Copyright 2001 |EEE. Published in the Proceedings of the Hawai'i International Conference On System Sciences,

January 3-6, 2001, Maui, Hawaii.

Modeling Inter or ganizational Workflowswith XML Nets

Kirsten Lenz
Institute of Information Systems
J.W. Goethe-University
D-60054 Frankfurt/Main, Germany
lenz@wiwi.uni-frankfurt.de

Abstract

Efficient interorganizational business processes in the
field of e-commerce require the integration of electronic
document and data interchange and interorganizational
processes. We propose to support interorganizational
business processes by so-called XML nets, a new kind of
high-level Petri nets. XML nets are a formal, graphical
modeling language that allows to model both the flow of
XML documents and the business process. XML nets are
based on GXSL, a graphical XML schema definition
language, and its related graphical XML document
manipulation language (XManiLa). They can be directly
executed by a workflow engine. Advantage of the formal
foundation of XML nets can be taken e.g. when analyzing
a (global) interorganizational workflow model: XML nets
support the process of identifying relevant process
fragments, assigning them to the appropriate
organizational units, and thus help deriving an improved,
process-oriented organizational structure.

1. Introduction

Efficient interorganizational business processes in the
field of e-commerce require the integration of electronic
document interchange and interorganizational processes.
From the document point of view, there is a need for
electronically interchanging structured documents and
data between the organizations involved. From a process-
oriented perspective, modeling, analysis, and automated
execution of distributed workflows gain more and more
importance. Moreover, the advantages of workflow driven
electronic document interchange are relevant for the intra-
organizational process management, especially with the
emerging integration of mass data in databases and docu-
ment management. The proposed XML nets, a new kind
of high-level Petri nets, are a formal, graphical modeling
language that allows to model both the flow of XML
documents and the business process. They are based on

Andreas Oberweis
Institute of Information Systems
J.W. Goethe-University
D-60054 Frankfurt/Main, Germany
oberwei s@wiwi.uni-frankfurt.de

GXSL, agraphical XML schema definition language, and
the XML document manipulation language XManiLa.

XML nets can be directly executed by a workflow
engine and therefore allow for a detailed analysis and
simulation of distributed business processes. Additionally,
XML nets support the process of identifying relevant
process fragments and assigning them to the appropriate
organizationa units, thus help to derive an improved,
process-oriented organizational structure.

Related concepts for graphical XML data modeling
languages and XML query languages can be found for
example in [2], [5], [7], and [18]. Many of the XML net
concepts proposed in this paper rely on so-called SGML
nets [20], a variant of Petri nets for the modeling of
workflows based on SGML documents.

Our paper is structured as follows: First, we give a
brief introduction to XML, Petri nets, and workflow
management. In the next section, we present a graphical
XML schema definition language and derive a graphical
XML document manipulation language. Finally, we
propose XML nets for the intra- and interoganizational
workflow driven document interchange.

1.1. Extensible markup language

The Extensible Markup Language (XML) [9] is a
document declaration standard proposed by the World
Wide Web Consortium (W3C, http://www.w3.org/). It is
a simplification of the Standard Generalized Markup
Language (SGML, 1SO 8879). An XML document type
definition (DTD) allows to specify a document type with
problem specific markups as a class of XML documents
conforming to that specific DTD, i.e. a set of documents
that follow these document design rules. Figure 1 shows a
simple DTD for an employee document with personnel
information, alist of projects she or he worksin and alist
of the skills.

A corresponding valid document for the employee
Mary L. Miller is shown in Figure 2.

<!-- DID for enpl oyee docunents-->
<! ELEMENT enpl oyee (enpnane,
work_in_proj*, skill*)>
<! ATTLI ST enpl oyee enpi d | D #REQUI RED
sex (male|female) "ferale">
<! ELEMENT enpnane (title?,
(firstnane| abbreviation)+,
| ast nane) >
<IELEMENT title (#PCDATA) >
<! ELEMENT firstnane (#PCDATA) >
<! ELEMENT abbrevi ati on (#PCDATA) >
<! ELEMENT | ast nane (#PCDATA) >
<! ELEMENT work_i n_proj (#PCDATA) >
<! ATTLI ST work_in_proj projid
| DREF #l MPLI ED>
<! ELEMENT skill (#PCDATA) >

