG oup nanme="XM Li nkAttribs">
<annot at i on>
<docunent ati on>
This attribute group corresponds to the follow ng
PENTITY % XM . link. att
'href CDATA #IMPLIED xmi.idref IDREF #IMPLIED xml:link
CDATA #IMPLIED xlink:inline (true | false) #IMPLIED
xlink:actuate (show | user) #IMPLIED xlink:content-role
CDATA #IMPLIED xlink:titte CDATA #IMPLIED xlink:show
(embed | replace | new) #IMPLIED xlink:behavior CDATA
#IMPLIED’
</documentation>

</annotation>

<attribute name="href" type="string" use="optional"/>

<attribute name="xmi.idref" type="IDREF" use="optional"/>

<attribute ref="xml:link" use="optional"/>

<attribute ref="xlink:inline" use="optional"/>

<attribute ref="xlink:actuate" use="optional"/>

<attribute ref="xlink:content-role" use="optional"/>

<attribute ref="xlink:title" use="optional"/>

<attribute ref="xlink:show" use="optional"/>

<attribute ref="xlink:behavior" use="optional"/>

</attributeGroup>

<element name="XMl.reference" type="reference"/>

<complexType name="reference" mixed="true">
<annotation>
<documentation>
This type definition corresponds to the content model and
attributes of the following element declaration:
IELEMENT XMl.reference ANY
IATTLIST XMl.reference
%XML.link.att;
</documentation>
</annotation>
<sequence>
<any minOccurs="0" maxOccurs="unbounded"/>
</sequence>
<attributeGroup ref="XMILinkAttribs"/>

</complexType>

5-74 ad/2001-06-12: XML Metadata I nterchange

entity:

6/18/2001

6/18/2001

</ schema>

</ conpl exType>
The xlink.xsd schema is as follows:

<?xm version="1.0" encodi ng="UTF-8"?>

<xsd: schema xm ns: xsd="http://ww. w3. org/ 2001/ XM_Schema"
xm ns="http://ww.w3. or g/ XLi nk"
t ar get Namespace="ht t p: / / ww. W3. or g/ XLi nk" >

<xsd: annot ati on>
<xsd: docunent at i on>
The following attribute declarations are for XLink attributes for
XM 1.1 schenms.
</ xsd: docunent at i on>

</ xsd: annot at i on>

<xsd:attribute nane="inline" type="xsd:bool ean"/>

<xsd: attribute nane="actuate">
<xsd: si npl eType>
<xsd:restriction base="xsd:string">
<xsd: enuner ati on val ue="show'/ >
<xsd: enuner ati on val ue="user"/>
</xsd:restriction>
</ xsd: si mpl eType>

</ xsd:attribute>

<xsd:attribute nane="content-role" type="xsd:string"/>

<xsd:attribute nane="title" type="xsd:string"/>

<xsd: attribute nane="show'>
<xsd: si mpl eType>
<xsd:restriction base="xsd:string">
<xsd: enuner ati on val ue="enbed"/ >
<xsd: enuner ati on val ue="repl ace"/>
<xsd: enuner ati on val ue="new'/>
</xsd:restriction>
</ xsd: si mpl eType>

</ xsd: attribute>

<xsd: attribute nane="behavior" type="xsd:string"/>

</ xsd: schema>

ad/2001-06-12: XML Metadata I nterchange 5-75

The xml.xsd schema is as follows:

<?xm version="1.0" encodi ng="UTF-8"?>

<xsd: schema xm ns: xsd="http://ww. w3. org/ 2001/ XM_Schema"
xm ns="http://ww.w3. or g/ XM."
t ar get Namespace="ht t p: / / www. w3. or g/ XM." >

<xsd: annot ati on>
<xsd: docunent at i on>
The following attribute declarations are for XLink attributes for XM
1.1 schenas
</ xsd: docunent at i on>

</ xsd: annot ati on>

<xsd:attribute nane="link" type="xsd:string"/>

</ xsd: schema>

5.2.3 Optional Fixed Schema Declarations

The following fixed schema declarations are used only when required by the
metamodel. These are only used for MOF 1.3 models, but not for MOF 1.4 models.
<el ement name="XM . TypeDefinitions">
<conpl exType m xed="true">
<sequence>
<any m nOccurs="0" maxOccur s="unbounded"/>
</ sequence>
</ conpl exType>

</ el ement >

<el ement name="XM .field">
<conpl exType m xed="true">
<sequence>
<any mnOccurs="0" maxOccurs="unbounded"/>
</ sequence>
</ conmpl exType>

</ el emrent >

<el ement nanme="XM . seqltent' >
<conpl exType m xed="true">
<sequence>
<any m nOccurs="0" maxOccurs="unbounded"/>

</ sequence>

ad/2001-06-12: XML Metadata I nterchange 6/18/2001

6/18/2001

</ conpl exType>

</ el ement >

<el ement nanme="XM . octet Streant type="string"/>

<el ement name="XM . uni onDi scri m'>
<conpl exType m xed="true">
<sequence>
<any mnOccurs="0" maxOccurs="unbounded"/>
</ sequence>
</ conpl exType>

</ el ement >

<el ement name="XM . enuni >
<conpl exType>
<attribute nanme="xm .value" type="string" use="required"/>
</ conpl exType>

</ el emrent >

<el ement name="XM . any" >
<conpl exType m xed="true">
<sequence>
<any m nCccurs="0" maxOccurs="unbounded"/>
</ sequence>
<attributeGoup ref="XMLinkAttribs"/>
<attribute nanme="xm .type" type="string" use="optional"/>
<attribute name="xm .name" type="string" use="optional"/>
</ conpl exType>

</ el ement >

<el ement name="XM . Cor baTypeCode" >
<conpl exType>
<choi ce>
<el ement ref="XM. CorbaTcAlias"/>
<el ement ref="XM. CorbaTcStruct"/>
<el ement ref="XM . CorbaTcSequence"/ >
<el ement ref="XM . CorbaTcArray"/>
<el ement ref="XM . CorbaTcEnuni'/>
<el ement ref="XM . CorbaTcUni on"/>
<el ement ref="XM . CorbaTcExcept"/>
<el ement ref="XM . CorbaTcString"/>
<el ement ref="XM. CorbaTcWstring"/>
<el ement ref="XM. CorbaTcShort"/>
<el ement ref="XM . CorbaTcLong"/>

ad/2001-06-12: XML Metadata I nterchange 5-77

<el ement
<el ement
<el enment
<el enent
<el ement
<el enent
<el ement
<el ement
<el ement
<el ement
<el ement
<el ement
<el ement
<el ement
<el ement

</ choi ce>

ref="Xm.
ref="X™m.
ref="Xm.
ref="Xm.
ref="X™m.
ref="Xm.
ref="Xm.
ref="X™m.
ref="Xm.
ref="Xm.
ref="X™m.
ref="Xm.
ref="Xm.
ref="X™m.
ref="Xm.

Cor baTcUshort"/ >
Cor baTcU ong"/ >

Cor baTcFl oat"/ >

Cor baTcDoubl e"/ >
Cor baTcBool ean"/ >
Cor baTcChar"/ >

Cor baTcWhar"/ >
CorbaTcCOctet"/ >

Cor baTcAny"/ >

Cor baTcTypeCode"/ >
Cor baTcPri nci pal "/ >
CorbaTcNul | "/ >

Cor baTcVoi d"/ >

Cor baTcLongLong"/ >
Cor baTcLongDoubl e"/ >

<attributeGoup ref="XMIdentityAttribs"/>

</ conmpl exType>

</ el ement >

<el enment name="XM . CorbaTcAl i as">

<conpl exType>
<sequence>
<el ement

</ sequence>

ref="X™m.

Cor baTypeCode"/ >

<attribute nanme="xm .tcNane" type="string"

use="required"/>

<attribute name="xm .tcld" type="string" use="optional"/>

</ conmpl exType>

</ el ement >

<el enment name="XM . CorbaTcStruct">

<conpl exType>
<sequence>

<el ement

</ sequence>

ref="X™m.

Cor baTcFi el d* m nCccurs="0"

maxQOccur s="unbounded"/ >

<attribute name="xm .tcName" type="string"

use="required"/>

<attribute nanme="xm .tcld" type="string" use="optional"/>

</ conmpl exType>

</ el emrent >

<el enent name="XM . Cor baTcFi el d">

<conpl exType>

<sequence>

5-78 ad/2001-06-12: XML Metadata I nterchange

6/18/2001

6/18/2001

<el ement ref="XM . CorbaTypeCode"/>
</ sequence>
<attribute name="xm .tcNane" type="string" use="required"/>
</ conpl exType>

</ el ement >

<el ement name="XM . Cor baTcSequence" >
<conpl exType>
<choi ce>
<el ement ref="XM . CorbaTypeCode"/ >
<el ement ref="XM . CorbaRecursiveType"/>
</ choi ce>
<attribute name="xm .tcLength" type="string" use="required"/>
</ conpl exType>

</ el emrent >

<el ement name="XM . Cor baRecur si veType" >
<conpl exType>
<attribute nanme="xm .offset" type="string" use="required"/>
</ conpl exType>

</ el emrent >

<el ement nanme="XM . CorbaTcArray">
<conpl exType>
<sequence>
<el ement ref="XM . CorbaTypeCode"/>
</ sequence>
<attribute nane="xm .tcLength" type="string" use="required"/>
</ conpl exType>

</ el emrent >

<el ement name="XM . Cor baTcObj Ref " >
<conpl exType>
<attribute name="xm .tcNane" type="string" use="required"/>
<attribute nanme="xm .tcld" type="string" use="optional"/>
</ conmpl exType>

</ el ement >

<el ement name="XM . Cor baTcEnuni >
<conpl exType>
<sequence>
<el ement ref="XM . CorbaTcEnuniLabel "/>
</ sequence>

<attribute nanme="xm .tcNane" type="string" use="required"/>

ad/2001-06-12: XML Metadata I nterchange 5-79

<attribute name="xm .tcld" type="string" use="optional"/>
</ conpl exType>

</ el ement >

<el ement nanme="XM . Cor baTcEnuniabel ">
<conpl exType>
<attribute name="xm .tcName" type="string" use="required"/>
</ conpl exType>

</ el emrent >

<el ement nanme="XM . Cor baTcUni onMor " >
<conpl exType>
<sequence>
<el ement ref="XM . CorbaTypeCode"/>
<el ement ref="XM.any"/>
</ sequence>
<attribute nanme="xm .tcNane" type="string" use="required"/>
</ conmpl exType>

</ el ement >

<el ement name="XM . Cor baTcUni on" >
<conpl exType>
<sequence>
<el ement ref="XM . CorbaTypeCode"/ >
<el ement ref="XM. CorbaTcUni onMor" mi nQccurs="0"
maxQOccur s="unbounded"/ >
</ sequence>
<attribute name="xm .tcName" type="string" use="required"/>
<attribute nane="xm .tcld" type="string" use="optional"/>
</ conmpl exType>

</ el emrent >

<el enent name="XM . Cor baTcExcept" >
<conpl exType>
<sequence>
<el ement ref="XM. CorbaTcField" mi nCccurs="0"
maxQOccur s="unbounded"/ >
</ sequence>
<attribute name="xm .tcName" type="string" use="required"/>
<attribute name="xm .tcld" type="string" use="optional"/>
</ conpl exType>

</ el emrent >

<el ement name="XM . CorbaTcString">

5-80 ad/2001-06-12: XML Metadata I nterchange 6/18/2001

<conpl exType>
<attribute
</ conpl exType>
</ el ement >
<el ement nanme="XM
<conpl exType>
<attribute
</ conmpl exType>
</ el emrent >
<el ement nanme="XM
<conpl exType>
<attribute
<attribute
</ conpl exType>
</ el ement >
<el enent name="XM
<conpl exType/ >
</ el emrent >
<el enent name="XM
<conpl exType/ >
</ el ement >
<el ement nanme="XM
<conpl exType/ >
</ el emrent >
<el enment name="XM
<conpl exType/ >
</ el ement >
<el enment name="XM
<conpl exType/ >
</ el emrent >
<el ement nanme="XM
<conpl exType/ >
</ el emrent >
<el enment name="XM

<conpl exType/ >

nane="xm . tcLengt h"

. CorbaTcWstring">

nane="xm . tcLengt h"

. CorbaTcFi xed" >

nanme="xm .tcDigits"

name="xm .tcScal e"

. CorbaTcShort ">

. CorbaTcLong" >

. CorbaTcUshort">

. CorbaTcU ong" >

. Cor baTcFl oat ">

. Cor baTcDoubl e" >

. Cor baTcBool ean" >

type="string"

type="string"

type="string"
type="string"

ad/2001-06-12: XML Metadata I nterchange

use="required"/>

use="required"/>

use="required"/>

use="required"/ >

5-81

5-82

</ el ement >

<el ement name="XM
<conpl exType/ >

</ el ement >

<el ement name="XM
<conpl exType/ >

</ el emrent >

<el ement nanme="XM
<conpl exType/ >

</ el emrent >

<el ement nanme="XM
<conpl exType/ >

</ el ement >

<el ement nanme="XM
<conpl exType/ >

</ el emrent >

<el ement name="XM
<conpl exType/ >

</ el emrent >

<el ement nanme="XM
<conpl exType/ >

</ el ement >

<el ement nanme="XM
<conpl exType/ >

</ el emrent >

<el ement name="XM
<conpl exType/ >

</ el ement >

<el ement nanme="XM
<conpl exType/ >

</ el ement >

. CorbaTcChar" >

. CorbaTcWhar ">

. CorbaTcCctet">

. CorbaTcAny" >

. Cor baTcTypeCode" >

. CorbaTcPrinci pal ">

. CorbaTcNul | ">

. Cor baTcVoi d" >

. CorbaTcLongLong" >

. CorbaTcLongDoubl e" >

ad/2001-06-12: XML Metadata I nterchange

6/18/2001

5.3 XMl 2.0 Schemas

5.3.1 EBNF

The EBNF for XMI 2.0 schemas is listed below with rule descriptions between
sections:

1. Schema ;.= la: SchemaSt art
1d: I mpor t sAndl ncl udes?
le: Fi xedDecl ar ati ons
2: PackageSchena+
1f : SchenmaEnd
la. SchemaStart ;1= "<xsd: schenn
xmins:xsd="http://www.w3.0rg/2001/XMLSchema’
xmins:xmi="http://www.omg.org/XMI™
1b:NamespaceDecl*
1c:TargetNamespace?

e
1b. NamespaceDecl ::="xmlns:" //[Namespace name// "="

""" [INamespace URI// "™
1c. TargetNamespace ::= "targetNamespace=""//Namespace URI// "™

1d. ImportsAndincludes::= // Imports and includes //
le. FixedDeclarations ::= "<xsd:import
namespace="http://www.omg.org/XMI'/>"
1f. SchemaEnd ::= "</xsd:schema>"
1g. XMIFixedAttribs ::= ("<xsd:attribute ref="xmi:id™
"use="optional’>" |
"<attribute name=""// Id attrib name // "™
"type="xsd:ID’ use="optional™)
"<xsd:attributeGroup ref="xmi:ObjectAttribs’/>"
1h. Namespace = (//Name of namespace// ":")?

