
RDF Declarative Description (RDD): A Language for Metadata

Chutiporn Anutariya and Vilas Wuwongse
Computer Science and Information Management Program

Asian Institute of Technology, Pathumtani 12120, Thailand
{ca, vw}@cs.ait.ac.th

Kiyoshi Akama
Center for Information and Multimedia Study
Hokkaido University, Sapporo 060, Japan

akama@cims.hokudai.ac.jp

Ekawit Nantajeewarawat
Information Technology Program

Sirindhorn International Institute of Technology
Thammasat University, Pathumtani 12120, Thailand

ekawit@siit.tu.ac.th

Abstract

RDF Declarative Description (RDD) is a meta-
data modeling language which extends RDF(S) ex-
pressiveness by provision of generic means for
succinct and uniform representation of metadata,
their relationships, rules and axioms. Through its ex-
pressive mechanism, RDD can directly represent all
RDF-based languages such as OIL and DAML-
family markup languages (e.g., DAML+OIL and
DAML-S), and hence allows their intended meanings
to be determined directly without employment of
other formalisms. Therefore, RDD readily enables
interchangeability, interoperability as well as inte-
grability of metadata applications, developed in-
dependently by different communities and exploiting
different schemas and languages. Moreover, RDD is
also equipped with computation and query-
processing mechanisms.
Keywords: Metadata, RDF, RDF Schema, RDF
Declarative Description, RDD language.

1 Introduction

Resource Description Framework (RDF) [13] is a
W3C’s recommended framework for encoding, ex-
change and reuse of metadata, which offers founda-
tions for syntactic and semantic interoperations
among Web applications. Although RDF Schema
(RDFS) [8] provides a simple ontological-modeling
facility for descriptions of classes, properties and
their hierarchies, its mechanism is still limited and

lacks expressive power to describe Web resources
and Web applications in that:

� it cannot represent ontological and domain
axioms as well as relational algebraic properties,
e.g., transitivity, symmetry of relations and in-
verse relations;

� it does not support an efficient and powerful
computation mechanism; and

� it does not provide a query-processing mecha-
nism.

In order to cope with such limitations, this paper
develops RDF Declarative Description (RDD)
language which employs RDF(S) and Declarative
Description (DD) theory [1,2] as its underlying
frameworks for description of metadata and for en-
hancement of RDF(S) expressive power. It allows
ordinary RDF (metadata) elements, encoded in XML
language and describing specific facts and relations
among certain resources, to be directly represented.
Moreover, it enhances the capability and expressive-
ness of ordinary RDF elements by additionally
allowing expression of implicit complex resources as
well as their relations, rules and axioms in terms of
RDF expressions—an extension of RDF elements
with variables—and RDF clauses.

An RDD statement descriptor, formulated as a set
of ordinary RDF elements, RDF expressions with
variables and RDF clauses, then provides sufficient,
flexible and expressive means for describing and
modeling a wide diversity of resources. Its semantics
is formally and precisely defined as a set of ordinary
RDF elements which are directly described by or
derivable from the description itself.

2

Table 1. Variable Types.

Variable Type Variable Names
Beginning with Instantiation to

N-variables: Name-variables $N Element types or attribute names
S-variables: String-variables $S Strings
P-variables: Attribute-value-pair-variables $P Sequences of zero or more attribute-value pairs
E-variables: RDF-expression-variables $E Sequences of zero or more RDF expressions
I-variables: Intermediate-expression-variables $I Parts of RDF expressions

Moreover, RDD also supports formulation and
evaluation of queries which not only allows pattern
matching and selective retrieval, but also supports
inquiries about implicit information contained in
RDF metadata.

Section 2 formalizes RDD language, Section 3
presents an RDD approach to metadata modeling,
Section 4 demonstrates an example of modeling and
querying a metadata application, Section 5 reviews
current, related works, and Section 6 concludes.

2 RDF Declarative Description (RDD)

By employment of DD theory [1,2] (cf. Appendix
for its fundamental concepts), RDF—the framework
for representation of metadata—will be extended
with modeling and reasoning services. First, a formal
definition of RDF expressions will be given,
followed by a formalization of an RDF specialization
system—a mathematical abstraction characterizing
the data structure of RDF expressions. Based on such
a structure, RDD language will be developed.

2.1 RDF specialization system

Ordinary RDF elements are ground (variable-free)
and take one of the forms:
� <t a1=v1 … am=vm/>,
� <t a1=v1 … am=vm> vm+1 </t>,
� <t a1=v1 … am=vm> e1 … en </t>,

where m, n ≥ 0, t is an element name, the ai are dis-
tinct attribute names, the vi are strings, and the ei are
RDF elements.

In order to represent implicit information and to
enhance RDF elements’ expressiveness, their defini-
tion will be extended by incorporation of variables
and then called RDF expressions. Every component
of an RDF expression—the expression itself, its
element name, attribute names and values, pairs of
attribute-value, contents, sub-expressions as well as
some partial structures—can contain variables. Table
1 defines all variable types and their usages.

