

Copyright © 2000 by Adobe Systems Inc., AGFA-Gevaert N.V., Heidelberger Druckmaschinen AG, MAN Roland Druckmaschinen AG,

All Rights Reserved

Under the terms of this agreement the user shall be allowed to use the manual as well as the software described therein.

Hereby Adobe Systems Incorporated, Agfa, Heidelberger Druckmaschinen, and MAN Roland decline any warranty for any mistake in the
manual and in the software described therein as well as for the correction of such mistake and for any computer virus that might occur in the
manual and/or in the software described therein and for any other components. The corporations mentioned before shall not be held liable for
any violation of a right of any third party which might be caused through the manual or the software described therein. Hereby any claim for
damages shall be expressly excluded. This shall also apply to damages caused to any other object and to damages that might result from the
loss of use, information, or profit.

Any references to company names in sample templates are for demonstration purposes only and are not intended to refer to any actual or-
ganization.

Adobe, the Adobe logo, Acrobat, Adobe, FrameMaker, Illustrator, InDesign, PageMaker, Photoshop, and PostScript are trademarks of Adobe
Systems Incorporated.

Apple and Macintosh are trademarks of Apple Computer, Inc., registered in the United States and other countries.

Microsoft, Windows, and Windows NT are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or
other countries.

CIP3 is a Trademark of the International Cooperation for Integration of Prepress, Press, and Postpress.

CIP3 c/o Fraunhofer Institute for Computer Graphics, Rundeturmstrasse 6, 64283 Darmstadt, Germany

All other trademarks are the property of their respective owners.

Adobe Systems Incorporated, 345 Park Avenue, San Jose, California 95110, USA

Agfa Gevaert N.V., Septestraat 27, B2640 Mortsel, Belgium

Heidelberger Druckmaschinen Aktiengesellschaft, Kurfürsten-Anlage 52-60, 69115 Heidelberg, Germany

MAN Roland Druckmaschinen AG, Mühlheimer Straße 341, D-63075 Offenbach am Main, Germany

Disclaimer
This document is provided to the public as a technology preview. It is non-normative and subject to
change. Although the Working Group does not anticipate further major changes to the functionality
described here, this is still a working draft, subject to change. The JDF Working Group will not allow early
implementation to constrain its ability to make changes to this specification prior to final release.

Contents iii

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION ..21
1.1 Document References...21
1.2 Conventions Used in This Specification ..22

1.2.1 Text Styles..22
1.2.2 Specification of Cardinality ...23

1.3 Terminology ..23
1.4 Data Structures ...24
1.5 Units ..26

CHAPTER 2 OVERVIEW OF JDF ..27
2.1 System Components...27

2.1.1 Job Components ..27
2.1.1.1 Jobs and Nodes.. 27
2.1.1.2 Elements... 27
2.1.1.3 Attributes... 28
2.1.1.4 Relationships .. 28
2.1.1.5 Links ... 28

2.1.2 Workflow Component Roles ...28
2.1.2.1 Machines .. 29
2.1.2.2 Devices ... 29
2.1.2.3 Agents... 29
2.1.2.4 Controllers .. 29
2.1.2.5 Management Information Systems—MIS... 29
2.1.2.6 System Interaction.. 30

2.2 JDF Workflow..31
2.2.1 Job Structure ..32

2.3 Hierarchical Tree Structure and Networks in JDF33
2.4 Role of Messaging in JDF ...35

CHAPTER 3 STRUCTURE OF JDF NODES AND JOBS...36
3.1 JDF nodes...38

3.1.1 Generic Contents of JDF Elements ..38
3.1.2 Fundamental JDF Attributes and Elements...39

3.2 Common Node Types ...42
3.2.1 Product Intent Nodes..43
3.2.2 Process Group Nodes ..43
3.2.3 Combined Process Nodes ..44
3.2.4 Process Nodes ...45

3.3 AncestorPool...45
3.4 Customer Information..46
3.5 Process and Node Information..47
3.6 Resources ...48

3.6.1 Resource Classes ..50
3.6.1.1 Parameter Resources... 50
3.6.1.2 Intent Resources.. 51

3.6.1.3 Implementation Resources... 51
3.6.1.4 Physical Resources (Consumable, Quantity, Handling) .. 51
3.6.1.5 PlaceHolder Resources.. 52
3.6.1.6 Selector Resources .. 52

3.6.2 Position of Resources within JDF Nodes ..53
3.6.3 Pipe Resources ..53

3.7 Resource Links ...53
3.7.1 Links to Parameter Resources..57
3.7.2 Links to Implementation Resources..57
3.7.3 Links to Physical Resources...58
3.7.4 Links to PlaceHolder Resources...58
3.7.5 Links to Selector Resources ...59
3.7.6 Links to Intent Resources ...59
3.7.7 Inter-Resource Linking ...59

3.8 Subsets of Resources ...59
3.8.1 Resource Amount...60
3.8.2 Description of Partitionable Resources ...60
3.8.3 Locations of Physical Resources ..63
3.8.4 RunIndex..64
3.8.5 Linking to Subsets of Resources ..64
3.8.6 Splitting and Combining Resources..65

3.9 AuditPool...67
3.9.1 Audit Elements ...69

3.9.1.1 ProcessRun .. 69
3.9.1.2 Notification .. 70
3.9.1.3 PhaseTime.. 70
3.9.1.4 ResourceAudit .. 72
3.9.1.5 Logging Machine Data by Using the ResourceAudit.. 73
3.9.1.6 Created ... 74
3.9.1.7 Modified .. 74
3.9.1.8 Spawned... 74
3.9.1.9 Merged.. 75

3.10 JDF Extensibility..76
3.10.1 Namespaces in XML ..76
3.10.2 Extending Process Types...76
3.10.3 Extending existing Resources ..77
3.10.4 Creating New Resources..77
3.10.5 Future JDF Extensions ...77
3.10.6 Maintaining Extensions...77
3.10.7 Processing Unknown Extensions..78
3.10.8 Derivation of Types in XMLSchema..78

CHAPTER 4 LIFE CYCLE OF JDF ..79
4.1 Creation and Modification..79

4.1.1 Product Intent Constructs ...79
4.1.1.1 Representation of Product Intent.. 80
4.1.1.2 Representation of Product Binding.. 80

4.1.2 Quote Generation Using Intent Resources ...80
4.1.3 Specification of Delivery of End Products ...82

4.2 Process Routing..84
4.2.1 Determining Executable Nodes ..84

Contents v

4.2.2 Distributing Processing to Work Centers or Devices...................................84
4.2.3 Device / Controller Selection ..85

4.3 Execution Model..85
4.3.1 Serial Processing..85
4.3.2 Overlapping Processing Using Pipes..87

4.3.2.1 Pipes of Partionable Resources ... 89
4.3.2.2 Dynamic Pipes.. 89
4.3.2.3 Comparison of Non-Dynamic and Dynamic Pipes ... 90

4.3.3 Parallel Processing...90
4.3.4 Iterative Processing ..91

4.3.4.1 Informal Iterative Processing .. 92
4.3.4.2 Formal Iterative Processing.. 92

4.3.5 Proofing and Verification...92
4.4 Spawning and Merging..92

4.4.1 Case 1: Standard Spawning and Merging ..94
4.4.2 Case 2: Spawning and Merging with resource copying...............................95
4.4.3 Case 3: Parallel Spawning and Merging of Partitioned Resources96
4.4.4 Case 4: Nested Spawning and Merging in Reverse Sequence...................96
Case 5: Spawning and Merging of Independent Jobs..98
4.4.6 Simultaneous Spawning and Merging of Multiple nodes.............................99

4.5 Node and Resource IDs ..99
4.6 Error Handling ...100

4.6.1 Classification of Notifications ..100
4.6.2 Event Description ...101
4.6.3 Error Logging in the JDF file ...101
4.6.4 Error Handling via Messaging (JMF)...101

4.7 Test Running...101
4.7.1 Resource Status During Testrun...102

CHAPTER 5 JDF MESSAGING WITH THE JOB MESSAGING FORMAT (JMF).........103
5.1 JMF Root...103
5.2 JMF Semantics ...104

5.2.1 Message Families...105
5.2.1.1 Query ... 105
5.2.1.2 Response.. 105
5.2.1.3 Signal.. 106
5.2.1.4 Command ... 108
5.2.1.5 Acknowledge .. 108

5.2.2 JMF Handshaking...109
5.2.2.1 Single Query/Command Response Communication.. 109
5.2.2.2 Signal.. 109
5.2.2.3 Persistent Channels ... 109

5.3 JMF Messaging Levels..110
5.4 Error and Event Messages..111
5.5 Standard Messages ..112

5.5.1 Controller Registration and Communication Messages113
5.5.1.1 Events... 113
5.5.1.2 KnownControllers ... 114
5.5.1.3 KnownDevices.. 114
5.5.1.4 KnownJDFServices .. 115
5.5.1.5 KnownMessages .. 116

5.5.1.6 RepeatMessages.. 117
5.5.1.7 StopPersistentChannel... 118

5.5.2 Device/Operator Status and Job Progress Messages...............................119
5.5.2.1 Occupation..120
5.5.2.2 Resource ..121
5.5.2.3 Status.. 125
5.5.2.4 Track... 130

5.5.3 Pipe Control..131
5.5.3.1 PipeClose ... 131
5.5.3.2 PipePull... 132
5.5.3.3 PipePush .. 134
5.5.3.4 PipePause .. 134

5.6 Queue Support..135
5.6.1 Queue Entry ID Generation ..135
5.6.2 Queue Entry Handling Commands ...135

5.6.2.1 AbortQueueEntry.. 136
5.6.2.2 HoldQueueEntry ... 136
5.6.2.3 RemoveQueueEntry ... 137
5.6.2.4 ResubmitQueueEntry ... 137
5.6.2.5 ResumeQueueEntry ... 137
5.6.2.6 SetQueueEntryPosition .. 138
5.6.2.7 SetQueueEntryPriority.. 138
5.6.2.8 SubmitQueueEntry ... 139

5.6.3 Global Queue Handling ..141
5.6.3.1 CloseQueue.. 141
5.6.3.2 FlushQueue .. 141
5.6.3.3 HoldQueue.. 142
5.6.3.4 OpenQueue .. 142
5.6.3.5 QueueEntryStatus .. 142
5.6.3.6 QueueStatus... 143
5.6.3.7 ResumeQueue ... 143
5.6.3.8 SubmissionMethods ... 143

5.6.4 Queue-Handling Elements..144
5.7 Extending Messages...146

5.7.1 IFRATrack Support...146

CHAPTER 6 PROCESSES ..147
6.1 Process Template ...147
6.2 General Processes..147

6.2.1 Approval ...147
6.2.2 Combine...148
6.2.3 Delivery ..148
6.2.4 Ordering ...149
6.2.5 ResourceDefinition ...149
6.2.6 Split ..150
6.2.7 Verification..150

6.3 Prepress Processes ..150
6.3.1 Scanning ..150
6.3.2 LayoutElementProduction...151
6.3.3 DBDocTemplateLayout ..151
6.3.4 DBTemplateMerging...152
6.3.5 ColorSpaceConversion...152

Contents vii

6.3.6 ColorCorrection ..153
6.3.7 Preflight ..154
6.3.8 ImageReplacement ..155
6.3.9 Separation..155
6.3.10 Trapping ...156
6.3.11 Imposition...157
6.3.12 PDFToPSConversion ...158
6.3.13 PSToPDFConversion ...158
6.3.14 RIPping ..159
6.3.15 Interpreting ...159
6.3.16 Rendering...160
6.3.17 ContoneCalibration...161
6.3.18 Screening ...161
6.3.19 SoftProofing..162
6.3.20 Proofing..163
6.3.21 PreviewGeneration ...164
6.3.22 InkZoneCalculation...166
6.3.23 Tiling...167
6.3.24 ImageSetting ..167
6.3.25 FilmToPlateCopying ...168

6.4 Press Processes ...168
6.4.1 ConventionalPrinting ..168
6.4.2 DigitalPrinting ...170
6.4.3 IDPrinting ...171

6.5 Postpress Processes...172
6.5.1 Web Processes ..172

6.5.1.1 Dividing ... 172
6.5.1.2 LongitudinalRibbonOperations ... 173

6.5.2 HoleMaking ..173
6.5.3 Tip-on/in ...174

6.5.3.1 EndSheetGluing ... 174
6.5.3.2 Inserting .. 174

6.5.4 Block Production ..175
6.5.4.1 Block Compiling.. 175

6.5.4.1.1 Collecting...175
6.5.4.1.2 Gathering...176

6.5.4.2 Block Joining... 176
6.5.4.2.1 AdhesiveBinding ..176
6.5.4.2.2 SaddleStitching..177
6.5.4.2.3 SideSewing..177
6.5.4.2.4 Stitching...177
6.5.4.2.5 ThreadSewing..178
6.5.4.2.6 Single Leaf Binding Methods ...178

6.5.4.2.6.1 Loose Leaf Binding Method ...178
6.5.4.2.6.1.1 RingBinding ..179

6.5.4.2.6.2 Mechanical Binding Methods...179
6.5.4.2.6.2.1 ChannelBinding ..179
6.5.4.2.6.2.2 CoilBinding ...180
6.5.4.2.6.2.3 PlasticCombBinding..180
6.5.4.2.6.2.4 VeloBinding ..181
6.5.4.2.6.2.5 WireCombBinding...181

6.5.5 Numbering..181
6.5.6 Sheet Processes ..182

6.5.6.1 Cutting .. 182

6.5.6.2 Folding .. 183
6.5.7 Trimming ..183

CHAPTER 7 RESOURCES..185
7.1 Intent Resources ...185

7.1.1 Span Resource Sub-elements..185
7.1.1.1 Structure of Abstract Span Elements ... 186
7.1.1.2 Structure of the Span-Element Type IntegerSpan ... 187
7.1.1.3 Structure of the Span-Element Type NameSpan... 187
7.1.1.6 Structure of the Span-Element Type StringSpan ... 189
7.1.1.7 Structure of the TimeSpan Sub-element .. 190

7.1.2 Named Span resources..190
7.1.3 ArtDeliveryIntent ...191
7.1.4 BindingIntent ..192
7.1.5 ColorIntent..195
7.1.6 DeliveryIntent ...196
7.1.7 FoldingIntent...197
7.1.8 HoleMakingIntent..198
7.1.9 InsertingIntent...198
7.1.10 LaminatingIntent...199
7.1.11 MediaIntent...200
7.1.12 Numbering Intent ..201
7.1.13 PackingIntent..201
7.1.14 PocketingIntent...202
7.1.15 ProofingIntent ...202
7.1.16 ScanningIntent ...203
7.1.17 ScreeningIntent ..204
7.1.18 ShapeIntent ..205
7.1.19 SizeIntent ...206
7.1.20 StampingIntent ...206

7.2 Process Resources ...207
7.2.1 Process Resource Template ..207
7.2.2 Address ..208
7.2.3 AdhesiveBindingParams...208
7.2.4 ApprovalParams...213
7.2.5 ApprovalSuccess..214
7.2.6 ByteMap ...214
7.2.7 ChannelBindingParams..215
7.2.8 CIELABMeasuringField ..216
7.2.9 CoilBindingParams...217
7.2.10 CollectingParams ...218
7.2.11 Color...218
7.2.12 ColorantControl ..221
7.2.13 ColorControlStrip..223
7.2.14 ColorCorrectionParams ..224
7.2.15 ColorPool ...225
7.2.16 ColorSpaceConversionParams...225
7.2.17 ComChannel ..227
7.2.18 Company..228
7.2.19 Component...228
7.2.20 Contact...233

Contents ix

7.2.21 ConventionalPrintingParams ..233
7.2.22 CostCenter ...236
7.2.23 CutBlock...236
7.2.24 CutMark..237
7.2.25 DBMergeParams..238
7.2.26 DBRules ...239
7.2.27 DBSchema ...239
7.2.28 DBSelection..240
7.2.29 DeliveryParams ..240
7.2.30 DensityMeasuringField ...241
7.2.31 Device ..242
7.2.32 DigitalPrintingParams ...242
7.2.33 Disjointing...243
7.2.34 DividingParams ..244
7.2.35 Employee ...245
7.2.36 EndSheetGluingParams ...245
7.2.37 ExposedMedia..246
7.2.38 FileSpec ...247
7.2.39 FoldingParams ...250
7.2.40 FontParams..256
7.2.41 FontPolicy ..257
7.2.42 GatheringParams ...258
7.2.43 GlueLine...258
7.2.44 HoleMakingParams ..259
7.2.45 IdentificationField..260
7.2.46 IDPrintingParams ...261

Resource Properties...261
Resource Structure...261

7.2.47 ImageCompressionParams ..268
7.2.48 ImageReplacementParams ..271
7.2.49 ImageSetterParams..272
7.2.50 Ink ..273
7.2.51 InkZoneCalculationParams...274
7.2.52 InkZoneProfile ..274
7.2.53 InsertingParams ...275
7.2.54 InsertSheet...276
7.2.55 InterpretedPDLData..277
7.2.56 InterpretingParams...277
7.2.57 Layout ..278
7.2.58 LayoutElement ...279
7.2.59 LongitudinalRibbonOperationParams ...280
7.2.60 Media ...282
7.2.61 NumberingParams..283
7.2.62 OrderingParams ...284
7.2.63 PDFToPSConversionParams ...284
7.2.64 PDLResourceAlias ...288
7.2.65 Person..288
7.2.66 PlaceHolderResource...289
7.2.67 PlasticCombBindingParams ...289
7.2.68 PlateCopyParams...290
7.2.69 PreflightAnalysis ...290

7.2.70 PreflightInventory..292
7.2.71 PreflightProfile ..293
7.2.72 Preview ..294
7.2.73 PreviewGenerationParams...295
7.2.74 ProofingParams..296
7.2.75 PSToPDFConversionParams ...296
7.2.76 RegisterMark ..300
7.2.77 RenderingParams...300
7.2.78 RingBindingParams..301
7.2.79 RunList ...302
7.2.80 SaddleStitchingParams ..305
7.2.81 ScanParams...306
7.2.82 ScreeningParams...308
7.2.83 SeparationControlParams ..309
7.2.84 SeparationSpec..311
7.2.85 Sheet..311
7.2.86 SideSewingParams ..312
7.2.87 StitchingParams ...313
7.2.88 Surface...315
7.2.89 ThreadSewingParams ..318
7.2.90 Tile ...319
7.2.91 TransferCurvePool ...320
7.2.92 TrappingDetails ..321
7.2.93 TrappingParams...322
7.2.94 TrapRegion...326
7.2.95 TrimmingParams ..326
7.2.96 VeloBindingParams..327
7.2.97 VerificationParams ...328
7.2.98 WireCombBindingParams ..329

CHAPTER 8 BUILDING A SYSTEM AROUND JDF ...330
8.1 Implementation Considerations and Guidelines330
8.2 JDF and JMF Interchange Protocol...330

8.2.1 File-Based Protocol (JDF only) ...330
8.2.2 HTTP-Based Protocol (JDF + JMF) ...330
8.2.3 Protocol Implementation Details ...330
8.2.4 Mime Types and File Extensions ..331

8.3 MIS Requirements...331

APPENDIX A ENCODING ..332
A.1 XML Schema Data Types ...332
A.2 JDF Data Types ..333

A.2.1 CMYKColor ..333
A.2.2 IntegerList ..333
A.2.3 IntegerRange..333
A.2.4 IntegerRangeList ..334
A.2.5 LabColor...334
A.2.6 Matrix ...334
A.2.7 NamedColor ...335

Contents xi

A.2.8 NameRange ...335
A.2.9 NameRangeList..336
A.2.10 NumberList ...336
A.2.11 NumberRange ..336
A.2.12 NumberRangeList...336
A.2.13 Path..337
A.2.14 Rectangle ...337
A.2.15 sRGBColor ...337
A.2.16 TimeRange...338
A.2.17 TransferFunctions...338
A.2.18 XYPair ..338

A.3 JDF Data Structures..339
A.3.1 Links...339

A.4 JDF File Formats...339
A.4.1 MIME File Packaging..339

A.4.1.1 MIME Basics .. 340
A.4.1.2 MIME Fields ... 340
A.4.1.3 CID URL scheme ... 340
A.4.1.4 JDF Agent Requirements... 341

A.4.2 HTTP 1.0 Field ...341
A.4.3 PNG Image Format ..341

APPENDIX B SCHEMA ...343
B.1 Schema of the JDF-node ..343

APPENDIX C CONVERTING PJTF TO JDF...344
C.1 PJTF Object Conversion ...344

C.1.1 Accounting ...344
C.1.2 Address ..344
C.1.3 Analysis..344
C.1.4 AuditObject...344
C.1.5 ColorantAlias ..344
C.1.6 ColorantControl ..345
C.1.7 ColorantDetails...345
C.1.8 ColorantZoneDetails...345
C.1.9 ColorSpaceSubstitute...345
C.1.10 Delivery ..345
C.1.11 DeviceColorant...345
C.1.12 Document...345
C.1.13 Finishing...346
C.1.14 FontPolicy ..347
C.1.15 InsertPage..347
C.1.16 InsertSheet...347
C.1.17 Inventory ..347
C.1.18 JobTicket..347
C.1.19 JobTicketContents..347
C.1.20 JTFile ...349
C.1.21 Layout ..349
C.1.22 Media ...349
C.1.23 MediaSource ..349

C.1.24 MediaUsage ...349
C.1.25 PageRange ..349
C.1.26 PlacedObject ..351
C.1.27 PlaneOrder...351
C.1.28 Preflight ..351
C.1.29 PreflightConstraint ..351
C.1.30 PreflightDetail ...351
C.1.31 PreflightInstance...351
C.1.32 PreflightInstanceDetail..351
C.1.33 PreflightResults ..351
C.1.34 PrintLayout ...352
C.1.35 Profile ...352
C.1.36 Rendering...352
C.1.37 ResourceAlias ..352
C.1.38 Scheduling ...352
C.1.39 Signature..353
C.1.40 Sheet..353
C.1.41 SlipSheet..353
C.1.42 Surface...353
C.1.43 Tile ...353
C.1.44 Trapping ...353
C.1.45 TrappingDetails ..353
C.1.46 TrappingParameters...353
C.1.47 TrapRegion...353

C.2 Translating Values...354
C.3 Translating the Contents Hierarchy...354
C.4 Representing Pages..355
C.5 Representing Pre-separated Documents ..355
C.6 Representing Inherited Characteristics ...355
C.7 Translating Layout...355
C.8 Translating PrintLayout ...356
C.9 Translating Trapping ...356

APPENDIX D CONVERTING PPF TO JDF...357
D.1 Converting PPF Data Types..358
D.2 PPF Product Definitions ..358

D.2.1 Comparison of the PPF Component to the JDF Component.....................359
D.2.2 Collecting ...360
D.2.3 Gathering ...360
D.2.4 ThreadSewing ..360
D.2.5 SaddleStitching ..360
D.2.6 Stiching ..360
D.2.7 SideSewing ..360
D.2.8 EndSheetGluing ...361
D.2.9 AdhesiveBinding...361
D.2.10 Trimming ..362
D.2.11 GluingIn..362
D.2.12 Folding ...363

D.3 PPF Sheet Structure ...364

Contents xiii

D.3.1 Administration Data ..365
D.3.2 Preview Images..367
D.3.3 Transfer Curves..368
D.3.4 Register Marks ...368
D.3.5 Color and Ink Control..368
D.3.6 Cutting Data ...369
D.3.7 Folding Data...370
D.3.8 Comments and Annotations ...370
D.3.9 Private Data and Content ...370

APPENDIX E MODELLING IFRATRACK IN JDF ..371
E.1 IFRA Objects and JDF Nodes ...371

E.1.1 Object Identification ..371
E.1.2 IFRA Object Hierarchy..371
E.1.3 Object States..371
E.1.4 Deadlines and Scheduling ..372