1. A schema consists of a schema XML element that contains import and include
statements, fixed declarations, plus declarations for the contents of the Packages in the
metamodel.

la. The schema XML element consists of the schema namespace attribute, namespace
attributes for the other namespaces used in the schema, if any, and an optional target
namespace attribute. These rules are written as if the namespace name for the schema
namespace is "xsd" and the namespace name for the XMI namespace is "xmi", but you
can substitute other names for these namespace names and still conform to this
specification.

1b. Each namespace used in the schema must have a namespace attribute that
identifies the namespace name and the namespace URI. If the namespace name is
the attribute name should be "xmins". The namespace is declared by the nsPrefix and
nsURI tags in the metamodel.

6/18/2001 ad/2001-06-12: XML Metadata I nterchange 5-83

1c. If the schema has a target namespace, the targetNamespace attribute is present.

1d. If the schema uses declarations from other schemas, the appropriate include or
import statements must be present.

le. The schema declarations that are in the XMI namespace are listed in section 5.3.2.
1f. The end of the schema XML element.

1g. The fixed XMI attributes present on the major elements provide element identity
and element linking. If the org.omg.xmi.idName tag has a value, that value is the
name of the ID attribute; otherwise, the name is "xmi:id".

1h. A namespace is a nhamespace name followed by a":". If no hamespace name is
given, the rule is a blank.

2. PackageSchema ::= (2:PackageSchemn

| 3:d assSchema

| 13: EnunSchema) *
6: PackageEl enment Def

2. The schema contribution from a Package consists of the declarations for any
contained Packages, Classes, Associations without References, enumerations, and an
XML element declaration for the Package itself.

3. dassSchenn .= 4: d assTypeDef
5: d assEl ement Def

3. The class schema contribution consists of a type declaration based on the attributes
and references of the class, and an element declaration for the Class itself.

ad/2001-06-12: XML Metadata I nterchange 6/18/2001

4. O assTypeDef i1 = "<xsd: conpl exType name="//Name of Class//
("mixed="true™)?
mn

("<xsd:complexContent>"
"<xsd:extension base="" 4a:ClassTypeName "")?
("<xsd:choice minOccurs="0’
maxOccurs="unbounded’>" |
"<xsd:sequence>")?
(4b:ClassContents |
"<xsd:any minOccurs="0' maxOccurs="unbounded’
processContents=""// ProcessContents Value //
">"?
("</xsd:choice>" | "</xsd:sequence>")?
4g:ClassAttListltems
("</xsd:extension>"
"</xsd:complexContent>")?
"</xsd:complexType>
4a. ClassTypeName ::= 1h:Namespace //Name of Class//
4b. ClassContents ::= 4d:ClassAttributes
4e:ClassReferences
4f.ClassCompositions
4c:Extension
4c. Extension i:= ("<xsd:element ref="xmi:extension’/>")*
4d. ClassAttributes ::= ("<xsd:element name="//Name of Attribute// "™
("nillable="true™)?
(4m:MinOccursAttrib)?
(4n:MaxOccursAttrib)?
(("type=""//IName of type// "'/>") |
(">" 40:Any "</xsd:element>)))*
4e. ClassReferences ::=("<xsd:element name=""//Name of Reference// ""
(4m:MinOccursAttrib)?
(4n:MaxOccursAttrib)?
(("type=" 4a:ClassTypeName "'/>") |
(">" 40:Any "</xsd:element>)))*
4f. ClassCompositions ::= ("<xsd:element name=""//Name of Reference//
(4m:MinOccursAttrib)?
(4n:MaxOccursAttrib)?
(("type="" 4a:ClassTypeName "'/>") |
(">" 40:Any "</xsd:element>)))*
4g. ClassAttListltems ::= 1g:XMIFixedAttribs 4h:ClassAttribAtts
4h. ClassAttribAtts ::= (4i:ClassAttribRef
| 4j:ClassAttribData
| 4k:ClassAttribEnum)*
4i. ClassAttribRef ::= "<xsd:attribute name=""//Name of attribute// "
("type="xsd:IDREFS’ use="optional’/>" |
"type="xsd:IDREF’ use="required’/>")
4j. ClassAttribData ::= "<xsd:attribute name=""//Name of attribute//

mn

6/18/2001 ad/2001-06-12: XML Metadata I nterchange

5-85

5-86

" type="xsd:string’ "
("use='optional™ | "use="required™)
("default="" 4l:ClassAttribDflt """)?
("fixed="" 4p:ClassAttribFixed "")?
("form="// Form value // "")?
njsm
4k. ClassAttribEnum ::= "<xsd:attribute name=""//Name of attribute// """
"type="" 8a:EnumTypeName ""
(("use="default™
"value="" 4l:ClassAttribDflt ") |
("use="optional™ | "use="required™)) "/>"
4. ClassAttribDflt ::= //Default value//

4m. MinOccursAttrib ::= "minOccurs=""// Minimum // "
4n. MaxOccursAttrib ::= "maxOccurs=""// Maximum // "
40. Any = "<xsd:complexType>

<xsd:choice minOccurs="0" maxOccurs="unbounded’>
<xsd:any processContents="skip'/>
</xsd:choice>
<xsd:anyAttribute processContents="skip’/>
</xsd:complexType>"
4p. Class AttribFixed ::= //Fixed value//

4. These rules describe the declaration of a Class in the metamodel as an XML
complex type with a content model and XML attributes. If either of the tags
org.omg.xmi.enforceMaximumMultiplicity or
org.omg.xmi.enforceMinimumMultiplicity is true, the contents of the class are put in a
sequence; otherwise, they are put in a choice. If the org.omg.xmi.contentType tag is
not present, the class content declarations appear as defined by rule 4b; however, if the
contentType value is empty, they do not appear, and if the contentType value is any,
the "xsd:any" element declaration appears instead of the class content. If the
contentType value is mixed, then the mixed attribute is included. If
org.omg.xmi.useSchemaExtensions is true, the complex type for the classis derived by
extension from the complex type for its superclass.

4a. Thisruleisfor a reference to the type for the class, which is the name of the Class
prefixed by the namespace, if present and not the default namespace.

4b, 4c. The complex type for the Class contains XML elements for the contained
Attributes, References and Compositions of the Class, plus an extension element,
regardless of whether they are marked as derived. The org.omg.xmi.serialize tag can
be used to control whether these constructs are serialized. If
org.omg.xmi.useSchemaExtensions is false or not present, inherited Attributes,
References, and Compositions are included; otherwise, only local Attributes,
References, and Compositions are included.

4d. The XML element name for each Attribute of the Class is listed as part of the
content model of the Class element. This includes the Attributes defined for the Class

ad/2001-06-12: XML Metadata I nterchange 6/18/2001

5

6/18/2001

itself aswell as all of the Attributes inherited from superclasses of the Class. The type
is "xsd:string" for simple attributes, the name of an enumeration for enumerated
attributes, or part of the value of the org.omg.xmi.schemaType tag, if present. If the
org.omg.xmi.includeNils tag is false, then the "nillable" attribute is not included in the
declaration. If org.omg.xmi.enforceMinimumMultiplicity is true, the minOccurs
attribute is included. If org.omg.xmi.enforceMaximumMultiplicity is true, the
maxOccurs attribute is included.

4e. The XML element name for each Reference of the Classis listed in the content
model of the Class. The list includes the References defined for the Class itself, as
well as all References inherited from the superclasses of the Class. The type is the
class name for the Reference type if org.omg.xmi.useSchemaExtensions is "true" or if
the org.omg.xmi.contentType is "complex”; otherwise, the type alows any object to be
serialized. If org.omg.xmi.enforceMinimumMultiplicity is true, the minOccurs
attribute is included. If org.omg.xmi.enforceMaximumMultiplicity is true, the
maxOccurs attribute is included.

4f. The XML element name for each Reference of the Class that is a composite
Reference is listed in the content model of the class. The list includes the References
defined for the Class itself, as well as all References inherited from the superclasses of
the Class. The type is the class name for the Reference type if
org.omg.xmi.useSchemaExtensions is "true" or if the org.omg.xmi.contentType is
"complex"; otherwise, the type allows any object to be serialized. If
org.omg.xmi.enforceMinimumMultiplicity is true, the minOccurs attribute is included.
If org.omg.xmi.enforceMaximumMultiplicity is true, the maxOccurs attribute is
included.

4g, 4h. In addition to the standard identification and linkage attributes, the attribute list
of the Class element can contain XML attributes for the Attributes and non-composite
References of the Class, when the limited facilities of the XML attribute syntax allow
expression of the necessary values. Inherited attributes and references are included
unless the org.omg.xmi.useSchemaExtensions tag is true, in which case only local
attributes and references are included.

4i. References can be expressed as XML id reference XML attributes. If the
multiplicity of the attribute is exactly one, and
org.omg.xmi.enforceMinimumMultiplicity is true, the type is IDREF and the attribute
is required.

4j. Single-valued Attributes of a Class that have a string representation for their data
are mapped to XML attributes of type "xsd:string", unless the
org.omg.xmi.schemaType tag is present, in which case its value is used for the type.
Multi-valued Attributes of a Class cannot be so expressed, since the XML attribute
syntax does not allow repetition of values. If the multiplicity of the attribute is exactly
one, and org.omg.xmi.enforceMinimumMultiplicity is true, the attribute is required to
be present.

4k. Single-valued Attributes that have enumerated values are mapped to XML
attributes whose type is the enumerated type. If the multiplicity of the attribute is
exactly one, and org.omg.xmi.enforceMinimumMultiplicity is true, the attribute is
required to be present.

ad/2001-06-12: XML Metadata I nterchange 5-87

41. If an Attribute is expressed as an XML attribute, its default value may be expressed
in the schema if there is a MOF Tag "org.omg.xmi.defaultValue" attached to the
Attribute. The value of this Tag must be expressible as an XML attribute string.

4m. The value for minimum is the minimum multiplicity.
4n. The value for maximum is the maximum multiplicity.

40. This production is for the contents of elements for attributes, references, and
compositions.

4p. If an Attribute is expressed as an XML attribute, its fixed value may be expressed
in the schema if there is a MOF Tag "org.omg.xmi.fixedValue" attached to the
Attribute. The value of this Tag must be expressible as an XML attribute string.

5. ClassElementDef ::= "<xsd:element name=""//Name of class// "™
"type=' 4a:ClassTypeName "'/>"

5. This rule declares an XML element for a class in a metamodel.

5-88 ad/2001-06-12: XML Metadata I nterchange 6/18/2001

6/18/2001

PackageEl enent Def : :="<xsd:element name=""//Name of package// "">"

"<xsd:complexType>
<xsd:choice minOccurs="0' maxOccurs="unbounded’>"
6b:PkgContents
"</xsd:choice>"
69:PkgAttListitems
"</xsd:complexType>
</xsd:element>"

6a. PkgElImtName ::= 1h:Namespace //Name of package//
6b. PkgContents ;= 6¢:PkgAttributes

6d:PkgClasses
6e:PkgAssociations
6f:PkgPackages
4c:Extension

6c. PkgAttributes ::= ("<xsd:element name=""

/IQualified name of Attribute// ™"
"type='//[Name of type// "'[>")*

6d. PkgClasses .= ("<xsd:element ref="" 4a:ClassTypeName "'/>")*
6e. PkgAssociations ::= (7:AssociationDef)*
6f. PkgPackages ::= ("<xsd:element ref=" 6a:PkgEImtName "'/>")*

6g. PkgAttListlitems ::= 1g:XMIFixedAttribs 6h:PkgAttribAtts
6h. PkgAttribAtts ::= 4h:ClassAttribAtts

6. The schema contribution from the Package consists of an XML element definition
for the Package, with a content model specifying the contents of the Package.

6a. This ruleis for the use of a package name.

6b. The Package contents consist of any classifier level Attributes, Associations
without References, Classes, nested Packages and an extension.

6¢. Classifier level Attributes of a Package are also known as static attributes. Such
Attributes inherited from Packages from which this Package is derived are also
included.

6d. Each Classin the Package is listed. Classes contained in Packages from which this
Package is derived are also included.

6e. It is possible that the Package contains Associations which have no References, i.e.
no Class contains a Reference which refers to an AssociationEnd owned by the
Association. Every such Association contained in the Package or Package from which
the Package is derived is listed as part of the Package contents in order that its
information can be transmitted as part of the XML document.

ad/2001-06-12: XML Metadata I nterchange 5-89

5-90

6f. Nested Packages are listed. Nested Packages included in Packages from which this
Package is derived are also included.

69, 6h. The Package XML attributes are the fixed identity and linking XML attributes,
as well as the XML attribute declarations corresponding to the classifier-level
attributes for the classes in the package.

