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Abstract

RDF Declarative Description (RDD) is a meta-
data modeling language which extends RDF(S) ex-
pressiveness by provision of generic means for 
succinct and uniform representation of metadata, 
their relationships, rules and axioms. Through its ex-
pressive mechanism, RDD can directly represent all 
RDF-based languages such as OIL and DAML-
family markup languages (e.g., DAML+OIL and 
DAML-S), and hence allows their intended meanings 
to be determined directly without employment of 
other formalisms. Therefore, RDD readily enables 
interchangeability, interoperability as well as inte-
grability of metadata applications, developed in-
dependently by different communities and exploiting 
different schemas and languages. Moreover, RDD is 
also equipped with computation and query-
processing mechanisms.
Keywords: Metadata, RDF, RDF Schema, RDF 
Declarative Description, RDD language.

1 Introduction

Resource Description Framework (RDF) [13] is a 
W3C’s recommended framework for encoding, ex-
change and reuse of metadata, which offers founda-
tions for syntactic and semantic interoperations 
among Web applications. Although RDF Schema 
(RDFS) [8] provides a simple ontological-modeling 
facility for descriptions of classes, properties and 
their hierarchies, its mechanism is still limited and 

lacks expressive power to describe Web resources 
and Web applications in that:

� it cannot represent ontological and domain 
axioms as well as relational algebraic properties,
e.g., transitivity, symmetry of relations and in-
verse relations;

� it does not support an efficient and powerful 
computation mechanism; and

� it does not provide a query-processing mecha-
nism.

In order to cope with such limitations, this paper 
develops RDF Declarative Description (RDD) 
language which employs RDF(S) and Declarative 
Description (DD) theory [1,2] as its underlying 
frameworks for description of metadata and for en-
hancement of RDF(S) expressive power. It allows 
ordinary RDF (metadata) elements, encoded in XML 
language and describing specific facts and relations 
among certain resources, to be directly represented. 
Moreover, it enhances the capability and expressive-
ness of ordinary RDF elements by additionally 
allowing expression of implicit complex resources as 
well as their relations, rules and axioms in terms of 
RDF expressions—an extension of RDF elements 
with variables—and RDF clauses.

An RDD statement descriptor, formulated as a set 
of ordinary RDF elements, RDF expressions with 
variables and RDF clauses, then provides sufficient, 
flexible and expressive means for describing and 
modeling a wide diversity of resources. Its semantics 
is formally and precisely defined as a set of ordinary
RDF elements which are directly described by or 
derivable from the description itself.
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Table 1. Variable Types.

Variable Type Variable Names 
Beginning with Instantiation to

N-variables: Name-variables $N Element types or attribute names 
S-variables: String-variables $S Strings 
P-variables: Attribute-value-pair-variables $P Sequences of zero or more attribute-value pairs
E-variables: RDF-expression-variables $E Sequences of zero or more RDF expressions
I-variables: Intermediate-expression-variables $I Parts of RDF expressions

Moreover, RDD also supports formulation and 
evaluation of queries which not only allows pattern 
matching and selective retrieval, but also supports 
inquiries about implicit information contained in 
RDF metadata.

Section 2 formalizes RDD language, Section 3 
presents an RDD approach to metadata modeling, 
Section 4 demonstrates an example of modeling and 
querying a metadata application, Section 5 reviews 
current, related works, and Section 6 concludes.

2 RDF Declarative Description (RDD)

By employment of DD theory [1,2] (cf. Appendix 
for its fundamental concepts), RDF—the framework 
for representation of metadata—will be extended 
with modeling and reasoning services. First, a formal 
definition of RDF expressions will be given, 
followed by a formalization of an RDF specialization 
system—a mathematical abstraction characterizing 
the data structure of RDF expressions. Based on such 
a structure, RDD language will be developed.

2.1 RDF specialization system

Ordinary RDF elements are ground (variable-free) 
and take one of the forms:
� <t  a1=v1 … am=vm/>,
� <t  a1=v1 … am=vm> vm+1 </t>,
� <t  a1=v1 … am=vm> e1 … en </t>,

where m, n ≥ 0, t is an element name, the ai are dis-
tinct attribute names, the vi are strings, and the ei are 
RDF elements. 

In order to represent implicit information and to 
enhance RDF elements’ expressiveness, their defini-
tion will be extended by incorporation of variables 
and then called RDF expressions. Every component 
of an RDF expression—the expression itself, its 
element name, attribute names and values, pairs of 
attribute-value, contents, sub-expressions as well as 
some partial structures—can contain variables. Table 
1 defines all variable types and their usages. 

