CHARTERIS

A Meaning Definition L anguage
Draft 2.02

Robert Worden, 22 May, 2001
rpw@charteris.com

Abstract: A Meaning Definition Language (MDL) is proposed, whose purpose is to
define what XML documents mean and how they express that meaning. MDL defines
what a document can mean in terms of a UML class model or RDF Schema, and defines
how to extract the meaning, in terms of XPath. MDL is a simple language. It has many
applications such as: (1) validating that an XML language can convey its intended
meaning, (2) automated translation of documents between XML languages, (3) automated
retrieval of information on the Semantic Web, (4) supporting meaning-level XML query
languages, and (5) programming APIs to XML at the level of meaning, independent of
document structure. MDL will enable tools and users to interface to XML at the level of
meaning rather than structure. MDL-based automated XML translation and a meaning-
level query language are already supported.

Keywords. UML, XPath, XSLT, XML Schema, Semantic Web, RDF Schema,
DAML+OIL, Schema Adjunct Framework

02001 Charteris plc
MDL2.02.doc

Page 2 of 2
Charteris Working Paper
A Meaning Definition Language
8 August, 2001

CONTENTS
1. INTRODUCTION L., 3
2. HOW XML EXPRESSES MEANINGS.......ooo oo, 6
2.1 A MINIMAL MODEL OF XIML MEANINGS.uuiiiittteieeeeaeeeeesaesesessassssessssssesnssssssnssesesnns 6
2.2 HOW XML REPRESENTS OBJIECTS. . e seeessssssssss s s snnsnsnnssnnnnnnns 7
2.3 HOW XML REPRESENTS SIMPLE PROPERTIESuuuieteeeeeeeessaaasesseresessnaassesssssessnnnaaseseeees 9
2.4 HOW XML REPRESENTS A SSOCIATIONS ...uuuueesesssesss s ssnnsnsnsnnnsnnns 10
25 (DT EST 1SS\ [T 12
3. PROPOSED MEANING DEFINITION LANGUAGE ... 14
31 REQUIREMENTS AND DESIGN CHOICES.......cctitieeiiiieeeceitteeeeesteeeeseeireeeeeenneeesesnneeaeenns 14
3.2 THE CORE PRINCIPLE OF IMIDL ...ttt ssssssnsssssssnsssnnnnnnnnnnnns 15
3.3 STRUCTURE AND MEANING OF IMIDL ..ottt e e e e e e eeeaaaeeseeaaeeennns 16
3.3 1 The DoCUMENE BIEMENT ..ottt e e e et e e e e e e e e ee e eeeeeeeaaan 17
3.3.2 The 'ElemMEN ElOMENL........ees 18
3.3.3 The AttrDULE EIEMENT. ...ttt e e e e e e e e e e e e e e eeeeeeeaeeeaaans 25
34 A SIMPLIFICATION OF THE LANGUAGE ...ttt eeeeeee e ae e e e eaeeeeeeaaaeseeeaseesennnnns 16
35 EMBEDDING MDL IN XIML SCHEMAS. ...t e 26
3.6 LY I TN {0 TR 27
3.7 SUMMARY OF THE LANGUAGEcettititietieeeeeeeeeeeeeesereseresereseresesereeereeerererererererereeererereeens 27
4. VALIDATION AND DOCUMENTATION . ..ottt e e e e e eeeeeaaeeeeaaaeeeens 28
4.1 VALIDATION AGAINST THE LANGUAGE SCHEMA ... 28
4.2 VALIDATION AGAINST THE SEMANTIC IMODEL ...cceevtieeeeeeeeeeeeeieeeeeeeeeeeeeeessnaaasseseseeennns 29
4.3 VALIDATION JOINTLY AGAINST THE SCHEMA AND THE SEMANTIC MODELvvuun.... 29
4.4 VALIDATION OF XML DOCUMENT INSTANCEScetuiiiittieeeeeeseeessassesesnsssessnnssssssnnnes 30
45 ANALYSISAND DESIGN OF XML APPLICATIONS. . .uuuuuusssssnnnnnns 31
4.6 DESIGN OF XIML LANGUAGES. ...cctuitiitteteeteteeeeetsassessssssssssssessssssessssassessssassessssnnreeees 31
5. OTHER POTENTIAL APPLICATIONSOF MDL oo 32
5.1 MEANING-LEVEL QUERY OF XML DOCUMENTS.....cccvttiiiieitreesnieeesieeessieessseessnsee e 33
52 SPECIFICATION AND GENERATION OF XML TRANSFORMATIONS...ccitttererereeererererererenens 34
53 MEANING-LEVEL APISTO XML DOCUMENTS. ...cuutiiitteieeeerereeeeseseeessasseesssnssessssnnseeees 35
54 INTERFACES TO RELATIONAL DATABASES ...vvvuvuettieitiesessssssssssssssssssssnsnsnsssssnsnnnsnsnsnnnsnnns 35
55 RAISING THE LEVEL OF XML 1ottt ettt e e ettt s e e eeaan s e e eesn s s e sennsseeennnsaeees 36
6. MDL AND THE SEMANTIC WEB ... 37
7. DESCRIBING SEMANTIC MODELS... oot teee e e e e e e ee e e e e aeeaeeens 39
8. APPENDIX —SCHEMA AND MDL FOR MDL oottt eeeereeeeerereeereeeeeeeeees 40
REFERENGCES. ... nnnnnnnnnnns 41

CHARTERIS

MDL2.02.doc

Page 3 of 3

Charteris Working Paper
A Meaning Definition Language
8 August, 2001

1.

INTRODUCTION

This paper proposes a Meaning Definition Language (MDL) whose purpose is to define
what the documents in an XML language can mean, and how they express that meaning.

MDL addresses the data-centric end, as opposed to the text-centric end, of the XML
spectrum — XML whose primary audience is not a human reader, but a computer program
which will process the information, respond to it, store data itemsin a database, and so
on. MDL isrelevant to the W3C Semantic Web Programme.

A key component of the Semantic Web is RDF Schema, which can be used (on its own or
with ontologies such as DAML+OIL) to define what any resource — including an XML
document — can mean. While RDF Schema gives the means to define what an XML
document means, it does not define how it meansiit. It does not define which structures
within an XML document express particular kinds of meaning, or how you access them.
That is the problem which MDL addresses — defining what meaning is conveyed, and
how it is conveyed.

RDF Schemais about semantics; XML schema languages are about syntax; MDL is
about the bridge between syntax and semantics.

To define what an XML document means, you need an ontology. MDL uses a minimal
ontology framework built on the concepts of UML class diagrams - of objectsin classes,
simple properties, and associations. Thisis closely equivalent to RDF Schema, or a subset
of DAML+OIL. MDL could be extended to handle more expressive ontologies if
required.

MDL defines how an XML document conveys meaning by using XPath. To define how
an XML document conveys some meaning, you need to define not just what information
is on each node, but also how to navigate around the document, to pick up the different
kinds of meaning correctly. MDL does this systematically for all meanings about objects,
simple properties, and associations, using a common X Path-based notation. That isthe
core of MDL.

The key benefit of MDL isthis: users and application developers can express their needs
by saying what meaning they need to know. Using MDL, automated tools can then
convert the ‘what’ into the *how’, to navigate XML documents to get that meaning. The
user then does not need to know the ‘how’ of document structure and navigation. MDL-
based tools can provide structure-independent, meaning-level interfacesto XML
documents.

MDL has awide range of potential uses, including:

XML Queriesand Presentation: Using MDL in conjunction with future XML query
and presentation tools, it is possible to express both query conditions and query
results in domain-model semantic terms, rather than in terms of XML structure. This
meaning-level query language shields users from XML structure, and enables users to
use the same query across multiple XML languages which express the same meanings

CHARTERIS

MDL2.02.doc

Page 4 of 4
Charteris Working Paper
A Meaning Definition Language
8 August, 2001

in different structures. A working demonstrator of a meaning-level XML query
language now exists.

* Insulating Applicationsfrom XML Structure Differences. We envisage future
application development tools which, by using MDL, allow developersto view XML
documents in terms of the meaning they convey, independent of their structure. For
instance, we have developed a Java-to-XML AP, derived from the MDL, which
delivers Java objects from an XML document in the classes of a semantic model of
the domain (UML or RDF Schema), rather than (as in interfaces such as DOM)
classes based on XML structure.

* Automated XML Transformation: The purpose of transforming an XML document
from one language to another is to preserve its meaning. MDL gives a structured
catalogue of the meanings of any two XML languages, which defines their meaning
overlap and so defines what can be translated from one to the other. The meaning
overlap between languages can be found automatically from their MDL definitions.
MDL can act as a specification of the trandlation, and can also (by using the * how’
information) generate the XSLT to do the trandation. An MDL-based tool exists
which can do this now (XMuLator from Charteris).

* The Semantic Web: The vision behind the W3C Semantic Web initiative is that the
meaning and content of resources on the web should be accessible to machine
processing, so that automated agents can do useful tasks. To do this, those agents will
need to know not only what information isin aresource, but also how to extract it.
MDL provides the meansto do this, for all data-centric XML documents — not just for
RDF documents.

* Documentation: Authors of XML languages are often quite lax in defining what
those languages mean - perhaps hoping that the tag names make clear what is meant.
If there were asimple XML -based way to define XML language meanings (i.e.
MDL), language authors might be encouraged to define meanings explicitly in MDL,
just as they now define XML syntax in DTDs or schemas. Language users and
application designers would benefit from the extra clarity.

e Language Validation: From the MDL and the schema of a language, you can check
automatically that the language structure is capable of conveying the intended
meaning. Discrepancies between the language structure and its intended meaning (of
which there are many) can be flagged automatically.

* Support of XML Application Design: In MDL, each XML language meaning is
defined in terms of a UML semantic model, which should be the same model asis
used to design applications using the XML — or should relate very closely to that
model. The MDL, XML schemaand UML model can then underpin the links between
the XML and the applications which will use it, more precisely than an XML syntax
definition could do on its own. For instance, if arelational database is mapped onto
the same UML model, the validity of any XM L-database links can be checked
automatically from the MDL; you can check that loading XML into arelationa
database does not change its meaning.

In summary:

CHARTERIS

MDL2.02.doc

Page 5 of 5
Charteris Working Paper
A Meaning Definition Language
8 August, 2001

MDL will enable both applications and usersto interfaceto XML at thelevel of its
meaning, rather than itsstructure.