7. Associ ati onDef : ;= "<xsd:element name=""//Name of association// "'>"
"<xsd:complexType>
<xsd:choice minOccurs="0" maxOccurs="unbounded’>"
7bh:AssnContents
"</xsd:choice>"
7d:AssnAtts
"</xsd:complexType>
</xsd:element>"
7a. AssnEImtName ::= 1c:Namespace //Name of association//
7b. AssnContents ::= 7c:AssnEndDef
7c:AssnEndDef
4c:Extension
7c. AssnEndDef ;.= "<xsd:element"
"name=""//Name of association end// "'>"
"<xsd:complexType>"
1g:XMIFixedAttribs
"</xsd:complexType>"
"</xsd:element>"
7d. AssnAtts = 1g:XMIFixedAttribs

7. The declaration of an unreferenced Association consists of the names of its
AssociationEnd XML elements.

7a. The use of the name of the XML element representing the Association.

7d. The fixed identity and linking XML attributes are the Association XML attributes.

8. EnumSchema ::="<xsd:simpleType name="" 8b:EnumName "">"
"<xsd:restriction base="xsd:string’>"
8c:EnumlLiterals
"</xsd:restriction>"
"</xsd:simpleType>"

8a. EnumTypeName ::= 1h:Namespace 8b:EnumName

8b. EnumName ::= // Name of enumeration //

8c. EnumLiterals ::= ("<xsd:enumeration value="" 8d:EnumlLiteral "'/>")+
8d. EnumLiteral ::=// Name of enumeration literal //

8. The enumeration schema contribution consists of a simple type derived from string
whose legal values are the enumeration literals.

ad/2001-06-12: XML Metadata I nterchange 6/18/2001

8a. The name of the enumeration in XML schema references.

8b. Each enumeration literal is put in the value XML attribute of an enumeration
XML element.

8d. The name of the enumeration literal

5.3.2 Fixed Schema Declarations

There are some elements of the schema which are fixed, constituting a form of
“boilerplate” necessary for every XMl 2.0 schema. These elements are described in
this section. These declarations are in the namespace "http://www.omg.org/XMI".

Only the schema content of the fixed declarations is given here. For a complete
description of the semantics of these declarations, see Chapter 6.

The fixed declarations are:

<schema xm ns="http://ww. w3. or g/ 2001/ XM_.Schenma"

<?xm version="1.0" encodi ng="UTF-8"?>

<xsd: schema xm ns: xsd="http://ww. w3. or g/ 2001/ XM_Schema"
xm ns="http://ww. ong. org/ XM "
t ar get Namespace="http://ww. ong. or g/ XM " >

<xsd: annot ati on>
<xsd: docurnent at i on>
The following attribute and attribute group declarations are included
in the types for MOF classes, but they are not defined in the XM
nodel
</ xsd: docunent ati on>

</ xsd: annot ati on>
<xsd:attribute nane="id" type="xsd:ID'/>

<xsd:attributeGoup nane="IldentityAttribs">
<xsd:attribute nane="Ilabel" type="xsd:string" use="optional"
form="qualified"/>
<xsd:attribute nanme="uui d" type="xsd:string" use="optional"
form="qualified"/>

</ xsd: attribut eG oup>

<xsd: attributeG oup nanme="LinkAttribs">
<xsd:attribute nane="href" type="xsd:string" use="optional"/>
<xsd:attribute nane="idref" type="xsd:|DREF" use="optional"

forme"qualified"/>

6/18/2001 ad/2001-06-12: XML Metadata I nterchange 5-91

</ xsd: attri but eG oup>

<xsd: attributeG oup name="ObjectAttribs">
<xsd:attributeGoup ref="IdentityAttribs"/>
<xsd:attributeGoup ref="LinkAttribs"/>
<xsd:attribute nane="version" type="xsd:string" use="optional"
fixed="2.0" form="qualified"/>
<xsd:attribute nane="type" type="xsd: QNane" use="optional"
form="qualified"/>

</xsd: attributeG oup>

<xsd: annot ati on>
<xsd: docunent at i on>PACKAGE: XM Package</ xsd: docunent ati on>

</ xsd: annot at i on>

<xsd: annotati on>
<xsd: docunent ati on>CLASS: XM </ xsd: docunent ati on>

</ xsd: annot ati on>

<xsd: conpl exType name="XM ">
<xsd: choi ce mi nGccurs="0" maxCccur s="unbounded" >
<xsd: any processContents="strict"/>
</ xsd: choi ce>
<xsd:attribute ref="id"/>
<xsd:attributeGoup ref="ldentityAttribs"/>
<xsd:attributeGoup ref="LinkAttribs"/>
<xsd:attribute nane="type" type="xsd: QNane" use="optional"
form="qualified"/>
<xsd: attribute nane="version" type="xsd:string" use="required"
fixed="2.0" form"qualified"/>

</ xsd: conpl exType>

<xsd: el enent nane="XM" type="XM"/>

<xsd: annot ati on>
<xsd: docunent at i on>CLASS: PackageRef erence</xsd: docunent ati on>

</ xsd: annot ati on>

<xsd: conpl exType nanme="PackageRef erence" >
<xsd: choi ce m nCccurs="0" maxOccur s="unbounded" >
<xsd: el ement nanme="nane" type="xsd:string"/>
<xsd: el ement name="version" type="xsd:string"/>
<xsd: el ement ref="Extension"/>

</ xsd: choi ce>

5-92 ad/2001-06-12: XML Metadata I nterchange 6/18/2001

6/18/2001

<xsd:attribute ref="id"/>

<xsd:attributeGoup ref="CbjectAttribs"/>

<xsd: attribute nane="nane" type="xsd:string" use="optional"/>
<xsd:attribute nanme="version" type="xsd:string" use="optional"/>

</ xsd: conpl exType>

<xsd: el enent nane="PackageRef erence" type="PackageReference"/>

<xsd: annotati on>
<xsd: docunent ati on>CLASS: Mbddel </ xsd: docunent ati on>

</ xsd: annot at i on>

<xsd: conpl exType nanme="Model ">
<xsd: conpl exCont ent >
<xsd: ext ensi on base="PackageRef erence"/>
</ xsd: conpl exCont ent >

</ xsd: conpl exType>

<xsd: el ement nanme="Model " type="Mdel"/>

<xsd: annot ati on>
<xsd: docunent at i on>CLASS: | nport</xsd: docunent ati on>

</ xsd: annot at i on>

<xsd: conpl exType name="|nmport">
<xsd: conpl exCont ent >
<xsd: ext ensi on base="PackageRef erence"/>
</ xsd: conpl exCont ent >

</ xsd: conpl exType>

<xsd: el ement name="|nport" type="Inport"/>

<xsd: annotati on>
<xsd: docunent at i on>CLASS: Met aModel </ xsd: docunent ati on>

</ xsd: annot at i on>

<xsd: conpl exType nanme="Met aMbdel ">
<xsd: conpl exCont ent >
<xsd: ext ensi on base="PackageRef erence"/>
</ xsd: conpl exCont ent >

</ xsd: conpl exType>

<xsd: el ement nanme="Met aMbdel " type="MetaMddel "/>

ad/2001-06-12: XML Metadata I nterchange 5-93

5-94

<xsd: annot ati on>

<xsd: docunent at i on>CLASS: Docunent ati on</xsd: docunment ati on>

</ xsd: annot ati on>

<xsd: conpl exType nanme="Docunent ation">

<xsd: choi ce m nOccurs="0" maxQOccur s="unbounded" >

<xsd: el enent name="contact" type="xsd:string"/>

<xsd: el ement name="exporter" type="xsd:string"/>

<xsd: el enent name="exporterVersion" type="xsd:string"/>

<xsd: el enent name="| ongDescri ption" type="xsd:string"/>

<xsd: el ement name="shortDescription" type="xsd:string"/>

<xsd: el enent name="notice" type="xsd:string"/>

<xsd: el enent name="owner" type="xsd:string"/>

<xsd: el enent ref="Extension"/>
</ xsd: choi ce>
<xsd:attribute ref="id"/>

<xsd:attributeGoup ref="0CbjectAttribs"/>

<xsd:attribute nane="contact" type="xsd:string"

<xsd:attribute nane="exporter" type="xsd:string"

use="optional"/>

use="optional "/ >

<xsd: attribute nanme="exporterVersion" type="xsd:string"

use="optional"/>

<xsd: attribute nane="|ongDescription" type="xsd:string"

use="optional "/ >

<xsd: attribute nane="shortDescription" type="xsd:string"

use="optional"/>
<xsd:attribute nane="notice" type="xsd:string"
<xsd:attribute nane="owner" type="xsd:string"

</ xsd: conpl exType>

use="optional "/ >

use="optional"/>

<xsd: el enent nane="Docunentation" type="Docunentation"/>

<xsd: annot ati on>

<xsd: docunent at i on>CLASS: Extensi on</xsd: docunent ati on>

</ xsd: annot ati on>

<xsd: conpl exType nanme="Extension">

<xsd: choi ce m nOccurs="0" nmaxOccur s="unbounded" >

<xsd: any processContents="]ax"/>
</ xsd: choi ce>
<xsd:attribute ref="id"/>

<xsd:attributeGoup ref="0CbjectAttribs"/>

<xsd:attribute nane="extender" type="xsd:string"

use="optional "/ >

<xsd: attribute nanme="extenderl D" type="xsd:string" use="optional"/>

</ xsd: conpl exType>

ad/2001-06-12: XML Metadata I nterchange

6/18/2001

6/18/2001

<xsd: el ement nanme="Extension" type="Extension"/>

<xsd: annot ati on>
<xsd: docunent ati on>CLASS: Difference</xsd: docunment ati on>

</ xsd: annot ati on>

<xsd: conpl exType nanme="Di fference">
<xsd: choi ce mi nGCccurs="0" maxCccur s="unbounded" >
<xsd: el enent name="target">
<xsd: conpl exType>

<xsd: choi ce m nCccurs="0" maxOccurs="unbounded">
<xsd: any processContents="skip"/>
</ xsd: choi ce>
<xsd:anyAttribute processContents="skip"/>
</ xsd: conpl exType>
</ xsd: el ement >
<xsd: el enent name="di fference" type="Difference"/>
<xsd: el ement nanme="container" type="Difference"/>
<xsd: el ement ref="Extension"/>
</ xsd: choi ce>
<xsd:attribute ref="id"/>
<xsd:attributeGoup ref="0CbjectAttribs"/>
<xsd:attribute nane="target" type="xsd:|DREFS" use="optional"/>
<xsd:attribute nane="container" type="xsd:|DREFS" use="optional"/>

</ xsd: conpl exType>

<xsd: el ement nanme="Di fference" type="Difference"/>

<xsd: annotati on>
<xsd: docunent ati on>CLASS: Add</ xsd: docunment ati on>

</ xsd: annot at i on>

<xsd: conpl exType nanme="Add">
<xsd: conpl exCont ent >
<xsd: extensi on base="Difference">
<xsd:attribute nane="position" type="xsd:string" use="optional"/>
<xsd:attribute nane="addition" type="xsd:|DREFS" use="optional"/>
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >

</ xsd: conpl exType>

<xsd: el ement name="Add" type="Add"/>

ad/2001-06-12: XML Metadata I nterchange 5-95

<xsd: annot ati on>
<xsd: docunent ati on>CLASS: Repl ace</ xsd: docunent ati on>

</ xsd: annot ati on>

<xsd: conpl exType nanme="Repl ace" >
<xsd: conpl exCont ent >
<xsd: extensi on base="Difference">
<xsd:attribute nane="position" type="xsd:string" use="optional"/>
<xsd:attribute nane="repl acenent" type="xsd:| DREFS"
use="optional "/ >
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >

</ xsd: conpl exType>

<xsd: el enent nane="Repl ace" type="Repl ace"/>

<xsd: annot ati on>
<xsd: docunent at i on>CLASS: Del et e</ xsd: docunent ati on>

</ xsd: annot ati on>

<xsd: conpl exType nanme="Del ete">
<xsd: conpl exCont ent >
<xsd: ext ensi on base="Difference"/>
</ xsd: conpl exCont ent >

</ xsd: conpl exType>

<xsd: el enent nane="Del ete" type="Delete"/>

<xsd: el ement nanme="XM Package" >
<xsd: conpl exType>

<xsd: choi ce minCccurs="0" maxCccur s="unbounded" >
<xsd: el ement ref="Difference"/>
<xsd: el ement ref="Add"/>
<xsd: el enent ref="Replace"/>
<xsd: el enent ref="Delete"/>
<xsd: el ement ref="XM"/>
<xsd: el enent ref="PackageReference"/>
<xsd: el enent ref="Mdel"/>
<xsd: el enent ref="Inport"/>
<xsd: el enent ref="MetalMdel"/>
<xsd: el enent ref="Docunmentation"/>
<xsd: el enent ref="Extension"/>

</ xsd: choi ce>

</ xsd: conpl exType>

5-96 ad/2001-06-12: XML Metadata I nterchange 6/18/2001

</ xsd: el enent >

</ xsd: schema>

6/18/2001 ad/2001-06-12: XML Metadata I nterchange 5-97

5-98 ad/2001-06-12: XML Metadata I nterchange 6/18/2001

6.1

6.2

Purpose

Introduction

XML Document Production 6

This section specifies the XMI 2.0 production of an XML document from a MOF
model. XMI 2.0 describes an XML syntax that |everages the new capability of XML
schema, resulting in smaller, more powerful documents and enhanced human
readability. A set of MOF objects are written to an XML document following the
grammar defined here. It is essential for successful model interchange that this
specification be complete and unambiguous. It is also essential that all significant
aspects of the metadata are included in the XML document and can be recovered from
it.

XMI's XML document production process is defined as a set of production rules.
When these rules are applied to a model or model fragment, the result is an XML
document. The inverse of these rules can be applied to an XML document to
reconstruct the model or model fragment. In both cases, the rules are implicitly applied
in the context of the specific metamodel for the metadata being interchanged.

The production rules are provided as a specification of the XML document production
and consumption processes. They should not be viewed as prescribing any particular
algorithm for XML producer or consumer implementations.

Section 6.4 contains additional examples beyond those in the EBNF.

6.3 EBNF Rules Representation

6/18/2001

The XML produced by XMI is represented here in Extended Backus Naur Form
(EBNF). The XML specification does not require XML processors to preserve the
order of XML attributes within an XML element. Therefore, although this grammar
indicates that XML attributes should be serialized in a particular order for each XML

ad/2001-06-12: XML Metadata Interchange 6-99

6-100

element, the XML attributes may be serialized in any order. Also, XML attributes are
normalized by XML processors, so whitespace may not be preserved. You may choose
to serialize parts of objects as XML elements rather than XML attributes using the
org.omg.xmi.element tag, as explained below.

