

Role-based Infrastructures for Agents

Giacomo Cabri
Dipartimento di Scienze dell’Ingegneria – Università di Modena e Reggio Emilia

Via Vignolese, 905 – 41100 Modena – ITALY
E-mail: giacomo.cabri@unimo.it

Abstract
Multi-agent systems represent the most recent

technology to design and develop distributed
applications. Agents can also gain advantage from
mobility, i.e., the capability of changing execution
environment in world modeled as a set of nodes with
different resources and services. This technology calls
for appropriate local infrastructures to manage the
interactions among agents and between agents and
environments. We propose to build such infrastructures
on the basis of roles, which represent the behavior and
the capabilities of agents. Some examples are reported
to explain the exposed concepts in concrete fields.

1 Introduction

Software agents are proposing as the future of
distributed systems, and they will soon populate the most
systems in the world, and in particular the Internet. They
are able to perform tasks on behalf of users, due to their
main features – autonomy , proactiveness, reactivity and
sociality [6]. The complexity of the applications has lead
to the division of the global task into smaller and simpler
tasks, each one delegated to one agent. So applications
are composed of several agents, and thus called multi-
agent. In this scenario, the social behavior of the agents
implies interactions among the agents cooperating in one
application. However, in wide distributed systems, and in
particular in the Internet, interactions can occur also
among agents of different applications, which may have a
competitive behavior, to gain the use of resources [5].

The feature of mobility [7], enhancing the autonomy
of agents, implies further advantages. Generally, mobile
agents can save bandwidth by moving locally to the sites
where the resources are located, and do not rely on
continuos network connections. Users are not required to
be connected to the network continuously: they can send
their agents, disconnect, and then reconnect when the

agents have carried out their tasks to retrieve them.
Agent mobility is an important issue to be taken into

consideration when designing distributed applications
and, in particular, when defining the interactions with
other entities. This paper takes into consideration mobile
agents, but the presented ideas are also suitable to fixed
agents.

This paper proposes to build infrastructures for agents
based on the concept of role. A role is defined as the
behavior and the set of the capabilities expected for the
agent that plays such role. The concept of role has been
exploited in the Object-Oriented field to design complex
applications [9]. It recently started to appear in the agent
area [8], even if several proposals are ad hoc solutions for
given situations [2].

The paper is organized as follows. Section 2
introduces the concept of role for the agents. Section 3
presents the definition of infrastructures based on roles.
Section 4 shows some examples. Section 5 concludes the
paper and sketches some future work.

2 Agent Roles

In the agent scenario, a role can be defined as the
behavior and the set of the capab ilities expected for the
agent that plays such role. This leads to a twofold
viewpoint of the role: from the environment point of view,
the role imposes a defined behavior to the entities that
assumes it; from the application point of view, the role
allows a set of capabilities, which can be exploited by
agents to carry out their tasks. There are some
characteristics of roles that distinguish them from the
concept of agent. The role is temporary , since an agent
may play it in a well-defined period of time or in a well-
defined context. Roles are generic, in the sense that they
are not tightly bound to a specific application, but they
express general properties that can be used in different
applications. Finally, roles are related to contexts, which
means that each environment can impose its own rules

and can grant some local capabilities. As mentioned
before, roles represent behaviors that agents are expected
to show; who expects such behavior are entities external
to agents themselves, mainly organizations [11] and
environments.

3 Building Infrastructures

The key idea is that a set of roles determines a local
infrastructure to be considered as intermediate between
applications and environments. In the agent-based
Internet applications there are not sharp delimitations
between the actual application parts and the
environments. Nevertheless, it is useful to separate some
issues to simplify the design and to help the
implementation and the deployment. We propose to
model agent-based applications distinguishing four levels
(see Figure 1):
• the agent level is the one where application agents

live;
• the infrastructure level contains the roles that agents

can assume in the environment; each site has its own
set of admitted roles;

• the policy & mechanism level aims at defining the
policies local to the environment and the mechanisms
that implements the interaction among roles;