E.2 JMF Messages that Translate IFRAtrack Messages.............................372
E.2.1 JMF Phase Message..372
E.2.2 JMF Progress Message..372

APPENDIX F STATUSDETAILS SUPPORTED STRINGS ...374

APPENDIX G MODULETYPE SUPPORTED STRINGS...376

APPENDIX H SUPPORTED ERROR CODES IN JMF..377

APPENDIX I EVENT TYPES AND VALUES ...378

APPENDIX J EXAMPLES ...379
Brief Example...379

J.1.1 Before Processing ..379
J.1.2 After Processing ...379

J.2 Product JDF to Process ..380
J.3 16-Page 4-up Brochure—Layout, RunList, Cut, Fold381
J.4 Spawning and Merging..381

J.4.1 Example 2 Component JDF before Spawning ..382
J.4.2 Example 2 Component JDF Parent after spawning the cover node383
J.4.3 Example 2 Component JDF spawned node..384
J.4.4 Example 2 Component JDF after merging..384

J.5 Conversion of PJTF to JDF ...385
J.5.1 PJTF input ..385
J.5.2 JDF output..388

J.6 Conversion of PPF to JDF...389
J.7 Messages..389

TABLE OF FIGURES
Figure 2.1 Example of JDF and JMF workflow interactions ..30

Figure 2.2 JDF tree structure ...32

Figure 2.3 Example of a hierarchical tree structure of JDF nodes ..34

Figure 2.4 Example of a process chain linked by input and output resources34

Figure 3.1 Structure of the JDF node type...37

Figure 3.2 Structure of JDF Generic Contents ..39

Figure 3.3 Job hierarchy with process, process group, and product intent nodes43

Figure 3.4 Structure of the Abstract Resource Types ...50

Figure 3.5 Nodes linked by a resource ..54

Figure 3.6 Structure of the abstract ResourceLink types ..55

Figure 3.7 Splitting and combining physical resources ...66

Figure 3.8 Structure of Audit element types derived from the abstract Audit type68

Figure 4.1 Example of a simple process chain linked by resources..86

Figure 4.2 Example of a Pipe resource linking two processes ..87

Figure 4.3 Example of status transitions in case of overlapping processing...................................88

Figure 4.4 Spawning and merging mechanism and its phases ...93

Figure 4.5 JDF node structure that requires resource copying during spawning and merging.......95

Figure 4.6 Example for a JDF node structure with nested spawning ..97

Figure 4.7 Example of the spawning and merging of independent jobs..98

Figure 5.1 Contents of a JMF root element and the message families ...104

Figure 5.2 Mechanism of a PipePull message ..132

Figure 5.3 Mechanism of a PipePush message ..134

Figure 6.1 Worst-case scenario for area coverage calculation ...165

Figure 7.1 Parameters and coordinate systems for back-preparation process.............................210

Figure 7.2 Parameters and coordinate system for glue application ..211

Figure 7.3 Parameters and coordinate system for the spine-taping process212

Contents xv

Figure 7.4 Parameters and coordinate system for cover application ..213

Figure 7.5 Coordinate Systems Used for Collecting..218

Figure 7.6 Terms and Definitions for Components ..231

Figure 7.7 Cut Mark Types ..238

Figure 7.8 Parameters and coordinate system used for end-sheet gluing....................................246

Figure 7.9 Names of the reference edges of a sheet in the FoldingParams resource250

Figure 7.10 FoldCatalog part 1 ..252

Figure 7.11 FoldCatalog part 2 ..253

Figure 7.12 Coordinate system used for gathering ...258

Figure 7.13 Parameters and coordinate system used for inserting ...275

Figure 7.14 Staple shapes ...306

Figure 7.15 Parameters and coordinate system used for saddle stitching....................................306

Figure 7.16 Parameters and coordinate system used for side sewing..312

Figure 7.17 Parameters and coordinate system used for stitching ...314

Figure 7.18 Parameters and coordinate system used for thread sewing318

Figure 7.19 Parameters and coordinate system used for trimming...327

Figure D.1 JDF node of a CIP3 product structure ...358

Figure D.8.2 JDF representation of sheets..365

TABLE OF TABLES[DH1]
Table 3.1 Generic Contents of elements ...38

Table 3.2 Contents of the Comment element ..38

Table 3.3 Contents of a JDF node...39

Table 3.4 Contents of the AncestorPool element ..45

Table 3.5 Attributes of the Ancestor element...46

Table 3.6 Contents of the CustomerInfo element ..46

Table 3.7 Contents of the NodeInfo element ...47

Table 3.8 Contents of the ResourcePool element ...48

Table 3.9 Contents of the abstract Resource element ..49

Table 3.10 Additional contents of the abstract physical Resource elements51

Table 3.11 Contents of the Location element ..52

Table 3.12 Contents of the ResourceLinkPool element ..55

Table 3.13 Contents of the abstract ResourceLink element..56

Table 3.14 Contents of the abstract ParameterLink element ..57

Table 3.15 Contents of the abstract ImplementationLink element ..57

Table 3.16 Additional contents of the abstract physical ResourceLink element58

Table 3.17 Contents of the partitionable Resource element ...61

Table 3.18 Contents of the Part element ...62

Table 3.19 Contents of the Selector resource ...64

Table 3.20 Contents of the AuditPool element ..68

Table 3.21 Contents of the abstract Audit type..69

Table 3.22 Contents of the ProcessRun element ..69

Table 3.23 Contents of the Notification element..70

Table 3.24 Contents of the PhaseTime element ...71

Table 3.25 Contents of the ModulePhase element..71

Table 3.26 Contents of the ResourceAudit element ..73

Deborah Harrison
Do we want to include a table of tables? There are still a few glitches in it... I’m working on getting them removed, but I’m not there yet.

Contents xvii

Table 3.27 Contents of the Created element...74

Table 3.28 Contents of the Modified element ..74

Table 3.29 Contents of the Spawned element...75

Table 3.30 Contents of the Merged element ...75

Table 4.1 Examples of resource and process states in the case of simple process routing...........86

Table 4.2 Actions generated when a dynamic-pipe buffer passes various levels89

Table 5.1 Contents of the JMF root ..103

Table 5.2 Contents of the abstract Message element ...104

Table 5.3 Contents of the Query message element ...105

Table 5.4 Contents of the Response message element...105

Table 5.5 Contents of the Signal message element...107

Table 5.6 Contents of the Command message element ..108

Table 5.7 Contents of the Acknowledge message element ...108

Table 5.8 Contents of the Subscription element..109

Table 5.9 Messaging table template..112

Table 5.10 Process registration and communication messages ...113

Table 5.11 Contents of the Events element...113

Table 5.12 Contents of the Known Controllers element ..114

Table 5.13 Contents of the JDFController ...114

Table 5.14 Contents of the KnownDevices element..114

Table 5.15 Contents of the DeviceFilter element...115

Table 5.16 Contents of the KnownJDFServices element ..115

Table 5.17 Contents of the JDFService element ...116

Table 5.18 Contents of the KnownMessages element ..116

Table 5.19 Contents of the KnownMsgQuParams element ..116

Table 5.20 Contents of the MessageService element...117

Table 5.21 Contents of the RepeatMessages element ...117

Table 5.22 Contents of the MsgFilter element...117

Table 5.23 Contents of the StopPersistentChannel element...118

Table 5.24 Contents of the StopPersChParams element..119

Table 5.25 Status and progress messages ...119

Table 5.26 Contents of the Occupation element ...120

Table 5.27 Contents of the EmployeeDef element ..120

Table 5.28 Contents of the Occupation element ..120

Table 5.29 Contents of the Resource query message element ..121

Table 5.30 Contents of the ResourceQuParams element...121

Table 5.31 Contents of the Resource command message element..122

Table 5.32 Contents of the ResourceCmdParams element ..123

Table 5.33 Contents of the ResourceInfo element ...123

Table 5.34 Contents of the Status element ...125

Table 5.35 Contents of the StatusQuParams element ..125

Table 5.36 Contents of the DeviceInfo element...126

Table 5.37 Contents of the JobPhase element..128

Table 5.38 Contents of the ModuleStatus element..129

Table 5.39 Contents of the Track element...130

Table 5.40 Contents of the TrackFilter element...130

Table 5.41 Contents of the TrackResult element ..131

Table 5.42 Dynamic pipe messages..131

Table 5.43 Contents of the PipeClose element ...131

Table 5.44 Contents of the PipePull element ..132

Table 5.45 Contents of the PipeParams element ..133

Table 5.46 Contents of the PipeCmdResult element ...134

Table 5.47 Contents of the PipePush element ..134

Table 5.48 Contents of the PipePause element ..134

Table 5.49 QueueEntry handling messages..135

Table 5.50 Contents of the AbortQueueEntry element..136

Contents xix

Table 5.51 Contents of the HoldQueueEntry element...136

Table 5.52 Contents of the RemoveQueueEntry element...137

Table 5.53 Contents of the ResubmitQueueEntry element ...137

Table 5.54 Contents of the ResubmissionParams element ...137

Table 5.55 Contents of the ResumeQueueEntry element...137

Table 5.56 Contents of the SetQueueEntry element ...138

Table 5.57 Contents of the QueueEntryPosParams element...138

Table 5.58 Contents of the QueueEntryPriParams element ...139

Table 5.59 Contents of the SubmitQueueEntry element ...139

Table 5.60 Contents of the QueueSubmissionParams element..139

Table 5.61 Global queue-handling commands..141

Table 5.62 Contents of the CloseQueue element..141

Table 5.63 Contents of the FlushQueue element ..141

Table 5.64 Contents of the HoldQueue element ...142

Table 5.65 Contents of the OpenQueue element ..142

Table 5.66 Contents of the QueueEntryStatus element ..142

Table 5.67 Contents of the QueueStatus element...143

Table 5.68 Contents of the SubmissionMethods element ...143

Table 5.69 Contents of the SubmissionMethods element ...144

Table 5.70 Contents of the Queue element...144

Table 5.71 Contents of the QueueEntry element ..145

Table 5.72 Contents of the QueueEntryDef element...145

Table 7.1 Matrices used to change the orientation of a Component ...231

Table 7.2 Terms and Definitions for Components ...231

Table 7.3 Predefined variables used in FileTemplate ...249

Table A.1 Mapping of named colors to sRGB colors...335

Table D.2 Conversion of PPF Data Types...358

Table D.8.3 JDF Representation of a product definition step..359

Table D.8.4 Converting a PPF Component ...359

Table D.8.5 Converting the PPF EndSheetGluing operation to JDF...361

Table D.8.6 Converting the PPF AdhesiveBinding operation to JDF ..361

Table D.8.7 Converting the PPF AdhesiveBinding sub-operation Lining361

Table D.8.8 Converting the PPF AdhesiveBinding sub-operation CoverApplication362

Table D.8.9 Converting the PPF GluingIn operation to JDF..362

Table D.8.10 Converting the PPF Folding operation to JDF ...363

Table D.8.11 Converting the PPF Folding sub-operation of type Fold..363

Table D.8.12 Converting the PPF Folding sub-operation of type Lime ...363

Table D.8.13 Converting the PPF Folding sub-operation of all other types364

Table D.8.14 Converting administration data ..365

Table D.8.15 PPF preview representation as PNG ...367

Table D.8.16 Converting the parameter of the CIP3PlaceRegisterMark command......................368

Table D.8.17 Converting PPF color-measuring data...368

Table D.8.18 Converting PPF density-measuring data ...369

Table D.8.19 Converting the parameter of the CIP3PlaceColorControlStrip command................369

Table D.8.20 Converting the Cutting Data structure..369

Table D.8.21 Converting the parameter of the CIP3PlaceCutMark command..............................370

Table E.8.22 Contents of the Phase message ..372

Chapter 1 Introduction 21

Chapter 1 Introduction
Welcome to the specification of the Job Definition Format (JDF) and its counterpart, the Job Messaging
Format (JMF).

Four companies prominent in the graphic arts industry—Adobe, Agfa, HEIDELBERG, and MAN
Roland—have united to create an extensible, XML-based format built upon the existing technologies of
CIP3’s Print Production Format (PPF) and Adobe’s Portable Job Ticket Format (PJTF). JDF provides
three primary benefits to the printing industry. Unlike any previous format, it has the ability to unify the
pre-press, press, and post-press aspects of any printing job. It also provides the means to bridge the
communication gap between production services and Management Information Systems (MIS). And
finally, it is able to carry out both of these functions no matter what system architecture is already in place,
and no matter what tools are being used to complete the job. In short, JDF is extremely versatile and
comprehensive.

JDF is an interchange data format to be used by a system of administrative and implementation-oriented
components, which together produce printed products. It provides the means to describe print jobs in terms
of the products eventually to be created, as well as in terms of the processes needed to create those
products. The format provides a mechanism to explicitly specify the controls needed by each process,
which may be specific to the devices that will execute the processes.

JDF works in tandem with a counterpart format known as the Job Messaging Format, or JMF. JMF
provides the means for production components of a JDF workflow to communicate with system controllers
and administrative components. It relays information about the progress of JDF jobs and gives MIS the
active ability to query devices about the status of processes being executed or getting ready to be executed.
JMF will provide the complete job tracking functionality that is defined by IFRATrack messaging standard.
Depending on the system architecture, JMF may also provide the means to control certain aspects of these
processes directly.

This document describes components of JDF, both internal and external, and explains how to integrate the
format components to create a viable workflow. Ancillary aspects are also introduced, such as how to
convert PJTF or PPF to JDF, and how JDF relates to IFRATrack.

1.1 Document References
This specification assumes that the reader has a basic awareness of, or access to, the following documents:

Portable Job Ticket Format
Version 1.1
Date: 2-April-1999
Produced by Adobe Systems Inc.
Available at; http://partners.adobe.com/asn/developer/PDFS/TN/5620.pdf

Print Production Format
Version 3.0
Date: 2-June-1998
Produced by the International Cooperation for Integration of Prepress, Press, and Postpress
Available at: http://www.cip3.org/documents/technical_info/cip3v3_0.pdf

http://partners.adobe.com/asn/developer/PDFS/TN/5620.pdf
http://www.cip3.org/documents/technical_info/cip3v3_0.pdf

22 Chapter 1 Introduction

XML Specification
Version 1.0
Date: 10-February-1998
Produced by: World Wide Web Consortium (W3C)
Available at: http://www.w3.org/TR/REC-xml

XML Schema Part 1+2: Structures and Datatypes
Version (currently in working draft)
Date: 25-February-2000
Produced by: World Wide Web Consortium (W3C) XML Schema working group
Available at: http://www.w3.org/TR/xmlschema-1/ and
 http://www.w3.org/TR/xmlschema-2/

IFRATrack Specification
Version 2.0
Date: June-1998
IFRA Special Report 6.21.2
Produced by IFRA

Available at: http://www.ifra.com/

Spec ICC.1:1998-09
File Format for Color Profiles
Version 3.5
Date: 1998
Produced by: International Color Consortium
Available at: http://www.color.org/ICC-1_1998-09.PDF

1.2 Conventions Used in This Specification
This section contains conventions and notations used within this document.

1.2.1 Text Styles
The following text styles are used to identify the components of a JDF job:

• Elements are written in sans serif. Examples are: Comment, CustomerInfo, and
ResourceLinks.

• Attributes are written in italic sans serif. Examples are: Status, ResourceID, and ID.
• Resources are written in bold sans serif. Examples are ImpositionProof, Toner, and

ExposedMedia.
• Processes are written in bold-italic sans serif. Examples are ColorSpaceConversion,

Rendering, and Scanning.
• Enumerative and boolean values of attributes are written in italics. Examples are: true, waiting,

completed, and stopped.
• Standard bold text is used for the following purposes:

- to highlight glossary items. Examples are device, element, and job.
- to highlight defined items inside a table. An example is the data type timeDuration in the

table in section 1.4 Data Structures.
- to highlight definitions of local terms. These are terms that are of local importance for a

certain chapter, or some sections inside a chapter. An example is a spawned job in section
4.4 Spawning and Merging.

- to designate PPF objects in Appendix D, Converting PPF to JDF. Examples are
CIP3ProductName and CIP3ProductComponent.

http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-2/
http://www.ifra.com/
http://www.color.org/ICC-1_1998-09.PDF

Chapter 1 Introduction 23

• For the benefit of those who are reading this document in PDF or online, cross-reference links are
denoted by gray text. Examples are Chapter 6 Processes, and section 1.2 Conventions Used in
This Specification. To follow a link, click the highlighted text. The examples provided are not
actual links.

• Also for the benefit of online readers, external hyperlinks are graphically designated. An example
is http://URL.com. To follow a link, click the highlighted text. The example provided is not an
actual link.

1.2.2 Specification of Cardinality
The cardinality of JDF Data Types is expressed using a simple Extended Backus-Naur Form (EBNF)
notation. The symbols in this notation may be combined to indicate both simple and complex patterns, as
demonstrated in the following table. A and B represent simple expressions.

Notation Description
(expression) Expression is treated as a unit and may be combined as described in this list.

A ? Matches A or nothing. A is optional, or is required only in the circumstances
explained in the description field.

A + Matches one or more occurrences of A.

A * Matches zero or more occurrences of A.

A B Matches A followed by B.

A | B Matches A or B but not both.

A - B Matches any string that matches A but does not match B.

1.3 Terminology
The following terms are used throughout this specification. For more detail, see section 2.1 System
Components.

Agent: The component of a JDF-based workflow that writes JDF.

Attribute: An XML-based syntactic construct describing an unstructured characteristic of a JDF node or
element.

Big job: The job that independent jobs are merged into in the case of independent spawning and merging.

Class: Denotes a set of complex data types with common content in an object-oriented sense. A complex
data type may consist of elements and attributes.

Controller: The component of a JDF-based workflow that initiates devices, routes JDF, and
communicates status information.

Device: The component of a JDF workflow part that interprets JDF and executes the instructions. Devices
control machines in a proprietary manner.

Element: An XML-based syntactic construct. Used in JDF to describe structured data.

Instance document: A document that is part of the output of a job. This generally refers to personalized
printing jobs. Each of the individual documents produced from the same input template is referred to as an
instance document. For example, in a credit card statement run, each statement is an instance document.

24 Chapter 1 Introduction

JMF: Job Messaging Format. A messenger format with multi-level messaging capabilities.
Communicates information between MIS and controllers.

Job: A hierarchical tree structure comprised of nodes. Describes the output that is desired by a customer.

Job Part: One or more nodes which comprise the smallest level of control of interest to MIS.

Link: A pointer to information that is located elsewhere in a JDF document or that is located in another
document.

Machine: The part of a device that does not know JDF and is controlled by a JDF device in a proprietary
manner.

MIS: Management Information Systems. The part of a JDF workflow that oversees all processes and
communication between system components and system control.

Node: The JDF element type detailing the resources and process specification required to produce a final
or intermediate product or resource.

Partitioned Resource: Structured resource that represents multiple physical or logical entities such as
separated plates.

PDL: Page Description Language. A generic term for any language that describes pages, which may be
printed. Examples are PDF®, PostScript® or PCL®.

Process: An individual step in the workflow.

Queue: Entity that accepts job entries via a JMF messaging system.

Resource: A physical or conceptual entity that is modified or used by a node. Examples include paper,
images, or process parameters.

Small job: An independent job that is merged into a big job.

Tag: A syntactical construct that marks the start or end of an element.

Work Center: An organizational unit, such as a department or a subcontracting company, that can
accomplish a task.

1.4 Data Structures
The following table describes the data structures used in the specification. For more details, see Appendix
A Encoding.

Data Type Description
boolean Binary-valued logic: (true | false).

CMYKColor Represents a CMYK color specification.

date Represents a time period that starts at midnight of a specified day and lasts
for 24 hours.

double Corresponds to IEEE double-precision 64-bit floating point type

element Structured data. The specific data type is defined by the element name.

enumeration Limited set of NMTOKEN (see below).

Chapter 1 Introduction 25

enumerations Whitespace-separated list of enumeration data types.

ID Unique identifier as defined by [XML Specification 1.0] (see section 1.1
Document References). Must be unique within the scope of the JDF-
document.

IDREF Reference to an element holding the unique identifier as defined by [XML
Specification 1.0].

IDREFS List of references (IDREFs) separated by white spaces as defined by [XML
Specification 1.0].

integer Represents numerical integer values.
IntegerList Whitespace-separated list of integers.
IntegerRange Two integers separated by a “~” character that define a closed interval .

IntegerRangeList Whitespace-separated list of IntegerRanges.

LabColor Represents a Lab color specification.

language Represents a language and country code (for example, en-US) for a natural
language.

matrix Whitespace-separated list of 6 numbers representing a coordinate
transformation matrix.

NMTOKEN A continuous sequence of special characters as defined by the [XML
Specification 1.0].

NMTOKENS Whitespace-separated list of NMTOKEN.

number double or integer

NumberList Whitespace separated list of numbers.
NumberRange Two numbers separated by a “~” (tilde) character that defines the closed

interval of the two.

NumberRangeList Whitespace-separated list of NumberRanges

path Whitespace-separated list of path operators as defined in PDF.

rectangle Whitespace-separated list of 4 numbers representing a rectangle.

shape Whitespace-separated list of 3 numbers representing a 3-dimensional
shape consisting of a height, width and length.

sRGBColor Represents an sRGB color specification.

string Character strings without line feed.

telem Text elements that contain larger chunks of character data and may include
line feeds.

text Text data contained in an telem-element.

time Represents an instant of time that recurs daily.

timeInstant Represents a combination of date and time values denoting a specific
instant of time.

timeDuration Represents a duration of time.

TimeRange Two timeInstants separated by a “~” (tilde) character that defines the closed
interval of the two.

TransferFunction Whitespace separated list of an even number of numbers representing a set
of XY coordinates of a transfer function.

URI Short for URI-reference. Represents a Uniform Resource Identifier (URI)

26 Chapter 1 Introduction

Reference as defined in Section 4 of [RFC 2396].

URL Short for URL-reference. Represents a Uniform Resource Locator (URL)
Reference as defined in Section 4 of [RFC 2396].

XYPair Whitespace-separated list of 2 numbers.

1.5 Units
JDF specifies most values in default units. That means there is no freedom to use alternate units instead of
the defined default units. All measurable quantities are stated in double precision.

Processors should only specify a Unit if no default exists, such as when new resources are defined. Then
the units must be based on metric units. Overriding the default units that are defined in this table is non-
standard and may lead to undefined behavior. Any exceptions are specified in the appropriate descriptive
tables.

The following table lists the units used in JDF. The representation column specifies the XML
representation in the Unit attribute of resources.

Measurement Unit Representation Remarks
Length point (1/72 inch) pt -

Length meter m used for lengths of paper rolls in web
printing.

Volume liter l -

Weight gram g -

Area m2 m2 -

Resolution dpi or lpi dpi or lpi -

Paper weight g/m2 g/m2 -

Speed units/hour */h replace the “*” in the representation with
the appropriate unit

Temperature C° (Celsius) C degree centigrade

Angle degrees° degree -

Countable Objects 1 - Countable objects, such as sheets, have
no unit specification.

http://partners.adobe.com/asn/developer/PDFS/TN/5620.pdf

Chapter 2 Overview of JDF 27

Chapter 2 Overview of JDF

Introduction
This chapter explains the basic aspects of JDF. It outlines the vocabulary used and recognized by the
format, and the components of a workflow necessary to execute a printing job using JDF. Also provided is
a brief discussion of JDF architecture, as well as an overview of the execution model of a JDF job.

2.1 System Components
The following sections provide definitions for the principal vocabulary terms used within this specification.
The first set of terms describe the components of JDF, while the second set describes how JDF identifies
the aspects of the workflow system necessary to carry out a JDF job.

2.1.1 Job Components
The terminology explained below describe the way in which JDF is divided conceptually and
hierarchically.