The following sections provide the production rules.

6.3.1 Overall Document Sructure

1: Docunent

la: XM

1b: XM Nanespace

la: XM | 2: ContentEl ements

"<" 1b: XM Nanespace "XM" 1c: StartAttribs ">"
(2:ContentEl enents)?
(5j:Extension)*
"</" 1b: XM Nanespace " XM >"
(// NsName// ":") ?

lc: StartAttribs = 1d: XM Ver si on le: Nanespaces
1d:XMlIVersion ::= 1b:XMINamespace "version=""/[XMIVersion// "™
le:Namespaces ::= 1f:XMINamespaceDecl ?
("xmlIns:" 1h:NsName "="" 1li:NsURI ™")*

1f:XMINamespaceDecl :="xmIns="http://www.omg.org/XMI"" |

"xmlns:" /INsName// "="http://www.omg.org/XMI™
1g:Namespace = (1h:NsName>":")?
1h:NsName ::= //[Name of namespace//
1i:NsURI .= //URI of namespace//

1. The content of an XMI document may be enclosed in an XMI XML element, but it
does not need to be. The XML specification requires that there be one root element in
an XML document for the document to be well-formed.

la. An XMI element has XML attributes that declare namespaces and specify the
version of XMI, and the XMI element contains XML elements that make up the
header, content, differences, and extensions for the XMI document.

1b. Thisrule represents the use of the XMI namespace name, XMINsName, in an XM|
document. If NsName is"", this rule produces ""; otherwise, this rule produces
NsName followed by ":". For example, if the XMI namespace name is "xmi", then the
XML element specified in the XMI production rule has a tag name of "xmi:XMI". If
the XMI namespace name is ", then the XML element specified in the XMl
production rule has a tag name of "XMI".

1c. The start attributes include the version attribute and the declaration of namespaces
used in the document.

1d. The version must be "2.0" for XMI documents that conform to this specification.

1le. The XMI namespace and the namespaces associated with a model must be declared
or aready be visible to the XMI element in the XML document. Since there is no

ad/2001-06-12: XML Metadata I nterchange 6/18/2001

6

6/18/2001

2: Cont ent El enent s

requirement that the XMI1 XML element be the root element, these namespaces may be
declared in XML elements that contain the XMI element.

1g. The use of a namespace name, including a":" separator. If the namespace name is
blank, the result is the empty string.

1h. A particular namespace name. Document producers can choose their own
namespace names, as long as doing so results in legal XML documents, or they may
choose to use the value of the org.omg.xmi.nsPrefix tag.

1i. The logical URI of the namespace. Note that namespaces are resolved to logical
URIs, as opposed to physical ones, so that there is no expectation that this URI will be
resolved and that there will be any information at that location. The URI is obtained
from the org.omg.xmi.nsURI tag.

6.3.2 Overall Content Sructure

= (3:CbjectAsEl enment)*
(6:ClassAttributes)*
(7: O herLinks)*

2. The content elements are the XML representations of top level objects, classifier
level attributes, and other links.

ad/2001-06-12: XML Metadata I nterchange 6-101

6.3.3 Object Sructure

3: Obj ect AsEl enent 1= "<" 3a: Obj ect TagNane 3c: QbjectAttribs ("/>")?
5: Obj ect Content s
3b: oj ect EndTag
3a: hj ect TagNane 1g: Nanmespace // XM name//
3b: Ovj ect EndTag ("</" 3a:bj ect TagName ">")?
3c: vjectAttribs i=(1lc:StartAttribs)?
3d:ldentityAttribs
(3f:TypeAttrib)?
3g: FeatureAttribs
3d:ldentityAttribs ::= (3e:ldAttribName "="//id //"")?

(1b:XMINamespace "label="" //label// ")?

(1b:XMINamespace "uuid="" //uuid// "™)?
3e:ldAttribName ::= 1b:XMINamespace "id" | // id attrib name //
3f: TypeAttrib .= (1b:XMINamespace | 1g:Namespace)

"type="" 3a:ObjectTagName ""
3g:FeatureAttribs ::= (3h:DataValueAttrib

| 3i:EnumValueAttrib

| 3j:RefValueAttrib)*
3h:DataValueAttrib ::= 3l:AttribName "=" //value// "™
3i:EnumValueAttrib ::= 3l:AttribName "="" //fenumeration literal// ™"
3j:RefValueAttrib ::= 3l:AttribName "="" 3k:RefValues "
3k:RefValues := (/Ireference id// " ")*
3l:AttribName = [/ XMI name of attribute //

3. An object has a starting element, contents, and a closing element. If the contents are
empty, you may end the starting element with "/>". You use this production rule to
serialize top-level objects and to serialize objects that are the values of attributes and
references. You may also use this production rule to serialize structured types. To
serialize structured types, use the name of the structure rather than the class name, and
use the attribute production rules to serialize the fields of the structure and their values.

<department xmi:id="Department_1"/>

Example 6-1 Instance of a class with empty contents

3a. If the abject is atop-level object, the tag name is the namespace name followed by
":" and the XMI name for the object. The XMI name for the aobject is either the name
of the object’s class or the value of the org.omg.xmi.xmiName tag. If the object is the

value of an attribute or reference, the XMI name is the name of the attribute or

6-102 ad/2001-06-12: XML Metadata I nterchange 6/18/2001

6/18/2001

reference, or the value of the org.omg.xmi.xmiName tag. The namespace hame is
ignored for an object that is the value of an attribute or reference.

<complexco:department xmi:id="Department_1"/>

Example 6-2 Instance of a class, namespace name is its package name

3b.The end tag name is the same as the start tag name, preceded with a"/". An end tag
need not be written if there is no content for the object.

3c. The XML attributes for an object are the optional start attributes, identity

attributes, and attributes corresponding to an object’s features (its attributes and
references). The start attributes must be written if the object is a top-level object and it
is not inside an XMI element specified by production rule 1a:XMI.

<Companyxmi:version="2.0" xmIns:xmi="htt p: / / ww. ong. or g/ XM "
xm : i d=Conpany_1" nane="Acne" >

</ Conpany>

Example 6-3 Company is the top-level object in a document with no XMI element

3d. The identity attributes consist of an optional id, label, and uuid. If the element has
a MOF uuid, it may be used here.

3e. By default, the name of the identity attribute is "id" in the XMI namespace.
However, if an org.omg.xmi.idName tag has been specified, the name of the identity
attribute is the value of that tag.

3f. If the class of the object cannot be determined unambiguously from the model, you
must specify the class name using the "type" attribute in either the XMI namespace or
the schema instance namespace whose URI is "http://www.w3.0rg/2001/XMLSchema-
instance". The value of this attribute is defined by the XML Schema Part 1: Structures
specification to be a QName, consisting of a namespaces name for the value’s class (if
there is one and it is not the default namespace for the document), a ":", and the name
of the value’s class. Refer to the schema specification for more details. You may only
use the XML schema instance type attribute if org.omg.xmi.useSchemaExtensions is

true. Section 6.4.3 provides an example of the use of the "type" attribute.

3g. The XML attributes of the element correspond to attributes whose type is a data
value or enumeration, or references whose values are objects in the document. You
may not serialize an attribute or reference as both an XML element and an XML
attribute in the same object. You must not serialize an attribute or reference as an XML
attribute if the value of the org.omg.xmi.element tag is "true". You must not serialize
an attribute or reference at all if the value of the org.omg.xmi.serialize tag is "false".
You must not serialize a reference at all if the org.omg.xmi.remoteOnly tag is true and

ad/2001-06-12: XML Metadata I nterchange 6-103

the reference has a value that is an object in the same XML document. You may
serialize classifier-level attributes with an object.

3h. Use this production rule to serialize an attribute whose type is not an object and

whose value can be represented by a string. Multi-valued attributes cannot be

serialized as XML attributes. If the attribute’s type is one of the types defined by the
XML Schema Part 2: Datatypes specification, serialize the value as specified in that
specification.

<Department xmi:id="Department_ttumber="13"/>

Example 6-4 Instance of a class with a single valued attribute

3i. Use this production rule to serialize an attribute whose type is an enumeration and
whose value is one of the legal enumeration literals. If the org.omg.xmi.xmiName is
specified for the literal, the value of that tag should be used; otherwise, the name of the
enumeration literal specified in the model is used.

Stoplight <<enumeration>>
E&¥id : String StopGo
estate : StopGo Q;green
E¥red

<Stoplight xmi:id="Stoplight_6" id="SL06&tate="red" />

Example 6-5 Instance of a class with an enumerated attribute

6-104 ad/2001-06-12: XML Metadata I nterchange 6/18/2001

6

6/18/2001

3j, 3k. Use this production rule to serialize references whose values are objects that are
serialized in the same document. The value of the XML attribute contains the XM1 1D
of each referenced object, separated by a space.

TargetClass
E¥id : String

AN
0“*

Classl +LinktoTargetClass

<Classl xmi:id="Classl 1" LinktoTargetClass=" TargetClass 1 TargetClass 2"/
<TargetClass xmi:id="TargetClass 1" id="TC1 instance"/>
<TargetClass xmi:id="TargetClass 2" id="TC2 instance"/>

Example 6-6 Association from an instance of a class to instances of another class

3l. The name of the XML attribute is the name of the model attribute or reference, or
the value of the org.omg.xmi.xmiName tag for the attribute or reference.

6.3.4 References

4: Ref erenceEl enent ::= "<" 3a: Obj ect TagNane
(lc:StartAttribs)?
3d:ldentityAttribs
(3f:TypeAttrib)?
4a: Li nkAttribs

"y sn

4a:LinkAttribs ::= 1b:XMINamespace "idref="" //reference id// """
| 4b:Link

4b:Link :="href=""//href// "

(//XLink attributes//)?

4. Use this production rule to serialize a reference to an object using an XML element.
If you use identity attributes, the values of the identity attributes must match the values
of the identity attributes for the object that is referenced.

4a. Use the idref attribute to specify the id of an XML element that is referenced in the
document; use the href attribute to specify an XML element in another document. If

ad/2001-06-12: XML Metadata I nterchange 6-105

6-106

the org.omg.xmi.href tag is "true", you must not use the idref attribute; use the href
attribute for references within the document and across documents.

4b. A link that is intended be compliant with the XLink specification. The href
attribute refers to an XML element in another document or in the same document. For
example, if the href is "file:someFile.xmi#someld", the href refersto an XML element
in the "someFilexmi" document whose XMI ID is "someld". If the href is
"#anotherld", the href attribute refers to an XML element whose XMI ID is
"anotherld" in the same document.

Company

+company

T~

-employeeOﬂ'heMonth
" heM
+department Ok\
Department 0.1 0.* Employee
Bnumber : Integer @~ Lmanager : Boolean
+department +employee

Document CompanyKey 1.xml contains alink to external document CompanyKey 2.xml for the
employeeOfTheM onth association:
<Company xmi:id="Company_1" name="Acme">
<employeeOfTheMonth href="CompanyKey 2.xml#Employee 1" />
</Company>

Document CompanyKey 2.xml contains the target of the link, and link back to original document:
<Employee xmi:id="Employee 1" name="Fatale, Natasha'>
<Company href="CompanyKey_ 1l.xml#Company 1" />
</Employee>

Example 6-7 Linking across documents

ad/2001-06-12: XML Metadata I nterchange 6/18/2001

6.3.5 Object Contents

5: Obj ect Contents = 5a: Attri but eAsEl mt
5h: Ref er enceAsEl nt >
5i : ConpositeAsElnt)*
5j: Extension)*
5b: Attri bVal ueAsEl emrent) *
5f: Nul | Val ue
: Obj ect AsEl enment
4: Ref er enceEl ement
5c: Dat aVal ue

5d: Enunii teral

Sa. AttributeAsElnt ::=

5b: Attri bVal ueAsEl nt

—_——_— — R — ~—~ — — ~

5c¢: Dat aVal ue ;o= "<" be: AttribTagNane ">"
/lval uel/
"</" 5e:AttribTagNanme ">"
5d: Enuntii t er al ii= "<" be:AttribTagNane ">"

//enuneration literal//
"</" 5e:AttribTagNane ">"

5e: Attri bTagName 2=/l XM nane for attribute//
5f: Nul | Val ue ii= "<" be:Attri bTagNanme 5g: Nul | Attrib "/>"
5g:NullAttrib ::= 1g:Namespace "nil="true™

5h:ReferenceAsElmt ::= 4:ReferenceElement
5i:CompositeAsElmt ::= 3:0bjectAsElement
5j:Extension 1= "<" 1b:XMINamespace "extension”

(" extender=""// extender // "")?

(" extenderID=""// extenderID // """)?

o
/I Extension elements //
"</" 1b:XMINamespace "extension>"

5. The contents of an object are the attributes, references, and compositions that are
serialized as XML elements, as well as the extensions. Any particular reference or
single-valued attribute may be expressed as an XML element or XML attribute, but not
both. You can specify whether an attribute or reference is serialized as an XML
element or an XML attribute by using the org.omg.xmi.element tag. If the value of the
org.omg.xmi.superClassFirst tag is "true", you must serialize inherited attributes,
references, and compositions first, beginning at the top of the class hierarchy.

5a. Each value of an attribute is represented by an XML element; for multi-valued
attributes, there is one XML element for each value. Null values may be serialized as
well, unless the value of the org.omg.xmi.includeNils tag is "false", in which case you
may not serialize null values.

| 6/18/2001 ad/2001-06-12: XML Metadata Interchange 6-107

6-108

5b. If the attribute value is an object, it is serialized using the 3:0bjectAsElement
production rule unless the object is in another document, in which case the
4:ReferenceElement production rule is used.

Addres s
Company .;;Str o

) eet: String
E¥HQAddress : Address City - String

<Company xmi:id="Company_1" name="Acme"'>
<HQAddress xmi:id="Address 1" Sreet="Side Street" City="Hometown" />
</Company>

Example 6-8 Value of attribute HQAddress is an object

5c. Use this production rule to save values of attributes that are neither objects nor
enumeration literals. If the type of the attribute is one of the types defined by the XML
Schema Part 2: Datatypes specification, the value must be serialized according to that
specification.