MDL provides asimple and practical bridge from the structure level to the meaning level.
The history of programming is a progression from implementation-centred tools to user-
centred, meaning-centred tools — from assembler code to objects, from Codasyl to
Relational, from 3270 to GUI. Our interfacesto XML must inevitably rise to the meaning
level, and MDL can help them to do so.

CHARTERIS

MDL2.02.doc

Page 6 of 6

Charteris Working Paper
A Meaning Definition Language
8 August, 2001

2.

2.1

HOW XML EXPRESSES MEANINGS

A Minimal Model of XML Meanings

Before describing the “how’ of XML meanings, we must first define the ‘what’. A
minimal model of XML meanings assumes that any XML document can express
meanings of three kinds:

* About Objectsin Classes: information of the form “there is a student” or “there are
three cars’

* About the Simple Properties of the Objects: “the student’s name is John” or “the

make of thecar is‘Volvo'”.

* About Associations between the Entities: “this student owns that car” or “this
manufacturer made that product”.

We use the term *simple property’ to refer to a property whose value can be naturally
expressed in asingle character string, or XML simple type. Any more complex property
is taken to be an association to one or more complex objects. Simple properties have
values which are typically stored as XML attribute values, or as the text values of
elements with no child elements.

These three concepts — of objects, ssimple properties and associations — are the building
blocks of UML class diagrams. They have a successful track record of application in
modelling of information and knowledge — for instance, in Entity-Relation Diagrams and
Al frames. More recently, RDF Schema, which is proposed as a foundation for defining
the meanings of web resources in RDF, embodies the same three concepts (in RDF and
RDF Schema, the term ‘ property’ encompasses both what we here call * simple properties
and ‘associations’ — see below).

More expressive ontology formalisms, such as DAML+OIL and KIF, arealsoin
development and in use. We envisage that in due course, MDL might be extended to use
more of these formalisms. For the moment, however, alot can be done with the minimal
model of meaning above; we propose that MDL should initially support just the three
core types of meaning above. We propose to use a subset of DAML+OIL interchangeably
with UML (XMI) to describe those elements of meaning that MDL supports. These
languages say what an XML document can mean; MDL also says how it means it.

It is hard to see how much meaning can be expressed at all without using all three of the
core meaning types. Inspection of any data-centric XML document will show that it
expresses meanings of all three types: about objects, simple properties and associations.
That is why we have adopted the three types as our minimal model of XML meaning.

At this point, we could strive to define more precisely just what is an object, what is a

simple property and what is an association. This would get us into deep semantic waters,
where actually thereisalot of user choice available. For instance, simple properties can
often be turned into associations (e.g. the smple property ‘birth date’ can be regarded as

CHARTERIS

MDL2.02.doc

Page 7 of 7

Charteris Working Paper
A Meaning Definition Language
8 August, 2001

2.2

an association between a person and a date) and associations can be turned into objects
with other associations (e.g. the association ‘ person owns car’ can be turned into an object
‘ownership’ with associationsto ‘owner’ and ‘owned’ roles, and with simple properties
such as ‘start date’). For the moment, we prefer to leave these choices open to users (i.e.
to analysts who build class models of domains), with only two stipulations:

» Simple properties aredefined to be atomic — simple properties should be the sort of
thing whose value you can express by a simple text string, and so would typically put
into an XML attribute, or element with simple type. If you are tempted to make a
more complex property, don’t; make it arelated object of a different class.

» Simple properties are defined to be single-valued (whereas UML allows
‘attributes’ to be multiple-valued). What might look like a multiple-valued property
can be modelled asa 1:M association to objects which carry the multiple values.

With these definitions, we can now discuss how XML documents typically express the
three main elements of meaning. What is said in English in the next three sub-sections,
MDL is designed to say formally.

MDL is designed to address the typical ways people use XML to express meanings, not
necessarily to address all conceivable ways people might use XML to express meanings.
However, it may turn out that the general X Path-based underpinning of MDL can be
extended to accommaodate other ways of expressing meaning in XML, beyond those we
discuss below.

How XML Represents Objects

In principle, there might be many different ways for an XML document to denote the
existence of an object in some class, but in practice only one way seems to be commonly
used.

Objects are ailmost always denoted by XML elements. Thereistypically a1l:1
correspondence between element instances and objects in aclass. There are some
exceptions to this, described below.

The simplest way that an element can represent an object is by saying in effect ‘every
element with tag name T represents one object in class C'. There are two useful
elaborations of this scheme:

e Youmay say ‘an element with tag name T represents an object of class C only if it
can be reached by apath /R/S/.../T from the root of the document’. Elements with the
same tag name reached by different paths may have different meanings

* Youmay also say ‘an element with tag name T represents an object of class C only if
it has an attribute A with value V (or a nested element with some specia value)’'. This
enables one element type to represent objects of several different classes (typically all
subclasses of afairly narrow superclass) conditionally, depending on the value of
some attribute.

CHARTERIS

MDL2.02.doc

Page 8 of 8
Charteris Working Paper
A Meaning Definition Language
8 August, 2001

More complex elaborations are possible. The class of the denoted object might depend on
the values of severa attributes taken together, or on both the path and attribute values.
These forms can all be expressed in MDL.

There is sometimes a choice about which element tag names denote objects of a particular
class. For instance, if an element with tag T always has just one child element with tag
name V (along with other children), then objects of some class C might be denoted either
by the T elements or the V elements; it makes no difference, becausethe Tsand Vsarein
1:1 correspondence to one another. In practice there is usually amore ‘natural’ choice out
of the two.

There are aways paths in the document (defined by XPaths) from the element which
represents an object to the other nodes (see below) which represent the simple properties
and associations of that object. If you have a choice of which element type denotes an
object (like the T/V choice above), choose the one which has the smplest XPathsto its
properties and associations. That should be regarded as the more ‘natural’ choice.

If an XML document denotes objects of a certain class, you need to know just which
objectsin the class it denotes. For instance, if element T denotes objects of class ‘ person’,
we need to know which people are included in a particular document — surely not all
people living or dead. Part of the meaning definition is ‘ which objects of a certain class
are represented in a given document?

Thisis defined by the Inclusion set conditions for the objects in the document — the
conditions an object must satisfy to be included in the document. Some inclusion sets are
(from information visible in the document itself) arbitrary — such as ‘this document
represents just one purchase order’. Other inclusion sets depend on simple properties of
the objects (‘all employees of the company with salary less than $50,000') while others
depend on associations to other objects represented in the document (“all employees who
work in the departments represented in this document’), or a combination of the two.

Whiletypically thereisal:1 association between XML elements and the objects they
represent, there are some exceptions:

- Itisquite common for an XML document to use the style of a de-normalised
relational database — for instance, to have a set of ‘product’ elements, each of which
contains (nested within it) information about the manufacturer of the product. Then
information about one manufacturer (who makes several products) may be stored
redundantly once for each product, much asin a de-normalised relational table. One
‘manufacturer’ object is represented by several elements. Aswe shall see below,
MDL is built around XPath, and XPath 1.0 does not give us the means to remove the
redundancy from this redundant representation in MDL. However, the XQuery
proposal contains a‘distinct’ function which would enable MDL to defineit,
effectively removing the duplicates in the results of an XPath expression. For
simplicity, we will not discuss this case further in this draft.

- Objects can on occasion be represented by XML Attributes. Although an XML
attribute can have little internal structure (which therefore gives little chance to
represent the properties and associations of the object internally to the attribute)
nevertheless, properties and associations can be represented by nodes which can be
found from the attribute node — e.g. ‘ peer’ attributes of the same element. MDL
accommodates these cases.

CHARTERIS

MDL2.02.doc

Page 9 of 9

Charteris Working Paper
A Meaning Definition Language
8 August, 2001

2.3

- Anobject is occasionally represented by multiple elements in away which (unlike
the ‘denormalisation’ technique above) does not represent the properties and
associations of the object redundantly. In stead, different properties of the same
object are represented inside different elements, each of which ‘represent’ the object
just as much as any other. In effect, the object is represented as pieces of ajig-saw
puzzle which can be put together. One of the recommended XML encodings of RDF
allows such a representation of objects.

How XML Represents Simple properties

Knowing an object exists, without knowing any of its properties, is typically not much
use. An XML document needs to convey the values of some simple properties the objects
which it represents — that is, to represent those properties. As described above, because of
our choice that simple properties should have simple atomic values, simple property
values are easily represented as the values of attributes, or as the values of elements with
simple types. In practice, ssmple properties are nearly always represented in one of these
two ways.

Either asimple property is represented by an attribute (i.e. the value of the attribute
represents the value of the simple property)

Or the value of asimple property is represented by the text value of an element.

Again, it is possible to think of exceptions (e.g. where anumeric simple property is
represented by position of an element in alist of elements), but these are not very
common and we will not discuss them further in this draft. We believe they can be
accommodated in the X Path-based approach we propose.

Aswhen XML represents objects, the fact that *an element with tag name X represents a
simple property P need not be unconditional; it may depend on other conditions being
true. For instance, there is a generic (uncommitted-schema) style of using XML in which
aperson might be represented as:

<per son>

<per sProp propNane="age’ propVal ue
<persProp propNanme="sex’ propVal ue

‘200 />
‘mal e’ />

</ ber son>

This uncommitted style alows you to represent all sorts of unanticipated properties of
people, without having to change your DTD or schema. However, the attribute
‘propValue only represents the simple property ‘age’ conditionally - when another
attribute ‘ propName' of the same persProp element has the value ‘age’.

If the value of an element represents the value of a simple property, you need to know
precisely which object that property belongs to. We assume for simplicity that this must
be one of the objects represented in the same document. As these objectsarein 1:1
correspondence with elements of some type within the document, one possible question is
then: which element represents the object which owns the property represented by this
element/attribute?

It turns out that thisis not the important question. The important question is: given an
element which represents an object, how do you navigate in the document, to get to an

CHARTERIS

MDL2.02.doc

Page 10 of 10

Charteris Working Paper
A Meaning Definition Language
8 August, 2001

2.4

element or attribute which represents one of the simple properties of the object? Often
this navigation istrivial; the element representing a property is one of the immediate
children of the element representing its object, or an attribute representing a property
belongs to the element representing the object. In some casesit is not so trivia. For
instance, the simple property may be represented by a node branching from some node
higher in the tree, above the element representing the object. Other remote nodes can be
used, and are sometimes used in practice.