Figure 1: Document type definition for employee
documents

<?xm version="1.0"7?>
<! DOCTYPE enpl oyee SYSTEM
"http://...enpdoc. dtd">
<enpl oyee enpi d="0815" sex="female'>
<enpnane>
<firstname>Mary</fir st nanme>
<abbrevati on>L.</ abbr evati on>
<l ast nane>Miller</ | ast nane>
</ enpnane>
<work_i n_proj projid="328">20
</work_i n_proj>
<wor k_i n_proj projid="85">10
</work_i n_proj>
<ski | | >Java</ skil | >
<skil | >C++</skil | >
<ski | | >Oracle8</ ski | | >
</ enpl oyee>

Figure 2: Valid employee document

In the near future, XML DTDs may be complemented
by XML schemas [21], a new standard promoted by W3C
which attempts to overcome the limits of a DTD e.g.
concerning the data-oriented role of XML in e-commerce
applications. XML schemas, a functional superset of
DTDs, are written in XML and can therefore be parsed
and validated like XML documents. Moreover, they
provide a way to specify data types and thereby ensure
dataintegrity for valid XML documents.

1.2. Petri nets

For the modeling of business processes several more or
less formal description languages have been proposed. In
contrast to other languages, Petri nets [4, 17] combine the
advantages of the graphical representation of processes
with a formal definition. Beyond visualization of
processes Petri nets allow for the analysis and validation
of business processes [6]. A simple example of a low-

level Petri net is shown in Figure 3. A planned project is
initialized. Afterwards, employees can be assigned to the
project. At the begin of a project the project identifier is
assigned to the responsible department. After finishing the
project, the employee information must be updated: new
skills learned in the project have to be added, whereas the
project has to be removed from the list of projects the
employee worksin.

unning finished

.) planned - ;
initialize project pygiect finish project project

. runn

Imnlmmpﬂé)

)< |

assigr
employee
department

employee update employee

Figure 3: Simple Petri net for the process of
project execution

High-level Petri nets such as predicate/transition nets
(Pr/T-nets) [12, 15] or nested relation/transition nets
(NR/T-nets) [16] integrate behavior- and object-related
aspects of workflows. In Pr/T-nets or NR/T-nets the
places represent relation schemes according to which the
marking of the net assigns a relation to each place. A
transition represents a class of operations on the relations
in the adjacent places. When a transition occurs, the
respective tuples are removed from its input places and
inserted into its output places according to the edge
inscriptions.

1.3. Workflow M anagement

Workflow management supports business process
management: business processes can be modeled by more
or less formal or graphical modeling languages like event-
driven process chains [19] or Petri nets. The workflow
itself, i.e. a concrete process execution, can be interpreted
as an instantiation of the workflow model. The main tasks
of workflow management include the specification of the
workflow model, its analysis and verification, the
execution of the workflow by a suitable workflow
architecture, and the development of workflow
applications[10].

Petri nets are well suited and frequently proposed for
workflow modeling [11]: They provide a restricted
number of graphical modeling concepts and possess at the
same time formal semantics. Their forma foundation
enables the application of theoretical analysis techniques
(e.g. to find out whether a certain system state can be
reached or not) and the model-driven execution of the
workflow. Moreover, they integrate data and behavior

aspects and therefore meet the need to model for example
interorganizational workflows based on electronic
document interchange. The use of Petri nets at different
formalization levels allows for a stepwise refinement of a
workflow model. A survey of different approaches for
Petri net based business process and workflow
management can be found for examplein [1].

2. Graphical languages for XML document
management

In this section, we introduce the graphica XML
schema definition language (GXSL) for graphicaly
specifying XML schemas that represent a DTD.
XManiLa, an extension to the graphical XML schema
definition language, is proposed for the retrieval and
manipulation, especially insation and deletion, of XML
documents.

2.1. XML schema definition with GXSL

The XML document type definition represents a
grammar for the declaration of documents. It consists of a
set of markup declarations of different types. element,
attribute list, entity or notation declaration. Unfortunately,
this grammar is textual so that the DTDs for complex
objects often may become quite unreadable. The
advantages of a graphical schema definition language
(like the entity/relationship model for the database design)
are missing.

In the following, we propose a graphical schema
definition language for the design of XML document
types, that we call graphical XML schema definition
language (GXSL). The presented version of GXSL is
DTD-based, i.e. a DTD can be unambiguously derived
from the graphical XML schema (GXS).