PtyClass2
EBf<<*>> T1VOC1 : Integer

<PtyClass2 xmi:id="PtyClass2_1">
<T1V0C1>1001</T1V0C1>
<T1V0C1>2001</T1V0C1>
</PtyClass2>

Example 6-9 Multi-valued attribute, with each value serialized as an element

5d. The enumeration literal is either the name of the literal from the model or the value
of the org.omg.xmi.xmiName tag.

5e. The XMI name for the attribute is either the name of the attribute from the model
or the value of the org.omg.xmi.xmiName tag.

5g. The null attribute has the name "nil" in a namespace whose URI is
"http://www.w3.0rg/2001/X M L Schema-instance".

ad/2001-06-12: XML Metadata I nterchange 6/18/2001

6/18/2001

5i. Use this production to serialize composite relationships as elements.

Department Em ploy ee

0..1 0..*
ginumber : Integer | @ Efiname : string
+department +employ ee

<Department xmi:id="Department_1" number="13">
<Employee xmi:id="Employee 2" name="Glozic, Dgjan" />
<Employee xmi:id="Employee 3" name="Andrews, Gilbert" />
<Employee xmi:id="Employee 4" name="Beisiegel, Gloria" />
</Department>

Example 6-10 Aggregation serialized as elements

5j. Each extension element has an optional extender and extender|D attribute; its
content can be anything.

6.3.6 Packages

6: Package "<" 6a: PackageTagName 3c: ObjectAttribs ">"
(7:C assAttributes | 8: O herlLinks)*
"</" 6a: PackageTagNane ">"

1g: Nanmespace // XM nane//

6a: PackageTagNane ::

6. This element is only serialized if there are classifer-level attributes that have not
been serialized in objects, or other links that have not been serialized with objects,
either.

6.3.7 Attributes

7:Cl assAttributes := (5a:AttributeAsElnt)*

7. All classifier-level attributes are expressed using the XML element form, unless they
have already been serialized in objects.

ad/2001-06-12: XML Metadata I nterchange 6-109

6-110

6.3.8 Other Types of Links

8: O her Li nks

"<" 8a: AssocTagNanme 3c: CbjectAttribs ">"
(8b: Associ ati onEndRef 8b: Associ ati onEndRef)*
"</" 8a: AssocTagNane ">"

/I XM nane for the association//

4: Ref er enceEl enment

8a: AssocTagNane
8b: Associ at i onEndRef

7. All associations which have no references are placed here. Each associationEnd’s
links are contained as pairs of nested XML elements.

7a. The tag name of the association is the name of the association specified in the
model or the value of the org.omg.xmi.xmiName tag.

7b. A reference to the linked element from the AssociationEnd; the tag name of the
referenced element should be the XMI name for the association end, which is either the
name of the association end specified in the model or the value of the
org.omg.xmi.xmiName tag.

ad/2001-06-12: XML Metadata I nterchange 6/18/2001

6.4 Additional Examples

6.4.1 Inheritance

Attributes and associations are inherited from parent classes. For example, in the
model below, CollegeStudent inherits directly from Student and Citizen, and indirectly
from Person:

<<Abstract>>
Person

eronName : String
ddress: Sting

Student Citizen
tatus: String SN : Integer
arents : String assport : Integer
PA : Single egisterVoter : Boolean
tate : String

CollegeStudent

cholarships: String
oanAmount : Currency

An instance of CollegeStudent can include attributes inherited from each of these
parent classes:

<CollegeStudent xmi:id="CollegeStudent_1"
PersonName="Andrew Pham" GPA="4.95" SSN="1234567890" />

| 6/18/2001 ad/2001-06-12: XML Metadata | nterchange 6-111

6.4.2 Nested Packages

The following model shows the Education package, which contains another package
called Students, where the Students package has an org.omg.xmi.nsPrefix tag set to
"Students':

<<Abstract>>
Person

ESPersonName : String]

EBSAddress : String
Students

A

\

Student
E¥istatus : String
EflParents : String
EEGPA : Single

The Students package contains class CollegeStudent:

Student
(from Education)
Elstatus : String
EfParents : String
EEGPA : Single

CollegeStudent

E&Scholarships : String
E¥LoanAmount : Cumrency

The package nesting can be expressed in the qualifier for the CollegeStudent element:

<Sudents: CollegeStudent xmi:id="CollegeStudent_1"
PersonName="Andrew Pham" GPA="4.95" SSN="1234567890" />

6-112 ad/2001-06-12: XML Metadata I nterchange 6/18/2001

6/18/2001

6.4.3 Derived Types and References

In the following example, class Company has attribute HQAddress whose type is
another class, the Address class:

Company Address
E¥HQAddress : Address wStreet : String
«City : String
|
USAddress

«4zipcode : Decimal

Address has a subclass, USAddress. An instance of Company can use xsi:type to
indicate that its HQAddress is actually of type USAddress and includes a zipcode:

<Company xmi:id="Company_1" name="Acme"'>
<HQAddress xmi:type="USAddress' xmi:id="Address 1"
Street="Side Street" City="Hometown" zipcode="90210"

Similarly, if amodel contains areference to a class that has a subclass, xmi:type can be
used in an instance to indicate that the reference is actually to the subclass.

ad/2001-06-12: XML Metadata I nterchange 6-113

6-114

ad/2001-06-12: XML Metadata I nterchange

6/18/2001

7.1

6/18/2001

Introduction

Production of MOF fromXML 4

XML isincreasingly becoming an information source, supplementing existing sources
such as analysis (UML), software (Java, C++), components (EJB, IDL, Corba
Component Model), and databases (CWM). Although XML does not define objects, it
can be used as an input source of true object definitions by supplementing the XML
with additional information or conventions.

This chapter describes the following algorithms for producing object definitions in
MOF from XML input sources:

« DTD to MOF production
e XML to MOF production
e XML Schema to MOF production.

This section describes mappings to produce MOF declarations from XML documents,
DTDs, and XML schemas. The mappings are not unique since XML-only forms of
information are not rich enough to produce an unambiguous MOF representation.

These mechanisms are not necessary for reading XMI documents, since XMl is rich
enough to interchange complete MOF information without loss or ambiguity.

The approach in these productions has been to provide reverse mappings for only the
most common declarations used in XML. The productions are in two parts: rules and
parameterized mappings. Each of the three XML information sources has its own rule
to extract the corresponding class and attribute declarations they represent. The
parameterized mappings are MOF rules to produce the simplest MOF classes and
attributes with specific parameters that may be customized by an implementation that
has additional domain knowledge beyond the production inputs.

ad/2001-06-12: XML Metadata Interchange 7-115

7.2 DTDtoMOF

7-116

When a DTD is used to create a MOF metamodel, the DTD is read declaration by
declaration, and MOF definitions are added accordingly. For each type of declaration,
one of the following MOF definitions is added by following the particular rule. The
mapping may be customized by setting the parameters in the second table.

As an example, this DTD would by default produce these MOF declarations:

DTD:

<IELEMENT Car (Engine, Door*)>

<IATTLIST Car make CDATA #IMPLIED model CDATA #IMPLIED>
<IELEMENT Engine (#PCDATA)>

<IELEMENT Door EMPTY>

<IATTLIST Door side CDATA #REQUIRED>

MOF:
Class Car {
Attribute make : String;
Attribute model : String;
Association engine : Engine 1..* containment one-way;
Association door : Door 1..* containment one-way;

}

Class Engine {
Attribute value : String 0..1;

}

Class Door {
Attribute side : String 0..1;

}

ad/2001-06-12: XML Metadata I nterchange 6/18/2001

Rule DTD Declaration M OF definition

1 <IELEMENT E> Class E with Supertype(E)

2 <IATTLIST EA Type Occurs> | Attribute named A of Class E with type AttributeType(E,
A, Type) and multiplicity AttributeMult(E, A, Occurs)
3 <IELEMENT E (F)> TypedElement(E, F) Attribute or Association to Class F
and name RoleName(E, F)
4 <IELEMENT E (#PCDATA)> | Attribute named TextName(E) of type AttributeType(E,
TextName(E))
5 <IELEMENT EANY> TypedElement(E, “ANY”) Attribute or Association to
Supertype(*ANY”) and name RoleName(E, “ANY")

Parameters Defaults
Supertype(Element name) Node
AttributeType (Element name, Attribute name, Type name) String for Type CDATA
Lookup MOF type for IDREF
AttributeMult (Element name, Attribute name, Occurs style) 0.1
TypedElement (Element name, TypedElement name) Association: containment by value,
multiplicity 0..*, one way navigable,
Attribute: multiplicity 0..*
RoleName (Element name, TypedElement name) L owerCase TypedElement name
TextName(Element name) “value”

7.3 XML to MOF

When an XML document has no additional type information, it is possible to
generalize to produce a minimal MOF representation. The mapping uses the same
optional parameters as the DTD to MOF mapping.

The processing of the generalization follows these steps:
1) Parse the XML document into a DOM tree.

2) Select an existing MOF metamodel or create an empty MOF metamodel.

6/18/2001 ad/2001-06-12: XML Metadata I nterchange 7-117

7-118

3) Perform a depth-first traversal of the XML document’s DOM tree. At each node,
apply the appropriate generalization operation from the table, based on the type of
parent and child nodes encountered.

This is an example result from mapping from an XML document to MOF:
XML
<Car make="Ford" model="Mustang">
<Engine>240 HP</Engine>
<Door side="left"/>
<Door side="right"/>
</Car>

MOF:
Class Car {
Attribute make : String;
Attribute model : String;
Association engine : Engine 1..* containment one-way;
Association door : Door 1..* containment one-way;

}

Class Engine {
Attribute value : String 0..1;

}

Class Door {
Attribute side : String 0..1;

}
Rule | DOM Parent | DOM Child M OF definition
Node Node

1 Element E None Class E with Supertype(E)

2 Element E Attribute A Attribute named A of Class E with type
AttributeType(E, A, “CDATA”") and
multiplicity AttributeMult(E, A, “#IMPLIED")

4 Element E Element F TypedElement(E, F) Attribute or Associatiop to
Class F and name RoleName(E, F)

5 Element E Text, Attribute named TextName(E) of type

ChracterData, | AttributeType(E, TextName(E))
or
CDATASection

ad/2001-06-12: XML Metadata I nterchange

6/18/2001

7.4 XML Schemato MOF

The following subset of the example of XML Schema, representing a portion of the
purchase order example of the XML Schema specification, part 0, mapped to MOF
using the reverse engineering table below.

The processing follows these steps:
1) The XML Schema is parsed.

2) Schema declarations corresponding to one of the three rules are processed while
traversing the XML Schema depth-first.

XML Schema:
<xsd:schema xmlIns:xsd="http://www.w3.0rg/2001/XMLSchema" >

<xsd:element name="purchaseOrder" type="PurchaseOrderType"/>
<xsd:element name="comment" type="xsd:string"/>

<xsd:complexType name="PurchaseOrderType">
<xsd:sequence>
<xsd:element name="shipTo" type="USAddress"/>
<xsd:element name="billTo" type="USAddress"/>
<xsd:element ref="comment" minOccurs="0"/>
</xsd:sequence>
<xsd:attribute name="orderDate" type="xsd:date"/>
</xsd:complexType>

<xsd:complexType name="USAddress">

<xsd:sequence>
<xsd:element name="name" type="xsd:string"/>
<xsd:element name="street" type="xsd:string"/>
<xsd:element name="city" type="xsd:string"/>
<xsd:element name="state" type="xsd:string"/>
<xsd:element name="zip" type="xsd:decimal"/>

</xsd:sequence>

<xsd:attribute name="country" type="xsd:NMTOKEN"
fixed="US"/>

</xsd:complexType>

</xsd:schema>

| 6/18/2001 ad/2001-06-12: XML Metadata Interchange 7-119

7-120

MOF:

<Class name="PuchaseOrder">
<attribute name="shipTo" type="USAddress"/>
<attribute name="billTo" type="USAddress"/>
<attribute name="comment" type="mof:String" multiplicty="0..1"/>
<attribute name="orderDate" type="mof:String"/>

</Class>

<Class name="USAddress>

<attribute name="name" type="mof:String"/>
<attribute name="street" type="mof:String"/>
<attribute name="city" type="mof:String"/>
<attribute name="state" type="mof:String"/>
<attribute name="zip" type="mof:Integer"/>
<attribute name="country" type="mof:String"/>

</Class>

Data types map to "mof:String" unless defined in the user model, except "xsd:decimal”
and its restrictions map to "mof:Integer" and "xsd:boolean" maps to "mof:boolean".

Rule XML Schema M OF definition

1 Element(E), ComplexType(E), SimpleType(E) | Class E with Supertype(S)
with base (S)

2 Sequence(L), List(L), Choice(L) containing Attribute E2 of AttributeType (E, L, E2)
Rule 1 (E2) and minOccurs(min), with multiplcity min..max
maxOccurs(max)

3 Attribute(A) Type(T) Attribute A with AttributeType(E, A, T)

ad/2001-06-12: XML Metadata I nterchange

6/18/2001

XML SchemaModel 8

8.1 Introduction

This section describes the MOF model for XML Schema declarations using UML
notation. The model is a straightforward mapping from the XML Schema
specification, where classes in the model have a direct correspondence to a definition
in XML Schema. This definition assumes a strong working knowledge of XML
Schema and refers throughout to the XML Schema specification for the detailed
description of constructs that are defined by XML Schema.