An RDF expression alphabet ΣR then comprises
the symbols in the sets of names N, characters C as
well as the sets of those five types of variables.

An RDF expression on ΣR takes formally one of
the following forms:

� evar,
� <t a1=v1 … am=vm pvar1 … pvark />,
� <t a1=v1 … am=vm pvar1 … pvark> vm+1 </t>,
� <t a1=v1 … am=vm pvar1 … pvark> e1 … en</t>,
� <ivar> e1 … en </ivar>,

where - evar is an E-variable,
- k, m, n ≥ 0,
- t, ai are names or N-variables,
- pvari is a P-variable,
- vi is a string or an S-variable,
- ivar is an I-variable,
- ei is an RDF expression on ΣR.

The orders of the attribute-value pairs a1=v1 …
am=vm, of the P-variables pvar1 … pvark and of the
expressions e1 … en are immaterial. Only the order of
the expressions e1 … en contained in an rdf:Seq-
expression is important.

RDF expressions without variables are called
ground RDF expressions or simply RDF elements,
those with variables non-ground RDF expressions.
An expression of the second, the third or the fourth
form is referred to as a t-expression, while that of the
fifth form as an ivar-expression. A ground t-
expression will also be called a t-element. An I-
variable is employed to represent an RDF expression
when its structure or nesting pattern is not fully
known. For example, the expression <ivar> e1 … en
</ivar>, where ei are expressions, represents a set of
RDF expressions which contain the sub-expression
sequence e1 … en to an arbitrary depth. As a more
concrete example, consider the expression:

<$I:ivar>
<$N:relation rdf:resource="http://ait.ac.th"/>

</$I:ivar>

which represents a class of resources with certain
(possibly indirect) relations to the resource “http://
ait.ac.th”. For instance, it can represent

<Person rdf:about="p_01">
<Name>Jack</Name>
<Education>

<Degree>
<Name>MEng</Name>
<Institute

rdf:resource="http://ait.ac.th"/>
</Degree>

</Education>
</Person>

3

Figure 1. Specialization of a non-ground RDF expression in AR into a ground RDF expression in G R
by the operator µµµµR using a specialization θθθθ in S R.

which specializes the I-variable $I:ivar into the des-
cription of the Person p_01 with an Education prop-
erty indicating that such a Person has a degree MEng
from the institute identified by “http://ait.ac.th”.

Figure 1-a illustrates another example of a non-
ground RDF expression which represents a class of
Staff resources with some direct relation to the re-
source referred to by "staff_02"; however, the name
of such a relation as well as the identifiers (URIs)
and other properties of the resources in the class are
unknown and are represented by an N-variable
$N:relation, an S-variable $S:uri and an E-variable
$E:properties, respectively. It will be seen later in this
sub-section that such a non-ground expression can be
specialized into a ground RDF expression of Figure
1-b.

Instantiation of those various types of variables is
defined by basic specialization, each of which has
the form (v, w) where v specifies the name of the
variable to be specialized and w the specializing
value. For example, ($S:s1, $S:s2), ($N:relation,
boss) and ($E:properties, ($E:p1, $E:p2)) are basic
specializations which rename the S-variable $S:s1 to
$S:s2, instantiate the N-variable $N:relation into the
element name boss, and expand the E-variable
$E:properties into the sequence of the E-variables
$E:p1 and $E:p2, respectively.

There are four types of basic specializations:
1. Rename variables.
2. Expand a P- or an E-variable into a sequence

of variables of their respective types.
3. Remove P- or E-variables.
4. Instantiate variables to RDF expressions or

components of RDF expressions which corre-
spond to the types of the variables.

Denote a sequence of zero or more basic speciali-
zations by a specialization.

The data structure and the specialization of RDF
expressions are characterized by a mathematical
abstraction

ΓΓΓΓR = 〈〈〈〈AR, G R, S R, µµµµR〉〉〉〉,

called RDF Specialization System, where
� AR is the set of all RDF expressions on ΣR,
� GR is the subset of AR which comprises all

ground RDF expressions in AR,
� SR is the set of all specializations which reflect

the data structure of the RDF expressions in AR,
� µR is the specialization operator which deter-

mines, for each specialization s in SR, the change
of each RDF expression a in AR caused by s.

Note that a specialization in SR will often be de-
noted by a Greek letter such as θ, and when µR is
clear from the context, for θ ∈ SR, µR(θ)(a) will be
written simply as aθ.

Consider Figure 1-c for an example of a speciali-
zation in SR and its application to an RDF expression
by the specialization operator µR.

2.2 RDD language

After the RDF specialization system ΓR has been
developed, RDD language and its related concepts
can now be defined.