Instead of creating a completely new graphical
modeling language for XML document types, we rely on
well known data modeling concepts (of the E/R-model
and other semantic data models), which all had their
impact on the static modeling concepts of the Unified
Modeling Language (UML) [3]. The main advantage of
UML is that it is a highly accepted integration of well-
known modeling concepts and guidelines and that it
comprises a generic notation for the derivation of new
graphical modeling languages for specific purposes. Due
to space limitations, we focus on the logical structure of
XML document types and omit XML entity declarations,
internal subsets and | NCLUDE or | GNORE markups. We
aso derive a simplification of the GXS conforming to
UML which has been adapted to the quick, rather intuitive
modeling of XML document types.

The main principles of XML DTDs are classification
of documents with comparable structure and aggregation
of document components. We present XML documents
and their elements by UML classes, hierarchicaly (i.e.
non-recursively) structured by composition or aggrega-
tion. In the following, the UML concepts for GXSL are
explained in detail.

Simple element types. In general, element type
declarations of the XML DTD are represented by classes
in GXSL. By simple element types we understand
element types without children (i.e. they are not
composed of other element types), namely the EMPTY-
element type, the ANY-element type and the predefined
#PCDATA. When the element type declaration contains the
keyword ANY, both other tags and general characters are
allowed within the element tags. Empty elements have no
content at all. See Figure 4 for the GXSL representation

of simple element type declarations in a GXS by
stereotyped «any»- and «empty»-classes.

XML: <! ELEMENT enane: ANY> <! ELEMENT enane: EMPTY>
A [/
GXSL: enamel

enamez2

Figure 4: GXSL class representation of the ANY-
and EMPTY-element type declaration

#PCDATA stands for parsed character data and
symbolizes any sequence of general characters that does
not contain any tag. The GXSL class «pcdata» has no
name and providesits own icon as shown in Figure 5.

XML: #PCDATA

GXSL:

Figure 5: GXSL icon for the «pcdata»-class

In addition to element type declarations, a DTD may
include attribute list declarations in order to specify
element types. The attribute list declaration for an element
type enane hasthe following pattern:

<I ATTLI ST enanme anane; atype;
def aul t decl 4

anane, atype, defaul tdecl ,>.

anane is the attribute name, at ype the attribute type
and def aul t decl an optional default declaration. In a

GXS, the attribute list is added to the element class (see
Figure 6).

The default declaration consists of a default value
and/or adefault modifier. In Figure 6, the second attribute

of the element type has a default value. Table 1 showsthe
translation of XML default modifiersinto GXSL.

ename
anamet: atypet
anamez2: atype = default2

anamen: atvpen

Figure 6: Element class with attribute list

It is possible to restrict the GXS class representation to

the element name with or even without the list of the
attribute namesin a survey diagram.

Table 1: GXSL class attribute for XML
attribute declaration with default modifier

XML GXSL
#1 MPLI ED aname: atype attnbyte val ue may
remain unspecified
) mandatory attribute
#REQUI RED | @ame [1]: value, specified by the
atype .
occurrence indicator
#E| XED aname: atype | attribute value must
" dval ue” =dvaue not be changed;
{frozen} default value required

Nested element types. Element types in XML can be
nested in order to describe hierarchically structured
documents, i.e. the element type declaration refers to
other element type declarations of the DTD:

<l ELEMENT enane (...)>.

UML offers a special kind of association to adequately
model the hierarchical relationship between different
element types. composition and aggregation.
Composition, represented by a filled diamond, is used to
express that the child element is a component of exactly
one element of the parent element type with existence
dependency (e.g. a car consists of four wheels).
Aggregation, the weaker form of composition and
represented by an open diamond in the GXS (see
Figure 7), can be used to express a loose, non dependent
‘consists of'-relationship (e.g. a discussion group consists
of four people). Additionally, a name and a name
direction can be assigned to each association.

‘ e

Figure 7: GXS for a nested element type

XML occurrence indicators as appendix of an element
name or a group of elements can be translated into a
cardinality that can be assigned to the associated
subclass(es), see Table 2.