In al of these cases, to specify how the XML represents simple properties, you need to
define the path from the node representing an object, to a node representing one of its
properties. X Path is an appropriate notation to define these paths. When a node represents
asimple property only conditionally, the condition can either be represented in the X Path
expression, or could be represented separately.

Only certain node types and paths are appropriate to represent a simple property of an
object. There are three main tests of appropriateness:

* The XPath must be capable of reaching a node of the correct name.

» Since each simple property must be single-valued, the XPath from the element
representing the object to the element representing its attribute should be unique —
guaranteed to give a node-set with at most one node init.

* When the simple property is an obligatory (non-optional) property of the object in the
UML model (for instance, when that property is a part of arequired unique identifier
for objects), then the XPath from the element representing the object to the element
representing the property must be guar anteed to give one and only one nodein its
node-set.

These tests of appropriateness can often be made automatically — for instance, using the
XML schemafor the language.

How XML Represents Associations

For representing objects and their simple properties, the main choices offered by XML
(and used in practice) are quite limited — although, as we have seen, there are variations
and elaborations within those main choices.

For representing associations, however, XML offers three markedly different methods,
each of which iswidely used, and which have profound consequences for document
structure. Within the three main types of representation, variants can be found. The three
main ways to represent an association are:

* By Nesting of Elements: To represent an association between objects of classes A
and B, the elements representing B objects may be nested inside the elements
representing A objects — either asimmediate children, or more remote descendants.
(typically thiswill beal:1 or 1:M association; but it need not be — see below).

e By ldentical Elements: For example, if each product in a purchase order is made by

just one manufacturer, then the simple properties of the manufacturer may be grouped
inside the same element as the simple properties of the product. Then that one element

CHARTERIS

MDL2.02.doc

Page 11 of 11
Charteris Working Paper
A Meaning Definition Language
8 August, 2001

effectively represents the product, the manufacturer and the association between
them.

* By Shared Values: For example, el ements representing ‘ student’ objects and
elements representing ‘ course’ objects are not nested inside one another; but
somewhere inside each ‘ course’ element can be found the names of all students
attending that course. Then the N:M association ‘ student attends course’ is
represented by values (student names) shared between the student element and the
course element.

All three of these representations are commonly found in XML languages. The first two
types occur frequently in ‘hand-crafted’ languages to represent the key (hierarchical)
relations of the application domain, while the third is more common in languages which
must represent a wide range of associations — particularly N:M associations—in a
systematic way.

Within the third type of representation, many variants are possible. The shared values
may be element values, or attribute values, or IDs and IDREFs. An N:M association may
be factored out into two different 1:M associations with a new class of object in the
middle (likea UML ‘association object’). Objects of this new class may be represented
by other elements remote from the el ements representing objects at the ‘ends’ of the
original association.

While these representations of associations differ profoundly from one another, we can
nevertheless use a common framework to describe al of them.

For all representations, we take the view that each instance of an association is
represented by one node of the XML tree. Regardless of the cardinality of an association,
any one instance of the association binds together two individual objects — the two objects
at either end of the association. So to define how an XML document represents an
association, we first define which node type (= element name or attribute name)
represents an instance of the association. Call these nodes the Association Nodes. We
next define how each association node is bound to the two elements representing the
objects at either end of the association. Thus we define how the association node ‘finds
its two object instances.

For instance, when an association is represented by element nesting, the association node
istheinner of the two nested elements, which also represents the object at one end of the
association. Finding that object node from the association node is done via atrivia ‘stay
here’ path. The path to find the element representing the other object (at the other end of
the association) consists of going up the tree to an ancestor node.

For all three types of representation we can define how the association node finds the two
object-representing nodes by X Path expressions. Conditions in the X Path expression can
represent sharing of values, and can aso denote conditional representation —when a node
only represents an association subject to other conditions. Thus X Path gives us the tools
we need to define how an XML document represents an association, by any of the three
main methods above.

We may need to start at either end of the association, and navigate to the other end. This
means we need to know both the X Paths to navigate from an association node to each of
its‘end’ objects, and the X Paths to navigate from an object-representing element to the

CHARTERIS

MDL2.02.doc

Page 12 of 12

Charteris Working Paper
A Meaning Definition Language
8 August, 2001

2.5

association nodes for one of its associations. This makes four different Xpaths. To define
how any given association is represented, al four should be provided.

Aswhen representing simple properties, it isnot a priori obvious that a given association
node type and X Paths are appropriate to represent some association. The conditions to
decide ‘appropriateness’ are quite complex, depending both on the cardinalities of the
association, and the inclusion set conditions of the objects at either end. These
appropriateness conditions can be checked automatically from the MDL and the
schema/DTD.

For instance, if an association (A Rel B) is represented by nesting of the A elements
inside the B elements, this requires that the inclusion sets of object A are of the form
‘include only those A which have an association (A Rel B) to some B represented in this
document’; for an element representing any A which does not have this association, there
would be no placeto put it.

Discussion

We believe, from examination of a modest number of XML languages, that the three core
types of meaning — about objects, their simple properties their associations - do a good
job of underpinning all the meanings which are commonly expressed in data-centric
XML documents. This might have been expected, because the same core types of
meaning have done a good job of modelling the application domains of computer
systems, for many years. UML class diagrams have evolved to their present form through
many years experience.

It may seem to be a deterrent that, before you can express the meaning content of an
XML document in thisway, you first have to build a UML class model of the domain.
This might seem a prohibitive effort. We believeit will not be, for three reasons:

» For many domains, UML class models already exist.

* UML Class models are closely equivalent to RDF Schemas, which underpin the
semantics of the Resource Definition Framework. Under the auspices of the Semantic
Web Initiative, there are emerging ontologies using RDF Schema, or based on it —
notably in DAML+OIL. We expect these will be the starting point for specialisation
to cover the semantics of many specialised domains, without (we hope) too much
proliferation and duplication.

* Wehave found that in practice a UML class model does not need to be honed to the
utmost elegance to act as a foundation for describing XML meanings. It is almost
sufficient that the model be a catalogue of all the classes of object, their simple
properties and associations that you will need in the domain. Arranging this catalogue
into the most elegant class hierarchy (to maximise the leverage of inheritance) is
actually not very important; XML meanings can be mapped onto the catalogue even if
its inheritance hierarchy is not the *best’, whatever that means. The XML mappings
can be preserved as the inheritance hierarchy is refined later.

While having the ‘best’ class hierarchy is probably only of secondary importance, what is
important (and sometimes neglected in the XML literature) is to pay attention to all three
facets of meaning — to classes of objects, to simple properties and to associations. In the

CHARTERIS

MDL2.02.doc

Page 13 of 13
Charteris Working Paper
A Meaning Definition Language
8 August, 2001

catal ogues of meanings which are constructed to support XML languages, objects and
simple properties are typically prominent — because they are clearly visible in XML or
other message formats — but associations are sometimes neglected, perhaps because they
are often implicit or taken for granted. Associations are a fundamental component of
meaning, and there are hardly any complex meanings you can express without them.

We believe that trying to get by without a proper treatment of associationsin XML
meanings is like sitting on a two-legged stool; you won’t stay upright for very long.

CHARTERIS

MDL2.02.doc

Page 14 of 14

Charteris Working Paper
A Meaning Definition Language
8 August, 2001

3.

3.1

PROPOSED MEANING DEFINITION LANGUAGE

Requirements and Design Choices

We require that MDL should be
* Simpleand easy to learn

» Expressive enough to capture most of the waysin which XML is used to convey
meaning — that is, to capture all the meaning devices described in the previous section

e Clear and self-explanatory
* Precise and amenable to machine processing
» Compatible with XML standards and recommendations

* Usable with different XML-based means of expressing XML structure, such as XML
Schema, Relax or TREX.

» Expressible as a Schema Adjunct
* Expressiblein RDF form

From the discussion above, X Path does alot of the work required of MDL, so the
remaining design choices are not very complex. However, there is one design choice
worth discussing.

MDL describes a set of mappings between an XML language and a UML class model.
Should the ‘point of view’ of MDL be UML-centric or XML-centric? Should it be
semantics-centred or syntax-centred? In other words, when reading an MDL document,
should it be easier to answer the question “How is this meaning construct represented in
the XML?’ or to answer the question “What meaning constructs does this piece of XML
represent?” ?

A top-down approach would perhaps start from the meaning (UML or RDF Schema) and
work down to the implementation (XML) —which would favour a meaning-centric
organisation. However, other design aims conflict with this:

e It would be useful if MDL could be embedded within XML Schema documents as
‘appinfo’ annotations, so that the syntactic and semantic aspects of an XML language
can be viewed together.

e It would aso be useful if MDL could take the form of a Schema Adjunct document,
so that the Schema Adjunct framework can support run-time use of MDL information.

Both XML Schema and Schema Adjuncts are XML-centric in structure, and not at all
UML-centric. Therefore we propose to make the primary structure of MDL to be XML-

CHARTERIS

MDL2.02.doc

Page 15 of 15

Charteris Working Paper
A Meaning Definition Language
8 August, 2001

3.2

centric, (i.e. to easily answer questions of the form “what does this XML construct
mean?’), mainly to make its structure compatible with the structures of XML Schema (or
other schema languages) and the Schema Adjunct proposal.

This decision does not imply afar-reaching lock-in to XML-centric structures. There will
beasimple XSLT stylesheet to convert from the XML-centric primary form of MDL to a
UML-centric secondary form for MDL documents, and similarly in the reverse direction.

So you can start or end with whichever form of MDL you prefer.

Each MDL document will be written with referenceto aUML class model (or RDF
Schema), and it will frequently be useful to process an MDL document in conjunction
with its UML/RDF Schemamodel. The standard XML interchange form for aUML
model is XMI, so it might seem natural to represent UML models as XMI. However, the
XML representation of RDF Schemais more concise, and almost meets our needs. The
notation of DAML+OIL is amodest extension of RDF Schema which even more closely
meets our needs, and we propose that a subset of DAML+OIL be the primary
representation of the semantic model. For brevity, we will generally refer to thisasa
DAML modsd.

We believe this choice will make better contact with anumber of RDF-based semantics
initiatives. Again, the choice does not represent any heavy lock-in to the RDF world
rather than XMI —we envisage that stylesheets can easily be generated to transform
between the two; in fact such stylesheets already exist.