8.2 XML Schema Sructures

This model corresponds to the structures defined in the XML Schema Part 1,
Structures.

| 6/18/2001 ad/2001-06-12: XML Metadata Interchange 8-121

XSDObject

XSDSchema

whnamespacePrefix : String
witargetNamespace : String
w\ersion : String
wifinalDefault : String
whblockDefault : String
welementFormDefault : String
wattributeFormDefault : String
wlanguage : String

+content | xspschemaContent

1 1

0..*

{ordered}

XSDType

XSDTopLewelAttrbute XSDAttributeGroup

XSDGroup

XSDTopLevelElement

+includedFromAnotherSchema

XSDinclude

swschemalocation : String

XSDImport

+importedFromAnotherSchema

8-122

Figure8-1 XML Schema top level declarations

whamespace : String
swhamespacePrefix : String
wschemalocation : String

The top level XML SChema declarations consist of the desciption of the schema itself
(namespace prefix, tagert namespace, etc.) and the delcarations within the schema.
These declarations include global scope Attributes, global scope Elements, attribute

ad/2001-06-12: XML Metadata I nterchange

6/18/2001

groups, type declarations (extending from XSDGroup), and imports from other
schemas.

| 6/18/2001 ad/2001-06-12: XML Metadata | nterchange 8-123

8-124

XSDObject

L

XSDAnnotated Element

XSDAnyAttribute

&

Lhamespace : String
wiprocessContents : String

+anyAttribute

XSDAttribu teGroup 1 +attrGrpReferences

XSDAttribute GroupRef

+refAttributeGroup

0.*

XSDAttribute
wusage : String

+attribute

+refAttribute

0.*

+referencedType | xSpSimpleBase

waform : String

wdefault : String 0.* 0.1
wifixed : String 0.1 +ype
+attribute
type assodation = Anonymous/unnamed type
referencedType association = Type defined globally
XSDTopLevelAtrbute | +referencedAttribute +attributeReferences -
XSDAttributeR ef

1.1

Figure8-2 XML Schema Attribute Declarations

ad/2001-06-12: XML Metadata I nterchange

0.x

6/18/2001

8

whillable : Boolean

| 6/18/2001

+elementContent |Lasfinal : String
wblock : String
0..* |Mgdefault : String

wiixed : String

wform @ String
+content
+type
0.1

0.1 XSDType
+referencedType

An XML attribute has a name inherited from X SDNamedElement, and a simple type
that is either defined within its scope or refered to externally. The attribute may be
annotated

The attribute may be defined within an attribute group for reuse later. Attribute groups
may refer to other attribute groups.

A top level attribute may be referred to by other attribute uses.

XSDAnnotatedElement XSDObject XSDNamedElement
\
XSDSchemaContent
XSDOccurs
XSDElement XSDGroupContent
wiabstract : Boolean ///v

XSDTopLewelElement

1.1

0..*

+referencedElement

+element References

XSDElementRef

Figure8-3 XML Schema Element declaration

ad/2001-06-12: XML Metadata I nterchange

An Element declaration includes a name from X SDNamedElement, an annotation from
XSDAnnotatedElement, and may be used as content for a schema or a group.

8-125

+baseType

XSDType

0.1

XSDComplexType

¢

0.1

XSDAnyAttribute

The element may define new types in its own declaration or refer to types declared

elsewhere.

A top level element declaration may be refered to by element references.

XSDAnnotatedElem ent

0.*

XSDObject

XSD Com plex TypeContent| +content

+complexTypeContent

0.*

{ordered}

XSDGroupContent

XSDAttribute

XSDAttributeGroupRef

+anyAttribute

+anyAttribute

XSDAttributeRef

0.1

. ‘

XSD SimpleComplex

8-126

+complexTypeChildren 4 «

Figure8-4 XML Schema Complex type declaration

wderivedByExtension : String

.

XSDSimpleContent

XSDComplexContent

A complex type is both a type and an annotated element. The complex type has
complexTypeContent that may be a group of types and declared simple or complex

types. The type may have attributes, or refer to attributes or attribute groups.

ad/2001-06-12: XML Metadata I nterchange

6/18/2001

8

Complex type contents may be derived by extension or restriction, and may be simple
or complex.

XSDObject

XSDTotalDigits

XSDWhiteSpace

XSDFractionDigits

XSDLength

XSDMinLength

+content | 0..1

XSDSimpleType

XSDMaxLength

+stContent

XSDMaxInclusive

XSDSinpleTypeContent

XSDMininclusive

XSDMaxExclusive

+enum

XSDPattern
wavalue : String

XSDEnumeration
savalue @ String

XSDMinExclusive

XSDSimpl eRestrict

6/18/2001

XSDSimpleList

XSDSimpleUnion

Figure8-5 XML Schema Simple type content declarations

The content of a simple type is described in terms of facets. These facets include
white space, digit representation, length, ranges, patterns, enumerations, unions, and
lists.

ad/2001-06-12: XML Metadata I nterchange 8-127

XSDObject

XSDFacet

savalue @ String
wfixed : Boolean

1

XSDLength

el Ll XSDMaxLength

XSDEnumeration

XSDWhiteSpace

XSDMinlInclusive

XSDMinExclusive

XSDMaxExclusive

XSDMaxInclusive

XSDPattemn

8-128

XSDFractionDigits

Figure8-6 XML Schema Facets

XSDTotalDigits

There are many types of facets used in simple type content declarations. They share a
common root, X SDFacet, an abstract class that declares the value of the facet and if

the facet is fixed.

ad/2001-06-12: XML Metadata I nterchange

6/18/2001

An element has a type. Atype can be referenced by many elements.
type association = Anonymous/unnamed type
referencedType association = Type defined globally

+elementContent

0.1 | treferencedType

O“*

+content
>

+ype XSDType

T

XSDElement

0.1

XSD Com plexType XSDSimpleBase +baseType
wabstract : Boolean 1.*
wdinal : String
wblock : String {ordered}
wmixed : Boolean

XSDBuiltinType
wkind : XSDBUiltinTypeKind

+simpleTypeChildren 0.*

XSDSimpleType +stContent | xSDSimpleTypeContent

1

0.1 +content

Figure8-7 XML Schema Type declaration

| 6/18/2001 ad/2001-06-12: XML Metadata | nterchange 8-129

An XML Schema Type may be declared in a schema or within an element. The type
may be a simple or complex type. Simple types may be one of the built-in, predefied
types from XML Schema part 2, data types, or they may be a user-defined simple type.

XSDObject

-

. XSDAnnotation
XSDAnnotatedElement 0. Balue : String
+annotate wisource : String
XSDAttribute XSDAttributeGroup XSDComplexType XSDDocumentapon XSDApplnfo
gdanguage : String
XSDFacet XSDElement XSDSimpleType XSDSchema

Figure8-8 XML Schema annotated elements
Many XML Schema declarations may contain annotations. These elements are

attributes, attribute groups, elements, simple and complex types, facets, and schemas.
An annotation may include documentation or application information.

8-130 ad/2001-06-12: XML Metadata I nterchange 6/18/2001

XS DGroupContent +scopeContent

i

1.*

XSDGroup

+referencedGroup XSDGroupRef ‘

!

XSDGroupScope

1 0..*
+groupReferences

42groupKind : XSDGroupKind

+groupContent

XSDElementRef

XSDAny

wsnamespace : String
waprocessContents : String

| 6/18/2001

Figure8-9 XML Schema group declarations
A group may contain other groups, references to other gorups or elements, or contain

declarations of additional groups and elements in terms of choice, sequence, or all.
Groups with Any content may also be declared.

ad/2001-06-12: XML Metadata I nterchange 8-131

XSDObject

XSDElement

+unique | xSpUniqueContent

+
selector XSDSelector

| 8132

1 wvalue : String

0..*
—
T +ield
1.* XSDField
walue @ String
XSDUnique XSDKey XSDKeyRef
+referencedKey " 1 +keyReferences
0..*

Figure 8-10 XML Schema key declaration

A key declaration is made based on the uniqueness of the content of an element. The
elements contents are measured based on selections on its attributes. Keys may refer

to other keys.

ad/2001-06-12: XML Metadata I nterchange

6/18/2001

XSDNamedElement

[Bname : String

XSDAttribute

XSDAttributeGroup

XSDComplexType

XSDElement

XSDGroup

XSDSchema

XSDSimpleType

XSDUniqueContent

Figure8-11 XML Schema name declarations

Attributes, attribute groups, elements, simple and complex types, groups, unique
content, and schemas are named.

XSDOccurs

P@minOccurs : String
[imaxOccurs : String

XSDAny

XSDElement

PEnamespace : Stiing
PEprocessContents : String

6/18/2001

PEabstract : Boolean
[Enillable : Boolean
[&final : String
[Eblock : String
[Edefault : String
[Efixed : String
[i&form : String

XSDElementRef

XSDGroupRef

XSDGroupScope

[EgroupKind : XSDGroupKind

Figure 8-12 XML Schema occurance particles

ad/2001-06-12: XML Metadata I nterchange

8-133

The occurance particle in declarations of elements, element references, anys, groups,
and group references is factored into the Occurs abstract class.

8.2.1 XSDSchema

XSDSchemais an XML Schema Declaration.

Extends: X SDObject, X SDNamedElement, X SDA nnotatedElement
Attributes:

namespacePr efix : Sring

targetNamespace : String

version : Sring

finalDefault : Sring

blockDefault : String

elementFormDefault : String

attributeFormDefault : Sring

language : String

8.2.2 XSDAttribute

An XML Schema attribute declaration.

Extends: X SDComplexTypeContent, X SDNamedElement, X SDAnnotatedElement
Attributes:

usage: Sring

form: Sring

default : Sring

fixed : Sring

8.2.3 XSDElementRef

A reference to an XML Schema element declaration.

Extends. X SDGroupContent, X SDOccurs

8.2.4 XDAttributeGroup

An XML Schema attribute group declaration.

8-134 ad/2001-06-12: XML Metadata I nterchange 6/18/2001

6/18/2001

Extends: X SDSchemaContent, X SDNamedElement, X SDAnnotatedElement

8.2.5 XDAttributeGroupRef

A reference to an attribute group.

Extends; X SDComplexTypeContent

8.2.6 XSDType

An XML Schema abstract type.

Extends: X SDSchemaContent

8.2.7 XSDBuiltInType

An XML Schema predefined datatype.

Extends. X SDSimpleBase

8.2.8 XSDComplexType

A ComplexType can derive from another Complex Type or another Simple Type. Complex types may have

substantial structure.

Extends: X SDType, X SDNamedElement, X SDAnnotatedElement

Attributes:
abstract : Boolean
final : String
block : Sring
mixed : Boolean

8.2.9 XSDComplexTypeContent

The content of an XML Schema.

ad/2001-06-12: XML Metadata I nterchange

8-135

8-136

Extends: X SDObject

8.2.10 XSDSchemaContent

The content of an XML Schema.

Extends. X SDObject

8.2.11 XSDElement

An XML Schema element declaration.

Extends: X SDObject, X SDNamedElement, X SDOccurs, X SDAnnotatedElement, X SDGroupContent, X SD-

SchemaContent

Attributes:
abstract : Boolean
nillable : Boolean
final : String
block : Sring
default : Sring
fixed : Sring
form: Sring

8.2.12 XSDSmpleBase

An abstract base class for XML Schema simple types.

Extends: XSDType

8.2.13 XSDPattern

A pattern constraint on a datatype.

Extends; X SDFacet

ad/2001-06-12: XML Metadata I nterchange

6/18/2001

Attributes:
value: Sring

8.2.14 XSDEnumeration

An enumeration constraint on a datatype.

Extends: X SDFacet

Attributes:
value: Sring

8.2.15 XSDInclude

An XML Schemainclude declaration.

Extends: X SDSchemaContent

Attributes:
schemal ocation : Sring

8.2.16 XSDImport

An XML Schemaimport declaration.

Extends: X SDSchemaContent

Attributes:
namespace: Sring
namespacePr efix : String
schemal ocation : Sring

8.2.17 XSDGroup

An XML Schema group declaration.

6/18/2001 ad/2001-06-12: XML Metadata I nterchange

8-137

Extends: X SDSchemaContent, X SDGroupContent, X SDNamedElement

8.2.18 XSDGroupKind

Declares whether the groups contents will be one of each of its contents, a choice of one of its contents, or a
sequence of all of its contents.

Enuemration literals:
all

choice

sequence

8.2.19 XSDGroupScope

A nested XML Schema group declaration that may be declared as all, choice, or sequence.

Extends: X SDGroupContent, X SDOccurs

Attributes:
groupKind : XSDGroupKind

8.2.20 XSDGroupContent

An abstract class representing contents of an XML Schema group declaration.

Extends; X SDComplexTypeContent

8.2.21 XSDGroupRef

A reference to an XML Schema group declaration.

Extends: X SDGroupContent, X SDOccurs

8.2.22 XSDKey

The declaration of aKey.

8-138 ad/2001-06-12: XML Metadata I nterchange 6/18/2001

6/18/2001

Extends: X SDUniqueContent

8.2.23 XSDKeyRef

A reference to the declaration of akey.

Extends: X SDUniqueContent

8.2.24 XSDUnique

The concrete declaration of the unique fields.

Extends. X SDUniqueContent

8.2.25 XSDUniqueContent

The type of content that is uniquely keyed.

Extends: X SDObject, X SDNamedElement

8.2.26 XSD Sl ector

The selector of an XML Schema uniqueness declaration.

Attributes:
value: Sring

8.2.27 XSDField

The fields to apply the selector of an XML Schema uniqueness declaration.

Attributes:
value: Sring

8.2.28 XSDObject

XSDObject in an abstract superclass to facilitate modeling of XML Schema.

ad/2001-06-12: XML Metadata I nterchange

8-139

8-140

8.2.29 XSDAnnotatedElement

XSDAnnotatedElement is an abstract class for XML Schema constructs that may be annotated.

Extends. X SDObject

8.2.30 XSDDocumentation

XSD documentation is the dcumentation of an XML Schema construct.

Extends: X SDAnnotation

Attributes:
language : String

8.2.31 XSDApplnfo

Provides application specific information.

Extends: X SDAnnotation

8.2.32 XSDAnnotation

An XML Schema annotation.

Extends. X SDObject

Attributes:
value: Sring
source: String

8.2.33 XSDSmpleContent

XML Schema declaration of the content of a simple type.

Extends: X SDSimpleComplex

ad/2001-06-12: XML Metadata I nterchange

6/18/2001

6/18/2001

8.2.34 XSDComplexContent

XML Schema declaration of the content of a simple type.

