OIL

ontology inference and interchange

On-To-Knowledge project

Frank van Harmelen

www.ontoknowledge.org/oil

Topics for this presentation

- ■OIL as a common core language (4)
- ■aspects of OIL (5)
- ■OIL on the Web
 - Why XML is not enough (3)
 - Why RDF(S) is not enough (9)
 - OIL as RDF(S) extension (3)
- Current results & plans (4)

Frank van Harmeler

Requirements for a common core Ontology-language

- Well defined **syntax** (pretty obvious)
 - read ontologies
- Well defined semantics
 - often overlooked but equally important
 - process ("understand") ontologies
- Expressive enough
 - to capture many ontologies
- Easy mapping
 - to/from other ontology languages
- Efficient reasoning support

3

Why Reasoning Support?

- Reasoning support is key feature of OIL-core
- Important
 - as design support tool
 - for large ontologies
 - with multiple authors
 - for integrating and sharing ontologies
- Because it allows to
 - Establish inter-ontology relationships
 - Check for consistency
 - Check for (unexpected) implied relationships
- Shown useful for DB schema integration

Ingredients for a common core

- Frame Based Languages
 - intuitive for many users
 - Extensive set of modelling primitives
 - OKBC, OKBC-lite, XOL

■ (Description) Logic-based languages

- negation and disjunction (e.g disjointness)
- properties for slots/relations
 - e.g. transitivity for contained-in
- Formal semantics
- Reasoning support

• inconsistency-detection implicit superclass-detection

Proposed common core: OIL

- Based on standard frame languages (OKBC)
 - restricts & extends
- Has both XML and RDF(S) based syntax
- formalised by DL style logical constructs
- Still has frame "look and feel"
- Can still function as a basic frame language
- OIL-lite language restricted:
 - to allow for reasoning support

Frank van Harmelen

OIL-lite: Restricts Frame Languages

- No defaults
- limited axioms/rules
- only definition of ontology (not individuals)

Main reasons for this:

- Reasoning support
- Semantics

Frank van Harmelen

www.ontoknowledge.org/oil

OIL: Extends Frame Languages

- Classes can be primitive (nec. conditions)
 - elephant ⇒ animal that has-colour grey
- or defined (nec. and sufficient conditions)
 - vegetarian ⇔ person who eats meat nor fish
- Classes allowed in slot constraints
 - slot-constraint eats has-value meat (eats some meat)
 - slot-constraint eats value-type meat (eats only meat)

Frank van Harmelen

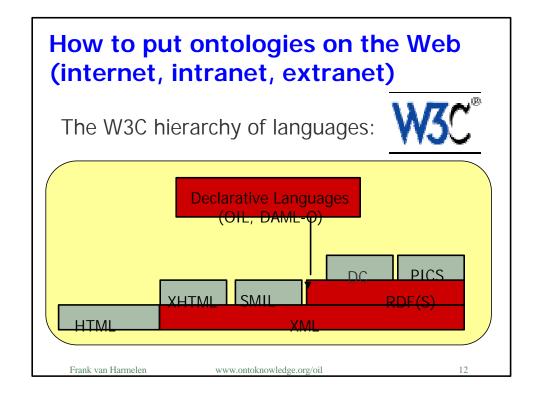
OIL: Extends Frame Languages

- Can use arbitrary class expressions instead of only class names
 - slot-constraint eats value-type NOT (OR meat fish)
- Cardinality constraints can include value-types
 - slot-constraint eats max-cardinality 1 plant
- Supports sub-slot relation
 - daughter-of sub-slot of child-of
- Slot properties
 - transitive (e.g., part-of)
 - symmetrical (e.g., connected to)

OIL has a Formal semantics

- Defined by mapping to very expressive DL
 - slot-constraint eats has-value meat, fish

=


\$ eats:meat Ç \$ eats:fish

Mapping is used to provide reasoning support from a DL system (e.g., FaCT)

Frank van Harmelen

OIL (explained by example) class-def animal % animals are a class class-def plant % plants are a class subclass-of NOT animal % that is disjoint from animals class-def tree % trees are a type of plants subclass-of plant class-def branch **slot-constraint** is-part-of % branches are parts of some tree has-value tree max-cardinality 1 **class-def** defined carnivore % carnivores are animals subclass-of animal slot-constraint eats % that eat any other animals value-type animal class-def defined herbivore % herbivores are animals subclass-of animal, NOT carnivore % that are not carnivores, and slot-constraint eats % they eat plants or parts of plants value-type plant OR (slot-constraint is-part-of has-value plant)

XML: Document = labelled tree

• node = label + attr/values + contents

- DTD: simple grammars to describe legal trees
- So:

why not use XML to represent ontologies?