This DAML model representation can be used, for instance, in atool to check that an
MDL meaning specification actually matches its DAML model — before checking that the
XML structures and their MDL mappings are appropriate for the kinds of meaning they
are trying to express.

The Core Principle of MDL

The core principle of MDL isasimple one:

To extract any piece of meaning from an XML document (e.g. to extract the value of a
simple property or the target objects of an association) you need to navigate around the
document. MDL defines how you need to navigate to get any piece of information, using
XPath as the language to define the required navigation.

That isit. Although this may seem very simple, it isin sharp contrast to the view of
meaning embodied in certain XML tools (e.g BizTalk Mapper and other XML mapping
tools) and E-commerce standards initiatives. These take the view that ‘ Information is
embodied in nodes of the document. Therefore you need to define what piece of
information is embodied in each node.” The node-centric view is almost sufficient for
meaning about objects and simple properties, but it falls down completely for meaning
about associations. To define how XML represents associations, it is essential to talk
about X Paths.

RDF is a metadata notation for talking about information resources. Amongst other
things, it can talk about their meanings. So RDF can be used, in conjunction with RDF
Schemaor DAML, to define what some set of XML resources may mean. Y ou might
think that RDF can a so define how these documents express their meaning, by treating

CHARTERIS

MDL2.02.doc

Page 16 of 16

Charteris Working Paper
A Meaning Definition Language
8 August, 2001

3.3

3.4

nodes in the documents as resources and defining what meaning is carried by each node.
However, thisis not sufficient on its own — or at least, not in the ways in which (to our
knowledge) RDF has been used so far. Information is not just carried by nodes; it is
carried by nodes and paths. That iswhy MDL isrequired - to define the required X Paths,
which are the bridge between meaning and XML structure.

A Simplification of the Language

MDL requires you to specify XPaths for both simple properties and associations —to
define how you get from a node representing an object to the nodes representing its
properties and associations.

Specifying all of these paths might be alot of work, unless you had an automatic tool to
help you do it. Fortunately, in the vast majority of cases, the required path —for instance
the path from anode representing an object to a node representing one of its simple
properties - obeys a‘shortest path’ heuristic; it is the shortest possible path from the one
node to the other. Similarly, nearly all paths from object-representing nodes to their
association nodes are shortest paths.

We can therefore ssimplify the language by defining that the default X Path is always the
simplest path; you only need to define the XPath explicitly when it is some different path.
This means that the vast majority of XPaths need not be provided explicitly, but can be
simply computed by M DL -based tools.

In the examples which follow, we will usualy give the full form of MDL, with all paths
specified. However, on occasion we will illustrate the abbreviated form which can be
used when default ‘ shortest paths' occur —i.e. in the vast majority of cases.

Structure and Meaning of MDL

Here we give an informal description, with examples, of the structure and meaning of
MDL. In the Appendix we will (in later drafts) define the structure of MDL as an XML
Schema, and define its meaning with respect to a DAML model (of XML, DAML and the
links between them) in MDL. (This stress-test of the formalism may lead to design
changes.)

The primary form of an MDL document is a schema adjunct. It is an adjunct to a schema
(e.g. XML Schema) which defines the structure of aclass of documents. The MDL
defines the meanings of the same that class of documents. Thusit takes aform such as:

CHARTERIS

MDL2.02.doc

Page 17 of 17

Charteris Working Paper
A Meaning Definition Language
8 August, 2001

34.1

<schema- adj unct target=http://ww.myco.con nyschena. xsd
xm ns: nme="htt p://ww. nyCo/ dnodel . dam * >

<docunent >
'<} document >

<el enent context = ‘product’>

</ el ement >

<el enent context = ‘product/manufacturer’>

</ el ement >

<attribute context = ‘product/ @rice’ >
</attribute>

</ schema- adj unct >

The attribute ‘target’ of the top schema-adjunct element is URL of the schema of the
XML language which this MDL describes, if there is a unique schema. For languages
which use elements from several namespaces, the elements in different namespaces may
be constrained by different XML schemas, and it isimportant to define which prefix
MDL usesto refer to each such namespace. Thisisdonein the ‘document’ element
below.

The namespace in the schema-adjunct element (in this example with prefix ‘me’) hasa
namespace URI for the semantic model (UML or DAML) which this meaning description
isreferenced to. This could be an RDDL URI, enabling access to some form of the model
—e.g. XMl or DAML+OIL For ssmplicity in this draft we consider only MDL which
defines the meaning of an XML language relative to one semantic model at atime. It is
possible in principle for alanguage to convey meaning relative to two or more semantic
models. In this case, there could either be two model namespaces declared here, or two or
more MDL filesfor the language. We have not yet considered this in detail.

Thus the schema-adjunct element gives the means for an MDL processor to access both
the schema and the semantic model, and to check the MDL against each of them
individually or together.

The structure and meaning of the next-level elements — document, element and attribute —
are described below.

The Document Element

MDL may be used to define the meaning of an XML language in which the documents
have elements from several namespaces. In this case, we need to define the prefixes
whereby MDL will refer to the various namespaces in the values of MDL attributes. This
is done by namespace declarations in the document element such as:

<docunent xm ns: po= “http://ww/ myco/ pospace”
xm ns:ce = “http://ww nyco/ cespace” />

These prefixes must match the prefixes used in XPath expressionsin the MDL which
follows. If the MDL isto be used to generate XSLT, it is best to prefix all namespaces

CHARTERIS

MDL2.02.doc

http://www.myco.com/myschema.xsd
http://www/myco/cespace

Page 18 of 18

Charteris Working Paper
A Meaning Definition Language
8 August, 2001

3.4.2

3421

and not to have any default namespace without a prefix. Thisis because XSLT treats un-
prefixed element as having no namespace, rather than being in any default namespace.

While it should always be possible to access the semantic model when processing the
MDL, you can often do useful things without accessing the whole model. MDL goes
some way to describe just those parts of the semantic model which it requires. For
instance, atool can easily calculate the meaning overlap of two MDL descriptions
without recourse to their shared semantic model, as long as they have such a shared
model.

In order to make the MDL more self-contained, it may be useful to describe parts of the
semantic model —which are not naturally described elsewhere in the MDL - inside the
‘document’ element. The language used to do thisis the same as the language proposed
for describing a complete semantic model, defined in section 6 below — for which we
propose to use DAML+OIL.

A processor may then use these parts of the semantic model to support whatever it does.
It also has the option to check that the partial semantic description in the ‘ document’
element is atrue subset of the full semantic model.

The ‘Element’ Element

Asin any application of schema adjuncts, the value of the ‘ context’ attribute of the
‘element’ element is an XPath expression which describes the path from the document
root to a set of elements. The meaning of the ‘element’ element isthat “each element in
the set of elements with this name, reached from the root by this X Path, has these
meanings’.

One element (instance) in an XML document can have several meanings. It can denote
severa different objects and associations at the same time, or it can denote several
different properties of different objects. Each one of these meaningsis defined by a
nested element <me:object> , or <me:property> or <me:association>. These are described
below.

Elements Representing Objects

Consider an XML language which describes schools and has *pupil’ elements
representing students. A typical document might look like:

<school nane = “St Custard s” >
<pupil name = “N. Mol esworth” />
<pupil name = “B. G abber” />

</ school >

The MDL for the element *pupil’ will then be:

CHARTERIS

MDL2.02.doc

Page 19 of 19
Charteris Working Paper
A Meaning Definition Language
8 August, 2001

<el enent context = ‘/school /pupil’>

<me: obj ect class= *‘student’>
<ne: i ncl usi on>
<me: condi ti on assoc="attends"
obj 1="student" obj2="school" />
</ nme: i ncl usi on>
</ ne: obj ect >

</ el ement >

This says that every pupil element which can be reached by the defined ‘ context’ path
represents one object of class ‘student’. The ‘inclusion’ element states that the only
students represented in this document are those students who have an ‘attends’ relation to
a‘school’ object which is aso represented in the same document.

(The MDL for the *pupil’ element will also say that it represents the association [student]
attends [school], by nesting. We have not put this yet, in because we have not yet
explained how associations are represented in MDL — see below.)

There can be any number of conditions inside the ‘me:inclusion’ element; the only
objects represented in the XML are those which satisfy all the conditions simultaneously.

Inclusion set conditions for objectsin aclass (the values of the ‘set’ attribute) are purely
about meaning, not XML structure, and so refer to the semantic model — not to the
structure of the XML document (while other conditions do refer to XML structure — see
below).

All class namesin the semantic model must be unique. In RDF Schema or DAML,
classes are resources defined by guaranteed-unique URIs. When a class name such as
‘student’ appearsinside an XML element such as me:object, it means “the student classin
the DAML model at the namespace URI of prefix ‘me’”.

A more complex example, where an element may represent objectsin two different
classes:

<el enent context = ‘/school/pupil>

<me: obj ect class= ‘mature-student’ >

<me: when obj ect ToLeft Val ue = ' @ge

test = ‘> rightvValue = 30" />
<me: i ncl usi on>
<me: condi ti on assoc="attends"
obj 1="mat ur e- student" obj 2="school " />

</ me:incl usi on>

</ ne: obj ect >

<me: obj ect class= ‘young-student’ >

<me: when obj ect ToLeft Val ue = * @ge’

test = ‘<=’ rightValue = ‘30" />
<me: i ncl usi on>
<me: condi ti on assoc="attends"
obj 1="young- student" obj 2="school " />

</ me:incl usi on>

</ ne: obj ect >

</ el enent >

In this example, the * pupil’ element may represent an object in one of two classes,
depending on the value of one of its attributes. This dependence is described in a

CHARTERIS

MDL2.02.doc

Page 20 of 20
Charteris Working Paper
A Meaning Definition Language
8 August, 2001

‘me:when’ element, whose ‘ objectToL eftV alue attribute is an XPath expression for the
path from the node which represents the object to a node representing the left-hand value
value, which is then compared to the ‘rightValue' attribute, which is the value on the right
hand side of the comparison. Both classes ‘ mature-student’ and ‘ young-student’ are
typically subclasses of aclass ‘student’, inheriting the association ‘ attends' from it, and
the two classes have similar inclusion sets (both include just students at this school).