• finally, the resource level contains the local
resources, such as information and services.

agent level

resource
level

resources

infrastructure
level Role1

Role2
Role3

policy &
mechanism

level

Figure 1. A role-based infrastructure

The second level can be considered as the interface of
a site for agents. To define the environment
infrastructure, an administrator has to perform the
following steps:
1) to choose the roles her/his environment is going to

support; often, this choice is implicit in the
environment, as shown in the first example of the

next section;
2) to define the policies by which the chosen roles can

interact with each other or with the local resources.
This model of infrastructures leads to advantages at

several stages of the application life cycle. At the design
stage , roles permit the separation of concerns, which
allows the designer to concentrate on the single
(interaction) issue. At the development stage, the reuse
of roles permits to avoid the implementation of common
(already implemented by someone else) functionalities. At
the execution time, more flexibility is achieved, since each
environment can define its own local laws to rule
interactions.

3.1 The Agent Level

Agents act on behalf of users and are in charge of
carrying out tasks in an autonomous way. In this paper
we disregard the internal constitution of agents, focusing
on their external behaviors – captured by roles.

One of the characteristics of agents is network-
awareness , which means that agents perceive the
network not as a whole environment, but instead as a set
of nodes, each one with given resources and services. No
matter if agents actually move (along with their code and
data) to different execution environments or not, each
node is seen as a single, different environment, with its
own resources and laws [4].

Nodes are thought as the places where agents interact,
both with other agents and with resources, to carry out
their task. Interactions among agents can involve agents
of the same application, or can occur between agents of
different applications. In the latter case, for instance
agents can negotiate information or compete for limited
resources.

Finally, agents are usually foreign with regard to a
node, which means that they come from other nodes.
Nevertheless, there could be agents local to a node, for
instance representing services that nodes make available
to incoming agents.

This scenario calls for the definition of general
infrastructures, which can be adapted to different
applications and situations.

3.2 The Infrastructure Level

In our proposal, an infrastructure is composed by a set
of roles related to the same application context. Such
definition implies two important features of an
infrastructure:
• it is not bound to specific agents, which can belong to

whatever applications, can have their own tasks and
can be designed and implemented separately from the

site;
• it can host agents, providing a “wrapper” that not

only accepts them, but also assigns them capabilities
and a given behavior.
In Figure 1 the set of roles is represented by a “table”

where each role is represented by a “hole”, in which an
agent can place itself in order to play such role. There
could be several “holes” of the same role, if a site can
host more than one agent playing the same role.

This idea of infrastructure enforces the locality
concept introduced in the previous subsection. In fact,
each site can decide how to organize the local hosting of
agents and, by defining also mechanisms and policies,
can rule the local interactions.

3.3 The Policy & Mechanism Level

This level deploys the policies that rule the local
environment, and provides the mechanisms for the
interactions both among agents and between agents and
resources. While the previous level can be considered as
the interface of a site toward the external world, this level
enacts the site’s laws.

The simplest example of policy is to allow or deny an
interaction between two given roles. Thanks to their
autonomy and reactivity, agents can handle situations
where something is forbidden by local rules without
giving up and aborting their job.

Though different from policies, we include
mechanisms at this level because, as policies, they enable
the interactions among roles and with local resources.

3.4 The Resource Level

At the last level we can find the resources local to a
site. Usually, they are legacy resources that are hard to
change or affect. So, it is important that the policy &
mechanism level makes them available in a useful format
for agents.

Also in this case, the use of roles helps in abstracting
from the single agent or application, because mechanisms
has to be enacted for a generic role, covering the wide
range of actual agents that play such role.

Our proposal permits to disregard how local resources
are managed, providing that appropriate access
mechanisms are supplied.

4 Examples

This section presents some examples of applications
where a role-based infrastructure is defined with the
corresponding policies and mechanisms.