2.1.1.1 Jobs and Nodes
The term job describes the entirety of a JDF project. Each job is organized in a tree structure containing all
of the information required to complete the intended project. The information is collected logically into
what is called a node. Each node in the tree structure represents an aspect of the job to be executed.

The nodes in a job are organized in a hierarchical structure that resembles a pyramid. The node at the top
of the pyramid describes the overall intention of the job. The intermediate nodes describe increasingly
process-oriented aspects of the job, until the nodes at the bottom of the pyramid each describe a single,
simple process. Depending on where in the job structure it resides, a node can represent a portion of the
product to be created, one or many processing steps, or other job parts. For more information about jobs
and nodes, see Chapter 3 Structure of JDF Nodes and Jobs.

2.1.1.2 Elements
The term element describes an XML syntactic construct. Within this document, the term refers to the
structured sub-parts of a JDF node. Technically, JDF nodes are themselves XML elements. However,
within this specification, the term “node” is used to distinguish between the independent JDF aspect and its
sub-parts. Furthermore, elements that are sub-parts of other elements are often referred to as sub-elements.
There is no structural distinction between nodes, elements and sub-elements; rather, the different
terminology is intended to describe the hierarchical relationships.

JDF elements are represented by two kinds of data types: element and text element. The latter is
abbreviated as telem.

For more information about elements, see section 3.1.2 Fundamental JDF Attributes and Elements.

28 Chapter 2 Overview of JDF

2.1.1.3 Attributes
The term attribute also describes an XML syntactic construct. Within this document, the term refers to
characteristics of elements. For instance, each node has an ID attribute that contains a unique identifier.
Attributes contain parameters of different data types, such as string, enumeration, and time.

For more information about attributes, see section 3.1.2 Fundamental JDF Attributes and Elements.

2.1.1.4 Relationships
The hierarchical JDF structure implies relationships between nodes and elements within a JDF tree
structure. The terms used in this document to describe these relationships are defined below, and, in some
cases, include a brief representation of the encoding that would express them.

• Parent: An element that directly contains a child element.
<Parent><Child/></Parent>

• Child: An element that resides directly in the parent element.
• Sibling: An element that resides in the same parent element as another child element.

<Any><Sibling/><Sibling/></Any>
• Descendent: An element that is a child or a child of a child, etc.
• Ancestor: An element that is a parent or a parent’s parent, etc.

<Ancestor>
<Any>

<Descendent/>
<MoreAnys>

<Descendent/>
</MoreAnys>

</Any>
</Ancestor>

• Root: The single element that contains all other elements as descendents.
• Leaf: Node without further children.
• Branch: An intermediate node in a hierarchy that contains at least one child node. A branch is

never a leaf.

2.1.1.5 Links
JDF makes extensive use of links in order to reuse information that is relevant in more than one context of
the job. The same target may be referenced by multiple links. However, no link references more than one
target.

There are two kinds of links in JDF: internal links and external links. Internal links are pointers to
information that is located elsewhere in a JDF document. The data that is referenced by the link is located
in a target element. External links are used to reference objects that are outside of the JDF document itself,
such as content files or color profiles. These objects are linked using standard URLs (Uniform Resource
Locators).

2.1.2 Workflow Component Roles
The four components required to create, modify, route, interpret and execute a JDF job are known as
agents, controllers, devices and machines. Overseeing the workflow created by these components is MIS,
or Management Information Systems. These five aspects of a JDF workflow are described in the sections
that follow.

Chapter 2 Overview of JDF 29

By defining these terms, this specification does not intend to dictate to manufacturers how a
JDF/JMF system should be designed, built, or implemented. The intention is to name the component
mechanisms required for the interaction of actual components in a workflow during the course of a JDF
job. In practice, it is very likely that individual system components will include a mixture of the
capabilities described in the following sections. For example, many controllers are also agents.

2.1.2.1 Machines
A machine is any part of the workflow system designed to execute a process. Most often, this term refers
to a piece of physical equipment, such as a press or a binder, but it can also refer to the software
components used to run a particular machine. Computerized workstations, whether run through automated
batch files or whether controlled by a human worker, are also considered machines if they have no JDF
interface.

2.1.2.2 Devices
The most basic function of a device is to execute the information specified by an agent and routed by a
controller. Devices must be able to execute JDF nodes and initiate machines that can perform the physical
execution.

The communication between machines and devices is not defined in this specification. Devices may,
however, support JMF messaging in order to interact dynamically with controllers.

2.1.2.3 Agents
Agents in a JDF workflow are responsible for writing JDF. An agent has the ability to create a job, to add
nodes to an existing job, and to modify existing nodes. Agents may be software processes, automated
tools, or even text editors. Anything that can be used in composing JDF can be considered an agent.

Actual implementations of devices or controllers will most often be able to modify JDF. These system
components have agent properties in the terms of this specification.

2.1.2.4 Controllers
Whereas agents are responsible for creating and modifying JDF information, controllers are responsible
for routing it to the appropriate devices. The minimum requirement of a controller is that it be in a
position to initiate processes on at least one device, or at least one other slave controller that itself will
initiate processes on a device. In other words, a controller is not a controller if it has nothing to control. In
some cases, a pyramid-like hierarchy of controllers can be built, with controllers at the top of the pyramid
controlling a series of lower-level controllers at the bottom. The lowest-level controllers in the pyramid,
however, must have device capability. Therefore, controllers must be able to work in collaboration with
other controllers. In order to communicate with one another, as well as to communicate with devices,
controllers must support the JDF file-exchange protocol and may support the Job Messaging Format (JMF).

Controllers can also determine process planning and scheduling data, such as process times and planned
production amounts.

2.1.2.5 Management Information Systems—MIS
The overseer of the relationships between all of the units in a workflow is known as Management
Information Systems, or MIS. MIS is, in effect, a macrocosmic controller. It is responsible for dictating
and monitoring the execution of all of the diverse aspects of the workflow. To do this, it must remain in

30 Chapter 2 Overview of JDF

contact with the actual production facilities. This can be accomplished either in real time using JMF
messaging or post-facto using the audit records within JDF.

To allow MIS to communicate effectively with the other workflow components, JDF supplies what is
essentially a messenger service, in the form of JMF, to run between MIS and production. This format is
equipped with a variety of message types, ranging from simple, uni-directional notification through queries
and even commands. System designers have a great deal of flexibility in terms of how they choose to use
the messaging architecture, so that they can tailor the processes to the capabilities of the existing workflow
mechanism. Figure 2.1 depicts how various communication threads can run between MIS and production.

JDF also provides system components the ability to collect performance data for each node, which can then
be passed on to a job-tracking system for use by the MIS system. These data may be derived from the
messages that the controller receives or from the audit records in the job (for more information on audits,
see section 3.9.1 Audit Elements). Alternatively, the completed job may be passed to the job accounting
system, which examines the audit records to determine the costs of all the processes in the job.

2.1.2.6 System Interaction
An example of the interaction and hierarchical structure of the components considered in the preceding
sections is shown in the following figure. Single arrows indicate uni-directional communication channels
and double arrows indicate bi-directional communication.

Figure 2.1 Example of JDF and JMF workflow interactions

Controller/Agent
controller with agent properties

Controller/Agent 2 Device 1

JM
F

JD
F

JD
F

JM
F

Device 2
JD

F
Controller/Agent 1

JD
F

JD
F

JM
F

Device 1.1 Controller/Agent 2.1

Device/Agent 2.1.1 Device 2.1.2

JD
F

JD
F

JM
F

JD
F

lis
te

n
JM

F

JM
F

Chapter 2 Overview of JDF 31

2.2 JDF Workflow
JDF does not dictate that any particular workflow must be constructed in order for it to be usable. On the
contrary, its flexibility allows JDF to model the myriad custom solutions that already exist and that can be
imagined for the graphic-art world. JDF is equally as effective with a simple system using a single
controller-agent that controls one device as it is with a completely automated industrial press workflow
with integrated pre- and post-press operations.

Because of the way in which workflow systems are currently constructed, the procedures of the principal
subsections of a printing job—pre-press, press, and post-press—remain largely disconnected from one
another. JDF provides an extremely flexible and thorough compensation. With JDF, a print job becomes
an interconnected workflow, from job submission through trapping, ripping, filmmaking, platemaking,
inking, printing, cutting, binding, and sometimes even through shipping. JDF constructs an architecture
that defines each process necessary to produce an intended result, and identifies the elements necessary to
complete the processes. Each process is separated into a node, and the entire job is represented by a tree of
these nodes. All of the nodes taken together delineate the processes necessary to produce the desired
printed product.

Each individual node is defined in terms of inputs and outputs. The inputs for a node consist of the
resources it uses and the parameters that control it. Inputs in a node describing the process parameters for
imaging the cover of a brochure, for example, might include requirements for trapping, ripping, and
imposing the image. The output of this node will be a raster image.

Resources produced by one node, however, are modified or consumed by subsequent nodes. Therefore, the
output described above—a raster image—becomes one of the input resources for a node describing the
printing process for the brochure. Other inputs in this node would include the inks, the press sheets, the
plates, and a set of parameters that indicate how many sheets should be produced. The output will be a set
of printed press sheets that in turn will become the input resource for post-press operations such as folding
and cutting. And so on until the brochure is completed.

This system of interlinked nodes effectively unites the pre-press, press, and post-press processes, and even
extends the notion of where a job begins. A JDF job, like any printing job, is defined by the original intent
for the end product. The difference between a JDF job and a generic printing job, however, is that JDF
allows the entire job, from pre-press through post-press, to be defined up front. All of the resources and
processes necessary to produce an entire printed product can be identified and organized into nodes before
the first pre-press process is set in motion. Furthermore, the product intent specification can be extremely
broad or extremely detailed, or anywhere along the spectrum in between. This means that a job may be so
well defined before production begins that the system administrator only has to set the wheels in motion
and let the job run its course. It may also mean that the person submitting the job has only a general idea of
what the final product will look like, and that modifications to the intent will be made along the way,
depending on the course of the job.

For example, the person submitting the job specification for the brochure described above may know that
she wants 400 copies, that she wants it done on a four-color press with no spot colors, that the cover will be
on a particular paper stock and the contents on another, that the binding will be stapled, and that she
requires the job in two weeks. Another person might know only that he wants the pages she’s designed to
be put into some sort of brochure form, although she doesn’t know exactly what. Either person’s request
can be translated into a JDF product intent node that will eventually branch into a tree structure describing
each process required to complete the brochure. In the first example, the pre-press, press, and post-press
processes will be well-defined from the start. In the second example, information will be included as it is
gathered.

The following sections describe the way in which nodes can combine to form a job.

32 Chapter 2 Overview of JDF

2.2.1 Job Structure
As was mentioned above, JDF jobs consist of a set of nodes that specify the production steps needed to
create the desired end product. The nodes, in addition to being connected through inputs and outputs, are
arranged in a hierarchical tree structure. Figure 2.3, below, shows a simple example of a tree of nodes.

Product nodes

Process group nodes

Individual Process nodes

15987 10

4

13 14

5 6

16

3

1

17

2

11 12

Figure 2.2 JDF tree structure

The following table provides a hypothetical breakdown of the nodes in the tree structure shown above:

Table 2.1 Information contained in JDF nodes, arranged numerically

Node # Meaning

1 Entire book

2 Cover

3 Contents

4 Production of cover

5 Production of all color pages

6 Production of all black & white pages

7 Cover production process 1

8 Cover production process 2

9 Cover production process 3

10 Cover Finishing process

11 RIPping for color pages

12 Plate making for color pages

13 Printing for color pages

14 Color page finishing process

15 RIPping for black & white pages

16 Printing for black & white pages on a digital press

17 Binding process for entire book

Chapter 2 Overview of JDF 33

The uppermost nodes (1, 2, & 3) represent the product intent in general terms. These nodes describe the
desired end product and the components of that product, which, in this case, are the cover and the content
pages. As the tree branches, the information contained within the nodes gets more specific. Each sub-node
defines a component of the product that has a unique set of characteristic, such as different media, different
physical size, or different color requirements. The nodes that occur in the middle of the tree (4, 5, & 6)
represent the groups of processes needed to produce each component of the product. The nodes that occur
closest to the bottom of the tree (7 – 17) each represent individual processes.

In this example, there are two sub-components of the job, the cover and the contents, each with distinct
requirements. Therefore, two nodes—nodes 2 and 3—are required to describe the elements of the job in
broad terms. Within the content pages there are some black & white pages, and some color pages. Since
fabricating each requires a different set of processes, further branching is necessary. The following table
arranges the nodes in groups according to the processes they’ll be executing:

Table 2.2 Information contained in JDF nodes, arranged by group

Process Group Node # Meaning
Entire Book 1 Entire book

 17 Assemble Book

Cover 2 Cover

 4 Cover assembly processes

 7 Cover production process 1

 8 Cover production process 2

 9 Cover production process 3

 10 Finishing process for cover

Contents 3 Contents

Color Pages 5 Production of all color pages

 11 RIPping for color pages

 12 Plate making for color pages

 13 Printing for color pages

 14 Color page finishing

Black & White Pages 6 Production of all black & white pages

 15 RIPping for black & white pages

 16 Printing for black & white pages on a digital press

This hierarchical structure is discussed in more detail in the following section.

2.3 Hierarchical Tree Structure and Networks in JDF
As has been described, many output resources of JDF nodes are the input resources for other JDF nodes.
Many nodes cannot begin executing until all of their resources are complete and ready, which means that
the nodes execute in a well defined sequence. One process follows the next. For example, a process for
making plates will produce, as output resources, press plates that are required by a printing process.

In the hierarchical organization of a JDF job, nodes that occur higher in the tree represent higher-level,
more abstract operations, while lower nodes represent more detailed, specific process operations. More
specifically, nodes near the top of the tree may represent only intent regarding the components or

34 Chapter 2 Overview of JDF

assemblies that comprise the product, while the leaf nodes provide specific, detailed instructions to a device
to perform some operation. Figure 2.3 shows an example of a hierarchical structure.

P1 P7PAP2 P3

parent JDF

node

PA = P4 + P5 + P6

P4 P5 P6

Figure 2.3 Example of a hierarchical tree structure of JDF nodes

In addition to the hierarchical structure of the node tree, sibling nodes are linked in a process chain by their
respective resources. In other words, an output resource of one node ends up representing the input
resource of the following node (as represented in Figure 2.4). This interrelationship is known as resource
linking.

With resource linking, complex networks of processes can be formed. Figure 2.4, below, displays an
alternate representation of the process described in Figure 2.3. Whereas Figure 2.3 represents a
hierarchical structure, Figure 2.4 shows the linking mechanism of the same job.

P2

P3

P4 + P5 + P6 = PA

P4 P5

P6

P1in. P7 out.

Figure 2.4 Example of a process chain linked by input and output resources

In JDF, the linking of processes is not explicitly specified. In other words, nodes are not arranged in an
abstract chronology, dictating, for example, that the trapping node must come before the ripping node.
Rather, the links are implicitly defined in the exchange of inputs and outputs. Resource dependencies form
a network of processes, and the sequence of process execution—that is, the routing of processes—can be
derived from these dependencies. One resource dependency might have multiple possible process routing
scenarios, and it is up to MIS to define what will be a proper solution with respect to the local constraints.

The agent or set of agents employed by MIS to write the JDF job must therefore be familiar with these
local constraints. They must take into account factors such as the control abilities of the applications that
complete the pre-press processes, the transport distance between the pre-press facility and the press itself,

Chapter 2 Overview of JDF 35

the load capabilities of the press, and the time requirements for the job, to name a few issues. All of the
factors taken together construct a process network representing the workflow of production. To aid agents
in defining the workflow, JDF provides the following four different and fundamental types of process
routing mechanisms, which may be combined in any way:

1. Serial processing that is subsequent production and consumption of resources as a whole,
represented by a simple process chain.

2. Overlapping processing that is simultaneous production and consumption of resources by pipes.
3. Parallel processing that involves the splitting and sharing of resources.
4. Iterative processing that is somehow a circular or back and forward processing for developing

resources by iteration.

These mechanisms are discussed in greater detail in section 4.3 Execution Model.

2.4 Role of Messaging in JDF
Whereas JDF provides a container to define a job, JMF messaging, defined in Chapter 5, provides a method
to generate snapshots of a job status and to interactively manipulate elements of a workflow system.

JMF is specifically designed for communication between the production system controller and the work
centers or devices with which it interacts. It provides a series of queries and commands to check the status
of processes and, in some cases, to dictate the next course of action. For example, the KnownDevices and
KnownJDFServices queries allow the controller to determine what processes can be executed by a
particular device or workcenter. These processes are likely to be determined at system initialization time.
The QueueEntry messages provide a means for the controller to submit a job ticket to individual work
centers or devices. And the Status, Progress and Phase messages allow the device or workcenter to
communicate quasi real-time1 processing status to a controller. Depending on the system configuration, the
message handler may choose to record status changes in the history logs. The progress message allows the
controller to request status updates from the controller.

JDF also provides mechanisms to define recipients for individual messages on a node-by-node basis, thus
enabling controllers to define the aspects and the parts of jobs that they are interested in tracking.

For more information about messaging, see Chapter 5 JDF Messaging with the Job Messaging Format
(JMF)

1 Real-Time in the time-scale typically associated with macro-cosmic production control systems. JMF is
not intended for real-time, low-level machine control.

36 Chapter 3 Structure of JDF Nodes and Jobs

Chapter 3 Structure of JDF Nodes and Jobs

Introduction
This chapter describes the structure of JDF nodes and how they interrelate to form a job. As was described
in section 2.1.1 Job Components, a node is a construct, encoded as an XML element, that describes a
particular part of a JDF job. Each node represents an aspect of the job, either in terms of a process
necessary to produce the end result, such as imposing, printing, or binding; in terms of a product that
contributes to the end result, such as a brochure; or in terms of some combination of the two. In short, a
node describes a product or a process.

In addition to describing the structure of an individual JDF node, this chapter examines in what way those
nodes interact to form a coherent job structure. The interrelation of nodes can be divided into two
categories: hierarchical and lateral. Hierarchical interrelation is the nested structure of parent nodes that
contain child nodes. The visual correlative of this structure resembles a family tree, with a single node
describing the entire job at the top, and a number of nodes at the bottom that each describe only one
specific process. JDF-supported leaf-level processes are described in Chapter 6 Processes.

Lateral interrelation, on the other hand, is the interrelation that occurs between nodes as a result of resource
linking. Resource linking is the result of the transformation of inputs into outputs, which in turn may
become inputs of other nodes. It also occurs when nodes share the same resource. The combination of
hierarchical nesting of nodes and lateral linking allows complex process networks to be constructed. In a
very simple case, however, a JDF file may contain only one node.

The hierarchical structure of a JDF job achieves a functional grouping of processes. For example, a job
may be split into a prepress node, a press node, and a finishing node that contain the respective process
nodes. Each and every node in turn contains attributes that represent various characteristics of that node.
Nodes also contain sub-elements of certain types, such as resources, process information, customer
information, audits, logging information, and other JDF nodes. Some elements, such as those that deal with
customer information, generally occur only in the root structure, while other elements, such as resources,
may occur anywhere in the tree. Where the elements can reside depends on their type and their usage
scope.

This chapter describes the elements, sub-elements, and attributes commonly found in JDF nodes, and
provides the characteristics necessary to understand where each belongs and how it is used. Many of these
characteristics are presented in tables, and each of these tables includes the following three columns:

• Name—Identifies the element being discussed.
• Data Type—Refers to the data type, all of which are described in Error! Reference source not

found.. Only the data types element or telem (which is short for text element) are applied to
elements. All other types are attributes.

• Description—Provides detail about the element or attribute being discussed.

The JDF workflow model is based on a resource/consumer model. JDF nodes are the consumers that are
linked by input resources and output resources. The ordering of siblings within a node, however, has no
effect on the execution of a node. All chronological and logical dependencies are specified using
ResourceLinks, which are defined in section 3.7 Resource Links.

Figure 3.1 shows schematically the structure of the JDF node type. In this figure, generic attributes and
elements (see section 3.1.1 Generic Contents of JDF Elements) are inserted only in the JDF root node.
The element types that are displayed in this figure are described in the subsequent sections. Abstract data
types are surrounded by a dashed line. Types derived from the abstract data type Resource are shown
schematically in Figure 3.4.

Chapter 3 Structure of JDF Nodes and Jobs 37

JDF

CustomerInfo?

Comment*

Company?
Contact*

ResourcePool?

ResourceLinkPool?

Attributes:
JDF:
Type = Product | ProcessGroup | Combined | any process name
Status = waiting | quoted | ready | failed_testrun | setup | in_progress | cleanup | spawned | stopped | completed | aborted
Activation = inactive | RFQ | testrun | testrun_and_go | active
Resource:
Status = unavailable | draft | available | in_use
SpawnStatus = not_spwaned | spawned_RO | spawned_RW
Locked = false | true ; (volatile or persistent)
ResourceLink:
Usage = input | output

JDF*

Ancestor +

� ID
� Type
� Status
� Activation?
� ChildCombination?
� JobID?
� JobPartID?
� Types?
� Version?
� CommentURL?
� DescriptiveName?

Resource*
� ID
� Status
� Class
� rRefs?
� Locked?
� PipeID?
� rRefs?

ResourceLink*
� rRef
� Usage
� ProcessUsage?
� CombiType?
� rSubRef?
� DraftOK?
� PipeURL?

Audit*

� NodeID
� FileName ?
� any attributes of the

JDF node

AncestorPool?

� Time
� Author?

� CustomerID
� CustomerOrderID

AuditPool?

� Type ComChannel*

Person?

Address?

NodeInfo?

OrganizationalUnit*

� Start?
� End?
� DueLevel?
� Quotes?
� Route?
� TargetRoute?
� ...

Employee?

JMF*

Part*

� Organiza-
tionName

Figure 3.1 Structure of the JDF node type

38 Chapter 3 Structure of JDF Nodes and Jobs

3.1 JDF nodes
JDF nodes are encoded as XML elements. Nodes, in turn, contain various attributes and further sub-
elements including nested JDF nodes.

Many of the tables in this particular section contain a fourth column that provides further details about the
valid range of the attribute/element content, how the content is inherited by descendants (children,
grandchildren, etc.), and where the attribute/element may reside in the JDF tree. The heading for this
column is “Scope,” which is short for “Scope and Position.” The following abbreviations are defined:

D) Descendent: The content is valid locally within its node and in all descendent nodes, unless a
descendent contains an identical attribute that overrides the content.

L) Local: The content is only valid locally, within the node where the content is defined.

R) Root: The attribute may only be specified in the root node. An exception from the localization

only in the root node occurs if the spawning and merging mechanism for independent job tickets is
applied as described in section 4.4 Spawning and Merging.

All attributes and elements listed in subsequent chapters should be considered local, unless otherwise
noted.

3.1.1 Generic Contents of JDF Elements
JDF contains a set of generic structures that may occur in any element of a JDF or JMF document. These
are provided as containers for human-readable comments and descriptions, and are described below.

Table 3.1 Generic Contents of elements

Name Data Type Description
CommentURL ? URL URL to an external, human-readable description of the element.

DescriptiveName ? string Human-readable descriptive name of, for example, a resource,
process or product.

Comment * telem Any human-readable text.

The comment fields may contain a language attribute to support internationalization.

Table 3.2 Contents of the Comment element

Name Data Type Description
Box ? rectangle The rectangle that is associated with the comment. The coordinate

system of the rectangle is the same as the coordinate system defined
in the Path attribute.

Language ? language Possible values are defined in IETF RFC 1766.

If none is specified, the system default is assumed.

Chapter 3 Structure of JDF Nodes and Jobs 39

Name ? NMTOKEN A name that defines the usage of a comment. For example, it may
determine whether two comments should fill two distinct fields of a
user interface.

Default = description, which is required if the Comment element
may become mandatory, as is the case in the Notification element
(see Table 3.23).