A constraint on ΓR, useful for defining a restric-
tion on RDF expressions or components of RDF
expressions, is a formula q(a1, … , an), where n > 0, q
is a constraint predicate and ai an RDF expression in
AR. Application of θ ∈ SR to a constraint q(a1, … ,
an) yields q(a1θ, … , anθ). Given a ground constraint
q(g1, … , gn), gi ∈ GR, its truth or falsity is predeter-
mined.

<Staff rdf:about=$S:uri>
<$N:relation rdf:resource="staff_02"/>
$E:properties

</Staff>

<Staff rdf:about="staff_03">
<boss rdf:resource="staff_02"/>
<name>Derek T.</name>
<worksFor>Computer Dept.</worksFor>

</Staff>

($S:uri, "staff_03")
($N:relation, boss)
($E:properties, ($E:p1, $E:p2))
($E:p1, <name>Derek T.</name>)
($E:p2, <worksFor>Computer Dept.</worksFor>)

Specialized into
by µR(θ)

(b) A ground RDF expression g = µµµµR(θθθθ)(a) = aθθθθ(a) A non-ground RDF expression a.

(c) Specialization of the non-ground expression a to the ground RDF expression g by
� Instantiation of the S-variable $S:uri into the string "staff_03",
� Instantiation of the N-variable $N:relation into the property name boss,
� Expansion of the E-variable $E:p1 into the sequence of the E-variables $E:p1 and $E:p2,
� Instantiation of the E-variable $E:p1 into the RDF expression <name>Derek T.</name>,
� Instantiation of the E-variable $E:p2 into the RDF expression

<worksFor>Computer Dept.</worksFor>.

4

Given two RDF expressions a1 and a2, define
GT(a1, a2) as a constraint which will be true, iff a1, a2
are RDF elements of the forms <Num>v1</Num>,
and <Num>v2</Num>, respectively, where v1, v2 are
numbers and v1 > v2. Obviously, a constraint

GT(<Num>8</Num>,<Num>4</Num>)
is a true ground constraint in Tcon. In addition, for
some a1, a2, a3 ∈ AR, let Mul(a1, a2, a3) be a
constraint which will be true iff a1, a2 and a3 are RDF
elements of the forms:

<Num>n1</Num>,
<Multiplier>n2</Multiplier>, and
<Result>n3</Result>,

respectively, where n1, n2, n3 are numbers, and n3 is
the result of multiplying n1 and n2, i.e., n3 = n1 × n2.

An RDF declarative description on ΓR, simply
called an RDD description, is a set of RDF clauses,
each of which has the form:

H ← B1, B2, ..., Bn

where n ≥ 0, H is an RDF expression in AR, and Bi is
an RDF expression in AR, or a constraint on ΓR. The
order of the Bi is immaterial. H is called the head and
(B1, ..., Bn) the body of the clause. Such a clause, if
n = 0, is called a unit clause, if n > 0, a non-unit
clause. When it is clear from the context, a unit
clause (H ←) will be simply written as H. Therefore,
an RDF document, containing a set of RDF elements
and describing certain resources, is directly mapped
onto an RDD description comprising solely ground
RDF unit clauses.

Given an RDD description P, its meaning, denoted
by M(P) (cf. Appendix), is the set of all RDF ele-
ments which are directly described by and are deriv-
able from the unit and the non-unit clauses in P,
respectively, i.e.:
� Given a unit clause (H ←) in P, for θ ∈ SR:

Hθ ∈M(P) if Hθ is a ground RDF expression.
� Given a non-unit clause

(H ← B1, ..., Bi, Bi+1, ..., Bn)
in P, assuming without loss of generality that
B1, ..., Bi are RDF expressions and Bi+1, ..., Bn
constraints, for θ ∈ SR:
 Hθ ∈M(P) if

- Hθ is a ground RDF expression,
- B1θ,..., Biθ ∈M(P),
- Bi+1θ, ... ,Bnθ are true constraints.

3 RDD: a metadata modeling language

In RDD language, metadata expressed in terms of
RDF elements are directly represented by ground
RDF expressions in GR, while classes of RDF meta-
data which share certain similar components and
structures are modeled by RDF expressions with
variables as shown in Figure 1-a.

A collection of RDF metadata describing certain
specific facts and relations among resources of a real-
world domain is then modeled as a set of RDF
expressions. Ontological and domain axioms as well
as implicit relations and their algebraic properties,
such as transitivity, symmetry and inverse, are
expressed as RDF clauses.

Hence, a particular metadata application domain is
readily modeled as an RDD description which com-
prises a set of RDF expressions, describing explicit,
complex objects and their relations in the domain,
together with a set of RDF clauses, representing the
domain’s axioms as well as certain implicit relations.
Its semantics is a set of RDF elements, which are
explicit in the domain, together with all the derived
ones, which are inferred from the specified axioms
and relations.

Besides provision of a simple, yet expressive
mechanism to model metadata, RDD also provides a
facility to formulate and evaluate queries. Basically,
a query is represented by an RDD description con-
taining one or more RDF non-unit clauses. The head
of each clause describes the structure of the query
result, while its body specifies the pattern as well as
the selection condition of the query.