4.1 Auctions

The first example relates to the auctions. Auctions
represent an interesting negotiation means in the Internet
context. In an auction there are entities (called sellers)
that make goods/resources available and entities (called
bidders) that are interested in using/acquiring such
goods/resources. Moreover, there are intermediate
entities (called auctioneers) in charge of actually
performing the negotiation. The price of the resources
sold by sellers via an auction is not fixed, but it is
dynamically determined by the interest of the bidders [1].

We can figure out that agents negotiate resources or
goods via auctions, at given Internet sites representing
auction houses [10]. Of course, the way the sellers, the
bidders and the auctioneers interact is not bound to a
given application or to a given environment, and so they
can be considered roles that whatever agent can assume.
In this case, the choice of the roles is tightly driven by
the environment: the bidder, the seller and the auctioneer
(see Figure 2). So the former step is accomplished.

The latter step relates to the choice of the local
policies of interaction among roles and between roles and
the environment resources.

agent level

resource
level

resources

infrastructure
level bidder auctioneer seller

bid put_on_sale
policy &

mechanism
level

Figure 2. A role-based infrastructure for an
auction house

The infrastructure built by roles is very flexible,

because every environment can decide its own local
policies and mechanisms that can be different from other
sites’ policies. There can be several reasons to have
different policies or mechanisms. For example, in one
environment the bidders could be allowed to talk each
other, while in another site they cannot to avoid
collusions; this permits to impose local rules or social
conventions [11]. Another reason could be the different
implementation of the auction mechanisms: the Figure 2

shows a message-passing oriented implementation,
where, for instance, the bidder agent can bid by sending a
message to the auctioneer agent. But if the
implementation of the bidding mechanism is based on
another model, the local policies must be different. For
instance, if the auction relies on a data-oriented model
such as tuple spaces [3], the bidding action is
implemented as writing information in the local interaction
space, as shown in Figure 3. This example shows that the
same set of roles can be adapted to different
implementations.

agent level

resource
level

resources

infrastructure
level bidder auctioneer seller

bid
put_on_sale

policy &
mechanism

level

Figure 3. The same infrastructure relying on a
data -oriented model

4.2 Restaurants

This example is taken from the human life, and may not
be related to a real application based on agents; however,
it is meaningful to understand how roles can be defined
and how the interactions among them can be established.

agent level

resource
level

resources

infrastructure
level customer waiter chef

order give_meal
policy &

mechanism
level

Figure 4. A role-based infrastructure for a
restaurant

In this example, a node represents a single restaurant.
We define three roles: the customer, the waiter, and the
chef (see Figure 4). These roles can be thought as
instances of the more general roles defined in a client-
server model with an intermediate entity (the waiter)
between the client (the customer) and the server (the
chef), such as several 3-tier solutions.

The role of the customer can have the following
capabilities: ask for the menu, order the meal, accept the
meal, pay the bill. Note that “eat the meal” is not a
capability of the role of customer, while it should be of
the agent.

The waiter role has different capabilities: take order,
order the meal (to the chef), accept the meal (from the
chef), give the meal (to the customer), accept the
payment.

Finally, the chef can: accept an order, give the meal.
Again, the cooking of the meal is not an external
capability of the chef role, but an intrinsic capacity of the
chef agent.

The policy & mechanism level ensure that such
interactions occur, for example that the customer order
the meal to the waiter and the chef gives the cooked meal
to the waiter. Some interactions may be disabled, such as
the direct interaction between the customer and the chef
(see Figure 4).

Now, let us suppose that the scenario changes. To
save money, little restaurants do not have the waiter, but
the chef itself is in charge of accepting and satisfying the
customers’ requests (see Figure 5).

agent level

resource
level

resources

infrastructure
level customer chef

order give_meal
policy &

mechanism
level

Figure 5. A restaurant without waiters

In this case, the infrastructure can exploit the same
roles – disregarding of course the waiter role. On the one

hand, the agents can assume the same roles as in the
previous scenario, and they can perform the same actions
in the restaurant. On the other hand, the policy and
mechanism level must be changed in order to allow the
new interactions.