Path ? path Description of the area that the comment is associated with in the
coordinate system of the element where the path resides. For
example, the path refers to the plate coordinate system, if the
comment is inserted in an ExposeMedia resource that describes a
plate.

 text Body of the comment.

The following figure shows the structure of the generic content defined above.

Figure 3.2 Structure of JDF Generic Contents

3.1.2 Fundamental JDF Attributes and Elements
The following table presents the attributes and elements likely to be found in any given JDF node. Three of
the attributes in Table 3.3, below, are required, and must appear in every JDF node. Although the rest are
designated as optional, they are optional only in the sense that they are required only under certain
circumstances, not that they may be left out if desired. The circumstances under which they are required
are described in the Description column.

The most important of the attributes is the Type attribute, which defines the node type. The value of the
Type attribute defines the product or process the JDF node represents. As is detailed in section 3.2
Common Node Types, all nodes fall into one of the following four general categories: process, process
group, combined processes and product intent. Each node is identified as belonging to one of these
categories by the value of its Type attribute, as described in the table below. For example, if Type =
Product, the node is a product intent node. Each of these categories is described in greater detail in the
sections that follow.

Table 3.3 Contents of a JDF node

Name Data Type Scope Description
Activation ? enumeration D1 Describes the activation status of the node. Allows for a

range of activity, including deactivation and testrunning.
Possible values, in order of involvement from least to
most active, are:

inactive – The node and all its descendants shall not be
executed or tested. This value is set if only certain parts
of a JDF job should be executed or tested or if the node
contains information required by other processes (as is
the case with independent spawning and merging,

1 The inheritance of activation is non-trivial and specified in the description field.

any JDF/JMF element Comment*
� CommentURL?
� DescriptiveName?

� Language?
� Name?
� Path?
� Box?

40 Chapter 3 Structure of JDF Nodes and Jobs

described in section 4.4.5).

RFQ – The node specifies a request for a pricing quote
and shall not be executed.

testrun – The node requests a test run check by an
controller or a device. This does not imply that the node
should be automatically executed when the check is
completed. Descendants of a node that is being test run
not to be considered active.

testrun_and_go – Similar to testrun, but requests a
subsequent automatic start if the testrun has been
completed successfully.

active – Default. The node maybe executed as soon as
all inputs are available.

A child node inherits the value of the Activation
attribute from its parent. The value of Activation
corresponds to the least active value of Activation of
any ancestor, including itself. Therefore, if any ancestor
has an Activation of inactive, the node itself is inactive.
If no ancestor is inactive but any ancestor is testrun, the
node is testrun unless the node itself is inactive. If no
ancestor has a value of inactive or testrun and any
ancestor has a value of testrun_and_go, the node has a
value of testrun_and_go unless that node is inactive or
testrun, and so on.

ChildCombination ? enumeration L Specifies how the child nodes node should be combined
to define the job. Possible values are:

and – The child nodes shall be combined and all of them
shall be executed according to their Activation. The
default.

or – The child nodes are alternatives of which one must
be selected.

Note that ChildCombination should be specified only
for Product nodes.

ID ID L Unique identifier of a JDF node. This ID is used to
refer to the JDF node.

JobID ? string D Job identification used by the application that created
the JDF job. Typically, a job is identified by the
internal order number of the MIS system that created the
job.

JobPartID ? string D Identification of a part of a job, used by the application
that created the job. Typically, this is internal to the
MIS system that created the job and coincides with a
process or set of processes.

Status enumeration L Identifies the status of the node. Possible values are:

waiting – The node may be executed, but it has not
completed a testrun.

quoted – The node specifies the result of a price
estimate and shall not be executed.

ready – As indicated by the successful completion of a

Chapter 3 Structure of JDF Nodes and Jobs 41

testrun, all ResourceLinks are correct, required
resources are available, and the parameters of resources
are valid. The node is ready to start.

failed_testrun – An error occurred during the test run.
Error information is logged in the Notification element,
which is an optional sub-element of the AuditPool
element described in section 3.9.

setup –The process represented by this node is currently
being set up.

in_progress – The node is currently executing.

cleanup – The process represented by this node is
currently being cleaned up.

spawned – The node is spawned in the form of a
separate spawned JDF.

The status spawned can only be assigned to the original
instance of the spawned job. For details, see section
4.4.

stopped – Execution has been stopped. If a job is
stopped, running may be resumed later. This status may
indicate a break, a pause, maintenance, or a
breakdown—in short, any pause that does not lead the
job to be aborted.

completed – Indicates that the node has been executed
correctly, and is finished.

aborted – Indicates that the process executing the node
has been aborted, which means that execution will not
be resumed again.

Derivation of the Status of a parent node from the
Status of child nodes is non-trivial and implementation-
dependent.

Type NMTOKEN L Identifies the type of the node. Any JDF process name
is a valid type. The processes that have been pre-
defined are listed in Chapter 6, although the flexibility
of JDF allows anyone to create processes. Besides these
values, there are three values, which are described in
greater detail in the sections that follow. These values
are:

Product

ProcessGroup
Combined

Types ? NMTOKENS L List of the Type attributes of the nodes that are
combined to create this node. This attribute is
mandatory if Type = Combined, and is ignored if Type
equals any other value. For details on using Combined
nodes, see section 3.2.3.

Version ? string RD Text that identifies the version of the JDF node. The
current version of this specification is “1.0”. The
Version attribute is mandatory in the JDF root node, but

42 Chapter 3 Structure of JDF Nodes and Jobs

not in child nodes.

AncestorPool ? element R If this element is present, the current JDF node has been
spawned, and this element contains a list of all ancestors
prior to spawning. See section 3.3.

AuditPool ? element L List of elements that contains all relevant audit
information. Audits are intended to serve the
requirements of MIS for evaluation and invoicing. See
section 3.9.

CustomerInfo ? element D Container element for customer-specific information.
See section 3.4.

JDF * element L Child JDF nodes. The nesting of JDF nodes defines the
JDF tree.

In contrast to the elements above, JDF child nodes are
not contained in a list element.

NodeInfo ? element L Container element for process-specific information such
as scheduling and messaging setup. Scheduling affects
the planned times when a node should be executed.
Actual times are saved in the AuditPool. See section
3.9 for more details.

ResourceLinkPool ? element L List element for ResourceLink elements, which
describe the input and output resources of the node. See
section 3.7 for more details.

ResourcePool ? element L2 List element for resources. See section 3.6 for more
details.

3.2 Common Node Types
As was noted in preceding section, the Type of a node can fall into four categories. The first is comprised
of the specific processes of the kind delineated in Chapter 6, known simply as process nodes. The other
categories are made up of three enumerative values of the Type attribute: ProcessGroup, Combined, and
Product, which is also known as product intent. These three node types are described in this section.

The figure below, which was also presented as an illustration in Chapter 2, represents a theoretical job
hierarchy comprised of Product nodes, ProcessGroup nodes, and nodes that represent individual processes.
The diagram is divided into three levels to help illustrate the difference between the three kinds of nodes,
but these levels do not dictate the hierarchical nesting mechanism of a job. Note, however, that an
individual process node may be the child of a product intent node without first being the child of a process
group node. Likewise, a process group node may have child nodes that are also process groups.

2 Resources are unique and cannot be overwritten by descendants. Rather, they can only be used by
descendants. An exception to this is described in section 4.4.5 Case 5: Spawning and Merging of
Independent Jobs. In this case, resources may also be used by a parent node.

Chapter 3 Structure of JDF Nodes and Jobs 43

Product nodes

Process group nodes

Individual Process nodes

15987 10

4

13 14

5 6

16

3

1

17

2

11 12

Figure 3.3 Job hierarchy with process, process group, and product intent nodes

3.2.1 Product Intent Nodes
Except in certain specific circumstances, the agent assigned to begin writing a JDF job will very likely not
know every process detail needed to produce the desired results. For example, an agent that is a job-
estimating or job-submission tool may not know what devices can execute various steps, or even which
steps will be required.

If this is the case, the initiating agent creates a set of top-level nodes to specify the product intent, without
providing any of the processing details. Subsequent agents then add nodes below these top-level nodes to
provide the processing details needed to fulfill the intent specified.

These top-level nodes have a Type attribute value of Product to indicate that they do not specify any
processing. All processing needed to produce the products described in these nodes must be specified in
Process nodes, which exist lower in the job hierarchy.

Product nodes include intent resources that describe the end results the customer is requesting. The intent
resources that have already been defined for JDF are easily recognizable, as they contain the word “intent”
in their titles. Examples include FinishingIntent and ColorIntent. All intent resources share a set of
common sub-elements, which are described in section 7.1.1 Span Resource Sub-elements. These
resources do not attempt to define the processing needed to achieve the desired results; rather they provide
a forum to define a range of acceptable possibilities for executing a job.

For more information about product intent, see section 4.1.1 Product Intent Constructs.

3.2.2 Process Group Nodes
Intermediate nodes in the JDF job hierarchy—that is, nodes 4, 5, and 6 in Figure 3.3—describe groups of
processes. The Type attribute value of these kinds of nodes is ProcessGroup. These nodes are used to
describe multiple steps in a process chain that have common resources or scheduling data. In essence, any
process node that is not a leaf node is a ProcessGroup node.

Since the agent writing the job has the option of grouping processes in any way that seems logical, custom
workflows can be modeled flexibly. Process group nodes may contain further process group nodes,
individual process nodes, or a mixture of both node types. Sequencing of process group nodes should be
defined by linking resources of the appropriate leaves or, if the nature of the interchange resources is
unknown, by linking PlaceHolder resources.

44 Chapter 3 Structure of JDF Nodes and Jobs

The higher the level of the process group nodes within the hierarchy, the larger the number of processes the
group contains. A high-level process group node might include, for example, prepress, finishing, or
printing processes. Low-level process groups, on the other hand, define a set of individual steps that are
executed as a group of steps in the individual workflow hierarchy. For example, all steps performed by one
designated individual may be grouped in a low-level process group.

The following example shows the ResourceLink structure for a ProcessGroup inline-finishing node. Note
the presence of intermediate components that are exchanged by the individual processes.

<JDF Type = ”ProcessGroup” ID = ”J1”>

<JDF Type = ”DigitalPrinting” ID = ”J2”>
<ResourceLinkPool>

<!-- digital printing parameters -->
<DigitalPrintingParamsLink Usage="input" rRef="L1"/>

<!-- input sheets -->
<MediaLink Usage="input" rRef="L2"/>

<!-- printed output components -->
<ComponentLink Usage="output" rRef="L3"/>

</ResourceLinkPool>
</JDF>
<JDF Type = ”Gathering” ID = ”J3”>

<ResourceLinkPool>
<!-- gathering parameters -->

<GatheringParamsLink Usage="input" rRef="L4"/>
<!-- printed output components -->

< ComponentLink Usage="input" rRef="L3"/>
<!-- gathered output components -->

< ComponentLink Usage="output" rRef="L5"/>
</ResourceLinkPool>

</JDF>
<JDF Type = ”Stitching” ID = ”J4”>

<ResourceLinkPool>
<!-- Stitching parameters -->

<StitchinParamsLink Usage="input" rRef="L6"/>
<!-- gathered output components -->

<ComponentLink Usage="input" rRef="L5"/>
<!-- stitched output components -->

<ComponentLink Usage="output" rRef="L7"/>
</ResourceLinkPool>

</JDF>
</JDF>

3.2.3 Combined Process Nodes
The processes described in Chapter 6 Processes define individual workflow steps that are assumed to be
executed by a single-purpose device. Many devices, however, are able to combine the functionality of
multiple single-purpose devices and execute more than one process. For example, a digital printer may be
able to execute the Interpreting, Rendering, and DigitalPrinting processes. To accommodate such
devices, JDF allows processes to be grouped within a node whose Type = Combined. Such a node must
also contain a Types attribute, which in turn contains an ordered list of the Type values of each of
processes that the node specifies. Furthermore, ResourceLink elements in Combined nodes should specify
a CombinedProcessType attribute in order to define the sub-process to which the resource belongs.

A device with multiple processing capabilities is able to recognize the Combined node as a single unit of
work that it can execute. Therefore, all resources for each of the sub-tasks that define the Combined node

Chapter 3 Structure of JDF Nodes and Jobs 45

must be available before the node can be executed. In addition, all input and output resources that are
consumed and produced externally by the process must be specified in the ResourceLinkPool element of
the node. This includes all required Parameter resources as well as the initial input resources and final
output resources. Intermediate resources that are internally produced and consumed, on the other hand,
need not be specified.

The following example of the ResourceLinkPool of a JDF node describes digital printing with inline-
finishing and includes the same processes as the previous ProcessGroup example. The node requires the
parameter resources and consumable resources of all three processes as inputs, and produces a completed
booklet as output. The intermediate printed sheets and gathered piles are not declared, since they exist only
internally within the device and cannot be accessed or manipulated by an external controller.

<JDF Type = ”Combined” Types = ”DigitalPrinting Gathering Stitching” ID
= ”J1”>

<ResourceLinkPool>
<!-- digital printing parameters -->

<DigitalPrintingParamsLink Usage="input"
CombinedProcessType="DigitalPrinting" rRef="L1"/>
<!-- gathering parameters -->

<GatheringParamsLink Usage="input" CombinedProcessType="Gathering"
rRef="L4"/>
<!-- Stitching parameters -->

<StitchingParamsLink Usage="input" CombinedProcessType="Stitching"
rRef="L6"/>
<!-- input sheets -->

<MediaLink Usage="input" CombinedProcessType="DigitalPrinting"
rRef="L2"/>
<!-- stitched output components -->

<ComponentLink Usage="output" CombinedProcessType="Stitching"
rRef="L7"/>

</ResourceLinkPool>
</JDF>

3.2.4 Process Nodes
Process nodes represent the very lowest level in a job hierarchy. They may not contain further nested JDF
nodes, as every process node is a leaf node. These nodes define the smallest work unit that may be
scheduled and executed individually within the JDF workflow model. In figure 3.6, nodes 7-17 represent
process nodes.

The various individual process node types are specified in Chapter 6 Processes.

3.3 AncestorPool
The AncestorPool element is only required in the root of a spawned job. Spawning and merging is
described in section 4.4. The AncestorPool element contains an ordered list of one or more Ancestor
elements, which reflect the family tree of a spawned job. Each Ancestor element identifies exactly one
ancestor node. The ancestor nodes reside in the original job where the job with the AncestorPool has been
spawned off. The position of the Ancestor element in the ordered list defines the position in the family
tree. The first element in the list is the original root element, the last element in the list is the parent, the
last but one the grandparent, and so on.

The following table lists the contents of an AncestorPool element.

Table 3.4 Contents of the AncestorPool element

Name Data Type Description

46 Chapter 3 Structure of JDF Nodes and Jobs

Name Data Type Description
Ancestor + element Ordered list of one or more Ancestor elements, which

reflect the family tree of a spawned job.

An Ancestor element may contain copies of all the attributes of the node that it represents with the
exception of the ID attribute, which must be copied to the NodeID attribute of that Ancestor element.
Ancestor elements cannot, however, contain further sub-elements. The attributes of Ancestor elements
are described in Table 3.5.

Table 3.5 Attributes of the Ancestor element

Name Data Type Description
Activation ? enumeration Copy of the Activation attribute from the ancestor node. For details,

see Table 3.3.

FileName ? URL The URL of the JDF file where the ancestor node resided prior to
spawning.

JobID ? string Copy of the JobID attribute from the ancestor node. For details, see
Table 3.3.

JobPartID ? string Copy of the JobPartID attribute from the original ancestor node. For
details, see Table 3.3.

NodeID NMTOKEN 3 Copy of the ID attribute of the ancestor node.

Status ? enumeration Copy of the Status attribute from the original ancestor node. For
details, see Table 3.3.

Type ? NMTOKEN Copy of the Type attribute from the original ancestor node. For
details, see Table 3.3.

Types ? NMTOKENS Copy of the Types attribute from the original ancestor node. For
details, see Table 3.3.

Version ? string Copy of the Version attribute from the original ancestor node. For
details, see Table 3.3.

3.4 Customer Information
The CustomerInfo element contains information about the customer who orders the job. Usually, this
element is specified in the uppermost node of a job (that is, the root node), although it is also valid in lower
nodes in situations such as model subcontracting. Table 3.6, below, describes the contents of this element.

Table 3.6 Contents of the CustomerInfo element

Name Data Type Description
CustomerID string Customer identification used by the application that created the

job. This is usually the internal customer number of the MIS
system that created the job.

CustomerJobName string The name that the customer uses to refer to the job.

CustomerOrderID string The internal order number for the customer. This number is
usually provided when the order is placed and then referenced
on the order confirmation or the bill.

Company ? element Resource element describing the business or organization of

3 The data type is NMTOKEN and not IDREF because the ID does not reside in the spawned job. The
corresponding ID element resides in the original job.

Chapter 3 Structure of JDF Nodes and Jobs 47

Name Data Type Description
the contact.

3.5 Process and Node Information
The NodeInfo element contains information about planned scheduling and message routing. It allows MIS
to plan, schedule and invoice jobs or job parts.

Table 3.7 Contents of the NodeInfo element

Name Data Type Description
CleanupDuration ? timeDuration Estimated duration of the clean-up phase of the process.

Currency ? NMTOKEN Three digit currency definition according to ISO 4217.

DueLevel ? enumeration Description of the severity of a missed deadline. Possible
values are:

Unknown – Default value. Consequences of missing the
deadline are not known.

Trivial – Missing the deadline has minor or no
consequences.

Penalty – Missing the deadline incurs a penalty.

JobCancelled – The job is cancelled if the deadline is
missed.

End ? timeInstant Date and time at which the process is scheduled to end.

FirstEnd ? timeInstant Earliest date and time at which the process may end.

FirstStart ? timeInstant Earliest date and time at which the process may begin.

LastEnd ? timeInstant Latest date and time at which the process may end. This is
the deadline to which DueLevel refers.

LastStart ? timeInstant Latest date and time at which the process may begin.

Notification-
Classes ?

enumerations Defines the set of notification classes to be logged in the
AuditPool of this node. Possible values are:

event
information

warning

error

fatal

For details on Notification elements and classes, see section
3.9.1.2 Notification.

QuoteOption ? integer Index of the selected quote option defined in the Quotes
attribute and the various Selection elements of Intent
resources.

Defaults = -1, which means that no option is selected.

Quotes ? NumberSpan Pricing of the execution of the node and all its children for a
given option.

Route ? URL The URL of the controller or device that should execute this
node. If URL is not specified, the routing controller must

48 Chapter 3 Structure of JDF Nodes and Jobs

Name Data Type Description
determine a potential controller or device independently.
For details, see section 4.2.

SetupDuration ? timeDuration Estimated duration of the setup phase of the process.

Start ? timeInstant Date and time of the planned process start.

TargetRoute ? URL The URL where the JDF should be sent after completion. If
TargetRoute is not specified, it defaults to the input Route
attribute of the subsequent node in the process chain.

MergeTarget ? boolean If MergeTarget = true and this node has been spawned, it
must be merged with its direct ancestor by the controller that
executes this node. The path of the ancestor is specified in
the last Ancestor element located in the AncestorPool of
this node. It is an error to specify both MergeTarget and
TargetRoute in one node.

Default = false, which means that some other controller will
take care of merging.

TotalDuration ? timeDuration Estimated total duration of the process, including setup and
cleanup.

Employee ? element The internal administrator or supervisor that is responsible
for the product or process defined in this node.

JMF * element Represents JMF query messages that set up a persistent
channel, as described in section 5.2.2.3 Persistent Channels.
These message elements define the receiver that is
designated to track jobs via JMF messages. These message
elements should be honored by any JMF-capable controller
or device that executes this node. When these messages are
honored, a persistent communication channel is established
that allows devices to transmit, for example, the status of the
job.

3.6 Resources
Resources represent inputs and outputs, the ‘things’ that are produced or consumed by processes. They
may be physical, corporeal items such as inks, plates, or glue; electronic items such as files or images; or
conceptual items such as parameters and device settings. No matter what their composition, however, they
are the tools that JDF uses to link processes to one another, and are contained in the ResourcePool
element of a node. The ResourcePool element is described in the following table.

Table 3.8 Contents of the ResourcePool element

Name Data Type Description
Resource * element List of Resource elements. The Resource elements are

abstract and serve as placeholders for any resource.

Like the Type attribute in abstract JDF nodes, the Class attribute in Resource elements helps to identify
how particular resources should be used. This attribute contains seven values, and all resources fall under
one of these seven classifications. For example, all resources whose Class = Consumable are physical
resources that will be consumed over the course of the process. These values are listed in Table 3.9, below,
and are described in greater detail in the sections that follow.

Chapter 3 Structure of JDF Nodes and Jobs 49

Table 3.9 Contents of the abstract Resource element

Name Data Type Description
Class enumeration Defines the abstract resource type. For details, see the sections

that follow. Possible values are:

Consumable
Handling

Implementation
Intent

Parameter
PlaceHolder

Quantity
Selector

ID ID Unique identifier of a resource.

Locked ? boolean If true, the resource is referenced by an Audit and cannot be
modified without invalidating the Audit.
Default = false

PipeID ? string If this attribute exists, the resource is a pipe. The PipeID is
used by JMF pipe-control messages to identify the pipe. For
more information, see section 4.3.2.

rRefs ? IDREFS Array of IDs of internally referenced resources.

SpawnStatus ? enumeration The spawn status of a node indicates whether or not a node has
been spawned, and under what circumstances. Possible values
are:

not_spawned – Default value. Indicates that the resource has
not been copied to another process.

spawned_RO – Indicates that the resource has been copied to
another process where it cannot be modified. RO stands for
read-only.

spawned_RW – Indicates that the resource has been copied to
another process where it can be modified. RW stands for
read/write.

Status enumeration The status of a node indicates under what circumstances it may
be processed or modified. Possible values are:

unavailable – Indicates that the resource is not ready to be used
or that the resource in the real world represented by the physical
resource in JDF is not available for processing.

draft – Indicates that the resource exists in a state that is
sufficient for setting up the next process but not for production.

available – Indicates that the whole resource is available for
usage.

in_use – Indicates that the resource exists, but is in use by
another process. Also used for active pipes (see sections 3.6.3
and 4.3.2).

50 Chapter 3 Structure of JDF Nodes and Jobs

Figure 3.4 shows the structure of the abstract resource classes defined above.

Figure 3.4 Structure of the Abstract Resource Types

3.6.1 Resource Classes
The following sections describe the functions of each of the seven values of the Class attribute. All
resources fall into one of these classes. In Chapter 7 Resources, the class of each resource is indicated in
the Resource Properties sub-heading.

3.6.1.1 Parameter Resources
Parameter resources define the details of processes, as well as any non-physical computer data such as files
used by a process. They are usually associated with a specific process. For example, a required input
resource of the ColorSpaceConversion process is the ColorSpaceConversionParams resource.
All predefined parameter resources contain the moniker “Params” in their titles. Other examples of
Parameter resources include AdhesiveBindingParams and ConventionalPrintingParams.

The abstract Parameter resource element contains no attributes or elements besides those contained in the
abstract Resource element.

Parameter

Resource*
� ID
� Status
� Class
� SpawnStatus?
� rRefs?
� Locked?
� PipeID?

Handling Quantity Consumable

Implementation

PhysicalResource
� Amount?
� AmountRequired?
� Unit?
� Brand?
� AlternateBrand?
� ProductID?
� BatchID?
� Weight?

Location*
� Amount?
� LocName
� LocID?

Address?

ResourcePool?

Device Employee

PlaceHolder

Selector

Contact?

AdhesiveBindingParams

ConventionalPrintingParams

PlaceHolderResource

Selector

ExposedMedia Component Media Ink

...
Intent

Chapter 3 Structure of JDF Nodes and Jobs 51

3.6.1.2 Intent Resources
Intent resources define the details of products to be produced without defining the process to produce them.
In addition, they provide structures to define sets of allowable options and to match these selections with
prices. The details of all intent resources are described in section 7.1 Intent Resources.