An RDF expression alphabet ΣR then comprises 
the symbols in the sets of names N, characters C as 
well as the sets of those five types of variables. 

An RDF expression on ΣR takes formally one of 
the following forms:

� evar,
� <t  a1=v1 … am=vm pvar1 … pvark />,
� <t  a1=v1 … am=vm pvar1 … pvark> vm+1 </t>,
� <t  a1=v1 … am=vm pvar1 … pvark> e1 … en</t>,
� <ivar> e1 … en </ivar>,

where - evar is an E-variable,
- k, m, n ≥ 0,
- t, ai are names or N-variables,
- pvari is a P-variable,
- vi is a string or an S-variable,
- ivar is an I-variable, 
- ei is an RDF expression on ΣR.

The orders of the attribute-value pairs a1=v1 … 
am=vm, of the P-variables pvar1 … pvark and of the 
expressions e1 … en are immaterial. Only the order of 
the expressions e1 … en contained in an rdf:Seq-
expression is important. 

RDF expressions without variables are called 
ground RDF expressions or simply RDF elements, 
those with variables non-ground RDF expressions. 
An expression of the second, the third or the fourth 
form is referred to as a t-expression, while that of the 
fifth form as an ivar-expression. A ground t-
expression will also be called a t-element. An I-
variable is employed to represent an RDF expression 
when its structure or nesting pattern is not fully 
known. For example, the expression <ivar> e1 … en
</ivar>, where ei are expressions, represents a set of 
RDF expressions which contain the sub-expression 
sequence e1 … en to an arbitrary depth. As a more 
concrete example, consider the expression:

<$I:ivar>
<$N:relation  rdf:resource="http://ait.ac.th"/>

</$I:ivar>

which represents a class of resources with certain 
(possibly indirect) relations to the resource “http:// 
ait.ac.th”. For instance, it can represent 

<Person rdf:about="p_01">
<Name>Jack</Name>
<Education>

<Degree> 
<Name>MEng</Name>
<Institute 

rdf:resource="http://ait.ac.th"/>
</Degree>

</Education>
</Person>
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Figure 1. Specialization of a non-ground RDF expression in AR into a ground RDF expression in G R
by the operator µµµµR using a specialization θθθθ in S R.

which specializes the I-variable $I:ivar into the des-
cription of the Person p_01 with an Education prop-
erty indicating that such a Person has a degree MEng 
from the institute identified by “http://ait.ac.th”.

Figure 1-a illustrates another example of a non-
ground RDF expression which represents a class of 
Staff resources with some direct relation to the re-
source referred to by "staff_02"; however, the name 
of such a relation as well as the identifiers (URIs) 
and other properties of the resources in the class are 
unknown and are represented by an N-variable 
$N:relation, an S-variable $S:uri and an E-variable 
$E:properties, respectively. It will be seen later in this 
sub-section that such a non-ground expression can be 
specialized into a ground RDF expression of Figure 
1-b.

Instantiation of those various types of variables is 
defined by basic specialization, each of which has 
the form (v, w) where v specifies the name of the 
variable to be specialized and w the specializing 
value. For example, ($S:s1, $S:s2), ($N:relation, 
boss) and ($E:properties, ($E:p1, $E:p2)) are basic 
specializations which rename the S-variable $S:s1 to 
$S:s2, instantiate the N-variable $N:relation into the 
element name boss, and expand the E-variable 
$E:properties into the sequence of the E-variables 
$E:p1 and $E:p2, respectively. 

There are four types of basic specializations: 
1. Rename variables.
2. Expand a P- or an E-variable into a sequence 

of variables of their respective types.
3. Remove P- or E-variables.
4. Instantiate variables to RDF expressions or 

components of RDF expressions which corre-
spond to the types of the variables.

Denote a sequence of zero or more basic speciali-
zations by a specialization. 

The data structure and the specialization of RDF 
expressions are characterized by a mathematical 
abstraction

ΓΓΓΓR = 〈〈〈〈AR, G R, S R, µµµµR〉〉〉〉,

called RDF Specialization System, where 
� AR is the set of all RDF expressions on ΣR,
� GR is the subset of AR which comprises all 

ground RDF expressions in AR,
� SR is the set of all specializations which reflect 

the data structure of the RDF expressions in AR,
� µR is the specialization operator which deter-

mines, for each specialization s in SR, the change 
of each RDF expression a in AR caused by s.