3.4.2.2 Elements Representing Simple properties

Typically when an element represents a simple property, the value of the property is
carried by the value of the element.

In alanguage which contains ‘stud’ elements of the form
<stud> <l ongNane>Jethro Al bert Linburger</I|ongNanme> </stud>

where the element ‘stud’ represents the object * student’ and the element ‘longName’
represents his name property, the MDL for ‘longName’ is:

<el enent context = ‘/school/stud/| ongName’ >
<me: property class = 'student’ property = nane’ type =
“full Nane’ >
<me: find objectToProperty = ‘| ongNane’ />

<me: convert lang="xslt’ inTenplate =t1’
out Tenplate = ‘t2" />
</ me: property>

</ el ement >

In the nested ‘ me:property’ element:

* Theobligatory ‘class and ‘property’ attributes give the class in the semantic model
of object the simple property appliesto, and the name of the property. The model is
the one whose namespace prefix is‘me:’.

* The'type attribute refersto a set of definitions of simple types which should be
associated with the semantic model, to support any type conversions of data as
necessary.

 The‘find’ element has an attribute ‘ objectToProperty’ which gives the XPath to go
from object to ssimple property (that is, from the element representing an object of
class ‘student’ to the element representing this property). Because simple properties
must be single-valued, the objectToProperty path should always be unique, giving a
node-set of size 1. In short-form MDL, the ‘find’" element is omitted when the
objectToProperty is the shortest path.

» Further support for type and format conversion is provided in the ‘ me:convert’
element. This envisages that the semantic model definesa‘central’ format for any
simple property (e.g. US-style dates) and that |anguage definers may wish to use
different forms (e.g. UK-style dates). When they do so, they may provide or use
format conversion software in avariety of languages (e.g java, XSLT), and define in
MDL which conversion software can be used to convert data valuesin and out of the
central format. In the example, XSLT templates with names‘t1’ and ‘t2' are
provided.

CHARTERIS

MDL2.02.doc

Page 21 of 21

Charteris Working Paper
A Meaning Definition Language
8 August, 2001

3.4.2.3

An element might represent a simple property only conditionally, when certain conditions
apply. Consider a‘generic’ language whose schema does not restrict it to representing
certain properties:

<st ud>

<st udProp pNane=' age’ > <pVal >24</ pVal > </ st udPr op>
<st udProp pName=' surnanme’ > <pVal >Smi t h</ pVal > </ st udProp>

</stud;

the element ‘pVal’ may represent many different properties, depending on the attribute
‘pName’ associated with it. MDL defining the meaning of the element ‘pVva’ is:

<el enent context = ‘/school/stud/studProp/pval’® >
<me: property class="student’ property='nane’ type = ‘surNanme’ >
<me: when propertyToLeftValue = ‘../ @Nane’
rightVvalue = ‘surnane’ >

<me:find objectToProperty = ‘studProp/pVal’ />
</ me: property>

<me: property class="student’ property = age’ type =

‘“integer’ >
<me: when propertyToLeftValue = ‘../ @Nane’
ri ghtValue = ‘age’ >

<me: find objectToProperty = ‘studProp/pVal’ />
</ me: property>

</ el ement >

The first me:property element says: the element pVal represents the student’ s name only
when the attribute pName of its parent has the value ‘ surname’. Thisis captured in the
‘me:when’ element, which says that the element represents the property only when the
left-hand side has the specified value. The attribute ‘ propertyToLeftVaue' isan XPath to
get to the left-hand side value from the element representing the property. In this vase the
context node (start node) isthe pVal element. ‘.. navigates to its parent ‘ studProp’
element, and ‘/@pName’ finds that parent’s attribute ‘ pName'. There can be several
‘when’ elements; the node represents a property only when they are all true.

Elements Representing Associations

XML can represent associations in three main ways, which at first sight look very
different from one another — by nesting of elements, by ‘overloading’ of elements, and by
shared values. However, the three all share some common underlying principles, which
means that the same X Path-based form of description can be used to define all of them.

In any XML representation of an association [E]A[F] between objects of class E and class
F, nodes of some type denote instances of the association. Each instance of the
association ties together one object of class E and one object of classF. For an
association node (which represents an instance of the association) we need to define how
it islinked to the element representing the E-class object, and how it is linked to the
element representing the F-class object.

We do this using X Path expressions, and we provide the means to define the X Paths both

from the object-representing elements to the association nodes, and in the reverse
direction. When extracting association information from a document, pathsin either

CHARTERIS

MDL2.02.doc

Page 22 of 22
Charteris Working Paper
A Meaning Definition Language
8 August, 2001

direction may be needed — either to go from E => A => F, or to go in the reverse
direction.

Therefore the full MDL definition of an association has a path from the root to define the
set of association nodes, and it has relative paths between the association nodes and the
elements representing objects at the two ends of the association. Thiswill be illustrated
by examples of the three types of representation, and the MDL which defines them.

Representing Associations by Nesting

Consider atypical ‘purchase order’ XML message, which represents the relation between
apurchase order and its order lines by nesting the ‘ orderline’ elementsinsideits ‘ order’
element. Thistypically looks like:
<po poNumber ='123435" poDate='23/12/01" >

<polLi ne prod='paperclip’ qty= 4000 />

<poLi ne prod="pencil’ qty='200" />
</ po>
Here, the element ‘po’ represents an object of class ‘ purchase order’, the ‘ poLine
elements represent objects of class ‘order line' and the nesting of ‘poLine’ inside ‘po’
represents the association [purchase order]containg order line].

The MDL for the element *poLine’ using the full-form representation of the association
Is:

<el ement cont ext="/po/ poLi ne’ >

<me: obj ect cl ass='orderlLine’ >
<ne: i ncl usi on>
<ne: condi tion assoc="contai ns"
obj 1="purchaseOrder" obj2="orderLine" />
</ me:incl usi on>
</ ne: obj ect >

<me: associ ati on assocNanme=' cont ai ns’ >

<me: obj ectl1l class = “purchaseOrder”
obj ect ToAssoci ati on = ‘ poLi ne
associ ati onToOhj ect = ‘parent:po’ />
<me: obj ect2 class = “orderLine”
obj ect ToAssoci ation = ‘.’
associ ati onToQbhject = *." />

</ me: associ ati on>
</ el ement >

The me:association element gives the name of the association in its ‘ assocName'
attribute. It has two nested elements which are about the two objects linked by the
association. ‘objectl’ gives the XPath from the association node to the element(s)
representing object 1 (whose class name usually occurs to the left of the full association
name when referring to the relation) and the reverse path. ‘object2’ does the same for
object 2 (whose class name occursto the right of the association name). The values of
objectToAssociation and associationToObject work as follows:

* ‘objectToAssociation’ of ‘objectl’ is‘poLine’, saying that: to get from the element
‘po’ representing the purchase order object (which is class 1 of the association) to the
element ‘poLine’ representing the association itself, you just go to the ‘poLine’ child
of the ‘po’ element.

CHARTERIS

MDL2.02.doc

Page 23 of 23
Charteris Working Paper
A Meaning Definition Language
8 August, 2001

e ‘associationToObject’ of ‘objectl’ is‘parent:po’ saying that: to get to a‘po’ element
representing an object of class 1 from a‘poLine element representing the association,
you go to the parent of the association node, which should bea‘po’ element.

» ‘objectToAssociation’ of ‘object2’ is*.’, saying that: to get from the element *poLin€’
representing the order line object (which is class 2 of the association) to the element
‘poLine’ representing the association itself, you just stay where you are.

e ‘associationToObject’ of ‘object?’ is‘.” saying that: to get to a‘poLine’ element
representing an object of class 2 from a‘poLine element representing the association,
you just stay where you are.

However, as al of these paths are the shortest paths between their respective end nodes,
in the short-form MDL all these ‘ objectToAssociation’ and * associationToObject’
attributes can be omitted.

Representing Associations by Shared Values

As an example of an association denoted by a shared value, consider a document denoting
students and courses, where courses are represented as:

<crs nane = ‘Maths’'/>

<crs nane = ‘English’ />
And students are represented as.
<stud name = 'J Doe’ >

<att>Mat hs</att >

<att>English</att>
</ stud>
The relation [student] attends [coursg] is represented by the sharing of a value (the course
name) between ‘stud’ and ‘crs’ elements. The nodes which represent each instance of the
association are the ‘att’ elements. The MDL defining how the ‘att’ elements represent the

association is:
<el ement context = ‘/stud/att’ >
<me: associ ati on assocNane = ‘attends’ >
<me: objectl class = ‘student’
obj ect ToAssoci ation = ‘att’
associ ati onToCbject = “..crs’ />
<me: obj ect2 class = ‘course’
obj ect ToAssociation = ‘.. /stud/att’
associ ati onToChbj ect = ‘ancestor::school/crs’ >

<ne: when associ ati onTolLeft Val ue=".
obj ect ToRi ght Val ue=" @ane"/ >
</ me: obj ect 2>
</ nme: associ ati on>

</ el ement >

The interpretation the ‘objectl’ element is as in the previous example. For ‘object 1’ (in
the class on the | eft-hand side of the [1]assoc[2] notation) the paths simply pick out a
parent or a named child element. These paths can be omitted in the short form MDL.

For the ‘object2’ element, the paths are again shortest paths and can be omitted in the
short form MDL. The me:when element specifies a value that must be shared between the
node representing object 2 of the association and the association node. The attributes
associationToL eftVaue and objectToRightV alue denote respectively

CHARTERIS

MDL2.02.doc

Page 24 of 24
Charteris Working Paper
A Meaning Definition Language
8 August, 2001

- apath from the association node to find aleft-hand value
- apath from the object-representing node to find a right-hand value
Then the association node only represents an association when these two values are equal.

Suppose that in stead of having several ‘att’ elementsinside each ‘stud’ element, we had
used just one ‘att’ element asin:

<school >
<Crs nane ‘Maths' />
<crs nane “English />
<stud nane = ‘J Doe’ >
<att>Mat hs English</att>
</ st ud>
</ school >

Then the MDL defining the association would be :
<el ement context = ‘/stud/att’ >

<me: associ ati on assocNane = ‘attends’ >
<me: objectl class = ‘student’ objectToAssociation = ‘att’
associ ati onToChject = “..crs’ />
<me: obj ect2 class = ‘course
obj ect ToAssociation = ‘.. /stud/att’
associ ati onToCbj ect = ‘ancestor::school/crs’ >
<me: when associ ati onToLeft Val ue ="."
obj ect ToRi ght Val ue=" @ane"
test = “contains” />
</ ne: obj ect 2>
</ nme: associ ati on>

</ el enent >

Here an me:when element has been used with an attribute test = “contains’ (in stead of
the default test = “=") because a course name must be found in alist of course namesin
the ‘att’ element. Thistype of representation only works if course names are known to
contain no spaces.