This example shows that the same roles can adopt
different interaction models without affecting the role
definitions and, as a consequence, the agents’ way to
achieve their goals.

5 Conclusions and Future Work

This paper has presented the building of
infrastructures for agents, based on the concept of role.
This permits to achieve separation of concerns between
the interface of node to the agents (in terms of both
capabilities and restrictions) and the actual
implementation of policies and mechanisms, which must
suit the local laws.

This way of building distributed infrastructures opens
several research issues.

First of all, we are exploring the developing of a system
for the definition of roles and their concrete exploitation
in implemented applications. Such system should address
interoperability to suit the openness of the Internet. We
are planning to use XML for the definition of roles and
XSL for the translation into documentation and real code.

Second, it could be interesting the availability of
“repositories” of roles, from which agents can chose the
more appropriate for their tasks. Which could be the most
appropriate technology to create such repositories? And
which access policies must be defined? If each repository
is seen as a resource, meta-roles could be defined to rule
the access to them. Moreover, the fact that agents could
assume roles dynamically at runtime, imposes the study
of methodologies to make this approach effective.

Third, effective tools are to be developed to support
the building of infrastructures. They can help both the
site developers and the site administrators, which can
decide to change the local policies or mechanisms.

Acknowledgements

Work supported by the Italian MURST in the project

“MUSIQUE – Infrastructure for QoS in Web Multimedia
Services with Heterogeneous Access” and by the
University of Modena and Reggio Emilia with a found for
young researchers.

References

[1] Agorics, Inc., “Going, going, go ne! A survey of

auction types”, http://www.agorics.com/new.html,

1996.

[2] M. Becht, T. Gurzki, J. Klarmann, M. Muscholl,

“ROPE: Role Oriented Programming Environment for

Multiagent Systems”, Proceedings of the 4th IFCIS

Conference on Cooperative Information Systems

(CoopIS'99), Edinburgh, Scotland, September 1999.

[3] G. Cabri, L. Leonardi, F. Zambonelli, “Auction-based

Agent Negotiation via Programmable Tuple Spaces”,

Proceedings of the 4th International Workshop on

Cooperative Information Agents (CIA 2000), LNCS

No. 1860, Boston (USA), July 2000.

[4] G. Cabri, L. Leonardi, F. Zambonelli, “Engineering

Mobile-agent Applications via Context -dependent

Coordination”, Proceedings of the 23rd International

Conference on Software Engineering 2001 (ICSE) ,

Toronto (C), May 2001, ACM Press.

[5] S. Clearwater, “Market-based Control: a Paradigm for

Distributed Resource Allocation”, World Scientific ,

1995.

[6] N. R. Jennings, M. Wooldridge, eds., “Agent

Technology: Foundations, Applications, and

Markets”, Springer-Verlag, March 1998.

[7] N. M. Karnik, A. R. Tripathi, “Design Issues in

Mobile-Agent Programming Systems”, IEEE

Concurrency, Vol. 6, No. 3, pp. 52-61, July-September

1998.

[8] E. A. Kendall, “Role Modelling for Agent Systems

Analysis, Design and Implementation”, IEEE

Concurrency, Vol. 8, No. 2, pp. 34-41, April-June

2000.

[9] B. B. Kristensen, K, Østerbye, “Roles: Conceptual

Abstraction Theory & Practical Language Issues”,

Special Issue of Theory and Practice of Object

Systems on Subjectivity in Object -Oriented Systems,

Vol. 2, No. 3, pp. 143-160, 1996.

[10] T. Sandholm and Q. Huai, “Nomad: Mobile Agent

System for an Internet -Based Auction House”, IEEE

Internet Computing, Special issue on Agent

Technology and the Internet, Vol. 4, No. 2, pp. 80-86,

March-April 2000.

[11] F. Zambonelli, N. R. Jennings, M. Wooldridge,

“Organizational Rules as an Abstraction for the

Analysis and Design of Multi-agent Systems”,

Journal of Software Engineering and Knowledge

Engineering, to appear, 2001.