Note that a specialization in SR will often be de-
noted by a Greek letter such as θ, and when µR is 
clear from the context, for θ ∈ SR, µR(θ)(a) will be 
written simply as aθ.

Consider Figure 1-c for an example of a speciali-
zation in SR and its application to an RDF expression 
by the specialization operator µR.

2.2 RDD language

After the RDF specialization system ΓR has been 
developed, RDD language and its related concepts 
can now be defined.

A constraint on ΓR, useful for defining a restric-
tion on RDF expressions or components of RDF 
expressions, is a formula q(a1, … , an), where n > 0, q 
is a constraint predicate and ai an RDF expression in 
AR. Application of θ ∈ SR to a constraint q(a1, … , 
an) yields q(a1θ, … , anθ). Given a ground constraint 
q(g1, … , gn), gi ∈ GR, its truth or falsity is predeter-
mined. 

<Staff  rdf:about=$S:uri>
<$N:relation  rdf:resource="staff_02"/>
$E:properties

</Staff>

<Staff rdf:about="staff_03">
<boss rdf:resource="staff_02"/>
<name>Derek T.</name>
<worksFor>Computer Dept.</worksFor>

</Staff>

($S:uri, "staff_03")
($N:relation, boss)
($E:properties, ($E:p1, $E:p2))
($E:p1, <name>Derek T.</name>)
($E:p2, <worksFor>Computer Dept.</worksFor>)

Specialized into
by µR(θ)

(b) A ground RDF expression g = µµµµR(θθθθ)(a) = aθθθθ(a) A non-ground RDF expression a.

(c) Specialization of the non-ground expression a to the ground RDF expression g by
� Instantiation of the S-variable $S:uri into the string "staff_03",
� Instantiation of the N-variable $N:relation into the property name boss,
� Expansion of the E-variable  $E:p1 into the sequence of the E-variables $E:p1 and $E:p2,
� Instantiation of the E-variable $E:p1 into the RDF expression <name>Derek T.</name>,
� Instantiation of the E-variable $E:p2 into the RDF expression 

<worksFor>Computer Dept.</worksFor>.



4

Given two RDF expressions a1 and a2, define 
GT(a1, a2)  as a constraint which will be true, iff a1, a2
are RDF elements of the forms <Num>v1</Num>, 
and <Num>v2</Num>, respectively, where v1, v2 are 
numbers and v1 > v2. Obviously, a constraint 

GT(<Num>8</Num>,<Num>4</Num>)
is a true ground constraint in Tcon. In addition, for 
some a1, a2, a3 ∈ AR, let Mul(a1, a2, a3) be a 
constraint which will be true iff a1, a2 and a3 are RDF 
elements of the forms: 

<Num>n1</Num>,  
<Multiplier>n2</Multiplier>, and 
<Result>n3</Result>, 

respectively, where n1, n2, n3 are numbers, and n3 is 
the result of multiplying n1 and n2, i.e., n3 = n1 × n2.

An RDF declarative description on ΓR, simply 
called an RDD description, is a set of RDF clauses, 
each of which has the form:

H ← B1, B2, ..., Bn

where n ≥ 0, H is an RDF expression in AR, and Bi is 
an RDF expression in AR, or a constraint on ΓR. The 
order of the Bi is immaterial. H is called the head and 
(B1, ..., Bn) the body of the clause. Such a clause, if   
n = 0, is called a unit clause, if n > 0, a non-unit 
clause. When it is clear from the context, a unit 
clause (H ←) will be simply written as H. Therefore, 
an RDF document, containing a set of RDF elements 
and describing certain resources, is directly mapped 
onto an RDD description comprising solely ground 
RDF unit clauses. 

Given an RDD description P, its meaning, denoted 
by M(P) (cf. Appendix), is the set of all RDF ele-
ments which are directly described by and are deriv-
able from the unit and the non-unit clauses in P, 
respectively, i.e.:
� Given a unit clause (H ← ) in P, for θ ∈ SR: 

Hθ ∈M(P) if Hθ is a ground RDF expression.
� Given a non-unit clause 

(H ← B1, ..., Bi, Bi+1, ..., Bn)
in P, assuming without loss of generality that  
B1, ..., Bi are RDF expressions and Bi+1, ..., Bn
constraints, for θ ∈ SR: 
  Hθ ∈M(P) if 

- Hθ is a ground RDF expression, 
- B1θ,..., Biθ ∈M(P), 
- Bi+1θ, ... ,Bnθ are true constraints.