In effect an association node can be linked to each of its two object-representing nodes
either by asimple path (when e.g the association is a child of the object-representing
node) or by alonger path with me:when elements to limit the number of eligible object
nodes.By defining separately an association node and two object-representing nodes, we
allow for the possibility that the association node is quite remote from both object-
representing nodes, and has me:when conditions for both of them.

Representing Associations by I dentity

When one element represents two types of entity and an association between them, we
call this ‘representing the association by identity’ or ‘overloading’.

As an example of an association represented by overloading of one element, consider an
XML language about products, where atypical document is:

CHARTERIS

MDL2.02.doc

Page 25 of 25

Charteris Working Paper
A Meaning Definition Language
8 August, 2001

3.4.3

<st ock>
<prod name= “wi dget” nfr="Acne” nfrLoc="Chi cago” />
<prod name= “trunnion” nfr="bitCo” nfrLoc="Denver” />
</ st ock>

Here, information about two different objects (product and manufacturer) has been
crammed into one element, ‘prod’. The name and location of the manufacturer are stored
asif they were properties of the product. Thisisabit like de-normalisation in arelational
database, where separate tables are joined together for convenience or performance. We
can get away with it if each product has only one manufacturer. It is frequently done in
XML languages for E-commerce.

In this case, the element ‘prod’ represents the object ‘ product’, the object * manufacturer’
and the association between them [manufacturer]makeg product]. The MDL for the
element ‘prod’ isthen:

<el enent context = ‘/stock/product’ >

<me: obj ect class = ‘product’>
<me:incl usion description="products currently in stock” />
</ ne: obj ect >

<me: obj ect class = ‘manufacturer’>
<me: i ncl usi on>
<me: condi ti on assoc="nmakes"
obj 1="manuf acturer" obj 2="product" />
</ me: i ncl usi on>
</ ne: obj ect >

<me: associ ati on assocNane="nakes” >

<me: obj ectl class = ‘manufacturer’
obj ect ToAssoci ation = ‘.’
associ ati onToOhject = *." />
<me: obj ect2 class = ‘ product’
obj ect ToAssoci ation = ‘.’
associ ati onToOhject = *." />

</ nme: associ ati on>
</ el ement >

This says that the XPaths to go between the ‘object 1’ node (in the association
[1]assoc]2]), the association node and the *object 2’ node are al trivial, because they are
all the same node. In the short form MDL, these trivial paths can be omitted.

Representing two objects by the same element implies that the objectsareinal:1
correspondence. This only works if the association between themis 1:1 or M:1, and if the
inclusion conditions for the object at the ‘1’ end of the association require the association
to hold. In this case, a manufacturer will only be represented in the document if he makes
aproduct which is represented in the same document.

Note how in the above example, the inclusion conditions for the ‘ product’ object have
been stated verbally in a‘description’ attribute, rather than formally ina‘set’ attribute.

The ‘Attribute’ Element

Anything which an element can represent, an XML attribute can also represent. The MDL
defining how an attribute represents some meaning is identical to the corresponding MDL
defining how an element represents the same meaning.

CHARTERIS

MDL2.02.doc

Page 26 of 26
Charteris Working Paper
A Meaning Definition Language
8 August, 2001

Attributes can denote simple properties, in just the same way as elements with simple
types can denote simple properties. To define how they do, the ‘attribute’ element can
contain <me:property> elements which have identical form and meaning to the
<me:property> elements inside the ‘element’ element.

Attributes can be used to represent associations by shared values, and when they are, the
attribute node is the association node. To define how this works, the ‘attribute’ element
contains an <me:association> element which isidentical in form to the <me:association>
element for elements, described in 3.2.2 above.

For instance, if the relation [lecturer]teaches course] is represented by the attribute
‘taughtBy’, asin the XML sample:
<school >

<l ecturer | Nane
<l ecturer | Nane

‘Fred Smith />
‘ Peter Jones’ />

<course cNane="nmaths’' taughtBy="Fred Smith />
<course cNanme = ‘English’ taughtBy="Peter Jones’ />
</ school >

the MDL which defines the meaning of the attribute ‘taughtBY’ is:

<attribute context = ‘/school/course/ @aught By’ >
<me: associ ati on assocNane = ‘teaches’ >
<me: objectl class = ‘lecturer’
obj ect ToAssoci ation = ‘.. /course/ @aught By
associ ati onToObj ect = ‘ancestor::school/lecturer’ >
<me: equal s associ ati onToLeft Val ue = * @ Nane
obj ect ToRightvalue = '." />
</ me: obj ect 1>
<me: obj ect2 class = ‘course
obj ect ToAssoci ation = * @aught By’
associ ati onToObject = ‘..course’ />

</ me: associ ati on>
</attribute>

Asusual, for the short form MDL we can omit all the objectToA ssociation and
associationToObject attributes.

In this case, there was actually a certain degree of arbitrarinessin what node we chose to
say ‘represents’ the association. We chose to say that the attribute ‘taughtBy’ denotes the
association [lecturer]teaches course]. We could equally well have said that the element
‘course’ denotes this association — again by shared values, but this timeto find the shared
value, you need to look at one of the attributes of ‘ course’. Then the MDL and the XPath
expressions would have been different — leading to and from the ‘ course’ element rather
than the ‘taughtBY’ attribute - but the result would have been the same.

3.5 Embedding MDL in XML Schemas

To embed MDL inan XML Schema, the identical syntax (including the ‘document’ ,
‘element’ and ‘attribute’ elements from the Schema Adjunct proposal) can be used within
‘appinfo’ elements of schema annotations.

The simplest place to define what an element meansisin an ‘appinfo’ element in the
declaration of that element’ s type —which may be either a global element declaration or a
local declaration within some other type definition. In either case, it may be possible to

CHARTERIS

MDL2.02.doc

Page 27 of 27

Charteris Working Paper
A Meaning Definition Language
8 August, 2001

3.6

3.7

reach the element by several paths from the root of the document, and it is necessary to
define (by the ‘context’ attribute) which pathsto the element lead it to have particular
meanings. Similarly for attributes.

An XML schemawith embedded MDL will have two distinct types of ‘element’ elements
(i.e. elements with local name ‘element’) in different namespaces. Thereisthe XML
schema ‘element’ which defines the type (=structure) of the element and its usage in other
types, and thereisthe MDL ‘element’ which defines its meaning. The latter will have a
namespace URI which links to the semantic model. Similarly for ‘attribute’ elements.

MDL in RDF

A combination of MDL and RDF might be useful, with RDF defining some metadata
about a document, and MDL defining what the document means and how to extract that
meaning.

There are two possible ways to realise this. Either one could embed MDL directly inside
RDF documents, using different namespaces to distinguish them; or one could redefine
MDL in terms of RDF triples, which are then expressed in XML aong with other RDF.
We have not yet investigated either of these in detail.

Summary of the Language

MDL uses the framework of Schema Adjuncts and the concepts of UML class diagrams,
and it makes use of XPath expressions. It only requires the use of a small number of
element and attribute types. Using these few constructs, we believe that MDL enables you
to define essentially all the ways in which XML is used in common practice to convey
meanings.

CHARTERIS

MDL2.02.doc

Page 28 of 28

Charteris Working Paper
A Meaning Definition Language
8 August, 2001

4.

4.1

VALIDATION AND DOCUMENTATION

There are important uses of MDL for documentation and validation of XML languages:
to enable XML language authors to state precisely what the languages mean, and to
validate those statements against a number of constraints —in effect, to validate that the
language can mean what its author intends it to mean.

An MDL definition can be statically validated in three ways: It can be validated against
the structure definition of the language (e.g. XML Schema), against the semantic model,
and jointly against the structure definition and the semantic model.

In addition, individual document instances can be validated against the MDL definition of
the language. Thiswould allow semantic checks of document instances which go beyond
the syntactic checks against language schemas.

Thefirst two validations are really just hygiene checks to make sure you have made the
MDL consistent with some obvious constraints. The third is the most valuable, and
enables you to check that the language really can express what it is meant to express. It
can make this check more precisely than by looking at language structure alone.

For the purpose of explanation in this section, we shall assume that the structure of an
XML languageis defined in W3C XML Schema. For other language structure definitions
such as TREX or RELAX, appropriate changes can be made.

In all cases we give informal summaries of the checks which can be made, rather than
formal statements of conditionsthe MDL must satisfy. Tria implementations of the MDL
validators described below would flush out many issues, and should perhaps be donein
tandem with formal specification of the validation checks.

Validation Against the Language Schema

The following validation checks can be made between an MDL definition and the
corresponding XML Schema:

* Every element or attribute declared in the MDL must also be declared in the Schema.

» Every XPath which appears as the value of a‘context’, ‘ associationToObject’ or
‘objectToAssociation’ attribute must be avalid XPath, given the language structure,
from its starting node set (which is defined for every path).

e In‘findl’ and ‘find2" elements, the XPaths for * associationToObject’ and
‘objectToAssociation’ must be inverse paths; traversing the two in succession, in
either order, should always deliver the starting node in the final node set.

» Thevaluesof ‘when’ attributes should be valid boolean X Path expressions.

CHARTERIS

MDL2.02.doc

Page 29 of 29

Charteris Working Paper
A Meaning Definition Language

8 August, 2001

4.2

Validation Against the Semantic Model

The following checks can be made between an MDL model and the corresponding
semantic model:

4.3

The value of every ‘class' attribute must be a classin the model

The value of every ‘propName’ attribute must be a simple property in the model,
written in aform ‘class:property’ and belonging to a class which appears el sewhere as
a‘class attributeinthe MDL.

The value of every ‘assocName’ attribute must be an association in the model, written
in aform [classl]association[class?] and belonging to classes classl and class2 which
both appear elsewhere as ‘class' attributesin the MDL.

For every class that is represented, there should be either an informal inclusion
description, which describes which objects of the class are included in the document,
or aformal inclusion set definition which does the same.