Evaluation of a query is carried out by employ-
ment of Equivalent Transformation (ET) [2,3] (cf.
Appendix)—a new computational model for solving
problem based on semantics-preserving transforma-
tions. Given a description P specifying a collection of
metadata elements as well as a set of their relations
and axioms within some particular domain, a query
represented by a description Q is evaluated by trans-
forming the description (P ∪ Q) successively into a
simpler but equivalent description, from which the
answers to the query can be obtained easily and
directly. More precisely, such a description (P ∪ Q)
will be successively transformed until it becomes the
description (P ∪ Q′), where Q′ consists of only
ground unit clauses and M(P ∪ Q) =M(P ∪ Q′). In
order to guarantee the correctness of the computa-
tion, only equivalent transformations can be applied
at every step. The unfolding transformation, a
widely-used program transformation in conventional
logic programming, is a kind of equivalent transfor-
mation. Other kinds of equivalent transformation can
also be devised, especially for improvement of com-
putation efficiency.

4Example: metadata modeling

DAML+OIL [11] is an RDF-based language which
extends RDFS by a richer set of modeling constructs
for description of ontological axioms as well as alge-
braic properties of relations. This example demon-
strates an RDD approach to representing and query-
ing a metadata application by employment of
DAML+OIL to model the application’s schema and

5

to describe the application’s data and objects. The
example will first show that by RDD language,
instances of DAML+OIL can be directly expressed
without a necessity for translation or modification
and their semantics can be precisely determined. It
will then demonstrate the expressive power of RDD
language by modeling a particular domain axiom
which is essential in the application but inexpressible
by DAML+OIL. Finally, an example of a query
about information implicit in the application will be
given.

Modeling the application’s schema and data:
Figure 2 illustrates an example of a DAML+OIL
document which defines the application’s schema
and describes certain explicit information about each
data object of the application. Obviously, such a
document is an RDD description which contains
merely unit clauses and will be referred to as P1.

Modeling relational algebraic properties and
ontological axioms: In order to define the meanings
of those DAML+OIL modeling constructs (i.e., sub-
ClassOf and transitiveProperty), which are employed
by Figure 2 and include some notion of implication,
the RDF clauses C1–C3 of Figure 3 are formulated.
Denote the set of these clauses by an RDD descrip-

tion P2, i.e., P2 = {C1, C2, C3}. Note that the mean-
ings of other DAML+OIL modeling constructs such
as domain, range, inverseOf, intersectionOf and
equivalentTo can also be defined in terms of RDF
clauses in a similar manner.

Modeling domain axioms: The RDF clause C4 of
Figure 4 illustrates an example of modeling a domain
axiom. It defines additional relationships among the
properties salary, worksFor, bonus and contractPeriod
of the class SeniorStaff. Donote the set of the clause
C4 by an RDD description P3, i.e., P3 = {C4}.

Let P be the union of the descriptions P1, P2 and
P3 which model (i) the application’s schema and
data, (ii) relational algebraic properties and ontologi-
cal axioms, and (iii) domain axioms, respectively.
Thus, P becomes immediately a model of the appli-
cation, and the meaning of P, M(P), includes not
only the information explicit in the application, i.e.,
those elements of P1, but also the following implicit
information, which is uncovered by the clauses of the
descriptions P2 and P3:

� The resources referred to by staff_01, staff_02,
staff_03 and staff_04 are instances of the class
Staff.

� The Staff referred to by staff_02 is a boss of the
Staff referred to by staff_04.

� The contractPeriod of the SeniorStaff referred to
by staff_02 is a 2-year term and that SeniorStaff
will receive a bonus of 14000.

� The contractPeriod of the SeniorStaff referred to
by staff_03 is a 2-year term and that SeniorStaff
will receive a bonus of 12000.

Formulating and evaluating a query: The clause
Cq of Figure 5 represents a query, which selects all
SeniorStaff who get a bonus of more than 10000, and
then lists their names and bonuses.

Using unfolding transformation, the description

P ∪ {Cq}

can be transformed into the description

P ∪ {Cq1, Cq2},

where Cq1 and Cq2 are the following unit clauses

Cq1: <BigBonusStaff>
<name>Sawat K.</name>
<bonus>14000</bonus>

</BigBonusStaff> ← .

Cq2: <BigBonusStaff>
<name>Derek T.</name>
<bonus>12000</bonus>

</BigBonusStaff> ← .

Thus, one can directly draw that the head elements
of Cq1 and Cq2 are the answers to the given query.
Moreover, since only unfolding transformation,
which always preserves the equivalence of declara-
tive descriptions, is used, the two obtained answers
are guaranteed to be correct.