3 RDD: a metadata modeling language 

In RDD language, metadata expressed in terms of 
RDF elements are directly represented by ground 
RDF expressions in GR, while classes of RDF meta-
data which share certain similar components and 
structures are modeled by RDF expressions with 
variables as shown in Figure 1-a.

A collection of RDF metadata describing certain 
specific facts and relations among resources of a real-
world domain is then modeled as a set of RDF 
expressions. Ontological and domain axioms as well 
as implicit relations and their algebraic properties, 
such as transitivity, symmetry and inverse, are 
expressed as RDF clauses.

Hence, a particular metadata application domain is 
readily modeled as an RDD description which com-
prises a set of RDF expressions, describing explicit, 
complex objects and their relations in the domain, 
together with a set of RDF clauses, representing the 
domain’s axioms as well as certain implicit relations. 
Its semantics is a set of RDF elements, which are 
explicit in the domain, together with all the derived 
ones, which are inferred from the specified axioms 
and relations.

Besides provision of a simple, yet expressive 
mechanism to model metadata, RDD also provides a 
facility to formulate and evaluate queries. Basically, 
a query is represented by an RDD description con-
taining one or more RDF non-unit clauses. The head 
of each clause describes the structure of the query 
result, while its body specifies the pattern as well as 
the selection condition of the query. 

Evaluation of a query is carried out by employ-
ment of Equivalent Transformation (ET) [2,3] (cf. 
Appendix)—a new computational model for solving 
problem based on semantics-preserving transforma-
tions. Given a description P specifying a collection of 
metadata elements as well as a set of their relations 
and axioms within some particular domain, a query 
represented by a description Q is evaluated by trans-
forming the description (P ∪ Q) successively into a 
simpler but equivalent description, from which the 
answers to the query can be obtained easily and 
directly. More precisely, such a description (P ∪ Q) 
will be successively transformed until it becomes the 
description (P ∪ Q′), where Q′ consists of only 
ground unit clauses and M(P ∪ Q) =M(P ∪ Q′). In 
order to guarantee the correctness of the computa-
tion, only equivalent transformations can be applied 
at every step. The unfolding transformation, a 
widely-used program transformation in conventional 
logic programming, is a kind of equivalent transfor-
mation. Other kinds of equivalent transformation can 
also be devised, especially for improvement of com-
putation efficiency.

4Example: metadata modeling

DAML+OIL [11] is an RDF-based language which 
extends RDFS by a richer set of modeling constructs 
for description of ontological axioms as well as alge-
braic properties of relations. This example demon-
strates an RDD approach to representing and query-
ing a metadata application by employment of 
DAML+OIL to model the application’s schema and 
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to describe the application’s data and objects. The 
example will first show that by RDD language, 
instances of DAML+OIL can be directly expressed 
without a necessity for translation or modification 
and their semantics can be precisely determined. It 
will then demonstrate the expressive power of RDD 
language by modeling a particular domain axiom 
which is essential in the application but inexpressible
by DAML+OIL. Finally, an example of a query 
about information implicit in the application will be 
given.

Modeling the application’s schema and data: 
Figure 2 illustrates an example of a DAML+OIL 
document which defines the application’s schema 
and describes certain explicit information about each 
data object of the application. Obviously, such a 
document is an RDD description which contains 
merely unit clauses and will be referred to as P1.

Modeling relational algebraic properties and 
ontological axioms: In order to define the meanings 
of those DAML+OIL modeling constructs (i.e., sub-
ClassOf and transitiveProperty), which are employed 
by Figure 2 and include some notion of implication, 
the RDF clauses C1–C3 of Figure 3 are formulated. 
Denote the set of these clauses by an RDD descrip-

tion P2, i.e., P2 = {C1, C2, C3}. Note that the mean-
ings of other DAML+OIL modeling constructs such 
as domain, range, inverseOf, intersectionOf and 
equivalentTo can also be defined in terms of RDF 
clauses in a similar manner.

Modeling domain axioms: The RDF clause C4 of 
Figure 4 illustrates an example of modeling a domain 
axiom. It defines additional relationships among the 
properties salary, worksFor, bonus and contractPeriod
of the class SeniorStaff. Donote the set of the clause 
C4 by an RDD description P3, i.e., P3 = {C4}.