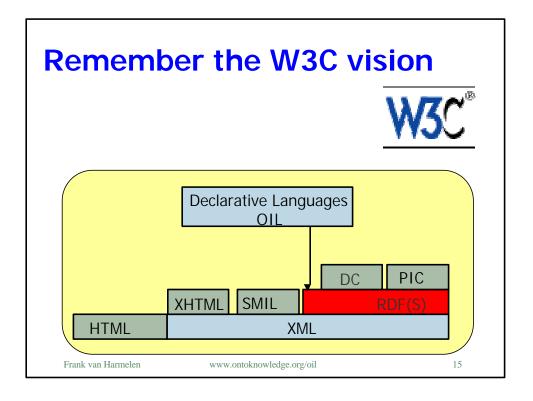
Frank van Harmelen

www.ontoknowledge.org/oil

13

XML: limitations for semantic markup

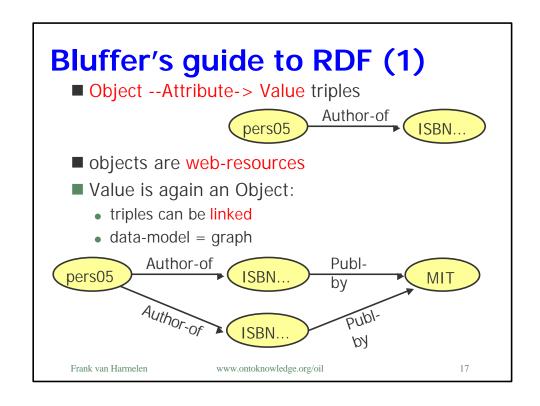
XML makes no commitment on:


- Domain specific ontological vocabulary
- Ontological modelling primitives
- ⇒ requires pre-arranged agreement on **1** & **2**Only feasible for closed collaboration
 - agents in a small & stable community
 - pages on a small & stable intranet

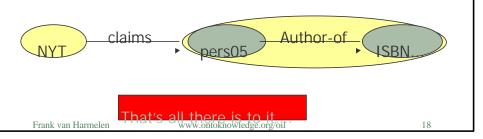
not for sharable Web-resources

Frank van Harmelen

www.ontoknowledge.org/oil


RDF(S): general background

- Intended for representation "meta-data", basis for Web-based ontology-language
- W3C recommendation
- "Because it's there":
 - pushed hard by W3C (TBL Himself)
 - basis of \$ 80M DAML program
 - Already embraced by some vendors (Netscape)


Frank van Harmelen

www.ontoknowledge.org/oil

Bluffer's guide to RDF (2)

- Object --Attribute-> Value triples
 - objects are web-resources
 - triples can be linked
 - data-model = graph
- Any statement can be an object
 - graphs can be nested

Bluffer's guide to RDF Schema

- ■So, RDF:
 - (very small) commitment to modelling primitives
 - but: no commitment to domain vocabulary
- ⇒ RDF Schema
- Define vocabulary for RDF
- Organise this vocabulary in a typed hierarchy
 - Class, SubClassOf, type
 - Property, subPropertyOf,
 - domain, range

Frank van Harmelen

www.ontol That's all there is to it...

RDF Schema syntax in XML

```
<rdf:Description ID="MotorVehicle">
  <rdf:type resource="http://www.w3.org/...#Class"/>
  <rdfs:subClassOf rdf:resource="http://www.w3.org/...#Resource"/>
  </rdf:Description>
<rdf:Description ID="Truck">
  <rdf:type resource="http://www.w3.org/...#Class"/>
  <rdfs:subClassOf rdf:resource="#MotorVehicle"/>
</rdf:Description>
<rdf:Description ID="registeredTo">
  <rdf:type resource="http://www.w3.org/...#Property"/>
  <rdfs:domain rdf:resource="#MotorVehicle"/>
  <rdfs:range rdf:resource="#Person"/>
</rdf:Description>
<rdf:Description ID="ownedBy">
  <rdf:type resource="http://www.w3.org/...#Property"/>
  <rdfs:subPropertyOf rdf:resource="#registeredTo"/>
 /rdf·Description>
```