<daml:Class rdf:ID="Staff"/>
<daml:Class rdf:ID="JuniorStaff">

<rdfs:subClassOf rdf:resource="Staff"/>
</daml:Class>
<daml:Class rdf:ID="SeniorStaff">

<rdfs:subClassOf rdf:resource="Staff"/>
</daml:Class>
<daml:Property rdf:ID="name"/>
<daml:Property rdf:ID="worksFor"/>
<daml:Property rdf:ID="salary"/>
<daml:TransitiveProperty rdf:ID="boss"/>
<daml:Property rdf:ID="contractPeriod"/>
<SeniorStaff rdf:about="staff_01">

<name>Somchai P.</name>
<worksFor>Sales Dept.</worksFor>
<salary>5000</salary>

</SeniorStaff>
<SeniorStaff about="staff_02">

<name>Sawat K.</name>
<worksFor>Computer Dept.</worksFor>
<salary>7000</salary>

</SeniorStaff>
<SeniorStaff about="staff_03">

<name>Derek T.</name>
<worksFor>Computer Dept.</worksFor>
<salary>6000</salary>
<boss rdf:resource="staff_02"/>

</SeniorStaff>
<JuniorStaff about="staff_04">

<name>Arunee I.</name>
<worksFor>Computer Dept.</worksFor>
<salary>3000</salary>
<boss rdf:resource="staff_03"/>

</JuniorStaff>

Figure 2. Modeling of an application’s
schema and data.

6

C1: <daml:Class rdf:ID=$S:classA>
<rdfs:subClassOf rdf:resource=$S:classC/>
$E:A_properties

</daml:Class>
← <daml:Class rdf:ID=$S:classA>

<rdfs:subClassOf rdf:resource=$S:classB/>
$E:A_properties

</daml:Class>,
<daml:Class rdf:ID=$S:classB>

<rdfs:subClassOf rdf:resource=$S:classC/>
$E:B_properties

</daml:Class>.

%
%
%
%
%

subClassOf Transitivity
Property: If A is a subclass of B
and B is a subclass of some broader
class C, this implies that A is also a
subclass of C.

C2: <$S:classB rdf:about=$S:resourceX>
$E:X_properties

</$S:classB>
← <daml:Class rdf:ID=$S:classA>

<rdfs:subClassOf rdf:resource=$S:classB/>
$E:A_properties

</daml:Class>,
<$S:classA rdf:about=$S:resourceX>

$E:X_properties
</$N:classA>.

%
%
%
%
%
%

The meaning of subClassOf
construct: If a class A is declared
as a subclass of another class B,
then every resource which is an
instance of the class A will also be
an instance of the class B.

C3: <$N:classA rdf:about=$S:resourceX>
<$S:propertyP rdf:resource=$S:resourceZ/>

</$N:classA>
← <daml:TransitiveProperty rdf:ID=$S:propertyP>,

<$N:classA rdf:about=$S:resourceX>
<$S:propertyP rdf:resource=$S:resourceY/>
$E:X_properties

</$N:classA>,
<$N:classB rdf:about=$S:resourceY>

<$S:propertyP rdf:resource=$S:resourceZ/>
$E:Y_properties

</$N:classB>.

%
%
%
%
%
%
%
%

The meaning of Transitive-
Property construct: For a
TransitiveProperty P, if a property P
of a resource X is a resource Y and
that of the resource Y is a resource
Z, then one can imply that a
property P of a resource X is also
the resource Z.

** Note: When an S-variable is used as an element name of an RDF expression, that variable can only be specialized into
a valid element name, but not into any arbitrary string. For instance, an expression <$S:classA rdf:about="X"/> can be
specialized into <Staff rdf:about="X"/> but not into <"An arbitrary string" rdf:about="X"/>.

Figure 3. Modeling of ontological axioms and relational algebraic properties.

C4: <SeniorStaff rdf:about=$S:staff>
<worksFor>Computer Dept.</worksFor>
<salary>$S:salary</salary>
<bonus>$S:bonus</bonus>
<contractPeriod>2 years</contractPeriod>
$E:staff_properties

</SeniorStaff>
← <SeniorStaff rdf:about=$S:staff>

<worksFor>Computer Dept.</worksFor>
<salary>$S:salary</salary>
$E:staff_properties

</SeniorStaff>,
Mul(<Num>$S:salary</Num>, <Multiplier>2</Multiplier>,

 <Result>$S:bonus</Result>).

%
%
%
%
%
%
%
%
%

The clause C4 defines additional
relationships among the properties
worksFor, salary, bonus and
contractPeriod of the class
SeniorStaff, by asserting that for
every SeniorStaff of the Computer
Department, his/her contractPeriod
is 2 years and he/she will receive a
double-salary bonus.

Figure 4. Modeling of domain axioms.

Cq: <BigBonusStaff>
<name>$S:name</name>
<bonus>$S:bonus</bonus>

</BigBonusStaff>
← <SeniorStaff rdf:about=$S:staff>

<name>$S:name</name>
<bonus>$S:bonus</bonus>
$E:staff_properties

</SeniorStaff>,
GT(<Num>$S:bonus</Num>, <Num>10000</Num>).