Let P be the union of the descriptions P1, P2 and
P3 which model (i) the application’s schema and 
data, (ii) relational algebraic properties and ontologi-
cal axioms, and (iii) domain axioms, respectively. 
Thus, P becomes immediately a model of the appli-
cation, and the meaning of P, M(P), includes not 
only the information explicit in the application, i.e., 
those elements of P1, but also the following implicit 
information, which is uncovered by the clauses of the 
descriptions P2 and P3: 

� The resources referred to by staff_01, staff_02, 
staff_03 and staff_04 are instances of the class 
Staff.

� The Staff referred to by staff_02 is a boss of the 
Staff referred to by staff_04.

� The contractPeriod of the SeniorStaff referred to 
by staff_02 is a 2-year term and that SeniorStaff
will receive a bonus of 14000. 

� The contractPeriod of the SeniorStaff referred to 
by staff_03 is a 2-year term and that SeniorStaff
will receive a bonus of 12000. 

Formulating and evaluating a query: The clause 
Cq of Figure 5 represents a query, which selects all 
SeniorStaff who get a bonus of more than 10000, and 
then lists their names and bonuses. 

Using unfolding transformation, the description 

P ∪ {Cq}

can be transformed into the description 

P ∪ {Cq1, Cq2},

where Cq1 and Cq2 are the following unit clauses

Cq1: <BigBonusStaff>
<name>Sawat K.</name>
<bonus>14000</bonus>

</BigBonusStaff> ← .

Cq2: <BigBonusStaff>
<name>Derek T.</name>
<bonus>12000</bonus>

</BigBonusStaff> ← .

Thus, one can directly draw that the head elements 
of Cq1 and Cq2 are the answers to the given query. 
Moreover, since only unfolding transformation, 
which always preserves the equivalence of declara-
tive descriptions, is used, the two obtained answers 
are guaranteed to be correct.

<daml:Class rdf:ID="Staff"/>
<daml:Class rdf:ID="JuniorStaff">

<rdfs:subClassOf rdf:resource="Staff"/>
</daml:Class>
<daml:Class rdf:ID="SeniorStaff">

<rdfs:subClassOf rdf:resource="Staff"/>
</daml:Class>
<daml:Property rdf:ID="name"/>
<daml:Property rdf:ID="worksFor"/>
<daml:Property rdf:ID="salary"/>
<daml:TransitiveProperty rdf:ID="boss"/>
<daml:Property rdf:ID="contractPeriod"/>
<SeniorStaff rdf:about="staff_01">

<name>Somchai P.</name>
<worksFor>Sales Dept.</worksFor>
<salary>5000</salary>

</SeniorStaff>
<SeniorStaff about="staff_02">

<name>Sawat K.</name>
<worksFor>Computer Dept.</worksFor>
<salary>7000</salary>

</SeniorStaff>
<SeniorStaff  about="staff_03">

<name>Derek T.</name>
<worksFor>Computer Dept.</worksFor>
<salary>6000</salary>
<boss rdf:resource="staff_02"/>

</SeniorStaff>
<JuniorStaff  about="staff_04">

<name>Arunee I.</name>
<worksFor>Computer Dept.</worksFor>
<salary>3000</salary>
<boss rdf:resource="staff_03"/>

</JuniorStaff>

Figure 2. Modeling of an application’s 
schema and data.
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C1: <daml:Class  rdf:ID=$S:classA>
<rdfs:subClassOf  rdf:resource=$S:classC/>
$E:A_properties

</daml:Class>
← <daml:Class  rdf:ID=$S:classA>

<rdfs:subClassOf  rdf:resource=$S:classB/>
$E:A_properties

</daml:Class>,
<daml:Class  rdf:ID=$S:classB>

<rdfs:subClassOf  rdf:resource=$S:classC/>
$E:B_properties

</daml:Class>.

% 
% 
% 
% 
% 

subClassOf Transitivity 
Property: If A is a subclass of B
and B is a subclass of some broader 
class C, this implies that A is also a 
subclass of C.

C2: <$S:classB  rdf:about=$S:resourceX>
$E:X_properties

</$S:classB>
← <daml:Class  rdf:ID=$S:classA>

<rdfs:subClassOf  rdf:resource=$S:classB/>
$E:A_properties

</daml:Class>,
<$S:classA  rdf:about=$S:resourceX>

$E:X_properties
</$N:classA>.

% 
% 
% 
% 
% 
%  

The meaning of subClassOf
construct: If a class A is declared 
as a subclass of another class B, 
then every resource which is an 
instance of the class A will also be 
an instance of the class B.