Extends. X SDSimpleComplex

8.2.35 XSDSmpleComplex

XML Schema extended simple or complex types. Types may be extended by externsion or restriction.

Extends; X SDComplexTypeContent

Attributes:
derivedByExtension : Boolean

8.2.36 XSDSmpleTypeContent

The declaration of simple type contents.

Extends. X SDObject

8.2.37 XSDSmpleRestrict

A simpletyperestriction.

Extends: X SDSimpleTypeContent

8.2.38 XSDSmpleList

A smpletypelist.

Extends: X SDSimpleTypeContent

8.2.39 XSDSmpleUnion

A simple type union.

Extends: X SDSimpleTypeContent

ad/2001-06-12: XML Metadata I nterchange

8-141

8.2.40 XSDSmpleType

An XML Schema simple type declaration. Simple types have minimal structure.

Extends: X SDBuiltInType, X SDNamedElement, X SDA nnotatedElement

8.2.41 XSDFacet

XML Schematype declarations use a series of facets to define the particular behavior. The XSDFacet isan

abstract class that is specialized by the type of facet.

Extends: X SDObject, X SDAnnotatedElement

Attributes:
value: Sring
fixed : Boolean

8.2.42 XSDLength

The length facet.

Extends: X SDFacet

8.2.43 XSDMinLength

The minLength facet.

Extends: X SDFacet

8.2.44 XSDMaxLength

The maxLength facet.

Extends: X SDFacet

8.2.45 XSDMinlnclusive

The mininclusive facet.

8-142 ad/2001-06-12: XML Metadata I nterchange

6/18/2001

6/18/2001

Extends: X SDFacet

8.2.46 XSDMaxlInclusive

The maxinclusive facet.

Extends: X SDFacet

8.2.47 XSDMinExclusive

The minExclusive facet.
Extends: X SDFacet

8.2.48 XSDMaxExclusive

The maxExclusive facet.

Extends; X SDFacet

8.2.49 XSDTotalDigits

The total Digits facet.

Extends; X SDFacet

8.2.50 XSDFractionDigits

The fractionDigits facet.

Extends: X SDFacet

8.2.51 XSDWhiteSace
The whiteSpacefacet.

Extends: X SDFacet

ad/2001-06-12: XML Metadata I nterchange

8-143

8.2.52 XSDAny

The Any content for an XML Schema group content declaration.

Extends. X SDGroupContent, X SDOccurs

Attributes:
namespace: Sring
processContents: Sring

8.2.53 XSDAnyAttribute

The XML Schema reference to any attributes with non-schema namespace.

Extends: X SDObject

Attributes:
namespace: Sring
processContents: String

8.2.54 XSDAttributeRef

A referenceto an XML attribute.

Extends; X SDComplexTypeContent

8.2.55 XSDNamedElement

Attributes:
name: Sring

8.2.56 XSDOccurs

An abstract class representing the min and max occurance of an XML Schema particle.

Attributes:
minOccurs: String
maxOccurs: Sring

8-144 ad/2001-06-12: XML Metadata I nterchange 6/18/2001

8.2.57 XSDTopLevel Attrbute

Attributes at the top level of a schema may be referenced from other declarations.

Extends: X SDAttribute, X SDSchemaContent

8.2.58 XSDTopLevel Element

Elements at the top level of a schema may be referenced from other declarations.

Extends: X SDElement, X SDSchemaContent

8.3 XML Schema Smple Datatypes

The XML Schema simple data types are defined in terms of a basic set of simple
primitive types and a set of commonly used derived types.

Each data type is constrained in terms of the applicable facets described in the
X SDFacets in section 8.2. Each facet is a subclass of the abstract XSDFacet. The data
types use specific facets, modeled as the data types’ attributes.

| 6/18/2001 ad/2001-06-12: XML Metadata | nterchange 8-145

XSDBuiltinType
(fromsanischema)
———

—
A LiitemType

XSDFloatType ASDoWbleiTy pe XSDStringType.
<<*>> enumeration : XSDFloai Ml PEREaly 2 ZoDHec) e e
<<*>> enumeration : String pefiod : Sting [XSDQNameType R XSDUnionType |
o
~ duration : String ‘««» enumeration stQName(‘<<«>> enumeration ston;ec{
<> DR Duratior
* I i]

\

XSDDecdmalType

precision : Integer
scale : Integer

<<>> XSDDecimall

’ +memberTypes
1.

XSDType
|

XSDBooleanT ype

XSDBinaryType

XSDURIReferenceType
pSDliimeDuration]jype encoding : XSDEncoding

<<rb> XSDL

A

/

XSDObject
(fomxris chera)
X

XSDListType
<<*>> enumeration : XSDLis!| s XSDTimeDuratio <<*>> enumenation : XSDBinary
A N ‘ A { A

1
1

[xsppecimal | [xsDFioat| [xsbeoolean | [xsbbouble

[|
XSDTimeDuration
M XSDBinary / XSDURIReference
I |

——
XSDQName
XSDRecuringDuration | - XSDU

localPart : XSDNCName

[XsbLong | [xsoi ‘
I

[Xsbrecuringoay | | [*Sorecuringoae| | [xsorime]
| i A |
[I 1 [1

[xspTimePeiiod| [xsoTimelnstant |
I | I |
L L

1
XSDDate | | xSDMonth | | XSDYear | s pce ntuy
— 3 /1

——

=

XSDID XSDIDREF
—
 E—

Figure 8-13 XML Schema data types

The XML Schema model consists of a set of basic primitive types, all of which have a

“type” suffix. These types are then instantiated as a set of type instances that may be
referred to in user schema definitions. These instantiated types are then further
specialized to provide a wide range of useful derived types. The derivation of these
types is described in terms of restriction as opposed to extension.

ad/2001-06-12: XML Metadata I nterchange 6/18/2001

XSDDecimalRange

maxExclusive : XSDMaxExclusive
maxinclusive : XSDMaxinclusive
minExclusive : XSDMinExclusive
mininclusive : XSDMinInclusive

.

XSDDecimalType

precision : Integer
scale : Integer
<<*>>enumeration : XSDDecimal

XSDDoubleType

<<*>>enumeration : XSDDouble

XSDFloatType

<<*>>enumeration : XSDFloat

XSDRecurringDurationType

XSDTimeDurationType

period : String
duration : String

<<*>> enumeration : XSDRecurringDuration

<<*>>enumeration : XSDTimeDuration

Figure 8-14 XSL Schema types with decimal ranges

The X SDDecimalRange abstract class consolidates the declarations of the decimal
range inclusive and exclusive minimum and maximum.

6/18/2001

ad/2001-06-12: XML Metadata I nterchange

8-147

XSDintegerRange

length : XSDLength
maxLength : XSDMaxLength
minLengthXSDMinLength

&

XMLNCNameType

<<*>> enumeration : XMLNCName

8-148

XSDBinaryType

encoding : XSDEncoding

XSDListType

<<*>> enumeration : XSDBinary

<<*>>enumeration : XSDList

XSDURIReferenceType

XSDQNameType

XSDStringType

<<*>> enumeration : XSDQName

<<*>> enumeration : String
whiteSpace : XSDWhiteSpace

<<*>> enumeration : XSDURIReference

Figure 8-15 XSL Schema types with integer ranges

The XSDIntegerRange abstract class consolidates the declarations of the integer range
in terms of length, minimum length and maximum length.

ad/2001-06-12: XML Metadata I nterchange

6/18/2001

XSDPatterned
pattern : XSDPattern

| 6/18/2001

XMLNCNameType XSDBinaryType XSDBooleanType XSDDecim alType
- XSD DoubleType
XSDFloatType XSDStringType XSDQNameType
XSDRecurringDurationType XSDURIReferenceType XSDUnionType XSDTimeDurationType

Figure 8-16 XML Schema pattern facet used in types

The pattern facet, enabling matches of the types to conform to aregular expression, is
used by the mgjority of the primitive data typesin XML Schema.

8.3.1 XSDDate

The XML Schema date data type.

Extends: XSDTimePeriod

8.3.2 XSDDecimal

The XML Schema decimal data type.

Extends. X SDObject

ad/2001-06-12: XML Metadata I nterchange

8-149

8-150

8.3.3 XSDDecimal Type

An XML Schema decimal type definition.

Extends. X SDBuIiltInType, X SDDecimal Range, X SDPatterned

Attributes:

precision : Integer

scale: Integer
enumeration : XSDDecimal

8.3.4 XSDDouble
The XML Schema double data type.

Extends. X SDObject

8.3.5 XSDCentury

The XML Schema century data type.

Extends: XSDTimePeriod

8.3.6 XSDBinary

The XML Schema binary data type.

Extends. X SDObject

8.3.7 XSDBinaryType

An XML Schema binary type definition.

Extends. X SDBuiltInType, X SDIntegerRange, X SDPatterned

Attributes:
encoding : XSDEncoding
enumeration : XSDBinary

ad/2001-06-12: XML Metadata I nterchange

6/18/2001

8.3.8 XSDBooleanType

An XML Schema boolean type definition.

Extends: X SDBuiltInType, X SDPatterned

8.3.9 XSDBoolean

The XML Schema boolean data type.

Extends: X SDObject

8.3.10 XSDByte

The XML Schema byte datatype.

Extends; X SDShort

8.3.11 XSDDoubleType

An XML Schema double type definition.

Extends. X SDDecimalRange, X SDPatterned, X SDBUuiltinType

Attributes:

enumeration : XSDDouble

8.3.12 XSDFloat

The XML Schemafloat datatype.

Extends: X SDObject

6/18/2001 ad/2001-06-12: XML Metadata I nterchange

8-151

8-152

8.3.13 XSDFloatType

An XML Schema floating type definition.

Extends. X SDDecimalRange, X SDPatterned, X SDBUuiltinType

Public Attributes:
enumeration : XSDFloat

8.3.14 XSDlInt

The XML Schemaint datatype.

Extends. XSDLong

8.3.15 XSDInteger

The XML Schemainteger datatype.

Extends: XSDDecimal

8.3.16 XSDCDATA

The XML Schema CDATA datatype.

Extends. XSDString

8.3.17 X&DID

Extends: XSDNCName

8.3.18 XSDIDREF

Extends: XSDNCName

ad/2001-06-12: XML Metadata I nterchange

6/18/2001

6/18/2001

8.3.19 XSDIDREFS

The XML Schema |IDREFS data type.

Extends: XSDList

8.3.20 XSDListType

An XML Schemallist type definition.

Extends. X SDBuiltInType, X SDIntegerRange

Attributes:
enumeration : XSDList

8.3.21 XSDList

The XML Schemallist datatype.

Extends. X SDObject

8.3.22 XSDLong

The XML Schema long data type.

Extends: X SDInteger

8.3.23 XSDMonth

The XML Schema month data type.

Extends: XSDTimePeriod

8.3.24 XSDName

The XML Schema name data type.

Extends: XSDToken

ad/2001-06-12: XML Metadata I nterchange

8-153

8-154

8.3.25 XSDNCName

The XML Schema NCName data type.

Extends: XSDName

8.3.26 XSDNegativel nteger

The XML Schema negative integer type.

Extends. X SDNonPositivel nteger

8.3.27 XSDNMTOKEN

The XML Schema NMToken data type.

Extends. X SDStringType, XSDToken

8.3.28 XSDNonNegativel nteger

The XML Schema non-negative integer data type.

Extends. X SDInteger

8.3.29 XSDNonPositivel nteger

The XML Schema non-positive integer data type.

Extends. X SDInteger

8.3.30 XSDPositivel nteger

The XML Schema positive integer data type.

Extends: X SDNonNegativel nteger

8.3.31 XSDQName

The XML Schema QName data type.

ad/2001-06-12: XML Metadata I nterchange

6/18/2001

Extends. X SDObject

Attributes:
namespaceName : XSDURI Reference
localPart : XSDNCName

8.3.32 XSDQNameType

An XML Schema qualified name type definition.

Extends. X SDBuiltInType, X SDIntegerRange, X SDPatterned

Attributes:
enumeration : XSDQName

8.3.33 XSDRecurringDate

The XML Schema recurring date data type.

Extends. X SDRecurringDuration

8.3.34 XSDRecurringDay

The XML Schemarecurring day datatype.

Extends. X SDRecurringDuration

8.3.35 XSDRecurringDuration

The XML Schema recurring duration data type.

Extends: X SDObject

8.3.36 XSDRecurringDurationType

An XML Schema recuring duration type definition.

ad/2001-06-12: XML Metadata I nterchange

8-155

8-156

Extends: X SDBuiltInType, X SDDecimal Range, X SDPatterned

Attributes:

period : String

duration : Sring

enumeration : XSDRecurringDuration

8.3.37 XSDShort

The XML Schema short data type.

Extends: XSDInt

8.3.38 XSDToken

The XML Schematoken data type.

Extends: XSDCDATA

8.3.39 XSDSring

The XML Schema string data type.

Extends. X SDObject

8.3.40 XSDSringType

An XML Schema string type definition.

Extends: X SDBuiltInType, X SDIntegerRange, X SDPatterned

Attributes:
enumeration : Sring
whiteSpace : XSDWhiteSpace

ad/2001-06-12: XML Metadata I nterchange

6/18/2001

8.3.41 XSDTime

The XML Schematime data type.

Extends. X SDRecurringDuration

8.3.42 XSDTimeDuration

The XML Schema time duration data type.

Extends. X SDObject

8.3.43 XSDTimeDurationType

An XML Schematime duration type definition.

Extends: X SDBuIiltInType, X SDDecimal Range, X SDPatterned

Attributes:
enumeration : XSDTimeDuration

8.3.44 XSDTimelnstant

The XML Schematimeinstant data type.

Extends: X SDRecurringDuration

8.3.45 XSDTimePeriod

The XML Schematime period data type.

Extends: X SDRecurringDuration

8.3.46 XSDUnionType

An XML Schemaunion type definition. The member types association are the set of possible types allowed
in the union.

6/18/2001 ad/2001-06-12: XML Metadata I nterchange 8-157

8-158

Extends: X SDBuiltInType, X SDPatterned

Attributes:
enumeration : XSDObject

8.3.47 XSDUnsignedByte

The XML Schema unsigned byte data type.