Table 2: GXSL cardinalities for XML
occurrence indicators

XML occurren- | GXSL cardinality

ce oper ator

none 1 mandatory

? 0.1 optional

* * OCCUrs zero or more times
+ 1.* occursoneor moretimes

The cardinality corresponding to the parent classes are
always 1 for the composition and 1..* for the aggregation.
For example, the element type declaration <! ELEMENT
qualification (skill*)> for the qualification of an
employee as a set of skillshasthe GXSin Figure7.

Choice. The XML element type can be defined as a
choice between two or more element types. For example,
the DTD contains the element type declaration
<! ELEMENT enane; (enane;| enanes) > and respective
element type declarations for enane, and enanme;. Within
a document which is valid for this DTD there has to
appear either an enane, element or an enane; element
inside the enane; element (and must not appear both).
With GXSL choice can be expressed by a constraint with
{or}-condition between the respective alternative
subclasses (see Figure 8).

Qi

1 {or) 1

enamez enames

Figure 8: GXS for alternative element types

Sequence. A sequence of elements that have to appear in
apredefined order within another element can be declared
asalist of element names, separated by commas:

<! ELEMENT enane (enane;, ename,,...,

enamne,) >.

We use the dependency modeling concept of UML to
model a sequence with GXSL. Dependency is a (possibly
directed) association and indicates sort of a using
relationship between elements. In GXSL we introduce a
directed dependency including the label {precedes} to
order the subclasses of a superclass (see Figure 9) with

the following semantics: The document elements must

follow the same order as their element types (respective
their cardinality).

ename
O

e 2 sfamner ... -sfere]

Figure 9: GXS for a sequence of element types

Cascading Nesting. XML allows for element type
declarations with cascading nesting, i.e. element types are
not declared explicitly but are implicitly given by an
expression enclosed in parenthesis. For example, we can
declare by (enane;, (enanme,| enanes) +) that an ele-
ment of type enane; must be followed by an iteration of
either an enanme, element or an ename; element. In this
case, we have to introduce an abstract class to model the
hierarchy of the element type (see Figure 10). This means
splitting the expression into (enane,, abstract+) and
<l ELEMENT abstract (ename,|enanes)>.

1 ' L#

Figure 10: GXS for nested element types with an
abstract class

The abstract class is a stereotyped class and has its
own icon with an "A"-symbol in it. It is neither possible
to attach a class name nor to assign attributes to it.
However, the abstract class may have acardinality.

Referential integrity. Attributes may be of type | DREF
or | DREFS. Its values must be included in (or be a subset
of respectively) the set of 1D attribute values of the
referenced element type. The attribute types | DREF and
| DREFS therefore implicitly define referential integrity
constraints between XML elements of a DTD. The GXSL
even alowsfor explicit referential integrity constraints by
{ref}-dependencies (see Figure 11). {ref}-dependencies
are labeled by the referencing and the referenced attribute
and the *-cardinality for attributes of type | DREFS.

enamez | ref:jd1,eid2}|_ename
gd2 ID [<------- idL: IDREF |{ref:id2,eid3)—anes
id2: IDREFS ------2 eid3:ID

Figure 11: GXSL dependencies for referential
integrity constraints

Simplifications of GXSL. In this section, we present
some simplifications of GXSL concepts we described
above. With these simplifications, GXSL does not
completely coincide with UML anymore. But a simplified
GXS still provides all necessary information without
notational overload and the GXS design becomes more
intuitive for those who are familiar with XML.

= The association name and direction can be omitted.

= Cardinality of the superclass of composition or
aggregation is fixed and thus can be omitted.

= For GXSL, we declare default cardinality to be '1'
(instead of *' for the UML), which is identical to the
default occurrence indicator of XML.

= We propose a stereotyped class and a special icon for
the element type declaration <! ELEMENT enane
(#PCDATA) > (Figure 12b) instead of the GXS
conforming to UML (Figure 12a). Note that the
#PCDATA-element class is not identical to the
#PCDATA-class introduced before.

ename
attribute list ename 3
consistsof 1 attributelist
v

b) icon for #PCDATA-

a) UML notation element class

Figure 12: Simplification for #PCDATA-element
types

= The constraint for a choice is expressed only by a
dashed line. The { or} -condition can be omitted.

» The GXSfor asequenceissimplified by omitting the
{ precedes} -dependencies. Nevertheless, elements of
a valid document must appear in the same order as
the respective classesin the GXS.