%
%
%
%

The clause Cq represents a query
which lists the name and bonus of
each SeniorStaff who gets a bonus
of more than 10000.

Figure 5. Modeling of a query.

7

5 Related works

DAML+OIL [11] is the most improved ontology
markup language, which has been defined on the
basis of RDF(S) and OIL [7,10], in order to provide
an expressive set of modeling constructs. However,
its mechanism is insufficient to model metadata,
since it can represent only a limited set of ontological
axioms and relational algebraic properties, while
lacking an ability to express arbitrary rules and
domain axioms.

As demonstrated by the example of Section 4,
RDD language can be employed to enhance the
expressiveness of DAML+OIL. Besides allowing the
semantics of each DAML+OIL modeling construct to
be precisely determined, RDD also provides suffi-
cient means to describe additional rules and axioms
in terms of RDF non-unit clauses.

DAML-S [5,15] is a recently proposed, DAML-
family markup language for description of Web
service properties, capabilities and functionalities.
Instances of DAML-S, encoded in RDF/XML seriali-
zation, can be directly represented by RDD language
as RDF unit clauses. Based on DAML-S syntax and
constructs, an RDD approach to modeling and im-
plementing Web services is being developed. In
essence, such an approach will enable the automation
of the following tasks:
� service advertisement and discovery,

� negotiation,
� service invocation and execution,
� service composition and integration, and
� service customization.
SquishQL [16]—the most recent, improved query

language for RDF—is an SQL-like language with
SELECT-FROM-WHERE-style syntax. Its query
mechanism is based on subgraph matching, where
patterns and query selection criteria are expressed in
terms of RDF triples of subject, predicate and object.
Based on SquishQL, several RDF query engines have
been developed [16,9]. Apart from the simple
ontological-modeling facility provided by RDFS,
these engines do not allow additional descriptions of
rules, axioms and relational algebraic properties.
Thus, their sole inference service is based on class
and property hierarchies.

Metalog [14] and SiLRi (Simple Logic-based RDF
Interpreter) [6] employ logic programming and F-
logic (Frame-Logic) theories, respectively, in order
to provide both query and reasoning services for
RDF. In these two approaches, RDF metadata ele-
ments must be translated into sets of corresponding
representation in their original frameworks, i.e., into
sets of binary predicates and F-logic formulae.
Querying and reasoning about RDF metadata are
then performed on these corresponding translations
instead of direct operation on RDF elements.

Figure 6 shows metalog representation of the
axiom of Figure 4. Clearly, its mechanism appears to

R1: bonus(S, B)
← type(S, "SeniorStaff"),

worksFor(S,"Computer Dept."),
salary(S,SAL),
mul(SAL, "2", B).

R2: contractPeriod(S,"2 years")
← type(S, "SeniorStaff"),

worksFor(S,"Computer Dept."),
salary(S,SAL),
mul(SAL, 2, B).

<Procedure>
<Head>

<Predicate name="bonus">
<rdf:Seq>

<rdf:li><Variable>S</Variable></rdf:li>
<rdf:li><Variable>B</Variable></rdf:li>

</rdf:Seq>
</Predicate>

</Head>
<Body>

<and>
<Predicates>

<rdf:Seq>
<rdf:li>

<Predicate name="type">
<rdf:Seq>
 <rdf:li><Variable>S</Variable></rdf:li>
 <rdf:li><Constant>SeniorStaff</Constant>
 </rdf:li>
</rdf:Seq>

</Predicate>
</rdf:li>
…

</rdf:Seq>
</Predicates>

</and>
</Body>

<Procedure>

(a) Corresponding logical formulae. (b) Example of a metalog program representing the rule R1 in (a).

Figure 6. Metalog’s representation of the domain axiom of Figure 4.

8

be unnatural and difficult to interpret, whence it is
not a good candidate for a metadata language.

Figure 7 illustrates corresponding SiLRi (F-logic)
expressions of the given DAML+OIL statement of
Figure 2 and the domain axiom of Figure 4. Despite
its declarativeness and abilities to formulate various
kinds of axioms and queries, SiLRi’s expressive
power is still insufficient to represent RDF containers
[6]—bags (rdf:Bag), sequences (rdf:Seq) and alterna-
tives (rdf:Alt)—because in F-logic, sets are not
treated as objects and cannot have attributes.

Moreover, axioms and queries involving such
concepts of RDF containers are inexpressible. For
example, it is unable to handle a query which returns
an RDF:Bag listing names of all Staff working for the
computer department. By RDD language, Figure 8
formulates this query as the RDF clause Cset, which
employs the concept of set aggregation for construc-
tion of an RDF:Bag. The xdd:SetOf-expression in
Cset’s body states that for each Staff X of the com-
puter department (xdd:Pattern sub-expression), the
variable $E:namelist (xdd:Set sub-expression) aggre-
gates an rdf:li-element listing X’s name, represented
by $S:name (xdd:Constructor sub-expression). The
theoretical details of this concept are beyond the
scope of this paper, but are provided by [4].