Extends. X SDUnsignedShort

8.3.48 XSDUnsignedint

The XML Schema unsigned int data type.

Extends: XSDUnsignedLong

8.3.49 XSDUnsignedLong

The XML Schema unsigned long data type.

Extends: X SDNonNegativel nteger

8.3.50 XSDUnsignedShort

The XML Schema unsigned short data type.

Extends: X SDUnsignedint

8.3.51 XSDURIReference

The XML Schema URI Reference data type.

Extends. X SDObject

ad/2001-06-12: XML Metadata I nterchange

6/18/2001

6/18/2001

8.3.52 XSDURIReferenceType

An XML Schema URI reference type definition.

Extends. X SDBuiltInType, X SDIntegerRange, X SDPatterned

Attributes:
enumeration : XSDURIReference

8.3.53 XSDValueConstraint

Attributes:
use: XSDUse
value: XSDString

8.3.54 XSDYear

The XML Schema year datatype.

Extends: XSDTimePeriod

8.3.55 XSDDecimalRange

An abstract class consolidating the min and max inclusive and exclusive range.

Attributes:

maxExclusive : XSDM axExclusive
maxl|nclusive : XSDM axInclusive

minExclusive : XSDMinExclusive
mininclusive : XSDMinlnclusive

8.3.56 XSDIntegerRange

An abstract class consolidating the length, min and max range.
Attributes:
length : XSDL ength

maxL ength : XSDMaxL ength
minLengthXSDMinL ength :

ad/2001-06-12: XML Metadata I nterchange

8-159

8-160

8.3.57 XSDPatterned

An abstract class consolidating the pattern regular expression.

Attributes:
pattern : XSDPattern

ad/2001-06-12: XML Metadata I nterchange

6/18/2001

Conformancelssues 9

9.1 Introduction

This section describes the required and optional points of compliance with the XMl
specification. “XMI Document” and “XMI Schema” are defined as documents and
schemas produced by the XMI production (document and XML schema) rules defined
in this specification.

9.2 Required Compliance

9.2.1 XMI Shema Compliance

« XMI Schemas must be equivalent to those generated by the XMl Schema
production rules specified in this document. Equivalence means that the same set
of valid XMI documents would be valid.

9.2.2 XMI Document Compliance

XMI Documents are required to conform to the following points:

e The XMI document must be “valid” and “well-formed” as defined by the XML
recommendation, whether used with or without the document’s corresponding XMl
Schema(s). Although it is optional not to transmit and/or validate a document with
its XMI Schema(s), the document must still conform as if the check had been made.

e The XMI document must be equivalent to those generated by the XMl Document
production rules specified in this document. Equivalence for two documents
requires a one to one correspondence between the elements in each document, each
correspondence identical in terms of element name, element attributes (name and
value), and contained elements. Elements declared within the XMI documentation
and extension elements are excepted.

6/18/2001 ad/2001-06-12: XML Metadata Interchange 9-161

9.3 Optional Compliance Points

9.3.1 XMI Extension and Differences Compliance

XMI Documents optionally conform to the following points:

e The guidelines for using the extension elements suggested in Section 6.5 and
Section 6.10. Tools should place their extended information within the designated
extension areas, declare the nature of the extension using the standard XMl
elements where applicable, and preserve the extensions of other tools where
appropriate.

» Processing of XMI differencing elements (Section 6.9) is an optional compliance
point.

9.3.2 Reverse engineering Compliance

« Each of the reverse engineering productions in Chapter 7 is an independent optional
compliance point:
+ XML to MOF
« DTD to MOF
* Schema to MOF

9.3.3 XML Schema Model Compliance

Use of the normative XML Schema model by instantiation, code generation,
invocation, or serialization as defined by the MOF specification and this XMl
specification for metamodel document and schema conformance.

9-162 ad/2001-06-12: XML Metadata I nterchange 6/18/2001

References

[XML] XML, atechnical recommendation standard of the W3C. http://www.w3.0org/TR/REC-xml

[XMLSchema] XML Schemas, a proposed recommendation of the W3C.
Primer: http://www.w3.0rg/TR/xmlschema-0/,
Structured types: http://www.w3.org/TR/xmlschema-1/ and
Data types: http://www.w3.0rg/TR/xmlschema-2/ .

[NAMESP] Namespaces, a technical recommendation of the W3C. http://www.w3.org/TR/REC-xml-names

[XLINK] XLinks, aworking draft of the W3C. http://www.w3.0rg/TR/WD-xlink and
http://mwww.w3.0rg/TR/NOTE-xlink-principles

[XPath] XPointer, technical recommendation of the W3C. http://www.w3.0rg/TR/xpath

[UML] UML, an adopted standard of the OMG. http://www.omg.org

[MOF] MOF, an adopted standard of the OMG. http://www.omg.org

[XMI] XMI 1.1, an adopted standard of the OMG. http://www.omg.org

The following is the Open Group DCE standard on UUIDs.

[UUID] CAE Specification
DCE 1.1: Remote Procedure Call
Document Number: C706
http://www.opengroup.org/onlinepubs/9629399/toc.htm
http://www.opengroup.org/onlinepubs/9629399/apdxa.htm (Definition/creation of UUIDSs).

6/18/2001 ad/2001-06-12: XML Metadata Interchange Reference-163

Reference-164 ad/2001-06-12: XML Metadata I nterchange 6/18/2001

	Preface
	1.1 Cosubmitting Companies and Supporters
	1.2 Introduction
	1.3 Submission contact points
	1.4 Status of this Document
	1.5 Guide to the Submission
	1.6 Conventions
	1.7 Changes Since Initial Submission
	1.8 Changes Since Revised Submission

	Proof of Concept
	2.1 Copyright Waiver
	2.2 Proof of Concept

	Response to RFP Requirements
	3.1 Mandatory Requirements
	3.1.1 Production of XML Schemas
	3.1.2 DTD compatibility

	3.2 Optional Requirements
	3.2.1 DTD to MOF mapping.
	3.2.2 XML Schema to MOF mapping.

	3.3 Issues for discussion

	XMI Schema Design Principles
	4.1 Purpose
	4.2 Use of XML Schemas
	4.2.1 XML Validation of XMI documents
	4.2.2 Requirements for XMI Schemas

	4.3 Basic Principles
	4.3.1 Required XML Declarations
	4.3.2 Metamodel Class Representation
	4.3.3 Metamodel Extension Mechanism

	4.4 XMI Schema and Document Structure
	4.5 XMI Model
	4.5.1 XML Schema for the XMI Model
	4.5.2 XMI Model classes
	4.5.3 XMI
	4.5.4 Extension
	4.5.5 Documentation
	4.5.6 Model, Metamodel, and Import
	4.5.7 Add, Replace, and Delete

	4.6 XMI Attributes
	4.6.1 Element Identification Attributes
	id
	label
	uuid

	4.6.2 Linking Attributes
	Simple XLink Attributes
	idref

	4.6.3 Version Attribute
	4.6.4 Type Attribute

	4.7 Metamodel Class Specification
	4.7.1 Namespace Qualified XML Element Names
	4.7.2 Metamodel Multiplicities
	4.7.3 Class specification
	4.7.4 Attribute Specification
	4.7.5 Reference Specification
	4.7.6 Containment Specification
	4.7.7 Inheritance Specification
	4.7.8 Derived Information

	4.8 Transmitting Incomplete Metadata
	4.8.1 Interchange of model fragments
	4.8.2 XMI encoding
	4.8.3 Example

	4.9 Linking
	4.9.1 Design principles:
	4.9.2 Linking
	XLinks
	IDrefs

	4.9.3 Example from UML

	4.10 Tailoring Schema Production
	4.10.1 XMI Tag Values
	4.10.2 Tag Value Constraints
	4.10.3 Scope
	4.10.4 XML element vs XML attribute
	XML attribute only
	XML element only
	Both XML attribute and element

	4.10.5 UML profile for XML and XMI
	4.10.6 SOAP serialization
	4.10.7 Effects on Document Production

	4.11 Transmitting Metadata Differences
	4.11.1 Definitions:
	4.11.2 Differences
	4.11.3 XMI encoding
	4.11.4 Example

	4.12 Document exchange with multiple tools
	4.12.1 Definitions:
	4.12.2 Procedures:
	4.12.3 Example

	4.13 General datatype mechanism

	XML Schema Production
	5.1 Purpose
	Notation for EBNF

	5.2 XMI 1.1 Schemas
	5.2.1 EBNF
	5.2.2 Fixed Schema Declarations
	5.2.3 Optional Fixed Schema Declarations

	5.3 XMI 2.0 Schemas
	5.3.1 EBNF
	5.3.2 Fixed Schema Declarations

	XML Document Production
	6.1 Purpose
	6.2 Introduction
	6.3 EBNF Rules Representation
	6.3.1 Overall Document Structure
	6.3.2 Overall Content Structure
	6.3.3 Object Structure
	6.3.4 References
	6.3.5 Object Contents
	6.3.6 Packages
	6.3.7 Attributes
	6.3.8 Other Types of Links

	6.4 Additional Examples
	6.4.1 Inheritance
	6.4.2 Nested Packages
	6.4.3 Derived Types and References

	Production of MOF from XML
	7.1 Introduction
	7.2 DTD to MOF
	7.3 XML to MOF
	7.4 XML Schema to MOF

	XML Schema Model
	8.1 Introduction
	8.2 XML Schema Structures
	8.2.1 XSDSchema
	8.2.2 XSDAttribute
	8.2.3 XSDElementRef
	8.2.4 XSDAttributeGroup
	8.2.5 XSDAttributeGroupRef
	8.2.6 XSDType
	8.2.7 XSDBuiltInType
	8.2.8 XSDComplexType
	8.2.9 XSDComplexTypeContent
	8.2.10 XSDSchemaContent
	8.2.11 XSDElement
	8.2.12 XSDSimpleBase
	8.2.13 XSDPattern
	8.2.14 XSDEnumeration
	8.2.15 XSDInclude
	8.2.16 XSDImport
	8.2.17 XSDGroup
	8.2.18 XSDGroupKind
	8.2.19 XSDGroupScope
	8.2.20 XSDGroupContent
	8.2.21 XSDGroupRef
	8.2.22 XSDKey
	8.2.23 XSDKeyRef
	8.2.24 XSDUnique
	8.2.25 XSDUniqueContent
	8.2.26 XSDSelector
	8.2.27 XSDField
	8.2.28 XSDObject
	8.2.29 XSDAnnotatedElement
	8.2.30 XSDDocumentation
	8.2.31 XSDAppInfo
	8.2.32 XSDAnnotation
	8.2.33 XSDSimpleContent
	8.2.34 XSDComplexContent
	8.2.35 XSDSimpleComplex
	8.2.36 XSDSimpleTypeContent
	8.2.37 XSDSimpleRestrict
	8.2.38 XSDSimpleList
	8.2.39 XSDSimpleUnion
	8.2.40 XSDSimpleType
	8.2.41 XSDFacet
	8.2.42 XSDLength
	8.2.43 XSDMinLength
	8.2.44 XSDMaxLength
	8.2.45 XSDMinInclusive
	8.2.46 XSDMaxInclusive
	8.2.47 XSDMinExclusive
	8.2.48 XSDMaxExclusive
	8.2.49 XSDTotalDigits
	8.2.50 XSDFractionDigits
	8.2.51 XSDWhiteSpace
	8.2.52 XSDAny
	8.2.53 XSDAnyAttribute
	8.2.54 XSDAttributeRef
	8.2.55 XSDNamedElement
	8.2.56 XSDOccurs
	8.2.57 XSDTopLevelAttrbute
	8.2.58 XSDTopLevelElement

	8.3 XML Schema Simple Datatypes
	8.3.1 XSDDate
	8.3.2 XSDDecimal
	8.3.3 XSDDecimalType
	8.3.4 XSDDouble
	8.3.5 XSDCentury
	8.3.6 XSDBinary
	8.3.7 XSDBinaryType
	8.3.8 XSDBooleanType
	8.3.9 XSDBoolean
	8.3.10 XSDByte
	8.3.11 XSDDoubleType
	8.3.12 XSDFloat
	8.3.13 XSDFloatType
	8.3.14 XSDInt
	8.3.15 XSDInteger
	8.3.16 XSDCDATA
	8.3.17 XSDID
	8.3.18 XSDIDREF
	8.3.19 XSDIDREFS
	8.3.20 XSDListType
	8.3.21 XSDList
	8.3.22 XSDLong
	8.3.23 XSDMonth
	8.3.24 XSDName
	8.3.25 XSDNCName
	8.3.26 XSDNegativeInteger
	8.3.27 XSDNMTOKEN
	8.3.28 XSDNonNegativeInteger
	8.3.29 XSDNonPositiveInteger
	8.3.30 XSDPositiveInteger
	8.3.31 XSDQName
	8.3.32 XSDQNameType
	8.3.33 XSDRecurringDate
	8.3.34 XSDRecurringDay
	8.3.35 XSDRecurringDuration
	8.3.36 XSDRecurringDurationType
	8.3.37 XSDShort
	8.3.38 XSDToken
	8.3.39 XSDString
	8.3.40 XSDStringType
	8.3.41 XSDTime
	8.3.42 XSDTimeDuration
	8.3.43 XSDTimeDurationType
	8.3.44 XSDTimeInstant
	8.3.45 XSDTimePeriod
	8.3.46 XSDUnionType
	8.3.47 XSDUnsignedByte
	8.3.48 XSDUnsignedInt
	8.3.49 XSDUnsignedLong
	8.3.50 XSDUnsignedShort
	8.3.51 XSDURIReference
	8.3.52 XSDURIReferenceType
	8.3.53 XSDValueConstraint
	8.3.54 XSDYear
	8.3.55 XSDDecimalRange
	8.3.56 XSDIntegerRange
	8.3.57 XSDPatterned

	Conformance Issues
	9.1 Introduction
	9.2 Required Compliance
	9.2.1 XMI Schema Compliance
	9.2.2 XMI Document Compliance

	9.3 Optional Compliance Points
	9.3.1 XMI Extension and Differences Compliance
	9.3.2 Reverse engineering Compliance
	9.3.3 XML Schema Model Compliance

	References