= The label of a {ref}-dependency may be omitted if
either class attributes have not been specified in the
GXS or both referencing and referenced attributes
can be uniquely identified without any label.

ename1

| enamez | | enames |

Figure 13: Simplification for cascading nesting
of element types referring to Figure 10

= Cascading nesting of elementsis represented without
any abstract class. We allow for a tree structure of
composition and/or aggregation (see Figure 13). The
cardinality of the astract class is written above the
respective branch.

Example. We are now able to construct a GXS (in Figure
14) which is equivalent to the employee DTD of Figure 1.

employee

empid[1]: ID
sex: (malelfemale)="female"

t

|* |*

pid: IDREF
0.1

Figure 14: GXS for the employee DTD of Figure 1

|firs:name EI |abbrevia1ion5|

Compared to the textual representation in Figure 1, the
graphical representation gives a better overview of the
defined elements and the logical structure of a valid
employee document.

2.2. Manipulation of XML documentswith
XManiLa

We can use GXSL with some extensions also for
guerying and manipulating XML documents. The GXSL-
based XML document manipulation language is called
XManiLa. A GXSL-schema can be seen as atemplate for
a set of XML documents that specifies the structure of
matching documents. In order to enable also a content
based query, we allow for assigning constants or variables
to an element or an attribute. For example, we may want
to search for all female employees that have a firstname
followed by an abbreviation and the lasthame "Miller".
The GXSin Figure 15 describes this query.

employee
sex="female"

:
T [rranere J [strovaion LB [3

| abbreviation :
="Miller"

Figure 15: Female employees named Miller with
a firstname followed by an abbreviation

XManiLais not only suited for document retrieval, but
also for insertion and deletion (and thereby also for
updating). These operations either concern a whole
document or elements on lower hierarchy levels.
Elements to be inserted or deleted are depicted by a solid
line on the left side of the element's rectangle. The insert-
and delete-qualification is inherited by all subclasses. For
examples of insertion and deletion operations on the
employee documents see Figure 16.

employee
sx="male"
empid="6394"

employee
empid="0815"

- |title g firstname 3 lastname ﬂ
firsname 3 [lasthame 3 =" Patricia’
="Sam" ="Jones"
a) create new employee b) append firstname for employee 0815
employee
empid="0815"
employee
anpic=" 0815
c) delete employee 0815 d) delete title of employee 0815

Figure 16: Insertion and deletion operations on
the employee documents

3. Interorganizational data interchange based
on XML

The interchange of XML documents between
organizations can be handled in different ways:

The XML document can be sent to another
organization without any DTD. From the recipient's
point of view the document only fulfills the weaker
reguirements of being well-formed (i.e. has a correct
syntax), supplementary information is missing.

= The DTD can be stored internally within the
document type declaration of the document and
therefore be sent to the recipient together with the
document itself. In this case the XML document can
be processed anywhere without any supplementary
information. However, reuse of the DTD is not
supported.

= External DTDs (either public or private) are stored as
independent files. They can be identified via uniform
resource identifiers (URISs) which must be contained
in the document type declaration of the valid XML
document. External DTDs can be distinguished
through so called namespaces [14]. They are reusable
and thus support more efficient document
management.

The extent of publishing organizational DTDs depends
on many aspects, for example on technological aspects as
well as on the organizational strategy. DTDs can be
completely hidden to other process participants,
bilaterally exchanged or published world wide. For a
short introduction into XML and namespaces see for
example [8]. In the following, we suppose that the set of
process relevant DTDs is known to all participants of the
business process.

3.1. XML nets

In the sections above, we have described how to
graphically model XML DTDs with GXSL and how to
specify document retrieval and document manipulation
with XManiLa. We can now combine both techniques for
the definition of XML nets.

XML nets, a new kind of high-level Petri nets, are a
formal, graphical modeling language that allows to model
both the flow of XML documents and the underlying
business process. The static components of XML nets (i.e.
the places of a Petri net) are labeled with GXSL-schemas
representing a DTD. Places can be interpreted as a
container for XML documents which are valid for the
corresponding DTD. The flow of XML documents is
defined by the occurrences of transitions which thereby
manipulate (create, change or delete) documents of their
adjacent places. The activation of a transition, which is
prerequisite for the transition’'s occurrence, depends on the
labels of the adjacent edges constructed with XManiLa
and on an optional transition inscription. XML nets have
thefollowing characteristics:

= A placeisrepresented by a GXS which identifies the
type of documents contained in the place.