C3: <$N:classA  rdf:about=$S:resourceX>
<$S:propertyP  rdf:resource=$S:resourceZ/>

</$N:classA>
← <daml:TransitiveProperty  rdf:ID=$S:propertyP>,

<$N:classA  rdf:about=$S:resourceX>
<$S:propertyP  rdf:resource=$S:resourceY/>
$E:X_properties

</$N:classA>,
<$N:classB  rdf:about=$S:resourceY>

<$S:propertyP  rdf:resource=$S:resourceZ/>
$E:Y_properties

</$N:classB>.

% 
% 
% 
% 
% 
% 
% 
% 

The meaning of Transitive-
Property construct: For a 
TransitiveProperty P, if a property P
of a resource X is a resource Y and 
that of the resource Y is a resource 
Z, then one can imply that a 
property P of a resource X is also 
the resource Z.

** Note: When an S-variable is used as an element name of an RDF expression, that variable can only be specialized into 
a valid element name, but not into any arbitrary string. For instance, an expression <$S:classA rdf:about="X"/> can be 
specialized into <Staff  rdf:about="X"/> but not into <"An arbitrary string" rdf:about="X"/>.

Figure 3. Modeling of ontological axioms and relational algebraic properties.

C4: <SeniorStaff  rdf:about=$S:staff>
<worksFor>Computer Dept.</worksFor>
<salary>$S:salary</salary>
<bonus>$S:bonus</bonus>
<contractPeriod>2 years</contractPeriod>
$E:staff_properties

</SeniorStaff>
← <SeniorStaff  rdf:about=$S:staff>

<worksFor>Computer Dept.</worksFor>
<salary>$S:salary</salary>
$E:staff_properties

</SeniorStaff>,
Mul(<Num>$S:salary</Num>, <Multiplier>2</Multiplier>,

 <Result>$S:bonus</Result>).

% 
% 
% 
% 
% 
% 
% 
% 
%

The clause C4 defines additional 
relationships among the properties 
worksFor, salary, bonus and 
contractPeriod of the class 
SeniorStaff, by asserting that for 
every SeniorStaff of the Computer 
Department, his/her contractPeriod
is 2 years and he/she will receive a 
double-salary bonus.

Figure 4. Modeling of domain axioms.

Cq: <BigBonusStaff>
<name>$S:name</name>
<bonus>$S:bonus</bonus>

</BigBonusStaff>
← <SeniorStaff  rdf:about=$S:staff>

<name>$S:name</name>
<bonus>$S:bonus</bonus>
$E:staff_properties

</SeniorStaff>,
GT(<Num>$S:bonus</Num>, <Num>10000</Num>).

% 
% 
% 
% 

The clause Cq represents a query 
which lists the name and bonus of 
each SeniorStaff who gets a bonus
of more than 10000.

Figure 5. Modeling of a query.
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5 Related works

DAML+OIL [11] is the most improved ontology 
markup language, which has been defined on the 
basis of RDF(S) and OIL [7,10], in order to provide 
an expressive set of modeling constructs. However, 
its mechanism is insufficient to model metadata, 
since it can represent only a limited set of ontological 
axioms and relational algebraic properties, while 
lacking an ability to express arbitrary rules and 
domain axioms.

As demonstrated by the example of Section 4, 
RDD language can be employed to enhance the 
expressiveness of DAML+OIL. Besides allowing the 
semantics of each DAML+OIL modeling construct to 
be precisely determined, RDD also provides suffi-
cient means to describe additional rules and axioms 
in terms of RDF non-unit clauses.

DAML-S [5,15] is a recently proposed, DAML-
family markup language for description of Web 
service properties, capabilities and functionalities. 
Instances of DAML-S, encoded in RDF/XML seriali-
zation, can be directly represented by RDD language 
as RDF unit clauses. Based on DAML-S syntax and 
constructs, an RDD approach to modeling and im-
plementing Web services is being developed. In 
essence, such an approach will enable the automation 
of the following tasks:
� service advertisement and discovery,

� negotiation,
� service invocation and execution,
� service composition and integration, and
� service customization.
SquishQL [16]—the most recent, improved query 

language for RDF—is an SQL-like language with 
SELECT-FROM-WHERE-style syntax. Its query 
mechanism is based on subgraph matching, where 
patterns and query selection criteria are expressed in 
terms of RDF triples of subject, predicate and object. 
Based on SquishQL, several RDF query engines have 
been developed [16,9]. Apart from the simple 
ontological-modeling facility provided by RDFS, 
these engines do not allow additional descriptions of 
rules, axioms and relational algebraic properties. 
Thus, their sole inference service is based on class 
and property hierarchies.