The abstract Intent resource element contains no attributes or elements besides those contained in the
abstract Resource element.

3.6.1.3 Implementation Resources
Implementation resources define the devices and operators that execute a given node. Only two
implementation resource types are defined: Employee and Device, each of which is described in greater
detail in the Chapter 7.

Implementation resources can only be used as input resources and may be linked to any process. The
abstract Implementation resource element contains no attributes or elements besides those contained in the
abstract Resource element. An example demonstrating how to use implementation resources is provided
in section 3.7.2 Links to Implementation Resources.

3.6.1.4 Physical Resources (Consumable, Quantity, Handling)
Any resource whose Class is Consumable, Quantity, or Handling is considered a physical resource. They
are defined as follows:

• Consumable resources are resources that are consumed during a process. Examples include Ink
and Media. They are the unmodified inputs in a process chain.

• Quantity resources are resources that have been created by a process from either a Consumable

resource or an earlier Quantity resource. For example, printed sheets are cut and a pile of cut
blocks is created. Component resources are an example of Quantity resources.

• A Handling resource is used during a process, but is not destroyed by that process.

ExposedMedia is the only example of such a resource, although it does describe various kinds
of items such as film and plates. A Handling resource may be created from a Consumable
resource.

The Table 3.10, below, defines the additional attributes and elements that may be defined for physical
resources. The processes that consume physical resources—any kind of physical resource—have the
option of using these attributes and elements to determine in what way the resources should be consumed.
Table 3.11 then describes the contents of the Location sub-element of physical resource elements.

Table 3.10 Additional contents of the abstract physical Resource elements

Name Data Type Description
AlternateBrand ? string Information, such as the manufacturer or type, about a resource

compatible to that specified by the Brand attribute, which is
described below.

Amount ? number Actual amount of the resource that is available.

Note that the amount of consumption and production of a node
is specified in the corresponding resource links.

AmountRequired ? number Total amount of the resource that is referenced by all nodes that
will consume this resource. This corresponds to the sum of all
Amount values of input resource links that reference this

52 Chapter 3 Structure of JDF Nodes and Jobs

Name Data Type Description
resource.

BatchID ? string ID of a specific batch of the physical resource

Brand ? string Information, such as the manufacturer or type, about the
resource being used.

ProductID ? string An ID of the resource as defined in the MIS system

Unit ? NMTOKEN Unit of measurement for the values of Amount and
AmountRequired.

Weight ? double Weight of a single component of the resource in grams.

Contact ? element If this element is specified, it describes the owner of the
resource.

Location * element Descriptions of resource locations.

Structure of Location Sub-element
Table 3.11 Contents of the Location element

Name Data Type Description
Amount ? number Actual amount of the resource at the location.

LocID ? string Location identifier within a warehouse system.

LocName string Name of the location in MIS, referred by the Location attribute
of links to physical resources (see Table 3.16).

Address ? element Address of the storage facility. For more information, see
section 7.2.2.

3.6.1.5 PlaceHolder Resources
PlaceHolder resources, unlike physical resources, do not describe any logical or physical entity. Rather,
they define process linking and help to define process ordering when the exact nature of interchange
resources is still unknown. In essence, they serve as placeholders that stand in for defined resources.
Using PlaceHolder resources, a processing skeleton can be constructed that gives a basic shape to a job.
The appropriate resources can be substituted for PlaceHolder resources when they become known.

This kind of resource should only be used to link nodes of Type = ProcessGroup, since process leaf nodes
have well-defined resources that should be used in preference. The only resource whose Class =
PlaceHolder is called PlaceHolderResource.

Like Parameter and Implementation resources, PlaceHolder resources contain no attributes besides those
contained in the abstract Resource element.

3.6.1.6 Selector Resources
Resources of class Selector allow the definition of subsets of resources. The Selector resource is the only
resource of this class. The way in which they may be used is described in section 3.8.5 Linking to Subsets
of Resources.

Chapter 3 Structure of JDF Nodes and Jobs 53

3.6.2 Position of Resources within JDF Nodes
Resources may exist in any JDF node, but JDF nodes may only reference local or global resources. In
other words, JDF nodes may only reference resources in the two kinds of locations: in the node’s own
ResourcePool element or in JDF nodes that are hierarchically closer to the JDF root. An exception to
this rule, however, occurs if two independent jobs are merged for a process step and are to be separated
afterwards, as is the case when two independent jobs are printed on the same web-fed press. For further
details on independent job merging, see section 4.4.5 Case 5: Spawning and Merging of Independent Jobs.

It is good practice to put resources into the highest-level node that references the resource. For example,
the RenderingParams resource should be located in the Rendering node, unless it is used by multiple
Rendering processes, in which case it should be located in the ProcessGroup node that contains the
Rendering process nodes. Resources that link more than one node should be placed in the parent node of
the siblings that are linked by the resource.

A process that needs additional detailed process information specifying the creation of a resource must
infer this information by explicitly linking to the appropriate parameter resource.

3.6.3 Pipe Resources
Pipes describe links between processes that do not exist as a complete entity at any moment in time. For
example, a data stream that is consumed by the subsequent process while it is being written by the previous
process is never a wholly complete process in the way that a physical process is complete.

Pipes may also exist for a quantifiable resource, such as an in-line finishing operation on a press that
produces sheets. Additional description of pipes and process communication via pipes is provided in
section 4.3.2 Overlapping Processing Using Pipes.

Resources may contain a string attribute called PipeID that declares the resource to be a pipe, and identifies
it in a dynamic-pipe messaging environment. A pipe that is also controlled by JMF pipe messages is called
dynamic pipe. For more information about dynamic pipes, see section 4.3.2.2 Dynamic Pipes.

3.7 Resource Links
Not only may a JDF node contain resources that it uses itself, it may also contain resources that are used by
its child nodes. Resource links define the resources that are required explicitly by the JDF node in whose
ResourceLinkPool element the ResourceLink elements reside. In other words, a JDF node contains a
ResourceLinkPool element that in turn contains all of the ResourceLink elements that link the node to
the resources it uses. They also define whether the resources are inputs or outputs. These inputs and
outputs provide conceptual links between the execution elements of JDF nodes. Outputs of one node may
in turn become inputs in another node, and a given node may not be executed before all required input
resources are available.4

Figure 3.4 shows two processes that are linked by a resource. The resource represents the output of Node
1, which in turn becomes an input for Node 2.

Resource Node 2Node 1 output input

4 The availability of a resource that is conumed as a whole is given by the Resource attribute
Status=available. In the case of pipe resources, the availability depends on the individual parameter
defining the dynamics of a pipe (for details see section 4.3.2 Overlapping Processing Using Pipes).

54 Chapter 3 Structure of JDF Nodes and Jobs

Figure 3.5 Nodes linked by a resource

ResourceLink elements also may contain optional attributes to select a part of a resource, such as only one
separation. A detailed description of resource partitioning is given in section 3.8 Subsets of Resources.

ProcessGroup and Product nodes may be defined without knowledge of the individual process nodes that
define a specific workflow. In this case these intermediate nodes will contain ResourceLink elements to
the appropriate resources. For example, a prepress node may be defined that produces a set of plates.
When the processes for creating the plates are defined in detail, the agent that writes the nodes may remove
the ResourceLink elements from the intermediate node. Removing the ResourceLink specifies that the
intermediate node may execute; that is, it may be sent to the appropriate controller or department, even
though the specific resources are not yet available. If the ResourceLinks are not removed, the
intermediate node may not execute until the input resources that are linked are available.

Resource links may be used for process control. For example, if a proof input resource is required for a
print process, a print run may only commence when the proof is signed. The JDF format specification also
includes a complete specification of how resources are managed when JDF tickets are spawned and
merged.

In some cases, determining whether information should be stored in an input or an output resource may be
difficult, as the distinction can be ambiguous. For example, is the definition of the color of a separation in
the RIP process a property of the output separation or a parameter that describes the RIP process? In order
to reduce this ambiguity, the following rules have been applied for the definition of input and output
resources of processes as described in Chapter 6 Processes and Chapter 7 Resources:

• Product intent and process parameters are generally input resources, except when one process
defines the parameters of a subsequent process.

• Consumable resources are always input resources.

• Quantity and Handling resources are used both as input and output resources. Their usage is

defined by the “natural” process usage. For example, a printing plate is described as an
ExposedMedia resource that is the output of a ImageSetting process and the input of a
ConventionalPrinting process.

• Printed material is exchanged from node to node using the Component resource. Product intent

nodes also create Component output resources.

• Every detailed process description must be defined as an input parameter of the first process where

it is referenced. This means that a device may not imply process parameters from its output
resources. For example, paper grammage MAY be defined in the sheet output resource of the
printing process but MUST be defined as a an input parameter of the printing process.

• Any resource parameter that is used must be referenced explicitly. Resource parameters cannot be

inferred by following the chain of nodes backwards. This would make spawning of nodes non-
local.

• The last process in a chain of processes defines the output resource of its parent process.

• In case of parallel processing, the sum of the outputs of all parallel sub-nodes defines the output of

the parent node.

Like Resource elements, ResourceLink elements are an abstract data type. The class tree of abstract
ResourceLink elements is further subdivided into classes defined by the Class attribute of the resource
that it references. Individual instances of ResourceLink elements are named by appending the suffix

Chapter 3 Structure of JDF Nodes and Jobs 55

“Link” to the name of the referenced resource. For example the link to a Component resource is entitled
ComponentLink and the link to a ScanParams resource is entitled ScanParamsLink.

The following eight abstract resource link classes exist:

• ParameterLink
• ImplementationLink
• ConsumableLink
• QuantityLink
• HandlingLink
• PlaceHolderLink
• SelectorLink
• IntentLink

Each listed class name is described in greater detail in the sections that follow. The following figure shows
the abstract resource link types derived from the abstract ResourceLink type.

Figure 3.6 Structure of the abstract ResourceLink types

The following table lists the contents of a ResourceLinkPool element.

Table 3.12 Contents of the ResourceLinkPool element

Name Data Type Description

Part*ResourceLinkPool? ResourceLink*
� rRef
� Usage
� ProcessUsage?
� CombinedProcessType?
� rSubRef?
� DraftOK?
� PipeURL?
� PipePartIDKeys?

ParameterLink

HandlingLink

PhysicalLink

ConsumableLink

ImplementationLink

� RunIndex?

� Recommendation?
� Start?
� StartOffset?
� Duration?

QuantityLink

� Amount?
� Location?
� PipeResume?
� PipePause?

PlaceHolderLink

SelectorLink

IntentLink

56 Chapter 3 Structure of JDF Nodes and Jobs

ResourceLink * element List of ResourceLink elements. The ResourceLink
elements are abstract and are a placeholder for any resource
link element.

The following table lists the possible contents of all ResourceLink elements.

Table 3.13 Contents of the abstract ResourceLink element

Name Data Type Description
CombinedProcess-
Type ?

NMTOKEN Combined nodes contain input resources from multiple
process nodes. The CombinedProcessType attribute
specifies the individual process to which a ResourceLink in
a Combined node belongs.

DraftOK ? boolean If true, the process may commence with a draft resource.

Default = false

PipePartIDKeys ? NMTOKENS Defines the granularity of a dynamic pipe for a partitioned
resource. For instance, a resource may be partitioned by
sheet, surface and separation (resource attribute PartIDKeys
= SheetName Side Separation), but pipe requests should only
be issued once per surface (resource link attribute
PipePartIDKeys = SheetName Side). The contents of
PipePartIDKeys must be a subset of the PartIDKeys
attribute of the resource that is linked by this ResourceLink.
If PipePartIDKeys is not specified, it defaults to
PartIDKeys, i.e. maximum granularity.

For details on partitioned resources, see section 3.8.2.

PipeURL ? URL Pipe request URL. Dynamic pipe requests from this end of a
pipe should be made to this URL.5 Note that this URL is only
used for initiating pipe requests. Responses to a pipe request
are issued to the URL that is defined in the PipePush or
PipePull message.

For details on using PipeURL, see section 4.3.2.

ProcessUsage ? string Identifies the resource usage in the process if multiple
resources of the same type are required. For example, this
attribute appears when two components—one Cover and one
BookBlock—are used in AdhesiveBinding.. The allowed
values of ProcessUsage are defined in the appropriate
process descriptions in Chapter 6 Processes.

rRef IDREF Link to the target resource.

rSubRef ? IDREF Link to a sub-element within the resource.

Usage enumeration Resource usage within this JDF node. Possible values are:

input – The resource is an input.

output – The resource is an output.

Part * element The Part elements identify the parts of a partitioned resource
that are referenced by the ResourceLink. The structure of
the Part element is defined in Table 3.18.

5 Note that in most cases this is the URL of the controller of the other end of the pipe. This may seem
counterintuitive, but it allows parallel spawning and merging of processes that represent a dynamic pipe
without having to include the node that describes the other end in the spawned file.

Chapter 3 Structure of JDF Nodes and Jobs 57

For details on partitioned resources, see section 3.8.2.

3.7.1 Links to Parameter Resources
Parameter resources are linked by a ParameterLink element. If the parameter resource is a RunList, an
additional subsetting method, indicated by the following attribute, is allowed.

Table 3.14 Contents of the abstract ParameterLink element

Name Data Type Description
RunIndex ? IntegerRangeList Selects a set of runs from a RunList resource.

3.7.2 Links to Implementation Resources
Implementation resources are linked by an ImplementationLink element. Using the resource attributes,
the link may specify whether the implementation is a recommendation that may be ignored or a request that
must be fulfilled. For example, the job may contain a request that the job be run by a specific, experienced
operator. If the value or the Recommendation is true and that operator is ill, he may be replaced by a less
experienced operator. If, on the other hand, a product could be created on a device that theoretically can do
the job but does not produce sufficient quality, and if it is certain that customer will reject inferior quality,
Recommendation should be set to false.

Since implementation ResourceLinks define the usage of a specific device during the course of a job,
situations can arise where that resource is not required during the whole processing time. For instance, a
forklift that only has to transport the completed components is not required to be available during the entire
process run, only during the times when it is needed. This means that, contrary to the general rule that all
resources must be available for node execution to commence, a node may commence when implementation
resources are still in_use by other processes if Start or StartOffset are specified.

ImplementationLink elements always have a Usage of input.

Table 3.15 Contents of the abstract ImplementationLink element

Name Data Type Description
Duration ? timeDuration Estimated duration during which the resource will be used.

Recommendation ? boolean If true and the request cannot be fulfilled, the change may be
logged as a Modified Audit and the job may continue. If
false, an error occurs if the request is not fulfilled.

Default = false

Start ? timeInstant Time and date when the usage of the implementation resource
starts.

StartOffset ? timeDuration Offset time when the resource is required after processing has
begun. If both Start and StartOffset are specified, Start has
precedence.

The following example shows how the operator Smith is linked to a ConventionalPrinting process as the
only valid operator:

<ResourcePool>

58 Chapter 3 Structure of JDF Nodes and Jobs

<Employee PersonalID=”007” ID=”L1” Class=”Implementation”>
<Person FamilyName=”Smith” JobTitle=”Press Operator”>

</Employee>
</ResourcePool>
…
<ResourceLinkPool>

<EmployeeLink Recommendation=”false” rRef=”L1”/>
</ResourceLinkPool>

3.7.3 Links to Physical Resources
The physical resources that fall into the Consumable, Quantity, and Handling classes are linked,
predictably, by the appropriate ConsumableLink, QuantityLink, or HandlingLink resource link elements.
Just as physical resources inherit the contents of the abstract resource element, physical resource links
inherit the contents of the abstract resource link element. They may, however, contain additional contents.
These optional attributes are described in Table 3.16, below.

Table 3.16 Additional contents of the abstract physical ResourceLink element

Name Data Type Description
Amount ? number Amount of the resource that is required by the process, in

units as defined in the resource. Allows resources to be only
partially consumed or produced (see section Resource
Amount).

Location ? string Refers to a definite location of the resource (see LocName in
Table 3.11).

PipePause ? number Parameter for controlling the pausing of a process if the
resource amount in the pipe buffer passes the specified value.
For details on using PipePause, see 4.3.2.

PipeResume ? number Parameter for controlling the resumption of a process if the
resource amount in the pipe buffer passes the specified value.
For details on using PipeResume, see section 4.3.2.

RemotePipeEnd-
Pause ?

number Parameter for controlling the pausing of a process at the other
end of the pipe if the resource amount in the pipe buffer
passes the specified value. For details on using
RemotePipeEndPause, see section 4.3.2.

RemotePipeEnd-
Resume ?

number Parameter for controlling the resumption of a process at the
other end of the pipe if the resource amount in the pipe buffer
passes the specified value. For details on using
RemotePipeEndResume, see section 4.3.2.

3.7.4 Links to PlaceHolder Resources
PlaceHolder resources are linked by a PlaceHolderLink element. PlaceHolder links, used together with
the PlaceHolderResource resource, can be employed to predefine a skeleton of a processing network
consisting of process group nodes without knowing the exact nature of the interchange resources. For
instance, although the deadlines for the job may be known, it may not be known whether a press run shall
be defined for a digital press or a conventional press.

Chapter 3 Structure of JDF Nodes and Jobs 59

3.7.5 Links to Selector Resources
Selector resources are linked by a SelectorLink element. Note that the name of the abstract resource link
class SelectorLink is identical to the name of the resource link to the Selector resource. Selector
resources are described together with subsets of resources in section 3.8.5 Linking to Subsets of Resources.

3.7.6 Links to Intent Resources
Intent resources are linked by a IntentLink element. They have no additional parameters.

3.7.7 Inter-Resource Linking
In some cases, it is necessary to reference resources directly from other resources in order to reuse
information. The linking element retains its name but has the syntax of a ResourceLink with a mandatory
rSubRef attribute to define the target element.

In order to enable spawning and merging without having to scan every single resource, inter-resource links
must be specified in an rRefs attribute of the resource. In the case of a link to a resource subset, the rRefs
attribute contains a reference to the atomic resource. Even if a resource is linked more than once, one
occurrence of that resource in the rRefs array is sufficient.

Elements within a resource may also contain an ID attribute. These elements may be explicitly referenced
by a ResourceLink. The ResourceLink element has an optional rSubRef attribute that contains an
IDREF to the sub-element of the resource.

The following example demonstrates inter-resource linking.

Example:
<Layout rRefs="res1 res2">

…
<Surface rRef="res1" rSubRef="surf1"/>
<Surface rRef="res2" rSubRef="surf2"/>
<Surface rRef="res1" rSubRef="surf1"/>

<!-- another link to the same resource -->
</Layout>
<Sheet ID="res1">

<Surface ID="surf1" … />
</Sheet>
<Sheet ID="res2">

<Surface ID="surf2" … />
</Sheet>

3.8 Subsets of Resources
In many cases, a set of similar resources—such as separation films, plates, or RunList resources—is
produced by one process and consumed by another. When this occurs, it is convenient to define one
resource element that describes the complete set and allows individual sub-sets to be referenced. This
mechanism also removes process ambiguity if multiple input resource links and multiple output resource
links exist that must be unambiguously correlated.

Resource elements and ResourceLink elements have optional attributes that enable an agent to specify an
explicit part of a structured resource.

60 Chapter 3 Structure of JDF Nodes and Jobs

3.8.1 Resource Amount
Yet another flexible feature of resources is that they may be only partially consumed. For example, in a
scenario in which various versions of a product share identical parts—such as versioned books that all have
the same cover—each version will only use as many copies of the cover as it needs to fulfill its job
requirement, even though all of the covers can be printed in one step for all versions. This feature is
specified in the Amount attribute of the resource links and allows multiple JDF nodes to share resources. It
allows both the sharing of output resources (as when a binding process consumes identical sheets from
multiple press lines) and the sharing of input resources (as when the covers for multiple jobs are identical
and are all printed in one press run).

The Amount attribute of a physical resource element contains the actual amount of a given resource. It is
adjusted by the production or consumption amount of every process that is executed, and refers to that
amount in the corresponding physical resource link element. Thus the value of the Amount attribute of a
resource that is consumed as an input should be reduced by the amount that is consumed. It is up to the
agent that writes a JDF job to ensure that the Amount attributes of resources and the resource links that
reference them are consistent. The units used in the Amount attribute of a physical resource link element
is defined by the unit of the resource element the to which the link refers.

The definition of Amount for partitioned resources is explained in detail in section 3.8.2 Description of
Partitionable Resources.

3.8.2 Description of Partitionable Resources
Printing workflows contain a number of processes that are repeated over a potentially large number of
individual sheets, surfaces or separations. In order to define a partitioned resource in a concise manner
without having to create a large number of individual nodes and resources, these resources may be defined
as one resource with individual nested parts.

A partitionable resource contains nested elements, each with the same name as the resource. The part-
independent resource elements and attributes are located in the root of the resource, while the partition-
dependent elements are located in the nested elements. Thus one individual part is defined by the
convolution of the partition-independent elements and attributes, with the elements and attributes contained
in the appropriate nested elements. The attributes of nested part elements may be overwritten by the
equivalent attributes in descendent parts.

The Amount attribute of a partitioned resource is treated formally exactly in the same manner as any other
attribute. This implies that the amount specified refers to the amount defined by one leaf and not to the
amount defined by the sum of leaves in a branch. The Amount attribute defined in the example below is,
therefore, two, even though 24 physical plates are described.

The following example defines two sets of 12 plates for 2 sheets with 3 surfaces. Each has a common
brand attribute called “Gooey.” Each individual separation has its own ProductID. Furthermore, the
Status attribute varies from part to part. For example, if a yellow plate breaks, only it will need to be
remade and therefore set to unavailable; the others, meanwhile, may remain available.

<ExposedMedia Class="Handling" Type="plate" Brand="Gooey" ID="L1"
Status="available" PartIDKeys="SheetName Side Separation" Parts="12"
Amount=”2”>

<ExposedMedia SheetName="S1">
<ExposedMedia Side="Front">

<ExposedMedia Separation="Cyan" ProductID="S1FCPlateJ42"/>
<ExposedMedia Separation="Magenta" ProductID="S1FMPlateJ42"/>
<ExposedMedia Separation="Yellow" ProductID="S1FYPlateJ42"

Status="unavailable"/>

Chapter 3 Structure of JDF Nodes and Jobs 61

<ExposedMedia Separation="Black" ProductID="S1FKPlateJ42"/>
</ExposedMedia>
<ExposedMedia Side="Back">

<ExposedMedia Separation="Cyan" ProductID="S1BCPlateJ42"/>
<ExposedMedia Separation="Magenta" ProductID="S1BMPlateJ42"/>
<ExposedMedia Separation="Yellow" ProductID="S1BYPlateJ42"/>
<ExposedMedia Separation="Black" ProductID="S1BKPlateJ42"/>

</ExposedMedia>
</ExposedMedia>
<ExposedMedia SheetName="S2" Side="Front">

<ExposedMedia Separation="Cyan" ProductID="S2FCPlateJ42"/>
<ExposedMedia Separation="Magenta" ProductID="S2FMPlateJ42"/>
<ExposedMedia Separation="Yellow" ProductID="S2FYPlateJ42"/>
<ExposedMedia Separation="Black" ProductID="S2FKPlateJ42"/>

</ExposedMedia>
</ExposedMedia>

Note that only resources may be partitioned. If a resource contains sub-elements, the sub-elements may
NOT be individually partitioned.