State-of-the-art@W3C

- RDF: to represent "meta-data"
- RDF-S: to define vocabulary for RDF
- RDF is data-model + syntax
 - only a very weak semantic interpretation
 - no inference model
- RDF-S goes a step further, but still
 - no precisely described meaning
 - no inference model

Frank van Harmelen

www.ontoknowledge.org/oil

21

Quote from Ora Lassila (RDF)

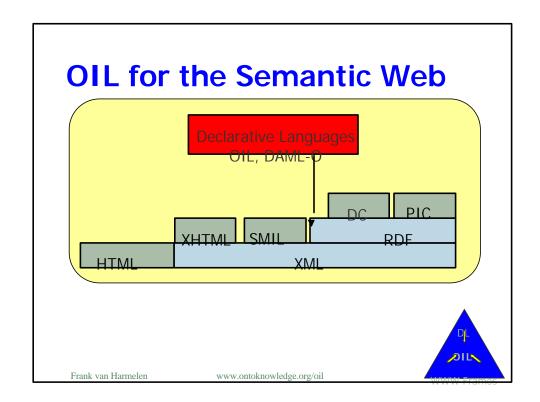
Future: We Need More!

- Structural modeling obviously not enough
 - we need a "logic layer" on top of RDF
 - some type of description logic is a possibility (after all, we are talking about frame systems)
- Exposing a wide variety of data sources as RDF is useful, particularly if we have logic/rules which allow us to draw inference from this data
- My proposal: RDF + DL = "Frame System for WWW"
 - this is probably a good starting point for DAML as well (details to be worked out by this workshop)

Quote from Henry Thompson

"The Semantic Web needs a logic on top"

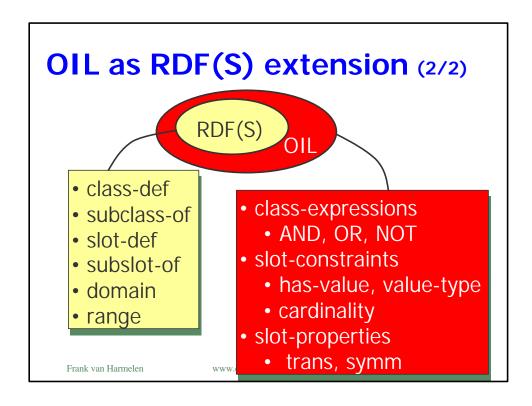
NB: "a" logic = the box with the crank


1 FOL

OIL =

modelling primitives from frames (OKBC-lite)

- + semantics and inference from **Description Logic**
- + syntax from RDF(S) & XML(S)


Frank van Harmelen

OIL as RDF(S) extension (1/2)

OIL as RDF(S) extension (1/2)

```
<rdfs:Class rdf:ID="herbivore">
    <rdfs:subClassOf rdf:resource="#animal"/>
    <rdfs:subClassOf>
    </rdfs:subClassOf>
</rdfs:Class>
```


OIL as the basis for DAML-O

- DAML = \$80M DARPA program for Semantic Web
- Ontologies are regarded as fundamental
- first version of DAML-O out < end 2000
- mandatory use for all DAML participants (W3C, Stanford, ISI, Lockheed, MIT, Nokia,...)
- OIL-lite and Standard OIL are the most likely basis for DAML-O

Frank van Harmeler

www.ontoknowledge.org/oil

OIL: currently available tools

- Definition of language
 - semantics
 - XML encoding
 - RDF encoding
- Tools:
 - translators (XSL based)
 - reasoner (FaCT, DL-based)
 - OntoEdit
- case-studies
 - GIS ontology mapping
 (KA)² ontology

Frank Con Hurmelen orld fact book knowledge.org/oil

OIL: some collaborating parties

- EU academics
 - University of Bremen
 - Univ. of A'dam
 - OU-UK
 - Univ. Manchester
 - A'dam Medical Centre outside academia
- EU IST Projects
 - On-To-Knowledge
 - IBROW
 - Comma

- US academics:
 - Univ. of Stanford (DB, KSL, Med.Inf)
 - Univ. of Maryland
 - SRI
- - W3C (RDF Working group)
 - DARPA (DAML initiative)
- EU industrials:
 - Swiss Life
 - BT
 - CognIT
 - Aldministrator

OIL: current & future work

- Layered approach to anguage extensions RDF(S) ⊂ OIL-lite ⊂ Standard OIL ⊂ OIL layer 1 ⊂...
 - axioms, concrete domains, modules, defaults,...
- Ontology construction
- Ontology evolution
- Ontology mapping

Frank van Harmelen

www.ontoknowledge.org/oil