Metalog [14] and SiLRi (Simple Logic-based RDF 
Interpreter) [6] employ logic programming and F-
logic (Frame-Logic) theories, respectively, in order 
to provide both query and reasoning services for 
RDF. In these two approaches, RDF metadata ele-
ments must be translated into sets of corresponding 
representation in their original frameworks, i.e., into 
sets of binary predicates and F-logic formulae. 
Querying and reasoning about RDF metadata are 
then performed on these corresponding translations 
instead of direct operation on RDF elements. 

Figure 6 shows metalog representation of the 
axiom of Figure 4. Clearly, its mechanism appears to 

R1: bonus(S, B)
← type(S, "SeniorStaff"),

worksFor(S,"Computer Dept."),
salary(S,SAL),
mul(SAL, "2", B).

R2: contractPeriod(S,"2 years")
← type(S, "SeniorStaff"),

worksFor(S,"Computer Dept."),
salary(S,SAL),
mul(SAL, 2, B).

<Procedure>
<Head>

<Predicate name="bonus">
<rdf:Seq>

<rdf:li><Variable>S</Variable></rdf:li>
<rdf:li><Variable>B</Variable></rdf:li>

</rdf:Seq>
</Predicate>

</Head>
<Body>

<and>
<Predicates>

<rdf:Seq>
<rdf:li>

<Predicate name="type">
<rdf:Seq>
   <rdf:li><Variable>S</Variable></rdf:li>
   <rdf:li><Constant>SeniorStaff</Constant>
   </rdf:li>
</rdf:Seq>

</Predicate>
</rdf:li>
…

</rdf:Seq>
</Predicates>

</and>
</Body>

<Procedure>

(a) Corresponding logical formulae. (b) Example of a metalog program representing the rule R1 in (a).

Figure 6. Metalog’s representation of the domain axiom of Figure 4.
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be unnatural and difficult to interpret, whence it is 
not a good candidate for a metadata language.

Figure 7 illustrates corresponding SiLRi (F-logic) 
expressions of the given DAML+OIL statement of 
Figure 2 and the domain axiom of Figure 4. Despite 
its declarativeness and abilities to formulate various 
kinds of axioms and queries, SiLRi’s expressive 
power is still insufficient to represent RDF containers 
[6]—bags (rdf:Bag), sequences (rdf:Seq) and alterna-
tives (rdf:Alt)—because in F-logic, sets are not 
treated as objects and cannot have attributes. 

Moreover, axioms and queries involving such 
concepts of RDF containers are inexpressible. For 
example, it is unable to handle a query which returns 
an RDF:Bag listing names of all Staff working for the 
computer department. By RDD language, Figure 8 
formulates this query as the RDF clause Cset, which 
employs the concept of set aggregation for construc-
tion of an RDF:Bag. The xdd:SetOf-expression in 
Cset’s body states that for each Staff X of the com-
puter department (xdd:Pattern sub-expression), the 
variable $E:namelist (xdd:Set sub-expression) aggre-
gates an rdf:li-element listing X’s name, represented 
by $S:name (xdd:Constructor sub-expression). The 
theoretical details of this concept are beyond the 
scope of this paper, but are provided by [4].

6 Conclusions 

By integration of the RDF data model, DD theory 
and ET computational paradigm, this paper has de-
veloped a solid, practical framework for a uniform 
representation of and reasoning with RDF metadata. 
The developed framework derives metadata descrip-
tion facilities, exchangeability and interoperability 
from the RDF data model, expressiveness from DD 
theory and an efficient computational mechanism 
from ET paradigm. 

In order to demonstrate its usefulness and practi-
cability in real applications, the framework has been 
employed to model a resource discovery problem as 
well as to develop a unified foundation for software 
configuration management [12]. Their Web-based 
prototype systems have also been implemented, using 
ETC [3]—a compiler under the ET paradigm. 
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Appendix:
Declarative Description Theory

This section recalls certain fundamental defini-
tions of Declarative Description (DD) theory [1,2]—
an axiomatic theory inspired by the concept of con-
ventional logic programs with an attempt to cover a 
wider variety of data domains. The data structure of a 
given data domain is characterized by a mathematical 
abstraction, called a specialization system. Despite its 
simplicity, the specialization system provides a suffi-
cient structure for the definition of declarative 
descriptions and their meanings. Thus, by appro-
priate construction of a specialization system for a 
given data domain, a framework for the representa-
tion and computation of data in that domain can be 
directly obtained. Correspondingly, in Section 2, DD 
theory is employed to develop the theory of RDF 
declarative descriptions.