= An edge between a place and a transition is labeled
with an extended GXS that does not conflict with the
schema of the adjacent place. For each instantiation
of the variables of the edge label it is possible to
decide whether a document of the adjacent place
matches the extended GXS or not.

= A transition may be inscribed by alogical expression
over all variables that appear in the labels of the
adjacent edges. The expression evaluates to either
true orf al se for an instantiation of the variables.

» Theinitial marking assigns to each place of the XML
net a set of valid XML documents.

The behavior of XML nets is defined by the following
rule for a transition being activated for an instantiation of
variables (If a variable appears more than once in the
vicinity of a transition it must be instantiated with the
same value for the same transition occurrence.): All
places in the preset of the transition, i.e. with an outgoing
edge to the transition, contain (at least) one document that
matches with the schema of the adjacent edge under the
given instantiation of the variables. All places in the
postset of the transition, i.e. with an edge from transition
to place, contain (at least) one document that matches
with the label of the adjacent edge under the given
instantiation of the variables in case of document
manipulation or do not contain a matching document in
case of document creation. The transition inscription
validates to true for these documents and the
instantiation of the variables.

An activated transition may occur. If a transition
occurs, it removes the matching documents or parts of the
documents as specified by the edge label from the places
in the preset of the transition and inserts new documents
into the places in the postset of the transition or new
€lements into the matching documents.

planned project

inished project

nid[1]: 1D
0.1
|pr0j name 3 |[eam |
S
- | esson |earned
.
lempno3 [requirement | lempno 3 [projno 3 [skill 3
kask 3 [ime 3 lualification 3 running project
777 Phidil 1D
epartment | | L
depid:ID ="0 proﬁnameﬂ responsible 3 |responsibility
,—?_‘ ! department
name run project | /

[I |
pid: IDREF]-~ [empno 3 [task 3 fqualification 3

Figure 17: Graphical XML schemas for the
project execution

To continue the example of Figure 3, we can now
assign to each place a GXS and to each edge an extended
GXS as label. Figure 17 shows the schemas for planned,
running and finished projects, the department, and the
lessons learned. The schema for the employeeis shownin
Figure 14.

Besides the definition of all process relevant document

type definitions, the behavior of the XML net has to be
specified in detail for all transitions.

» initialize project: A new document of type pl anned
proj ect iscreated.

= assign employee: The assignment consists of
inserting the employee ID as team member for the
project and the time required for the task execution
together with the project 1D for the employee.

= dtart project: When a project is started, a responsible
department is chosen for the project. This is only
possible for departments with an identifier that differs
from the default identifier 0. The document of type
pl anned project isdeleted and a new document
of type running project, including the
department 1D, created. The project ID is added to
the department's list of running projects.

= finish project: Delete the respective document from
the list of running projects and create a new
document with the information about the finished
project. Moreover, delete the project ID from the
department document. Create a new document that
contains all information about the skill that an
employee has learned from the project.

update employee: Finally, the information about
project participation is deleted in the employee
document. At the same time, the new skill is
appended to the employee'slist of skills.

The XML net corresponding to the simple Petri net of
Figure 3 is shown in Figure 18. For the sake of
readability, we omitted the GXS place labels.
Furthermore, no initial marking is specified.

An interorganizational workflow management system
should be able to deal with both simply structured data
and documents. Although places of predicate/transition
nets are interpreted as containers for relations, i.e.
structured data of relational databases, predicate/transition
nets can also be modeled as XML nets. the GXS
corresponding to arelation schema or an edge inscription
is a diagram with a one level hierarchy of all attributes.
This allows to combine both concepts, data based
workflow modeling with predicate transition nets and
document based workflow modeling with XML nets.

3.2. Fragmentation of XML nets

The globalization of companies, flexibilization of
organizational structures, cooperation between companies
and business-to-business commerce, mobile computing,
and the development towards distributed business
processes require the application of geographically dis-
tributed information system technologies. The distribution
of a global, interorganizational workflow implies a
distribution of the workflow management system on the
execution level and on the design level methods for the
fragmentation of centralized workflows. The fragmenta-
tion of predicate/transition nets as a kind of Petri netsis
described in [13] and can easily be transferred to XML
nets.