Two examples are provided below. The first example is valid, the second is invalid. In the first example,
the ExposedMedia resource is partitioned:

<ExposedMedia ID="L1" Status="available" PartIDKeys="Separation" … >

<Media MediaType=”Film”/>
<ExposedMedia Separation=”Cyan”>

<Media Brand=”foo”/>
</ExposedMedia >
<ExposedMedia Separation=”Magenta”>

<Media Brand=”bar”/>
</ExposedMedia >

</ExposedMedia >

In this invalid example, Media is a sub-element that may NOT be partitioned:

<ExposedMedia ID="L1" Status="available" PartIDKeys="Separation" … >

<Media MediaType=”Film”>
<Media Brand=”foo” Separation=”Cyan”>
<Media Brand=”bar” Separation=”Magenta” />

</Media >
</ExposedMedia >

In addition to the usual resource attributes and elements, the partitionable Resource element has the
following partition-specific attributes and elements in its root:

Table 3.17 Contents of the partitionable Resource element

Name Data Type Description

62 Chapter 3 Structure of JDF Nodes and Jobs

PartIDKeys ? NMTOKENS List of attribute names that are used to separate the
individual parts. Possible NMTOKEN values are :

PartVersion

Separation
SheetName

Side
SignatureName

TileID

For details, see Table 3.18.

Parts ? integer Number of parts that the resource represents.

Resource * element Nested resource elements that contain the appropriate
part ID(s). These elements must be of the same type as
the root Resource element. They represent the
individual parts or groups of parts.

Partitionable resources are uniquely identified by the attribute values listed in PartIDKeys attributes. The
choice of which attributes to use depends on how the agent organizes the job.

The following table lists the content of a Part element, which contains a set of pre-defined attributes that
have a well-described meaning. Each of the attributes, except Sorting, may be used in the nested resource
elements of partitionable resources as the part ID key (see example above).

Table 3.18 Contents of the Part element

Name Data Type Description
PartVersion ? string Version identifier, such as the language version of a

catalog.

Separation ? string Identifies the separation name. The predefined values
are:

Composite – Non-separated resource.

Separated – The resource is separated, but the separation
definition is handled internally by the resource, such as a
PDF file that contains SeparationInfo dictionaries.

Cyan – Process color.

Magenta – Process color.

Yellow – Process color.

Black – Process color.

SheetName ? string A string that uniquely identifies each sheet. The value of
this attribute must match the value of the SheetName
attribute of a sheet.

Chapter 3 Structure of JDF Nodes and Jobs 63

Side ? enumeration Denotes the side of the sheet. Possible values are:

Front

Back

If Side is specified, the Part element refers to one
surface of the sheet. If it is not specified, it refers to both
sides.

SignatureName ? string A string that uniquely identifies the signature within the
partitionable resource.

Sorting ? IntegerRangeList Mapping from the implied partitionable resource order to
a process order. The indices refer to the elements of the
complete partitionable resource, not to the index in the
selection of parts defined by the Part element.6

SortAmount ? boolean If a sorted resource has an Amount attribute and
SortAmount = true, each resource shall be processed
completely. If SortAmount = false (the default), each
Part element shall be processed the number of times
specified in the Amount attribute before starting the next
Part.

TileID ? XYPair XYPair of integer values that identifies the tile. Tiles are
identified by their X and Y indexes. Values are zero-
based and expressed in the PS coordinate system. So
“0 0” is the lower left tile and “1 0” is the tile next to it on
the right. Tile resources are described in detail in the
section 7.2.90 Tile.

3.8.3 Locations of Physical Resources
Unlike other kinds of resources, physical resources may be stored at multiple, distributed locations. This is
specified by including one or more Location elements in the resource element and accessing the location
by specifying a Location attribute in the respective ResourceLink.

The following example describes a set of plates that are distributed over two locations:

<ExposedMedia ID="L1" Type="Plate" … >

<Location Amount="42" LocName="Desk Drawer 1">
<Address … />

</Location>
<Location Amount="100" LocName="Desk Drawer 2" LocID="PP_01234">

<Address … />
</Location>

</ExposedMedia>
…
<ExposedMediaLink ResourceID="L1" Location="Desk Drawer 2" Amount="50"
Usage="input"/>

6 Note that Sorting is semantically different from the other attributes in this table, as it implies an ordering
of parts, whereas the other attributes define a selection of parts.

64 Chapter 3 Structure of JDF Nodes and Jobs

3.8.4 RunIndex
The RunIndex attribute selects a set of logical pages from a RunList in a manner that is independent of
the internal structure of the RunList. It contains an array of mixed ranges and individual indices separated
by whitespace. Each range consists of two indices connected with a tilde (~) and no whitespace. For
example, RunIndex = ”2~5 8 10 22~-1”.

Negative numbers reference pages from the back of a file in base 1 counting. In other words, -1 is the last
page, -2 the second to last, etc. Thus RunIndex = “0~-1” refers to a complete range of pages, from first to
last.

3.8.5 Linking to Subsets of Resources
There are two ways in which an agent can select a subset of a resource. The first is to modify the
ResourceLink element and the second is to add an additional Selector resource. In the first method, a Part
element and/or RunIndex attribute is included in a ResourceLink element in order to define a specific
subset of a resource. In the second method, a JDF node selects a subset of a resource by linking to an
optional Selector resource . Thus a node that links to a partitionable resource, such as a set of plates, and
to a Selector resource that, for example, contains only a Part element describing a Yellow separation is
effectively referencing the Yellow plate. This is the method of choice if a subset is selected for a whole
process network. The subset selection of all processes for a complete network can be changed by locally
modifying one selector resource.

Only one selector resource may be linked by a node. Selector resources affect only partitionable
resources or RunList resources.

The following table describes the contents of the Selector resource.

Table 3.19 Contents of the Selector resource

Name Data Type Description
RunIndex? IntegerRangeList Selects a set of runs from a RunList resource.

Part + element One or more individual Part elements. Each one selects
a part from a partitioned resource. If multiple parts are
specified, the Selector resource describes the sum
(boolean or) of these parts.

The following example demonstrates how a Selector resource can be used with a partitioned resource.
The Cyan and Magenta plate set is described by the combination of the partitioned ExposedMedia
resource from the previous example and the Selector resource.

<Selector ID="L2" Class="Selector" Status="available">
<Part Separation="Cyan"/>
<Part Separation="Magenta"/>

</Selector>
…
<ResourceLinkPool>
<ExposedMediaLink rRef="L1" Usage="input"/> <!--This links to the complete plate
resources.-->
<SelectorLink rRef="L2" Usage="input"> <!-- This subsets to the Cyan and Magenta plate.-
->
</ResourceLinkPool>

Chapter 3 Structure of JDF Nodes and Jobs 65

Partitionable hierarchies define an implied ordering of the individual parts. In the example in section 3.8.2
Description of Partitionable Resources, the first element has a ProductID = S1FCPlateJ42 and the last has
a ProductID = S2FKPlateJ42. If process ordering of a partitionable resource is important, the Part
element of the ResourceLink or the Part element inside of the Selector must specify a Sorting attribute.
If Sorting is not specified, process ordering is arbitrary. If Sorting is specified multiple times, the
resolution of the sorting must be unambiguous.

The Sorting attribute maps the implied part ordering to a specified process ordering in a 0-based list. The
first entry in Sorting defines the first entry to be processed. The following example, using a
ResourceLink element, describes how the plates described in the previous example could be ordered by
separation for the first sheet followed by the complete second sheet, in reverse order (back to front). Each
set of two plates, as specified in the Amount attribute of the resource, would be processed together.

<ExposedMediaLink rRef="L1">

<Part Sorting="0 4 1 5 2 6 3 7 –1~8" SortAmount=”false”/>
</ExposedMediaLink>

A partitionable resource may also be split into individual resources by an agent. In this case, one resource
must be created for each individual part or set of parts. For example, a resource that describes a set of films
that are also separated may be split into a set of resources that each describe all separations of a sheet.

3.8.6 Splitting and Combining Resources
Depending on the circumstances, it may be appropriate either to split a resource into multiple new nodes or
to specify multiple locations or parts for an individual resource. There are four possible methods for
splitting and combining resources, each of which is illustrated in Figure 3.7, below. Both Case A and Case
B in Figure 3.7 represent workflows that use the Amount attribute of their resource links to share
resources. This method is practical when one controller controls all aspects of resource consumption or
production. In Case A, the resource amount is split between subsequent processes. In Case B, individual
processes produce amounts that are then combined into a unified resource that is, in turn, used by a single
process. In both cases, a single, shared resource is employed. To enable independent parallel processing
by multiple controllers, however, independent resources are required. To create independent resources
from one resource, the Split process is used, as shown in Case C (for further details, see section 6.2.6
Split). This process allows multiple processes to be spawned off, after which multiple processes can
consume the same resource in parallel and may therefore run in parallel. Case D demonstrates the reverse
situation, which occurs if resources have been produced by multiple processes and are then consumed, as a
unified entity, by a single subsequent process. To accomplish this, the Combine process (described in
section 0
Combine) combines multiple resources to create the single resource.

66 Chapter 3 Structure of JDF Nodes and Jobs

Figure 3.7 Splitting and combining physical resources

Node 1

Res1+2+3 Node BNode 2

Node 3

 Amount 2 Amount 1+2+3

 Amount 1

 Amount 3

Node 1 Res 1

Combine-Node Res1+2+3 Node BNode 2 Res 2

Node 3 Res 3

Split-Node

Node 1

Node A Res 1+2+3

Res 1

Node 2Res 2

Node 3Res 3

Node 1

Node A Res 1+2+3 Amount 1+2+3

 Amount 1

Node 2

Node 3

 Amount 2

 Amount 3

D: exact workflow for combining

B: brief workflow for combining by a shared output resource

C: exact workflow for splitting

A: brief workflow for splitting by a shared input resource

Chapter 3 Structure of JDF Nodes and Jobs 67

3.9 AuditPool
Audit elements contain the post-facto recorded results of a process. Audit elements are static and cannot
ever be modified after the process has been started. Therefore, if Audit elements link to resources, those
resources should be locked in order to inhibit accidental modification of audited information, which is why
JDF includes a locking mechanism for resources.

Audit elements record any event related to the following situations:

1. The creation of a JDF node by a Created element.

2. Spawning and merging, including resource copying by spawned and merged elements.

3. Errors such as unnecessary ResourceLink elements, wrongly linked resources, missing resources,
or missing links, which may be detected by agents during a test run or by a Notification element.

4. Actual data about the production and resource consumption by a ResourceAudit element.

5. Any process phase times. Examples include setting up a device, maintenance, and washing, as
well as down-times as a result of failure, breaks, or pauses. Changes of implementation resource
usage, such as a change of operators by a PhaseTime element, would also constitute an example
of a phase time.

6. Actual process scheduling data. For example, the process start and end times, as well as the final
process state, as determined by a ProcessRun element.

7. Any modification of a JDF node not covered by the preceding items, as recorded by a Modified
element.

Audit information may be used by MIS for operations such as evaluation or invoicing. Figure 3.8 depicts
the structure of the AuditPool and Audit element types derived from the abstract audit type.

68 Chapter 3 Structure of JDF Nodes and Jobs

Spawned *

Merged*

Created*

Modified*

� jRef
� Independent ?
� jRefDestination ?
� rRefsROCopied ?
� rRefsRWCopied ?

� jRef
� Independent?
� jRefSource?
� rRefsOverwritten?

� ref

� jRef

Attributes:
ref = reference via ID to a resource or a JDF-node
jRef = reference via ID to a JDF-node

Notification:
Class = event | information | warning | error | fatal

Audit*
� TimeStamp
� Author?

ProcessRun*
� Start
� End
� Duration?
� EndStatus

AuditPool?

PhaseTime*
� Start
� End
� Status
� StatusDetails?

ResourceAudit*

Notification*
� Class
� Type?
� Value?

Device*

Employee*ResourceLink

Comment*

� rRefSaved?
� ContentsModified?

ModulPhase*
� Start
� End
� DeviceID?
� DeviceStatus
� StatusDetails?
� ModulIndex
� ModulType

Part?

Employee*

Selector?

Selector?

CostCenter?

Employee*

Figure 3.8 Structure of Audit element types derived from the abstract Audit type

Audit entries are ordered chronologically, with the last entry in the AuditPool representing the newest. A
ProcessRun element containing the scheduling data finalizes each process run. All subsequent entries
belong to the next run. The following table defines the contents of the AuditPool element.

Table 3.20 Contents of the AuditPool element

Name Data Type Description
Audit * element Chronologically ordered list of Audit elements. The Audit

elements are abstract and serve as placeholders for any audit.
Audit elements are described in the sections that follow.

Audit elements are described in greater detail in the following sections.

Chapter 3 Structure of JDF Nodes and Jobs 69

3.9.1 Audit Elements
All Audit elements inherit the content from the abstract Audit data type, described in the following table.

Table 3.21 Contents of the abstract Audit type

Name Data Type Description
Author ? string Text that identifies who made the entry. This can describe a person, an

agent, or both.

TimeStamp timeInstant In case of the audits Created, Modified, Spawned, Merged, and
Notification, this attribute records the date and time when the related
event occurred.

In case of the audits PhaseTime, ProcessRun, and ResourceAudit,
the attribute describes the time when the entry was appended to the
audit pool.

Listed in the following sections are the elements derived from the abstract Audit type. Following the
description of each element is a table outlining the attributes associated with that element.

3.9.1.1 ProcessRun
This element serves two related functions. Its first is to summarize one complete execution run of a node.
It contains attributes that record the date and time of the start, the end time, the final process state when the
run is finished, and, optionally, the process duration of the process run. These attributes are described in
Table 3.20.

Table 3.22 Contents of the ProcessRun element

Name Data Type Description
Duration ? timeDuration Time span of the effective process runtime without intentional or

unintentional breaks. That time span is the sum of all process
phases when the status is in_progress, setup or cleanup.

End timeInstant Date and time at which the process ends.

EndStatus enumeration The Status of the process at the end of the run. For a description
of process states, see Table 3.3 Contents of a JDF node.

Possible values are:

quoted

ready
failed_testrun

completed
aborted

Start timeInstant Date and time at which the process starts.

The second function of a ProcessRun element is to delimit a group of audits for each individual process
run. Every group of audits terminates with a ProcessRun element, which contains the information
described above. If a process must be repeated (as a result of a late change in the order, for example), all
audits belonging to the new run will be appended after the last ProcessRun element that terminates the

70 Chapter 3 Structure of JDF Nodes and Jobs

audits of the previous run. The number of ProcessRun elements is therefore always equivalent to the
number of process runs.

Even if a node describes partitioned resources, only one ProcessRun should be specified. Details about
the individual part processing times are logged in PhaseTime elements.

3.9.1.2 Notification
This element contains information about individual events that occurred during processing. For a detailed
discussion of event properties, see section 4.6 Error Handling.

Table 3.23 Contents of the Notification element

Name Data Type Description
Class enumeration Class of the notification. Possible values, in order of severity from

lowest to highest, are:

event – Indicates that an event due to any activity has occurred, for
example, machine events, operator activities, etc. This class is used
for the transfer of conventional event messages. In case of Class =
event, further event information should be provided by the
attributes Type and Value.

information – Any information about a process which cannot be
expressed by the other classes. No user interaction is required.

warning – Indicates that a minor error has occurred and an
automatic fix was applied. Execution continues.

error – Indicates that an error has occurred that requires user
interaction. Execution cannot continue.

fatal – Indicates that a fatal error led to abortion of the process.

Type ? NMTOKEN Identifies the event type. For a list of supported event types, see
Appendix I.

Value ? string Contains a value associated with the event. For a list of data types
associated to supported event types, see Appendix I.

Comment * telem The Notification element may contain Comment elements with a
verbose, human-readable description of the event. If the value of
the Class attribute is one of information, warning, error, or fatal, it
should provide at least one Comment element. In case of Class =
event, Comment elements are optional.

CostCenter ? element The cost center to which this event should be charged.

Employee * element The Employee associated with this event.

3.9.1.3 PhaseTime
This element contains audit information about the start and end times of any process states and sub-states,
denoted as phases. Phases may reflect any arbitrary subdivisions of a process, such as maintenance,
washing, plate changing, failures, and breaks.

PhaseTime elements may also be used to log the actual time spans when implementation resources are
used by a process. For example, the temporary necessity of a fork lift can be logged if a PhaseTime

Chapter 3 Structure of JDF Nodes and Jobs 71

element is added that contains a link to the fork-lift device resource and specifies the actual start and end
time of the usage of that fork lift.

The times specified in the PhaseTime elements should not overlap with each other and should cover the
complete time range defined in the ProcessRun element that identifies the end of the run.

Table 3.24 Contents of the PhaseTime element

Name Data Type Description
End timeInstant Date and time of the end of the phase.

Start timeInstant Date and time of the beginning of the phase.

Status enumeration Status of the phase. Possible values of JDF node states are:

setup
in_progress

cleanup

spawned

stopped

The states listed above are a subset of the possible states of a JDF
node. For all possible states of a JDF node see Table 3.3. The
remaining set of states—quoted, ready, failed_testrun, aborted and
completed—must be logged by the ProcessRun audit element that
terminates the list of audits for one process run.

StatusDetails ? string Description of the status phase that provides details beyond the
enumerative values given by the Status attribute. For a list of
supported values, see Appendix F.

Device * element Links to Device resources that are working during this phase.
Employee * element Links to Employee resources that are working during this phase.
ModulePhase * element Additional phase information of individual device modules, such as

print units.

Part ? element Describes which part of a job is currently being logged. If Part is
not specified for a node that modifies partitioned resources,
PhaseTime refers to all parts. For example, imagine a print job that
should produce 3 different sheets. All sheets are described by one
partitioned resource. In order to separate the different print phases
for each sheet, the Part element defines, unambiguously, the sheet to
which the audit refers.

It is possible to monitor the states of individual modules of a complex device, such as a printer with
multiple print units, by defining ModulePhase elements. One PhaseTime element may contain multiple
ModulePhase elements and can therefore record the status of multiple units in a device. In contrast to
PhaseTime audit elements ModulePhase elements are allowed to overlap in time with one another.
ModulePhase elements are defined in the following table.

Table 3.25 Contents of the ModulePhase element

Name Data Type Description
DeviceID string Name of the device. This must be the DeviceID attribute of one of

the Device elements specified in the PhaseTime audit.

72 Chapter 3 Structure of JDF Nodes and Jobs

Name Data Type Description
DeviceStatus enumeration Status of the device module. Possible values are:

idle – The module is not used, for example, a color print module that
is inactive during a black-white print.

down – The module cannot be used. It may be broken, switched off
etc.

setup – The module is currently being set up.

running – The module is currently executing.

cleanup – The module is currently being cleaned.

stopped – The module has been stopped, but running may be resumed
later. This status may indicate any kind of break, including a pause,
maintenance, or a breakdown, as long as running can be easy
resumed.

These states are analogical to the device states of Table 5.38.

End timeInstant Date and time of the end of the module phase.

ModuleIndex IntegerRange
List

0-based indices of the module or modules. If multiple module types
are available on one machine, it is device dependent whether the
indices of each type restart at 0 or simply continue indexing.

ModuleType NMTOKEN Module description. The allowed values depend on the type of
device that is described. The predefined values are listed in
Appendix G.

Start timeInstant Date and time of the beginning of the module phase.

StatusDetails ? string Description of the module status phase that provides details beyond
the enumerative values given by the DeviceStatus attribute. For a
list of supported values, see Appendix F.

Employee * element Links to Employee resources that are working during this module
phase on this module (the module is specified by the attributes
ModuleIndex and ModuleType).

3.9.1.4 ResourceAudit
The abstract ResourceAudit element describes the usage of resources during execution of a node. It logs
consumption and production amounts of any quantifiable resources, accumulated over one process run or
one part of a process run.

A ResourceAudit element inherits all of the contents of the ResourceLink sub-class to which the
resource to be logged belongs, as well as the contents of the abstract Audit type. For example, the
QuantityAudit element may contain an Amount attribute that specifies the logged amount and that may
also contain an optional Part element that defines the part of a partitioned resource that was produced. The
element name of the audit depends on the ResourceLink sub-class from which it is derived as follows:

• ParameterAudit – Inherits from ParameterLink and Audit.
• HandlingAudit – Inherits from HandlingLink and Audit.
• QuantityAudit – Inherits from QuantityLink and Audit.
• ConsumableAudit – Inherits from ConsumableLink and Audit.
• ImplementationAudit – Inherits from ImplementationLink and Audit.

Chapter 3 Structure of JDF Nodes and Jobs 73

Note that in contrast to ResourceLink elements, where the Class attribute of the linked resource defines
an abstract ResourceLink element, the class of ResourceAudit elements defines the actual element name.

If the contents of a resource are modified, an optional rRefSaved attribute exists that can reference a copy
of the original resource. If the original resource does not need to be saved, a boolean ContentsModified
attribute should be used to indicate that a change has been made.

Table 3.26 Contents of the ResourceAudit element

Name Data Type Description
ContentsModified ? boolean Specifies that a modification has occurred but that the

original resource has been deleted.

rRefSaved ? IDREF If specified, this attribute represents the ID of the resource
before modification and before consumption or
production. This ID must be generated by the agent when
the resource copy is created. The element must reside in
the node where the referenced resource resides.

If a locked resource should be modified, then the resource
must be copied, and the attribute rRefSaved refers to the
locked resource instance and the rRef attribute to the
modified resource instance.

The usage of rRefSaved together with rRef allows to
retrace resource modifications. In other words, it enables
undo operations.

For details on ResourceLink elements and ResourceLink sub-classes, see section 3.7 Resource Links.
The partitioning of resources using Part elements is defined in section Description of Partitionable
Resources.

3.9.1.5 Logging Machine Data by Using the ResourceAudit.
If a resource is modified during processing, any nodes that also reference the resource may also be affected.
The following logging procedure is recommended in order to track the resource modification and to insure
consistency of the job:

1. Create a copy of the original resource with a new ID.

2. Modify the original resource to reflect the changes.

3. Insert a ResourceAudit element that references the modified original resource with the rRef

attribute and the copied resource with the rRefSaved attribute.

The following example describes the logging of a modification of the media weight and amount. The JDF
document before modification:

<JDF … >

<ResourceLinkPool>
<MediaLink rRef="RLink" Usage="input" Amount="400"/>

</ResourceLinkPool>
<ResourcePool>

<Media weight="80" ID="RLink"/>
<ResourcePool/>

</JDF>

74 Chapter 3 Structure of JDF Nodes and Jobs

The JDF after modification:

<JDF … >

<ResourceLinkPool>
<MediaLink rRef="RLink" Usage="input" Amount="400"/>

<!—note that the ResourceLink has not changed -->
</ResourceLinkPool>
<ResourcePool>

<Media weight="80" ID="RPrev"/> <!—Copy of the original resource-->
<Media weight="90" ID="RLink"/> <!—modified resource-->

<ResourcePool/>
<AuditPool>

<ConsumableAudit rRef="RLink" rRefSaved="RPrev" Usage="input"
Amount="421"/>

</AuditPool>
</JDF>

3.9.1.6 Created
This element allows the creation of a JDF node or resource to be logged. If the element refers to a JDF
node, it can be located in the AuditPool element of the node that has been created or in any ancestor node.
If the element refers to a resource it must be located in the node where the resource resides so that the
spawning and merging mechanism can work effectively.

Table 3.27 Contents of the Created element

Name Data Type Description
ref ? IDREF Represents the ID of the created element.

3.9.1.7 Modified
This element allows any modifications affecting a JDF node, such as changes made to the NodeInfo
element or CustomerInfo element, to be logged. Changes that can be logged by other audit element types,
such as resource changes, must not use this common log entry.

The modification can be described textually by adding a generic Comment element to the Modified
element. The location of the element in the node tree is the same as the location of the corresponding
Created element.

Table 3.28 Contents of the Modified element

Name Data Type Description
jRef IDREF The ID of the modified node. The modified element

resides in the modified node.

3.9.1.8 Spawned
This element allows a job that has been spawned to be logged in the AuditPool of the parent node of the
spawned job-part. For details about spawning and merging, see section 4.4 Spawning and Merging.

Chapter 3 Structure of JDF Nodes and Jobs 75

Table 3.29 Contents of the Spawned element

Name Data Type Description
Independent ? boolean Declares that independent jobs that have previously been

merged into a big job are spawned.