The conditionsin any inclusion ‘set’ attribute must only mention classes, simple
properties and associations in the model, and constants (precise syntax of inclusion
set attributes to be defined)

If objectsin some class are represented, there should also be represented sufficient

simple properties and/or associations of this class to uniquely identify the objects
within their defined inclusion set.

Validation Jointly Against the Schema and the Semantic Model

The following checks can be made of the MDL against the XML Schema and the
semantic model jointly:

MDL2.02.doc

If an element or attribute represents a simple property, then the type of the element or
attribute (in the sense of XML Schema datatypes) must be capable of holding the type
of the property.

The XPath from a node representing an object to a node representing one of its simple
properties must have cardinality matching the property. That is, if the property is an
obligatory property of the object, the X Path must deliver a node set of cardinality 1.

In any case, the XPath must not deliver a node set of cardinality >1.

If an element representing an object of class C1 is nested inside an element
representing an object of class C2, there must also be an association between C1 and
C2 represented by the nesting. The inclusion set of C1 must depend on this

associ ation.

If the same element represents two or more objects, then it must also represent

associations between those objects, and those associations must be part of the
inclusion set conditions for all of the objects except one.

CHARTERIS

Page 30 of 30
Charteris Working Paper
A Meaning Definition Language
8 August, 2001

» There are consistency conditions between the cardinality of an association, the
cardinality of the XPaths in its representation, and the inclusion set conditions of the
objectsinvolved in the association. For each class of object, the possible number of
instances as governed by the inclusion conditions and the cardinality of the
association must match with the possible number of instances as governed by the
XPaths.

e (Completeness) every element or attribute node in the XML structure must either
represent some meaning (i.e have an me:object, me:property or me:association
declaration) or be on a path from the root node to such a node.

4.4 Validation of XML Document Instances

While we can make many static checks that the schema of an XML language is consistent
with the meaning it is intended to convey, there are constraints that cannot be conveyed
statically in the schema language, or which the schema author did not write down.

If adocument instanceis linked to its MDL, then there can be further run-time checks
that thisinstance is consistent with its intended meaning. The nature of these checksis
hard to anticipate — but most semantic models have some domain-specific constraints
which are not easily expressed in generic terms (such as cardinalities). Such constraints
are best expressed in terms of the semantic model, rather than in terms of the XML
structure. Then MDL can be the bridge to check those constraints.

For instance, the XML definition of the semantic model — whether in DAML, or XMI, or
some other XML language — should obey the following constraints:

* Noclass should be a subclass of itself, either directly or indirectly
e All classes should be subclasses of asingle root class

* No simple property name declared for a class should clash with the name of any
simple property it inherits from any of its ancestor classes

* No association name for any pair of classes should clash with an attribute name they
inherit.

MDL could support tools for checking that XML instance documents (in this case,
semantic models) obey constraints such as these. Checking a constraint is similar to
running a query. Each constraint is expressed in meaning-level language. MDL then
defines what X Paths must be navigated to extract the information used in those meaning-
level constructs. The XPath expressions are run against the instance document, and the
results evaluated against the constraint expression, to report any violations.

We can then envisage a two-step validation of any instance document —first a
structure/type validation against its schema, followed by validation against semantic
constraints using MDL.

CHARTERIS

MDL2.02.doc

Page 31 of 31

Charteris Working Paper
A Meaning Definition Language
8 August, 2001

4.5

4.6

Analysis and Design of XML Applications

Complex applications need to be designed before they are built. The analysis and design
uses tools such as UML, which operate at the level of meanings in the application
domain, rather than the level of implementation structures. However, the present
generation of toolsfor describing XML (e.g XML Schema) operate largely at the level of
XML structures rather than meaning.

If you know that a new application will need to interact with some existing XML
language, then the analysis and design for that application will benefit from having a
description of the language at the meaning level. This description will naturally make
contact with other analysis and design tools which operate at the meaning level. MDL is
such atool.

The MDL description of an existing XML language will fit in naturally with other UML-
based analysis and design tools, to facilitate good design of those applications and shorten
the development cycle.

Design of XML Languages

We can envisage a design tool for new XML languages which operates as follows:
starting from a UML class model or DAML ontology, you select those elements of
meaning in the model which you intend to convey in the language. Y ou add further
information such as the inclusion set conditions which are part of the * meaning model’
side of MDL.. In thisway you define which classes and which objects in those classes will
be conveyed in an instance document of the language, and what information about those
objects will be conveyed.

The tool then automatically generates both the XML Schema and the MDL for the
language — ensuring that all the static validation checks on the language, as described in
section 4, are satisfied. This guarantees that the new language can convey all the
meanings which you intend it to, and documents that fact for its users.

CHARTERIS

MDL2.02.doc

Page 32 of 32

Charteris Working Paper
A Meaning Definition Language
8 August, 2001

5.

OTHER APPLICATIONS OF MDL

Besides validation and documentation, there are other potential applications of MDL,
described in this section.

The most powerful uses of MDL involve interfacing with XML documents at the level of
meaning rather than structure. To do so, we need to solve two problems — the input
problem and the output problem.

TheInput Problem isto extract the information from an ‘incoming’ XML document and
view that information directly in terms of the classes, ssmple properties and associations
of the semantic model. From the nature of MDL, this problem isfairly simpleto solve.
MDL defines the XPaths you need to follow in order to extract from a document a given
object, or any of its simple properties, or any of its associations. So to find the value of
any simple property or association of some object, you simply need to follow the relevant
XPaths in the document, as defined in the MDL. Thisis easily doneif you have an
implementation of XPath.

The Output Problem isto ‘package’ the information in an instance of the semantic
model into an ‘outgoing’ XML document which conveys that information. It is not quite
so obvious how to do this from the definition of MDL; but in fact it isfairly
straightforward. Y ou need to construct the document from its root ‘downwards'.
Generally you will come to nodes representing objects before you come to nodes
representing their properties and associations. As you come to each node type, you check
in the MDL what type of information the node type represents (e.g. what class of object,
or what property), and you check what instances of that type of information exist in the
semantic model instance. Y ou then construct node instances to reflect these information
model instances.

These brief descriptions show in principle how both the input problem and the output
problem can be solved. We aso have a practical demonstration that both problems can be
solved, in the application of MDL to XML tranglation.

Charteris have developed atool (XMuLator) which takes as input the MDL definitions of
any two XML languages against the same semantic model, and their structure definitions
(e.g. XML Schemas). It generates as output the XSLT to translate from one language to
the other, preserving all their shared meanings. These XSLT transformations have been
tested quite extensively, showing (for instance) that a round-trip translation between two
or more languages will return an accurate subset of the input document (it is generally
only a subset, because the information overlap between the languages is typically not
perfect).

To trand ate between two languages, you need to solve the input problem for one
language and the output problem for the other. By generating viable XSLT trandations,
XMuLator shows that both the input problem and the output problem can be solved in
XSLT.

Knowing that both the input problem and the output problem can be solved, we now
examine the potential applications which follow.

CHARTERIS

MDL2.02.doc

Page 33 of 33

Charteris Working Paper
A Meaning Definition Language
8 August, 2001

5.1

Meaning-Level Query of XML Documents

We would like to be able to interrogate XML documents in terms of their meanings,
rather than their element structure. We would like to ask questions in meaning-based
terms (e.g. ‘how many objects of class X have association Y to a given object?) rather
than in terms of document navigation. MDL supplies the information *how do you
navigate the document to extract a given piece of meaning? (needed to solve the input
problem) so MDL can support a meaning-level query language which gives meaning-
based answers.

For example: a query tool could accept as input a query of the form * Select all order items
which are part of purchase order 12345 and which have quantity > 6. It could then use
the MDL to convert the conditions about properties and associations into XML

navigation instructions (XPaths), run the X Paths over a document to retrieve the
information, and format it appropriately.

Thiswould have three benefits:
* Queries and answers would be expressed in more meaningful, user-oriented terms

* Userswould not need to know about the structures of XML documents; they would
only need to know what information they contain.

e A single query could retrieve similar information from many different XML
documents in different languages which express the same information by different
structures

We have built asmall demonstrator of this type of meaning-level query languages, which
accepts aquery in an XML-independent language (of aform such as *display
orderLine.price, orderLine.quantity where orderLine part of purchaseOrder’) and then
convertsthisinto XSLT to answer the query, producing HTML as output to display the
resultsin a browser. The information flow for this demonstrator is shown below:

Query text Query Generator

Display student.name, student.birthYear |)
where student attends course
and course.name = “English”

MDL

independent of XML structure
(Indep) XSLT

XML

|student.name ‘student.birth year
lfred 1968
liohn 1945
bl 1916

HTML

A

CHARTERIS

MDL2.02.doc

Page 34 of 34
Charteris Working Paper
A Meaning Definition Language
8 August, 2001

5.2 Specification and Generation of XML Transformations

The whole purpose of transforming an XML document from one language to another isto
preserve the meaning — or as much of it as possible. Therefore the meaning contents of
the two XML languages, as defined in their MDL, are avital input to knowing what can
be translated from one language to another.

Given thetwo MDL files, it isfairly straightforward to combine them to find the extent of
meaning overlap between the two languages. This can then serve as a specification of
what is to be trandlated, however the trandation is to be done — for instance, by hand-
coding of XSLT.

If the meaning overlap between two XML languages serves as a specification of all that
can be trandated from one language to the other, then we should be able to go one step
further and actually generate the transformation from this specification. Charteris have
developed atool, XMuLator, which does this (currently in the case of single-inheritance
UML models; but the extension to multiple inheritance is not hard). The information flow
for thisMDL application is shown below:

MDL (1) Schema(1)

N/

UML —— » XSLT (1=>2)

MDL (2) Schema(2) XML (1)

XML (2)

This approach to translation has significant benefits over hand-coding of XSLT:

» Evenwith only two languages to trans ate between, defining their meaningsin MDL
is much less labour-intensive that writing the full XSLT to translate from one to the
other

CHARTERIS

MDL2.02.doc

Page 35 of 35

Charteris Working Paper
A Meaning Definition Language
8 August, 2001

5.3

5.4

* Whenthereare N > 2 languages mapped to the same UML model, the effort of
defining all their meaningsin MDL grows only as N, whereas the cost of hand-
writing all possible translations between them would grow as N2 All possible
trandations can be generated from the MDL at no extra cost. Thisis particularly
significant if each language goes through severa versions, causing N to grow large.