A global XML net can be decomposed into several
local net fragments that can be allocated to different
execution sites. In general, we decompose Petri nets by

running project]

running project

id=P

i T i
gro'narne:N‘-jl | AH remon?bility|

r T 1
| empno=E 3 | task=T 3 [skill=s 4

planned

pid =P
[T ’ 1
gro'name:N% responsible j responsibilit
I T 1
| empno=E5} | task=T 3 [sill=04

finished

initialize . running
project project start project project finish project project
0 oo () 0
A
lanned project department
id=P depid =D
. ' N 3 task=T 1
projname=N '3' tegm ’—‘—ATY_‘ - | projname=
Tun project
/ member I_ pid=P
lanned project
Eid -p o empno=E3 | requirement gga(;tTg“
(ALA || e [t | e
ask= ualification= p—— .
pno=E 3 || skill=S
\ / Frunproject D
l pid =P rono=P
requiremen Y
| E— — department () lesson learned
\E time=T3[_A / employee

assign

empid=E
hd

employee

employee
empid=E

work_in_proj I ﬂ

id=P

CA|CA

employee

empid=E

|work_in | proj 3
id=P

employee
T
ﬂ ﬂ lski|I=S'3l

Figure 18. XML net for the process of project execution

splitting the places, i.e. by duplicating them and assigning
the copies to the respective fragments. The initial marking
of an interface place in the global net (for XML nets a set
of valid documents) can be assigned to the corresponding
places of the fragments in two ways:. by replication of the
documents or by allocation to one of the fragments.

o

b) horizontal c) diagonal
decomposition decomposition

a) vertical
decomposition

Figure 19: Vertical, horizontal,
decomposition of Petri nets

and diagonal

In [13] three types of decomposition are described
based on the dependencies between the fragments (i.e. the
data flow in the global net): vertical, e.g. for sequential
processes, horizontal as for alternative processes, and
diagonal for decomposition into processes with mutual
dependency (see Figure 19 for examples).

Coming back to our workflow example for the project
execution, we can identify three different aganizational
units involved in the execution of the workflow: the
management, the department that is responsible for the
execution of the specific project and the human resources
department (see Figure 20). The arcs describe the
document flow and thus the dependencies between the
workflow fragments. For example, the project department
needs documents from the management for the execution
of their part of the workflow (the running project
document).

initialize project ggagmMENT 1V 1
1

planned rur‘\qfng finished

y roject start project pigiect finishproject project
O o Sy 8

A

| s
assign @
emolovee ’/

_deeartment | lesso nec
- ~ Y

FRAGEMENT 2
PROJECT DEPARTMENT

=

emplovee FRAGMENT 3 update employee
HUMAN RESOURCES DEPARTMENT

document flow between two fragments
Figure 20: Workflow fragments for the distri-

buted project execution

For the execution of a distributed workflow based on a
Petri net several architectures are conceivable, with the
degree of distribution ranging from centralized to

completely distributed. Organizational structures, the
distribution of workflow relevant data and documents, as
well as technical restrictions are crucial criteria for the
alocation of the workflow fragments. Whether a
workflow engine runs in a central place, isinstalled at all
process participants' sites, or is sent to the site on demand
(together with the workflow fragment) depends for
example on the size of the workflow engine in relation to
the size of the workflow fragments, the average number
of workflow fragments to be executed at the site, the
maintenance and update cost of the workflow engine, and
the flexibility of the workflow fragment allocation. For
example, distribution of the workflow engine is a suitable
architecture for the workflow support of business-to-
business applications because of the small number of
participating organizations in contrast to workflows e.g.
for business-to-consumer applications like internet
shopping malls.

4. Outlook

In this contribution, we have introduced XML-nets,
which integrate behavior- and document-related aspects
of workflows. In the future, GXSL might be adopted to
XML schemas as soon as ongoing work on XML schemas
has lead to a W3C recommendation. Moreover, XManiLa
will be extended to querying the sequential order of
elements of the same element class.

For the geographical distribution of XML net-based
workflows, principles of distributed database management
systems may be transferred to the management of
distributed XML documents, focussed for example on the
management of document replication. Finally, criteria for
the allocation of workflow fragments depending on the
allocation of documents, mass data and other relevant
resources must be found.

We plan to extend an existing Petri net simulation tool

in order to simulate and validate distributed workflows
which are modeled as XML nets.