If it is set to true, the attributes jRefDestination,
rRefsROCopied and rRefsRWCopied have no meaning
and should be omitted.

Default = false

jRef IDREF ID of the JDF node that has been spawned.

jRefDestination ? NMTOKEN ID of the JDF node to which the job has been spawned.7
This attribute must be specified in the parent of the
original node if independent jobs are spawned.

rRefsROCopied ? IDREFS List of IDs separated by whitespaces. Identifies the
resources copied to the ResourcePool element of the
spawned job during spawning. These resources should not
be modified by the spawned job.

rRefsRWCopied ? IDREFS List of IDs separated by white spaces. Identifies the
resources copied to the ResourcePool element of the
spawned job during spawning. These resources may be
modified by the spawned job and must be copied back into
their original location by the merging agent.

Resource copying is required if resources are referenced
simultaneously from spawned nodes and from nodes in the
original JDF document.

Selector ? element Identifies the parts that were selected for spawning in case
of parallel spawning of partitionable resources (see section
4.4.3). Note that this copy may NOT contain an ID
attribute.

3.9.1.9 Merged
This element logs a merging event of a spawned job. For more details, see section 4.4 Spawning and
Merging.

Table 3.30 Contents of the Merged element

Name Data Type Description
Independent ? boolean Declares that independent jobs are merged into a big job

for common production.

If it is set to true, the attributes jRefSource and
rRefsOverwritten have no meaning and should be
omitted.

Default = false

jRef IDREF ID of the JDF node that has been returned or merged.

jRefSource ? NMTOKEN ID of the JDF root node of the big job from which the
spawned structure has been returned. 8

7 The data type is NMTOKEN and not IDREF because the attribute refers to an external ID.

76 Chapter 3 Structure of JDF Nodes and Jobs

rRefsOverwritten ? IDREFS Identifies the copied resources that have been overwritten
during merging. Resources are usually overwritten during
return if they have been copied during spawning with
read/write access.

Selector ? element Specifies the selected parts of the resource that were
merged in case of parallel spawning and merging of
partitionable resources (see section 4.4.3). Note that this
copy may NOT contain an ID attribute.

3.10 JDF Extensibility
JDF is meant to be flexible and therefore useful to any vendor, as each vendor will have specific data to
include in the JDF files. JDF is able to provide this kind of versatility by using the XML namespaces. This
chapter describes how JDF uses the XML extension mechanisms.

3.10.1 Namespaces in XML
JDF Extensibility is implemented using XML Namespaces. The Namespaces in XML specification is
found at http://www.w3.org/TR/REC-xml-names/.

XML namespaces are defined by xmlns attributes. A general example is provided below. The example
illustrates how private namespaces are declared and used to extend an existing JDF resource by adding
private attributes and a private element.

<JDF xmlns="JDFSchema URI" xmlns:foo="fooschema URI" … >

…
<SomeJDFDefinedResource name="abc" foo:specialname="cba">

…
<foo:PrivateStuff type=""/>
…

</SomeJDFDefinedResource>
…

</JDF>

Namespaces are inserted in front of attribute and element names. The associated namespace of element
names with no prefix is the default namespace defined by the xmlns attribute. The associated namespace of
attributes with no prefix is that one of the element (see Appendix A.2 XML Namespace Partitions in the
specification Namespaces in XML). All namespaces prefixes must be declared by xmlns:xxx attributes.

3.10.2 Extending Process Types
JDF defines a basic set of process types. Because JDF allows flexible encoding, however, this list, by
definition, will not be complete. Vendors that have specific processes that do not fit in the general JDF
processes and that are not combinations of individual JDF processes (see section 3.2.3 Combined Process
Nodes) can create JDF process nodes of their own type. Then the content of the Type attribute may be
specified with a prefix that identifies the organization. The prefix and name should be separated by a single
colon (‘:’) as shown in the following example:

<JDF Type="myCompaniesNS:MyVeryImmportantProcess" xmlns="JDFSchema URI"
xmlns:myCompaniesNS="my companies namespace URI" … >

8 The data type is NMTOKEN and not IDREF because the attribute refers to an external ID.

http://www.w3.org/TR/REC-xml-names/

Chapter 3 Structure of JDF Nodes and Jobs 77

…
</JDF>

If a process is simply an extension of an existing process, it is possible to describe the private data by
extending the existing resource types and/or creating new resource types, which are linked to pre-defined
JDF Process nodes. This is described in greater detail in the sections below.

Extending the NodeInfo and CustomerInfo nodes is achieved in a manner analogous to the extension of
resources, which is described below. On the other hand, extending the direct contents of JDF nodes by
adding new elements or attributes is discouraged.

3.10.3 Extending existing Resources
All resources defined by JDF may be extended by adding attributes and elements using an own namespace
for these resource extensions. This is useful when the pre-defined resource types need only a small amount
of private data added, or if those resources are the only appropriate place to put the data. The namespace of
the resource extended must not be modified. However, the mechanism for creating new resources in a
separate namespace is provided in the next section.

This does not mean that duplicate functionality may be added into these resource types. You must make
sure to use the JDF-defined attributes and elements where possible and extend them with additional
information that cannot be described using JDF-defined constructs. For example, it is not allowed to
extend the RIP resource that controls the resolution with a foo:Resolution or foo:Res attribute that overrides
the JDF defined resolution parameter (see attribute Resolution of resource RenderingParams in section
7.2.77).

3.10.4 Creating New Resources
There are certain process implementations that have functionality that cannot be specified by the pre-
defined Resource types. In these cases, it is necessary to create a new Resource-type element, which must
be clearly specified using its own namespace. These resource types can be linked to both pre-defined and
custom type JDF process nodes.

3.10.5 Future JDF Extensions
In future versions, certain private extensions will become more widely used, even by different vendors. As
private extensions become canonical, those extensions will be candidates for inclusion in the next version
of the JDF specification.

At that time the specific extensions will have to be described and will be included into the JDF namespace.

3.10.6 Maintaining Extensions
Given the mix of vendors that will use JDF, it is likely that there will be a number of private extensions.
Therefore, JDF controllers must be prepared to receive JDF files that have extensions. These controllers
can and should ignore all extensions they don’t understand, but under no circumstance are they allowed
to remove these extensions when making modifications to the JDF. If they do, it will break the
extensibility mechanism. For example, imagine that JDF Agent A creates a JDF and inserts private
information for Process P. Furthermore, the information is only understood by agent A and the appropriate
device D for executing P. If the JDF needs to be processed first by another Agent/Device C, and that
process removes all private data for P, Process P will not be able to produce the correct results on device D
that were specified by Agent A.

78 Chapter 3 Structure of JDF Nodes and Jobs

3.10.7 Processing Unknown Extensions
If a node is processed by a controller or device and it encounters an unknown extension in one of its input
resources, a Notification element with Class = warning should be logged.

3.10.8 Derivation of Types in XML Schema
The XML Schema definition http://www.w3.org/TR/xmlschema-1/ describes a mechanism to create new
types by derivation from old types. This is an alternative to extend or create new elements and is described
in section 4 of http://www.w3.org/TR/xmlschema-0/. This mechanism is not allowed to be applied to any
elements defined by JDF because such new element types can only be understood by the agent that made
the extension.

The use of the derivation mechanism is allowed only for private extensions but not required.

http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-0/

Chapter 4 Life Cycle of JDF 79

Chapter 4 Life Cycle of JDF
This chapter describes the life cycle of a JDF job, from creation through modification to processing.
Information is provided about the spawning of individual aspects of jobs and in what way they are re-
incorporated into the job once the process is completed. Ancillary aspects of the life cycle, such as test
running and error handling, are also discussed.

4.1 Creation and Modification
The life cycle of a JDF job will likely follow one of two scenarios. In the first scenario, a job is created all
at once, by a single agent, and then is consumed by a set of devices. More often, however, a job is created
by one agent and is then transformed, or modified, over time by a series of other agents. This process may
require specification of product intent, which is defined in section 4.1.1, below.

Jobs can be modified in a variety of ways. In essence, any job is modified as it is executed, since
information about the execution is logged. The most common instance of modification of a JDF job,
however, occurs during processing, when more detailed information is learned or understood and then
added along the way. This information may be added because an agent knows more about the processing
needed to achieve some result specified in a JDF node than the original, creating agent knew. For example,
one agent may create a product node that specifies the product intent of a series of pages. This product
node may include information about the number of pages and the paper properties. Another node may then
be inserted that includes a resource describing how the pages should be RIPped. Later, another agent may
provide more detail about the RIPping process by appending optional information to the RIP parameter
resource.

Regardless of where in the life cycle they are written, nodes and their required resources must be valid and
include all mandatory information in order to have a Status of ready or available. This restriction allows
for the definition of incomplete output resources. For example, a URL resource without a file name may be
completed by a process. On the other hand, it is impossible to define a valid and executable node with
insufficient input parameters.

Once all of the inputs and parameters for the process requested by a node are completely specified, a
controller can route the JDF job containing this node to a device that can execute the process. When the
process is completed, the agent/controller in charge of the device will modify the node to record the results
of the process.

4.1.1 Product Intent Constructs
JDF jobs, in essence, are requests made by customers for the production of quantities of some product or
products. In other words, a job begins with a particular goal in mind. In JDF, product goals are often
specified by using a construct known as product intent, represented by intent resources. In contrast to
process resources that define precise values, intent resources allow ranges or sets of preferred values to be
specified. Resources of this kind include FinishingIntent, ColorIntent, MediaIntent, and
ScreeningIntent, all of which are described in Chapter 7 Resources.

The product intent of a job is like a plan of action. The plan may be extremely vague, detailing only the
general goal, or it may be very specific, stipulating the specific requirements inherent in meeting that goal.
Product intent may be defined for an end product about which little is known or about which the processing
details for the job are entirely unknown. Product intent constructs also allow agents to describe jobs that
comprise multiple product components, and that may share some parts.

80 Chapter 4 Life Cycle of JDF

Product intent is defined by the initiating agent of a job. It is not mandatory, however. Many JDF jobs are
written with full knowledge of the necessary processes, and are therefore comprised entirely of the various
kinds of process nodes described in sections 3.2.1, 3.2.2, and 3.2.3. Any job that specifies product intent,
however, must include nodes whose Type = Product. This representation is described in the following
section.

4.1.1.1 Representation of Product Intent
The product description of a job is a hierarchy of Product nodes, and the bottom-most level of the product
hierarchy represents portions of the product that are each homogeneous in terms of their materials and
formats. All nodes below these Product nodes begin specifying the processes required to produce the
products.

Product nodes are required to contain only one thing, and that is a resource that represents the physical
result specified by the node. This resource is generally a Component. In addition, somewhere in the
hierarchy of product nodes, it is a good idea to include an intent resource to describe the characteristics of
the intended product. Although these are the only resources that should occur, Product nodes can contain
multiple resources. For example, some ResourceTypes, such as MediaIntent and SizeIntent, are
defined to provide more general mechanisms to specify product intent.

In some cases, more than one higher-level product node will use the output of a product node. These
higher-level nodes represent the combination of homogeneous product parts. In this case, the Amount
attribute of the ResourceLinks that connect the nodes will identify how the low-level product is shared.

4.1.1.2 Representation of Product Binding
Some product intent nodes, such as BindingIntent, define how to combine multiple products. To
accomplish this, the respective Component resources must be labeled according to their usage. For
example, the Cover and Insert attributes use the ProcessUsage attribute of the respective resource links.

For more information about product intent, see section 3.2.1 Product Intent.

4.1.2 Quote Generation [RP2]Using Intent Resources
One potential use for defining product intent is to help in estimating cost quotes for customers. The
customer may not know any more than the broad strokes of what he is looking to accomplish, but may want
a cost estimate based on what he does know. For example, a customer may want a 4-color brochure with
stapled bindings, but he may not know the size it should be or the kind of paper to use. A product intent
node can be constructed that fills in potential details and provides an estimate for that job, and the customer
can be given a set of quotes based on specific intent. Options are labeled by an integer index and inserted
into the appropriate intent resources as Selection elements, and the actual price is inserted into a Selection
element of the NodeInfo element. This allows multiple quotes to be specified within one JDF node.

The following example shows an RFQ for a simple job1 and a set of three quote options—one for each
colormodel—as a response. The dimensions of the product is selected to be 16 pages 8.5*15 paper for all
quotes (specified in black bold). The returned quote JDF specifies one quote for each ColorModel
(BW, Process4, Process6) defined in the range.

Request for Quote

1 Note that the job is incomplete and that the resource examples were chosen only to illustrate the method
of defining multiple quote options within a job.

Dr. Rainer Prosi
TBD-PrintTalk: where de we hide the quote binding deadlines?

Chapter 4 Life Cycle of JDF 81

<?xml version='1.0' encoding='utf-8' ?>
<JDF ID="L00" Type="Product" JobID="JobID" Status="waiting"
Version="0.9" Activation=“RFQ“>

<NodeInfo Currency="DEM"/>
<ResourcePool>

<Component ID="Link0002" Class="Quantity" Status="unavailable"
DescriptiveName="complete 16-page Brochure"/>

<SizeIntent ID="Link0003" Class="Intent" Status="available">
<Height Range="720~864" DataType="NumberSpan" Preferred="792"/>

<Width Range="612~720" DataType="NumberSpan"/>
<Pages DataType="IntegerSpan" Preferred="16"/>

</SizeIntent>
<ColorIntent ID="Link0004" Class="Intent" Status="available">

<ColorModel Range="Process4 BW Process6" DataType="NameSpan"/>
</ColorIntent>
</ResourcePool>
<ResourceLinkPool>

<ComponentLink rRef="Link0003" Usage="output" Amount="10000"/>
<SizeIntentLink rRef="Link0004" Usage="input"/>
<ColorIntentLink rRef="Link0005" Usage="input"/>

</ResourceLinkPool>
</JDF>

Returned Quote
<?xml version='1.0' encoding='utf-8' ?>
<JDF ID="L00" Type="Product" JobID="JobID" Status="quoted"
Version="0.9" Activation=“RFQ“>

<NodeInfo Currency="DEM">
<Quotes DataType="NumberSpan">

<NumberSelection Index="0" Actual="2000"/>
<NumberSelection Index="1" Actual="4000"/>
<NumberSelection Index="2" Actual="6000"/>

</Quotes>
</NodeInfo>
<ResourcePool>

<Component ID="Link0002" Class="Quantity" Amount="10000"
Status="unavailable" DescriptiveName="complete 16-page Brochure"/>

<SizeIntent ID="Link0003" Class="Intent" Status="available">
<Height Range="720~864" DataType="NumberSpan" Preferred="792">

<NumberSelection Index="0~-1" Actual="792"/>
</Height>
<Width Range="612~720" DataType="NumberSpan">

<NumberSelection Index="0~-1" Actual="612"/>
</Width>
<Pages DataType="IntegerSpan" Preferred="16">

<IntegerSelection Index="0~-1" Actual="16"/>
</Pages>

</SizeIntent>
<ColorIntent ID="Link0004" Class="Intent" Status="available">

<ColorModel Range="Process4 BW Process6" DataType="NameSpan">
<NameSelection Index="0" Actual="BW"/>
<NameSelection Index="1" Actual="Process4"/>
<NameSelection Index="2" Actual="Process6"/>

</ColorModel>
</ColorIntent>

82 Chapter 4 Life Cycle of JDF

</ResourcePool>
<ResourceLinkPool>

<ComponentLink rRef="Link0002" Usage="output"/>
<SizeIntentLink rRef="Link0003" Usage="input"/>
<ColorIntentLink rRef="Link0004" Usage="input"/>

</ResourceLinkPool>
</JDF>

Selection of the Quote
The following JDF is returned to the printer by the buyer and specifies, that he wants option 2 selected.
The original quote is truncated, since the information already resides with the printer.

<?xml version='1.0' encoding='utf-8' ?>
<JDF ID="HDM20000919091206" Type="Product" JobID="JobID"
Status="quoted" Version="0.9" Truncated="NodeInfo AuditPool"
Activation="RFQ">

<NodeInfo LastEnd="2000-09-20T00:38:01+02:00" Currency="DEM"
QuoteSelection="2">

<Quotes DataType="NumberSpan">
<NumberSelection Index="0" Actual="2000"/>
<NumberSelection Index="1" Actual="4000"/>
<NumberSelection Index="2" Actual="6000"/>

</Quotes>
</NodeInfo>
<AuditPool>

<Created Author="Rainer's JDFWriter 0.2000" TimeStamp="2000-09-
19T09:12:06+02:00"/>

</AuditPool>
</JDF>

4.1.3 Specification of Delivery of End Products
A job may define one or more products and specify a set of deliveries of those end products. To
accomplish this, a node of Type = Product is created to define each delivery mode to be made. A delivery
contains a set of drops, which in turn contain a set of packages. Each drop has a common delivery address
and each package contains the amount of an individual Component that is to be delivered to this address.

The following example defines a fairly complex delivery scenario of three pre-manufactured components
with two mutually exclusive delivery options. The blue components (ID=Link0004-Link0006) describe the
actual components that should be delivered. These would be the output of high level product nodes in a
complete JDF. The green node (ID=Link0002) describes a simple delivery option where all components
are picked up at one drop. The red node (ID=Link0003) defines a delivery mode with three drops, each
containing varying amounts of the individual components.

<?xml version='1.0' encoding='utf-8' ?>
<JDF ID="Deliv" Type="Product" JobID="Delivery" Status="waiting" Version="0.9"
ChildCombination="or">
<NodeInfo/>
<ResourcePool>
<Component ID="Link0004" Class="Quantity" Amount="10000" Status="available"

DescriptiveName="First Product"/>
<Component ID="Link0005" Class="Quantity" Amount="10000" Status="available"

DescriptiveName="Second Product"/>
<Component ID="Link0006" Class="Quantity" Amount="10000" Status="available"

DescriptiveName="Third Product"/>
</ResourcePool>

Chapter 4 Life Cycle of JDF 83

<JDF ID="Link0002" Type="Product" Status="waiting" DescriptiveName="First Delivery
Option" >

<NodeInfo/>
<ResourcePool>
<DeliveryIntent ID="Link0007" Class="Intent" rRefs="Link0004 Link0005 Link0006"

Status="available">
<NameSpan Name="Method" Preferred="PickUp"/>
<!—Simple Drop that links to all three components-->
<DropIntent Earliest="2000-09-19T01:17:32+02:00">
<Company>
<Contact>
<Address City="Kiel" Country="Germany" PostalCode="24113"/>

</Contact>
</Company>
<PackageIntent rRef="Link0004"/>
<PackageIntent rRef="Link0005"/>
<PackageIntent rRef="Link0006"/>

</DropIntent>
</DeliveryIntent>

</ResourcePool>
<ResourceLinkPool>
<DeliveryIntentLink rRef="Link0007" Usage="input"/>

</ResourceLinkPool>
</JDF>
<JDF ID="Link0003" Type="Product" Status="waiting" DescriptiveName="Second Delivery

Option">
<NodeInfo/>
<ResourcePool>
<DeliveryIntent ID="Link0008" Class="Intent" rRefs="Link0004 Link0005 Link0006"

Status="available">
<NameSpan Name="Method" Range="SurfaceMail"/>

 <!—Drop that links to all of the first component-->
<DropIntent Earliest="2000-09-21T08:50:52+02:00">

<Company>
<Contact>
<Address City="Hamburg" Country="Germany" PostalCode="24000"/>

</Contact>
</Company>
<PackageIntent rRef="Link0004">
<IntegerSpan Name="Amount" Preferred="10000"/>

</PackageIntent>
</DropIntent>
<!—Drop that links to a part of the last two components-->
<DropIntent Earliest="2000-09-21T08:50:52+02:00">
<Company>
<Contact>
<Address City="Paris" Country="France" PostalCode="75008"/>

</Contact>
</Company>
<PackageIntent rRef="Link0005">
<IntegerSpan Name="Amount" Preferred="4000"/>

</PackageIntent>
<PackageIntent rRef="Link0006">
<IntegerSpan Name="Amount" Preferred="3000"/>

</PackageIntent>
</DropIntent>
<!—Drop that links to the rest of the last two components-->
<DropIntent Earliest="2000-09-14T10:10:52+02:00">
<NameSpan Name="Method" Range="AirMail"/>
<Company>
<Contact>
<Address City="San Francisco" Country="US" PostalCode="77777"/>

</Contact>
</Company>
<PackageIntent rRef="Link0005">
<IntegerSpan Name="Amount" Preferred="6000"/>

</PackageIntent>
<PackageIntent rRef="Link0006">
<IntegerSpan Name="Amount" Preferred="7000"/>

</PackageIntent>
</DropIntent>

84 Chapter 4 Life Cycle of JDF

</DeliveryIntent>
</ResourcePool>
<ResourceLinkPool>
<DeliveryIntentLink rRef="Link0008" Usage="input"/>

</ResourceLinkPool>
</JDF>

</JDF>

For more information, see section 6.2.3 Delivery.

4.2 Process Routing
A controller in a JDF workflow system has two tasks. The first is to determine which of the nodes in a JDF
document are executable, and the second is to route these nodes to a device that is capable of executing
them. Both of these procedures are explained in the sections that follow.

In a distributed environment with multiple controllers and devices, finding the right device or controller to
execute a specific node may be a non-trivial task. Systems with a centralized, smart master controller may
want to route jobs dynamically by sending them to the appropriate locations. Simple systems, on the other
hand, may have a static, well-defined routing path. Such a system may, for example, pass the job from hot-
folder to hot-folder. Both of these extremes are valid examples of JDF systems that have no need for
additional routing meta-data.

In order to accommodate systems between these extremes, the NodeInfo element of a node contains
optional Route and TargetRoute attributes that let an agent define a static process route on a node-by-
node basis. If no Route or TargetRoute attribute is specified, and if a controller has multiple options
where to route a job, it is up to the implementation to decide which route to use.

The controller or device reading the JDF job is responsible for processing the nodes. A device examines
the job and attempts to execute those nodes that it knows how to execute, whereas a controller routes the
job to the next controller or device that has the appropriate capabilities.

4.2.1 Determining Executable Nodes
In order to determine which node should be executed, the controller/device uses the following procedures:

1. First, it searches the JDF document for node types it can execute by comparing the Type attribute
of the node to its own capabilities, and by determining the Activation of the nodes. It should also
verify that the Status of the node is either waiting or ready.

2. The controller/device may then determine whether all of the input resources of the respective

nodes have a Status of available and not a SpawnStatus of spawned_RW, and that all processes
that are attached through pipes are ready to execute. A controller may optionally skip this check
and expect the lower-level controller or device that it controls to perform this step and return with
an error if it fails.

3. Finally, if scheduling information is provided in the NodeInfo element, the specified start and/or

end time must be taken into account by the executing device. If no process times are specified, it
is up to the device in charge of queue handling to execute the process node.

4.2.2 Distributing Processing to Work Centers or Devices
JDF syntax supports two means of distributing processes to work centers or devices. Its first option is to
use a so-called “smart” controller that has the ability to parse a JDF job and identify individual processes or
process groups that may be distributed to a particular work center or device. This smart controller may use

Chapter 4 Life Cycle of JDF 85

spawning and merging facilities to sub-divide the job ticket and pass specific instructions to a work center
or device.

The second option, which is applicable when the controller being used isn’t “smart,” is to employ a simple
controller implementation that routes the entire job to each workcenter or device, thus leaving it up to the
recipient to determine which processing it can accomplish. For this option to work, each JDF-capable
device must be able to identify process nodes it is capable of executing. Furthermore, each device must
have sufficient JDF-handling capabilities to identify processes that are ready to run.

4.2.3 Device / Controller Selection
The method used to determine which is the appropriate device or lower-level controller to use to execute a
given node depends greatly on the implemented workflow being used. Although JDF provides a method
for storing routing information in the Route attribute of the NodeInfo element of a node, it does not
prescribe any specific routing methods. However, some of the tools available to figure out alternative
workflows are described below.