» Becausethe MDL definitions are much more concise than XSLT and are
independently checkable, the resulting trandlations are generally much less error-
prone than hand-written XSLT. For instance, the trandlations generated in this way
through 2, 3 or more intermediate languages have automatic round-trip consistency.

So MDL isthe means to much more cost-effective XML trandlation and interoperability
of XML languages — solving the N problem.

Meaning-Level APIs to XML Documents

Developers need APIs to interface programming languages such as Java or C++ to XML
documents. APIs such as DOM and { Sun Java API} are defined at a document structure
level; to use them, adevel oper needs to be familiar with the document structure, its
meaning, and how it conveys its meaning.

From the schema and the MDL definition of alanguage, we could generate (for instance)
a set of Java classes which reflect not the document structures, but the meanings they
convey. These classes would match classes of the semantic model, not the XML elements
and types. Thiswould be quite easily done on top of an XPath API, because MDL
supplies the X Paths to get specific information needed by the class implementations. This
would have important benefits:

* It would enable developersto work directly at the level of XML meanings, without
having to develop XML structure-specific code

» If there are severa XML languages in the same application domain, it would enable
developersto use the same API to all of them —insulating developers from
proliferation and version changes of languages

Interfaces to Relational Databases

Suppose that there existed an equivalent to MDL for relational databases—an XML
language which defines how arelational database conveys information about the objects,
simple properties and associations of a UML class model. Such a language would
probably be simpler than MDL, because it would not need to talk about paths through the
database; it only needs to talk about the values of columnsin tables. It could also be
output fairly easily from a CASE tool such as Rationa Rose which can capture
information about object-relational mappings. Call this language RMDL.

From the MDL definition of an XML language, and the RMDL definition of the
information content of arelational database (both against the same UML class model), it
isasimple and largely automatic task to calculate the overlap in meaning between the
XML language and the database (again, multiple inheritance makes this process not quite

CHARTERIS

MDL2.02.doc

Page 36 of 36

Charteris Working Paper
A Meaning Definition Language
8 August, 2001

5.5

fully automatic). This could act as a specification for any XM L-database mapping
software, to use the XML to populate the database or vice versa.

More powerfully, the MDL and RMDL could either generate code, or support a run-time
interpreter, to do the XML-Relational mapping automatically. This would have benefits
anal ogous to the benefits of automated XML-to-XML trandlation:

* Defining the MDL and RMDL would be |ess labour-intensive than any manual
process of building the interfaces, even with only one XML language and one
database

* It would provide some measure of confidence that the meaning of the XML was
faithfully preserved in and out of the database

e If acompany hasto work with M different XML languages and N relational
databases, the cost of defining all their meanings against a common semantic model
grows only as (M+N), whereas the cost of hand-building all the interfaces would
grow as M*N. All required interfaces can be created automatically from the
definitions.

Raising the Level of XML

We can summarise the potential impact of MDL as follows:

MDL will enable both applications and usersto interfaceto XML at thelevel of its
meaning, rather than itsstructure.

Users and application designers need not be concerned with the details of XML structure
—with elements, attributes, nesting structure and paths through a document. They can
think purely in terms of the meaning of the document (the objects, properties and
associations it represents) and leave it to MDL-based tools to deal with document
structure. These tools will automatically navigate the X Paths necessary to extract
meaning from structure.

Databases used to be based on a Codasyl navigational model, which exposed a pointer-
based database structure to users and application developers. To get at information you
had to grapple with database structure, following the pointers. Relational Databases and
SQL removed thistight structure dependence of data, enabling usto view datain
(modestly) structure-independent ways. This was such an advance that it swept the
Codasy! database model into history.

In the next few years, we will make similar advances in how we regard XML documents,
seeing them in terms of their information content rather than structure. Structure-centred
views of XML may become history, just as Codasyl is now history. MDL can be the key
tool to develop this meaning-level view of XML.

CHARTERIS

MDL2.02.doc

Page 37 of 37

Charteris Working Paper
A Meaning Definition Language
8 August, 2001

6.

MDL AND THE SEMANTIC WEB

The vision of the Semantic Web isthat the information content of web resources should
be described in machine-usable terms, so that automatic agents can do useful tasks of
finding information, logical inference and negotiating transactions. Therefore work on the
Semantic Web has emphasised tools for describing meanings such as RDF Schema and
DAML +OIL.

The Resource Description Framework (RDF) was designed to be semantically transparent
— s0 that an automated agent can extract and use information from any RDF document,
provided the agent has knowledge of the RDF Schemas used by the RDF. For RDF
documents, therefore, access by automated agentsis arealisable goal.

However, RDF was designed primarily to represent metadata — information about
information resources on the web. Thisis how RDF tends to be used, so the semantic
transparency and automated processing extends only to metadatain RDF. It iswidely
recognised (e.g Berners-Lee 1999) that XML itself does not have this semantic
transparency — precisely because XML can represent meaning in many different ways.

Therefore asit stands, automated agents cannot access the information in (non-RDF)
XML documents. They cannot step outside the RDF world to access the information in
the bulk of XML documents on the web. This severely limits the ability of automated
agents to access the information they need.

MDL can remove the restriction. If the authors of an XML language define its meaning in
MDL, then (as described in the previous section) an automated software agent can access
the information in any document in the language — greatly extending the power of
automated agents.

We can illustrate this by atypical usage scenario for the Semantic Web. | hear from a
friend about some Norwegian ski boots, but do not know the name of the manufacturer. |
want to buy them over the web. My software agent finds the leading ontologies (RDF
Schema based) used to describe WWW retail sites. From these ontologies it learns that
Ski boots are a subclass of footwear and of sports gear; that to buy footwear you need to
specify afoot size. It then inspects the RDF descriptions (metadata) of several online
catalogues. The catalogues themselves are accessible in XML, whose MDL definitions
are all referenced to the same RDF Schema. From the RDF, my agent identifies those
catal ogues which contain information about the kind of goods | want.

The agent then needs to retrieve information of the form ‘ footwear from manufacturer
based in Norway who makes sports gear’ — applying the same retrieval criteriato several
XML-based catalogues, which use different XML languages, and very different
representations of the associations [manufacturer] makes] product], [manufacturer] based
in[country] and so on. The only automated way to make these retrievalsis to know the
XPaths needed to retrieve the associations from the different XML languages. The MDL
definitions of the languages provide just this information, enabling my software agent to
retrieve and compare what it needs from the different catal ogues.

CHARTERIS

MDL2.02.doc

Page 38 of 38
Charteris Working Paper
A Meaning Definition Language
8 August, 2001

Thus the agent uses a two-stage process of (1) access RDF metadata to find out which
catalogues are relevant, and (1) using MDL, access the XML catalogues themselves and
extract the required information. This two-stage process is much more powerful that the
first enabled by RDF on its own.

In summary, realising the Semantic Web will require not only semantics, but also a
bridge between semantics and XML structure. MDL provides that bridge.

CHARTERIS

MDL2.02.doc

Page 39 of 39
Charteris Working Paper
A Meaning Definition Language
8 August, 2001

7. DESCRIBING SEMANTIC MODELS

MDL isused in conjunction with a description of a semantic model of objects, classes,
simple properties and associations — which is approximately the information inaUML
class diagram, or equivalently in an RDF Schema.

Such amodel is conveniently represented in some XML language. While MDL itself
does not depend on the choice of this language — except inasmuch as fragments of the
semantic model may be optionally embedded in the *document’ element of an MDL
document —to build MDL tools, you need to make some choice of language for the
semantic model.

There are three main contenders:

* XMl isastandard encoding of UML, supported by UML tool vendors
* RDF Schema

« DAML+OIL isan ontology extension of RDF Schema

The XMI encoding of UML is driven by a meta-model and is highly generic and
adaptable. The XML encoding of RDF schemais a much simpler language, and is aclose
match to the requirements for use with MDL. However, in devel oping the automated

XML trandation application of MDL, we have found specific requirements which RDF
Schema does not meset.

Languages for defining ontologies have been built as extenstions of RDF Schema—
particularly the DARPA Agent Markup Language (DAML) and the Ontology Interchange
Language (OIL). These have recently merged into alanguage DAML+OIL which has
many attractive features. Syntacticaly it is not amajor departure from RDF Schema, so it
is still asimple language; severa of the extensions beyond RDF Schema are well suited
for use with MDL; and DAML+OIL has a well-defined model-theoretic semantics.
Therefore we propose to use DAML+OIL to describe semantic models for use with

MDL.

CHARTERIS

MDL2.02.doc

Page 40 of 40
Charteris Working Paper
A Meaning Definition Language
8 August, 2001

8. APPENDIX — SCHEMA AND MDL FOR MDL

To be provided in alater draft.

CHARTERIS

MDL2.02.doc

Page 41 of 41
Charteris Working Paper

A Meaning Definition Language
8 August, 2001

REFERENCES

To be supplied.

CHARTERIS

MDL2.02.doc

	1.	INTRODUCTION	3
	HOW XML EXPRESSES MEANINGS
	A Minimal Model of XML Meanings
	How XML Represents Objects
	How XML Represents Simple properties
	How XML Represents Associations
	Discussion

	PROPOSED MEANING DEFINITION LANGUAGE
	Requirements and Design Choices
	The Core Principle of MDL
	A Simplification of the Language
	Structure and Meaning of MDL
	The Document Element
	The ‘Element’ Element
	Elements Representing Objects
	Elements Representing Simple properties
	Elements Representing Associations

	The ‘Attribute’ Element

	Embedding MDL in XML Schemas
	MDL in RDF
	Summary of the Language

	VALIDATION AND DOCUMENTATION
	Validation Against the Language Schema
	Validation Against the Semantic Model
	Validation Jointly Against the Schema and the Semantic Model
	Validation of XML Document Instances
	Analysis and Design of XML Applications
	Design of XML Languages

	OTHER APPLICATIONS OF MDL
	Meaning-Level Query of XML Documents
	Specification and Generation of XML Transformations
	Meaning-Level APIs to XML Documents
	Interfaces to Relational Databases
	Raising the Level of XML

	MDL AND THE SEMANTIC WEB
	DESCRIBING SEMANTIC MODELS
	APPENDIX – SCHEMA AND MDL FOR MDL
	REFERENCES