References

[1] van der Adlst, W.; Desel, J.; Oberweis, A.: Business Process
Management — Models, Techniques and Empirical Sudies,
Lecture Notes in Computer Science, Vol. 1806, Springer-
Verlag, 2000.

[2] Bonifati, A.; Ceri, S.: Comparative Analysis of Five XML
Query Languages, in: SIGMOD Record 29(1), March 2000, pp.
68-79.

[3] Booch, G.; Rumbaugh, J; Jacobson, |.. The Unified
Modeling Language User Guide, Addison Wesley, 1999.

[4] Brauer, W., Reisig, W., Rozenberg, G (eds.): Advances in
Petri Nets, Part |, Lecture Notes in Computer Science, Vol. 254,
Springer-Verlag, 1986.

[5] Ceri, S.; Comai, S.; Damiani, E.; Fraterndi, P.; Paraboschi,
S,; Tanca, L.: XML-GL: a Graphical Language for Querying
and Restructuring XML Documents, in: Proc. § Int. World
Wide Web Conference, Toronto, Canada, 1999.
(http://ww8.org/w8-papers/1c-xml/xml-gl/ xml-gl.html)

[6] Desel, J.; Erwin, Th.: Modeling, Simulation and Analysis of
Business Processes, in [1], pp. 129-141.

[7] Deutsch, A.; Fernandez, M.; Florescu, D.; Levy, A.: Suciu,
D.: A Query Language for XML, in: Proc. 8" Int. World Wide
Web Conference, Toronto, Canada, 1999.

(http://www8.org/w8-papers/1c-xml/query/query.html)
[8] Eckstein, R.: XML Pocket reference, O'Reilly, 1999.

[9] Extensible Markup Language (XML) 1.0, World Wide Web
Consortium Recommendation, Technical Report, 10-February-
1998.

(http:/Avww.w3.0rg/TR/1998/REC-xml-19980210)

[10] Jablonski, S.: Workflow Management Between Formal
Theory and Pragmatic Approaches, in: [1], pp. 345-358.

[11] Janssens, G.K.; Verdst, J; Weyn, B.: Techniques for
Modeling Workflows and Their Support of Reuse in: [1], pp. 1-
15.

[12] Genrich, H.J.: Predicate/Transition Nets, in [4], pp. 207-
247.

[13] Guth, V.; Lenz, K.; Oberweis, A.: Distributed Workflow
Execution Based on Fragmentation of Petri Nets, in:
Traunmiller, R.; Csuhgj-Varju, E. (eds.): Proc. 15" IFIP World
Computer Congress 'Telecooperation — The Global Office,
Teleworking and Communication Tools, Vienna, Budapest,
September 1998, pp. 114-125.

[14] Namespaces in XML, World Wide Web Consortium
Recommendation, Technical Report, 14-January-1999.

(http://wvww.w3.org/TR/REC-xml-names/)

[15] Oberweis, A.: An Integrated Approach for the Specification
of Processes and Related Complex Sructured Objects in
Business Applications, in: Decision Support Systems, 17, 1996,
pp. 31-53.

[16] Oberweis, A.; Sander, P.. Information System Behavior
Soecification by High-Level Petri Nets, in: ACM Transactions
on Information Systems, 14(4), 1996, pp. 380-420.

[17] Reisig, W.: Petri Nets. an Introduction, EATCS

monographs 4, Springer-Verlag, 1985.

[18] Robie, R.; Lapp, J.; Schach, D.. XML Query Language
(XQL), in: Proc. of the Query Language Workshop , Cambridge,
M assachusetts, 1998.

(http:/Avww.w3.0rg/ TandS/QL/QL 98/pp/xql.html)

[19] Scheer, A.-W.; Nittgens, M.: ARIS Architecture and
Reference Models for Business Process Management, in [1], pp.
376-389.

[20] Weitz, W.: Combining Structured Documents with High-
level Petri-Nets for Workflow Modeling in Internet-based
Commerce, Int. Journal of Cooperative Information Systems
(13C1S), 7(4), December 1998, pp. 275-296.

[21] XML Schema Part 1: Sructures, Part 2: Datatypes, World
Wide Web Consortium Working Draft, Technical Report, 7-
April-2000.

(http://www.w3.org/TR/xmlschema-1/ and
http://www.w3.0rg/TR/xmlschema-2/)