6 Conclusions

By integration of the RDF data model, DD theory
and ET computational paradigm, this paper has de-
veloped a solid, practical framework for a uniform
representation of and reasoning with RDF metadata.
The developed framework derives metadata descrip-
tion facilities, exchangeability and interoperability
from the RDF data model, expressiveness from DD
theory and an efficient computational mechanism
from ET paradigm.

In order to demonstrate its usefulness and practi-
cability in real applications, the framework has been
employed to model a resource discovery problem as
well as to develop a unified foundation for software
configuration management [12]. Their Web-based
prototype systems have also been implemented, using
ETC [3]—a compiler under the ET paradigm.

Acknowledgement

This work was supported in part by the Thailand
Research Fund.

References

1. K. Akama. Declarative Semantics of Logic Programs
on Parameterized Representation Systems. Advances
in Software Science and Technology, 5: 45–63, 1993.

2. K. Akama, T. Shimitsu, and E. Miyamoto. Solving
Problems by Equivalent Transformation of Declara-
tive Programs. J. of the Japanese Society of Artificial
Intelligence, 13(6): 944–952, 1998 (in Japanese)

3. K. Akama. ET Computational Paradigm. Home Page.
Available at http://kr.cs.ait.ac.th/et

4. C. Anutariya, V. Wuwongse, K. Akama and E.
Nantajeewarawat. RDF Declarative Descriptions with
Sets and Negation. Technical Report, Computer
Science and Information Management Program, Asian
Institute of Technology, Thailand, 2001.

5. M. Burstein et al. DAML-S 0.5 Draft Release. May
2001. http://www.daml.org/services/ daml-s/2001/05

6. S. Decker, D. Brickley, J. Saarela and J. Angele. A
Query and Inference Service for RDF. Proc. Query
Languages Workshop (QL’1998), MA, 1998. http://
www.w3.org/TandS/QL/QL98/pp/queryservice.html

7. S. Decker, S. Melnik, F.V. Harmelen, D. Fensel, M.
Klein, J. Broekstra, M. Erdmann, and I. Harrocks. The
Semantic Web: The Roles of XML and RDF. IEEE
Internet Computing, 15(5): 63–74, Sep./Oct. 2000.

8. D. Brickley and R.V. Guha. RDF Schema
Specification 1.0. W3C Candidate Recommendation.
http://www.w3.org/TR/ rdf-schema/

9. R.V. Guha. rdfDB: An RDF Database. Home Page.
http://web1.guha.com/rdfdb/

10. F. V. Harmelen and I. Harrocks. FAQs on OIL: The
Ontology Inference Layer. IEEE Intelligent Systems,
15(6): 69–72, Nov./Dec. 2000.

11. J. Hendler, and D. McGuinness. The DARPA Agent
Markup Language. IEEE Intelligent Systems, 15(6):
72–73, Nov./Dec. 2000.

"staff_01": SeniorStaff [name → "Somchai P.",
worksFor → "Computer Dept.",
salary → "7000"]

(a) The DAML+OIL statement of Figure 2.

S: SeniorStaff [bonus → B, contractPeriod → "2 years"]
← S: SeniorStaff [worksFor → "Computer Dept.",

salary → R],
(B = R * 2).

(b) The domain axiom of Figure 4.

Figure 7. F-logic expressions.

Cset: <rdf:Bag ID="comp-dept-staff">
$E:namelist

 </rdf:Bag>
← <xdd:SetOf>

<xdd:Set>$E:namelist</xdd:Set>
<xdd:Constructor>

<rdf:li>$S:name</rdf:li>
</xdd:Constructor>
<xdd:Pattern>

<Staff rdf:about=$S:X>
<name>$S:name</name>
<worksFor>

Computer Dept.
</worksFor>
$E:staff_properties

</Staff>
</xdd:Pattern>

</xdd:SetOf>.

Figure 8. Modeling of an aggregation query.

9

12. S. Kitcharoensakkul and V. Wuwongse. Unified Ver-
sioning using Resource Description Framework.
Annals of Software Engineering, Special Volume on
Software Management, 11, 2001.

13. O. Lassila and R. R. Swick. Resource Description
Framework (RDF) Model and Syntax Specification.
W3C Recommendation, February 1999. http://www.
w3.org/TR/REC-rdf-syntax/

14. M. Marchiori and J. Saarela. Query + Metadata +
Logic = Metalog. Proc. Query Languages Workshop
(QL’1998), MA, 1998. http://www.w3.org/TandS/QL/
QL98/pp/metalog.html

15. S. A. McIlraith, T. C. Son, and H. Zeng. Semantic
Web Services. IEEE Intelligent Systems, 16(2): 46-53,
Mar./Apr. 2001.