A.1 Specialization systems

Definition 1 (Specialization System) Let A, G and
S be sets of objects, ground objects, and specializa-
tions, respectively, and µ be a mapping from S to 
partial_map(A ) (i.e., the set of all partial mappings 
on A ). The quadruple 〈A, G, S, µ〉 is a specialization 
system under the conditions:

1. ∀s1, s2 ∈ S,  ∃s ∈ S : µ(s) = µ(s1) ° µ(s2),
2. ∃s ∈ S, ∀a ∈ A : µ(s)(a) = a, 
3. G ⊂ A,

where µ(s1) ° µ(s2) is the composite mapping of the 
partial mappings µ(s1) and µ(s2). The set G is called 
the interpretation domain.     �

In the sequel, let Γ = 〈A, G, S, µ〉 be a specializa-
tion system. When µ is clear from the context, for θ
∈S, µ(θ)(a) will be written simply as aθ. If there 
exists b such that aθ = b, then θ is said to be 
applicable to a, and a is specialized into b by θ. 

A.2 Declarative descriptions and their 
declarative semantics

A declarative description on Γ and other related 
concepts can now be defined.

Let a set K  comprise constraint predicates. A 
constraint on Γ is a formula q(a1, … , an), where q is 
a constraint predicate in K  and ai an object in A. 
Given a ground constraint q(g1, … , gn), gi ∈ G, its 
truth and falsity are predetermined. Denote the set of 
all true ground constraints by Tcon. A specialization 
θ is applicable to a constraint q(a1, … , an) if θ is 
applicable to a1, … , an. The result of q(a1, … , an)θ
is the constraint q(a1θ, … , anθ); and q(a1, … , an) is 
said to be specialized into q(a1θ, …, anθ) by θ. 

Definition 2 (Declarative Description) A clause 
on Γ is a formula of the form:

H ← B1, B2, ..., Bn

where n ≥ 0, H is an object in A and Bi an object in 
A or a constraint on Γ. H is called the head and (B1, 
B2, ..., Bn) the body of the clause. A declarative 
description or simply a description on Γ is a 
(possibly infinite) set of clauses on Γ.     �

The head of C will be denoted by head(C) and the 
set of all objects and constraints in the body of C by 
object(C) and con(C), respectively. Let body(C) =
object(C) ∪ con(C). A clause C′ is an instance of C
iff there is a specialization θ ∈S such that θ is appli-
cable to H, B1, B2, ..., Bn and C′ = Cθ  = (Hθ ← B1θ, 
B2θ, ..., Bnθ). A clause C is a ground clause iff C 
comprises only ground objects and ground con-
straints.

Let P be a declarative description on Γ. Associated 
with P is the mapping TP on 2G defined by: For each 
X ⊂ G, a ground object g is contained in TP(X) iff 
there exist a clause C ∈ P and a specialization θ ∈S
such that Cθ  is a ground clause the head of which is 
g and all the objects and constraints in the body of 
which belong to X and Tcon, respectively, i.e.:

TP(X) = {head(Cθ)   | C  ∈ P, θ ∈S ,
Cθ is a ground clause,  
object(Cθ) ⊂ X,
con(Cθ) ⊂ Tcon }

Based on TP, the meaning of P can now be defined.

Definition 3 (Semantics of a Declarative Descrip-
tion) Let P be a declarative description on Γ. The 
meaning of P, denoted by M(P), is defined by

M(P) = ∪
∞

=

∅
1

)(][
n

n
PT

where ∅ is the empty set, and [TP]1(∅) = TP(∅) and 

[TP]n(∅) = TP([TP]n-1(∅)) for each n > 1.     �
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A.3 Equivalent Transformations

Equivalent Transformation (ET) [2,3] is a new 
computational model based on semantics-preserving 
transformations (equivalent transformations) of de-
clarative descriptions. Computation by means of ET 
is carried out by successive transformation of a given 
description P1 into P2, P3, … until a desirable 
description Pn is obtained; in the transformation 
process, the semantics of each description must be 
preserved, i.e., M(P1) = M(P2) = M(P3) = … = 
M(Pn).

In order to guarantee the correctness of the com-
putation, only equivalent transformations are applied 
at every step. The unfolding transformation, a 
widely-used program transformation in conventional 
logic programming, is a kind of equivalent transfor-
mation. Other kinds of equivalent transformation can 
also be devised, especially for improvement of com-
putation efficiency. Thus, ET provides a more flexi-
ble, efficient computational framework.