16. L. Miller. Inkling: RDF Query using SquishQL. Home
Page. http://swordfish.rdfweb.org/rdfquery/

Appendix:
Declarative Description Theory

This section recalls certain fundamental defini-
tions of Declarative Description (DD) theory [1,2]—
an axiomatic theory inspired by the concept of con-
ventional logic programs with an attempt to cover a
wider variety of data domains. The data structure of a
given data domain is characterized by a mathematical
abstraction, called a specialization system. Despite its
simplicity, the specialization system provides a suffi-
cient structure for the definition of declarative
descriptions and their meanings. Thus, by appro-
priate construction of a specialization system for a
given data domain, a framework for the representa-
tion and computation of data in that domain can be
directly obtained. Correspondingly, in Section 2, DD
theory is employed to develop the theory of RDF
declarative descriptions.

A.1 Specialization systems

Definition 1 (Specialization System) Let A, G and
S be sets of objects, ground objects, and specializa-
tions, respectively, and µ be a mapping from S to
partial_map(A) (i.e., the set of all partial mappings
on A). The quadruple 〈A, G, S, µ〉 is a specialization
system under the conditions:

1. ∀s1, s2 ∈ S, ∃s ∈ S : µ(s) = µ(s1) ° µ(s2),
2. ∃s ∈ S, ∀a ∈ A : µ(s)(a) = a,
3. G ⊂ A,

where µ(s1) ° µ(s2) is the composite mapping of the
partial mappings µ(s1) and µ(s2). The set G is called
the interpretation domain. �

In the sequel, let Γ = 〈A, G, S, µ〉 be a specializa-
tion system. When µ is clear from the context, for θ
∈S, µ(θ)(a) will be written simply as aθ. If there
exists b such that aθ = b, then θ is said to be
applicable to a, and a is specialized into b by θ.

A.2 Declarative descriptions and their
declarative semantics

A declarative description on Γ and other related
concepts can now be defined.

Let a set K comprise constraint predicates. A
constraint on Γ is a formula q(a1, … , an), where q is
a constraint predicate in K and ai an object in A.
Given a ground constraint q(g1, … , gn), gi ∈ G, its
truth and falsity are predetermined. Denote the set of
all true ground constraints by Tcon. A specialization
θ is applicable to a constraint q(a1, … , an) if θ is
applicable to a1, … , an. The result of q(a1, … , an)θ
is the constraint q(a1θ, … , anθ); and q(a1, … , an) is
said to be specialized into q(a1θ, …, anθ) by θ.

Definition 2 (Declarative Description) A clause
on Γ is a formula of the form:

H ← B1, B2, ..., Bn

where n ≥ 0, H is an object in A and Bi an object in
A or a constraint on Γ. H is called the head and (B1,
B2, ..., Bn) the body of the clause. A declarative
description or simply a description on Γ is a
(possibly infinite) set of clauses on Γ. �

The head of C will be denoted by head(C) and the
set of all objects and constraints in the body of C by
object(C) and con(C), respectively. Let body(C) =
object(C) ∪ con(C). A clause C′ is an instance of C
iff there is a specialization θ ∈S such that θ is appli-
cable to H, B1, B2, ..., Bn and C′ = Cθ = (Hθ ← B1θ,
B2θ, ..., Bnθ). A clause C is a ground clause iff C
comprises only ground objects and ground con-
straints.

Let P be a declarative description on Γ. Associated
with P is the mapping TP on 2G defined by: For each
X ⊂ G, a ground object g is contained in TP(X) iff
there exist a clause C ∈ P and a specialization θ ∈S
such that Cθ is a ground clause the head of which is
g and all the objects and constraints in the body of
which belong to X and Tcon, respectively, i.e.:

TP(X) = {head(Cθ) | C ∈ P, θ ∈S ,
Cθ is a ground clause,
object(Cθ) ⊂ X,
con(Cθ) ⊂ Tcon }

Based on TP, the meaning of P can now be defined.

Definition 3 (Semantics of a Declarative Descrip-
tion) Let P be a declarative description on Γ. The
meaning of P, denoted by M(P), is defined by

M(P) = ∪
∞

=

∅
1

)(][
n

n
PT

where ∅ is the empty set, and [TP]1(∅) = TP(∅) and

[TP]n(∅) = TP([TP]n-1(∅)) for each n > 1. �

10

A.3 Equivalent Transformations

Equivalent Transformation (ET) [2,3] is a new
computational model based on semantics-preserving
transformations (equivalent transformations) of de-
clarative descriptions. Computation by means of ET
is carried out by successive transformation of a given
description P1 into P2, P3, … until a desirable
description Pn is obtained; in the transformation
process, the semantics of each description must be
preserved, i.e., M(P1) = M(P2) = M(P3) = … =
M(Pn).

In order to guarantee the correctness of the com-
putation, only equivalent transformations are applied
at every step. The unfolding transformation, a
widely-used program transformation in conventional
logic programming, is a kind of equivalent transfor-
mation. Other kinds of equivalent transformation can
also be devised, especially for improvement of com-
putation efficiency. Thus, ET provides a more flexi-
ble, efficient computational framework.