Knowledge of the capabilities of lower level controllers/devices either may be hard-wired into the system
or gained using the KnownJDFServices message. Since JDF does not yet provide mechanisms to
determine whether a given device is capable of processing a node without actually performing a test run, a
controller must either have a priori knowledge of the detailed capabilities of devices that it controls or it
must perform a test run to determine whether a device is capable of executing a node. Furthermore, in
addition to the explicit routing information in the Route attribute of the NodeInfo element of a node, JDF
may contain implicit routing information in the form of Device implementation resources.

JMF defines the KnownControllers query to find controllers and the KnownDevices query to find
devices that are controlled by a controller. The information provided by these queries can be used by a
controller to infer the appropriate routing for a node. In a system that does not support messaging, this
information must be provided outside of JDF.

4.3 Execution Model
JDF provides a range of options that help controllers tailor a processing system to the needs of the
workflow and of the job itself. The following sections explain the ways in which controllers execute
processes using these various options.

The processing model of JDF is based on a producer/consumer model, which means that the sequencing of
events is controlled by the availability of input resources. As has been described, nodes act both as
producers and consumers of resources. When all necessary inputs are available in a given node, and not
before, the process may execute. The sequence of processing, therefore, is implied by the chain of
resources in which the output resources of one node become the input resources of a subsequent node.

JDF supports four kinds of process sequences: serial processing, overlapping processing, parallel
processing, and iterative processing. All four are described in the following sections.

4.3.1 Serial Processing
The simplest kind of process routing, known as serial processing, executes nodes sequentially and with no
overlap. In other words, no nodes are executed simultaneously. Once the process has acted upon the
resource in some way, the resource availability is described by the Status attribute of the resource, as
described above. When the process state is ready or waiting, the process can begin executing.

86 Chapter 4 Life Cycle of JDF

In a workflow using serial processing, the controller is responsible for comparing the actual amount
available with the specified amount in the corresponding PhysicalLink element to determine whether or
not the input resource can be considered available. If no amount is specified in the PhysicalLink, the
process is assumed to consume the entire resource.

R1 P1 R2

P2
R4

R3

time

Figure 4.1 Example of a simple process chain linked by resources

Figure 4.1 depicts a simple process chain that produces and consumes Quantity resources and uses an
implementation resource. The resources R1, R2, and R3 represent Quantity resources. Process P1
consumes resource R1 and produces resource R2. R2 is then completely consumed by P2, which also
requires the implementation resource R4 for processing. Process P2 uses these two resources and produces
resource R3. All of this is accomplished along a linear time axis.

Table 4.1, which follows, shows the value of the Status attribute of each of the resources and processes
used in Figure 4.1. The time axis runs from left to right both in Figure 4.1 and in Table 4.1. Note that no
process may execute until all resources leading up to that process are in place. In other words, the job
executes serially and sequentially. For more information about the values of the Status attribute of
resources, see Table 3.9. For more information about the values of the Status attribute of processes, see
Table 3.3.

Table 4.1 Examples of resource and process states in the case of simple process routing

Object Status before running
P1

during running
P1

after running
P1, before P2

during P2 after P2

resource R1 available in_use unavailable unavailable unavailable

resource R2 unavailable unavailable available in_use unavailable
resource R3 unavailable unavailable unavailable unavailable available

resource R4 available available available in_use available

process P1 waiting or ready in_progress completed completed completed

process P2 waiting or ready waiting or ready waiting or ready in_progress completed

When the attribute Amount is used in connection with the quantifiable resources R1, R2, or R3 and their
links, then the controller must decide whether or not a resource is available by comparing the individual
values. If the amounts are used to define the availability, then the resource Status may be set to available
for all Quantity resources. Note that when the value of the Status attribute of the resource is unavailable
the resource is not available, even if a sufficient amount is specified.

If amounts are specified in the resource element, they represent the actual available amount. If they are not
specified, the actual amount is unknown, and it is assumed that the process will consume the entire
resource. Amounts of PhysicalLink elements must be specified for output resources that represent the
intended production amount. The specification of the Amount attribute for input resources is not required,
although it can be specified. If the controller cannot determine the amounts, this constitutes a JDF content
error, which is logged by error handling. This process is described in section 4.6 Error Handling.

Chapter 4 Life Cycle of JDF 87

If a process in a serial processing run does not finish successfully, the final process status is designated as
aborted. In an aborted job, only a part of the intended production may be available. If this occurs, the
actual produced amount is logged into the audit pool by a resource audit element.

4.3.2 Overlapping Processing Using Pipes
Whereas pipes themselves are identified in the resource that represents the pipe, pipe dynamics are declared
in the resource links that reference the pipe. This allows multiple nodes to access one pipe, each of them
with its own pipe buffering parameters.

In some situations, resource linking is a continuous process rather than a chronological one. In other
words, one process may require the output resources of another process before that process has completely
finished producing them. The ability to accomplish this kind of resource transfer is known as overlapping
processing, and it is accomplished with the use of a mechanism known as pipes. Pipes are considered to be
active if any process linking to the pipe simultaneously consumes or produces that pipe resource.

Any resource may be transferred into a pipe resource. All that is required is that the PipeID attribute be
specified in the resource. Pipes of quantifiable resources resemble reservoir tanks that hang between
processes. Processes connected to the pipe via output links fill the tank with necessary resources, while
processes connected via input links deplete it (see Figure 4.2). The level is controlled by the PhysicalLink
attributes PipeResume, PipePause, RemotePipeEndPause, and RemotePipeEndResume (see
Table 3.16). If none of them are specified, any produced Quantity may be immediately consumed by the
consuming end of the pipe. The unit of the buffers is defined by the Unit attribute of the resource.

The two following diagrams show the ways in which pipes mediate between the process producing the
resource and the process consuming the resource. The following optional attribute values are defined for
pipes: PipePartIDKeys, PipePause, PipeResume, RemotePipeEndPause, and
RemotePipeEndResume. The latter two—RemotePipeEndPause and RemotePipeEndResume—
are use to control the level in context with pipe command messages which will be described in section
4.3.2.2 Dynamic Pipes. The specified value of each of these attributes in any given node dictates the levels
at which a pipe should resume or pause execution. Figure 4.3 gives an example of a view on the dynamics
of a pipe resource. The available level of the pipe resource, represented as R2, and the availability status of
two entity resources, represented as R1 and R3, are changing along a consistent time line. Below the
progressions of these resources is the status of two processes—P1 and P2. P1 represents the process
producing the pipe resource and P2 represents the process consuming that resource. The resource status of
a active pipe (here R2) is defined to be Status = in_use (see also Table 3.9).

R1 P1

P2 R3

PipePause = maximum (of output, P1)

pipe resource R2

output, prod.

input, consum.

PipeResume (of output, P1)

PipePause (of input, P2)
PipeResume (of input, P2)

Figure 4.2 Example of a Pipe resource linking two processes

Figure 4.2 is a view on the structure and Figure 4.3 a view on the dynamics of the pipe example considered
here. R1 represents an input resource for P1, which feeds into the intermediate pipe resource R2. Once the

88 Chapter 4 Life Cycle of JDF

tank R2 is filled to the predetermined level, it is used as the input resource for P2, which in turn produces
output resource R3.

0
input PipeResume

output PipePause level

R2

R1 unavailable
available

time

R3 unavailable
available

amount

P1 waiting .or.
ready

in_progress

completed

P2 waiting .or.
ready

in_progress
completed

endstart

output PipeResume

stopped

R2 unavailable in_use

Figure 4.3 Example of status transitions in case of overlapping processing

Resource linking through pipes is controlled through the specification of the PipePause and
PipeResume attributes. The intended amount of a resource must be specified in advance in the output
link. Whenever the level representing the available quantity of the pipe resource exceeds the PipePause
level of the output link, the process P1 is halted (Status = stopped) so that the process does not
overproduce. Once the level falls below the PipeResume value, the process P1 resumes execution. P1 is
completed when it has produced the intended amount. Once P1 has performed its task, the resources still in
the pipe are consumed by the subsequent process without level control. In other words, after a process
filling a pipe buffer has completed, pipe buffering becomes disabled.

Conversely, if the level representing the actual amount exceeds the PipeResume level of the input link, P2
can start or resume execution. If it falls below the PipePause level, P2 is halted (Status = stopped)
unless the intended amount of the pipe resource R2 has already been produced. Then the PipePause level
is ignored and the pipe resource is completely consumed.

In the case of output links, the PipeResume value must be smaller than the PipePause value, whereas in
the case of input links, the PipeResume value must be greater than the PipePause value. If PipePause
is specified for an input or an output link and PipeResume is not specified, the related process may run
into a deadlock state. In other words, the process stops and cannot resume execution automatically. Once a
process is stopped under these circumstances it can only be resumed manually or by sending a pipe control
message for resumption that allows interconnected execution control (halting and resumption of processes

Chapter 4 Life Cycle of JDF 89

by pipe control messages is described in section 5.5.3 Pipe Control). If the attributes PipeResume or
PipePause of links to pipe resources are not specified, the controller is responsible when the linked
processes start and stop in dependence of the level.

4.3.2.1 Pipes of Partionable Resources
Pipes of partitionable resources may also define the granularity of the resources that are considered to be
one part. To accomplish this, the PipePartIDKeys attribute must be specified in the appropriate
ResourceLink element. For instance, a partitioned ImageSetting process may be defined for multiple
sheet separations, but a complete set containing all separations of both sides of a single sheet should be sent
to the pressroom as one pipe request. In this case, the value of the PartIDKeys attribute of the
ExposedMedia resource would be SheetName Side Separation and the value of the PipePartIDKeys
attribute of the resource link to the pipe would be SheetName.

4.3.2.2 Dynamic Pipes
In addition to abstractly declaring pipe properties, JMF provides pipe messages that allow dynamic control
of pipes. Dynamic pipes can be used to model situations where the required amount of resources is not
known beforehand but becomes known during processing. An example of this behavior is a long press run
where new plates are required during a press run because of quality deterioration. The exact point in time
where quality becomes unacceptable is not predetermined and may even vary from separation to separation.
Dynamic pipes provide the flexibility to adjust to changing situations of this nature.

Dynamic pipes provide a PipeURL attribute that allows dynamic requests for a status change of the pipe
while a process is executing. Dynamic requests use JMF pipe control messages (see section 5.5.3 Pipe
Control) sent to another controller whose URL address is specified by the PipeURL attribute of the
respective resource link. Depending on the values of the resource link's Usage attribute, the following
actions are possible:

• Input – The consumer sends a PipePull message to its PipeURL in order to request additional
resources or a PipePause to halt production by the creator. The consumer sends a PipeClose
message to the producer if the consumer does not require any further resources.

• Output – The creator sends a PipePush message to its PipeURL in order to deliver additional

resources or a PipePause to halt consumption by the consumer.

When dynamic pipes are used—that is, when the PipeURL attribute is specified—the pipe buffering
parameters RemotePipeEndResume and RemotePipeEndPause define the buffering parameters of the
remote (controlled) end. PipeResume and PipePause, meanwhile, define the buffering parameters of
the local node as described in section 4.3.2. The buffering parameters of a non-dynamic pipe may control
the process that contains the resource link, whereas the buffering parameters of a dynamic pipe control the
process at the other end of the pipe. The pipe control messages described later in section 5.5.3 Pipe
Control are designed to establish communication between processes at both ends of dynamic pipe, even if
the corresponding processes are spawned separately.

The following table summarizes the actions to be taken when the buffer in a dynamic pipe reaches a certain
level L:

Table 4.2 Actions generated when a dynamic-pipe buffer passes various levels

Controlling Pipe End Situation Message Description

90 Chapter 4 Life Cycle of JDF

output (creator) L > RemotePipeEndResume PipePush Sufficient resources have
been produced by the
creator and are ready for
delivery to the consumer.

output (creator) L < RemotePipeEndPause PipePause The consumer has
consumed to the low water
mark and must pause until
a sufficient amount of
resources have been
produced.

input (consumer) L < RemotePipeEndResume PipePull More resources are
requested from the creator
and processing may
continue by the consumer.

input (consumer) L > RemotePipeEndPause PipePause The creator has produced to
the high water mark and
must wait until a sufficient
amount of resources have
been consumed.

Dynamic pipes are initially dormant, and must be activated by an explicit request. Dynamic pipe requests
may be initiated by both ends of the pipe. For example, a print process may notify an off-line finishing
process when a certain amount is ready by sending a PipePush message, or the printing process may
request a new plate by sending a PipePull message.

4.3.2.3 Comparison of Non-Dynamic and Dynamic Pipes
The resource link between non-dynamic pipes provides the buffering parameters for the process to which
the link belongs. Therefore, many processes can link to the same pipe resource. Furthermore, each process
has its own buffering parameters, whether it is a consumer or a producer. In order to control non-dynamic
pipes, one master-controller must control all processes linked to the pipe resource.

In contrast, dynamic pipes provide a URL address to control a process at the other pipe end. Then the
buffering parameters of the resource link control the process at the other end. In the case of dynamic pipes,
no master-controller is required in order to control the pipe. Control is accomplished by sending pipe
messages.

If pipe resources are linked to multiple consumers or producers, such as two finishing lines that consume
the output of one press one palette at a time, it is up to implementation to ensure consistency of the
processes.

When using pipe resources, it is recommended that scheduling data for the process be specified only in the
NodeInfo element of the parent node of the processes linked by pipe resources in order to avoid scheduling
deadlocks. In Figure 4.3 for instance, the actual start and end time of the corresponding parent of P1 and
P2 are marked on the time axis.

4.3.3 Parallel Processing
While serial processing assumes that all resources will be produced and consumed in a linear fashion, and
while overlapping processing uses multiple processes that work together to use and create resources, there
are times when it makes sense to run more than one process simultaneously, creating a more multi-pronged
workflow. This kind of process routing is known as parallel processing. Subsections of jobs are spawned
off so that nodes may be executed individually and simultaneously by the appropriate devices. Once the

Chapter 4 Life Cycle of JDF 91

processes are complete, the spawned nodes are merged back into the original job. The output resources of
the merged nodes become inputs for later processes. For example, an insert may be produced
independently of a cover, and both will be bound together later.

In parallel processing, processes can be run in a coordinated parallel fashion by using independent
resources. An independent resource is a resource that is not shared between multiple processes.
Implementation resources, for example, cannot be shared and are therefore always independent, and
Consumable and Quantity resources can each be split to function as independent resources. Individual
partitions of partitionable resources are independent and may be processed in parallel. Read-only
resources, such as parameters, can be shared without any restrictions, and can therefore be used in read-
only mode for parallel processing. Process chains created using independent resources are known as
independent process chains.

Parallel processing can proceed in one of two ways. Either a controller may organize the JDF nodes in a
way that allows it to initiate parallel processing or it can use the spawning-and-merging mechanism to field
out chunks of the job to execute simultaneously. If a controller chooses the latter method, parent nodes that
contain independent process chains can be spawned off and processed independently. For example, in
order to improve production capacity, an agent may split consumable resources and create independent
process chains in which each chain consumes its own resource part. Afterwards, the agent can submit one
of the created job parts to a subcontractor and process the other part with its own facilities.

When splitting resources, it is not enough simply to insert an additional Location element into the resource
element and divide the amount between the Location elements, as the parallel running processes would
then link simultaneously to the same resource element. To split resource elements correctly, a separate
resource must be created with its own Location element, and the amount must be divided between the
Location elements of the independent resource instances.

Parallel processing is used only to process multiple aspects of a job simultaneously; it is not used to process
multiple copies of a JDF job. In other words, a job must not be copied and sent to different controllers for
parallel processing.

For more information about spawning of jobs, see section 4.4 Spawning and Merging.

4.3.4 Iterative Processing
Some processes, especially in the prepress area of production, cannot be described as a serial or parallel set
of process steps. Instead, a set of interdependent processes is iterated in a non-deterministic order. These
processes are known as iterative processes. For example, an advertisement is laid out that requires a
photographic image. During the layout phase, changes must be made to the color settings of the image,
which is the reinserted to the layout. Changes such as these can be described in a high-level fashion by
defining a resource Status attribute of draft. As long as an input resource to a process has a status of draft,
the Status of the output resource may not be available.

The ResourceLink that links to a draft input resource must include a DraftOK attribute to state that a draft
input resource is acceptable for a process. Thus a prepress layout process can be abstractly defined to work
on draft resources until an acceptable output has been achieved, but the output PDL-file may not be used
for printing until it is available and no longer designated as a draft.

Iterative processes may be set up in a formal fashion using dynamic pipes to convey parameter change
requests or in an informal way that assumes that the operators of the various processes have an informal
communication channel. Both are described in greater detail below.

92 Chapter 4 Life Cycle of JDF

4.3.4.1 Informal Iterative Processing
Informal iterative processing does not require a complete redefinition of the required resources at every
iteration. This kind of processing is generally used in a creative workflow, where a job is defined and gets
refined in a series of steps until it is completed. The information about the changes is transferred through
channels that bypass JDF. Nonetheless, the description of these processes in JDF is useful for accounting
purposes, as the status of each process may be monitored individually.

The ResourceLink elements for informal processing contain an additional DraftOK attribute, but in all
other ways they are identical to the ResourceLink elements used in simple sequential processing.
Furthermore, the nodes run through the same set of phases as they would in sequential processing. Nodes
are designated only as stopped and not as completed after being processed for an iterative cycle. They are
marked as completed after their output resources lose their Status of draft.

4.3.4.2 Formal Iterative Processing
In formal iterative processing, all ResourceLink elements between interacting processes are dynamic
pipes. Every request for a new resource is initiated by a PipePush or PipePull message that contains at
least one Resource element with the updated parameters. This resource is used by the process, and the
resulting new output resource can be consumed by the requesting process. The Status of draft can be
removed from a resource by sending the creator a PipeClose message that has the optional
UpdatedStatus attribute set to available. A node can only reach a Status of completed if it has no
remaining draft resources. Another method to remove the draft status is to define a node for an Approval
process that accepts draft resources as inputs and has non-draft resources representing the same entities as
outputs.

4.3.5 Proofing and Verification
In many cases, it is desirable to ensure that an executed process or set of processes have been executed
correctly. In the graphic arts industry this is verified by generating approvals and signing them. JDF
allows modeling of the proof process and modeling of the verification processes by allowing an optional
ApprovalSuccess input resource in any process. An ApprovalSuccess resource may only be set as
available if it has been signed by an authorized person.

If an approval fails and one or more processes that create the approved resource must be rerun, an agent
must modify the job appropriately and resubmit it to the corresponding controllers and devices. All
interchange resources from the first unsuccessful process to the approval must be designated as
unavailable.

4.4 Spawning and Merging
JDF spawning is the process of extracting a JDF sub-node from a job and creating a new, complete JDF
document that contains all of the information needed to process the sub-node in the original job. Merging
is the process of recombining the information from a spawned job part with the original JDF job, even after
both documents have evolved independently. By using the mechanism for spawning and merging different
parts of a job, it is possible to submit job parts to distributed controllers, devices, other work areas, or other
work centers.
The JDF spawning-and-merging mechanism can be applied recursively. In other words, sub-jobs that have
already been spawned may in turn spawn other sub-sub-jobs, and so on.2 No matter how many job parts

2 A respawning of already spawned nodes is not allowed. If a node should be spawned a second time, the
previously submitted version must be deleted first and the procedure must be applied again to the original
node.

Chapter 4 Life Cycle of JDF 93

have been spawned, however, merging is realized by copying nodes back to their original location and
synchronizing the appropriate resources. Therefore, each spawning must be logged in the job by the agent
performing the actions that result in a spawned job. Furthermore, in order to avoid inconsistent JDF states
after merging, each merging should be logged, or the appropriate spawn audit must be removed from the
AuditPool element.

Figure 4.4, below, shows, schematically, the spawning and merging of a sub-job, designated as P.b. The
following three phases are defined on a time scale:

1. The first phase occurs before the sub-job is spawned off.

2. The second phase occurs during the spawn phase, when the spawned sub-job is executed

separately.

3. The third phase occurs after the spawned job has been merged back into the original job.

Time

Spawning Depth

Phase Before

Spawn Phase

Phase After

Job P Job P.b

P.a P.b'

PJob P:
P.bs

Job P.b:

P.a P.b

P

Job P:

P.a P.b

PJob P:
Return Point:
time of merging back P.b
to its original location

Spawn Point:
time of spawning off
P.b as a separate job

Spawned Job

Parent

Existing Job Tickets
Spawning Diagram of
Existing Job Tickets

Original

Figure 4.4 Spawning and merging mechanism and its phases

The three phases of the job part are bordered by the spawning point and the merging point. On a job scale,
denoted as spawning depth in Figure 4.4, one job ticket exists during the phases before and after spawning,
and the following two job tickets exist during the spawning phase: The job with the parent (P) of the
original job part (P.b', also denoted as a sub-job) that has been spawned; and the spawned job (P.bs) itself.

94 Chapter 4 Life Cycle of JDF

This section provides examples that outline the various ways in which spawning and merging can be
applied. The six following cases are considered in the next six sections:

1. Standard spawning and merging
2. Spawning and merging with resource copying
3. Parallel spawning and merging of partitioned resources
4. Nested spawning and merging in reverse sequence
5. Spawning and merging of independent job tickets
6. Simultaneous Spawning and Merging of Multiple nodes

JDF can support any combination of the cases described, but these four represent a cross-section of likely
scenarios. Case one is the simplest of all of the cases, and is required in every instance of spawning and
merging, regardless of the circumstances surrounding the process. After that, each case requires additional
processing that builds upon the processing described in the cases that precede it.

4.4.1 Case 1: Standard Spawning and Merging
The actions described in this case must be applied in every spawning and merging process. All cases
described in this chapter, as well as any other that may be invented, begin with these procedures.

Spawning
When spawning a JDF sub-node, the JDF elements CustomerInfo and NodeInfo elements of the spawned
job may be created and/or filled with the appropriate information (for details, see sections 3.4 Customer
Information and 3.5 Process and Node Information). All resources that are referenced in the spawned node
and its sub-nodes are located in the ResourcePool containers of the respective node(s).

To indicate that a process has been spawned, the Status attribute of the original JDF node must be set to
the value spawned (see Table 3.3). The Status attribute of the spawned node remains unchanged.

In order to identify all of the ancestors of job that has been spawned, an AncestorPool element is included
in the root node every spawned job. This element contains an Ancestor element that identifies every
parent, grandparent, great-grandparent, and so on of the spawned sub-node. In this way, the family tree of
every spawned node is tracked in an ordered sequence that allows an unbroken trace back through all
predecessors. Consequently, the elements that comprise the AncestorPool of a spawned job must be
copied into the AncestorPool element of the newly spawned job before the ancestor information of the
previously spawned job is appended to the AncestorPool element of the newly spawned job. The last
Ancestor element in each AncestorPool is the parent, the second-to-last the grandparent, and so on. The
following code is an example of a family tree:

<AncestorPool>

<Ancestor NodeID="p_01" FileName=”file://grandparent.jdf”/>
<Ancestor NodeID="p_02” FileName=”file://parent.jdf”/>

</AncestorPool>

The complete ancestor information is required in order to merge back semi-finished jobs with nested
spawned jobs. If the last spawn is always merged first (LIFO) then knowing the direct parent is sufficient,
as each parent will in turn know its own parent back to the original and a complete ancestor line may be
inferred.

When a job is spawned, the action must be logged in the parent node of the spawned node in the original
job. This is accomplished by creating a Spawned element with the jrefSpawned attribute set to the ID of
the spawned JDF node. This Spawned element must be appended to the AuditPool container of the

Chapter 4 Life Cycle of JDF 95

original parent node. If no AuditPool container exists in the parent node, one must be created for the
purpose.

After a node has been spawned, it is legal, although not necessary, to remove all contents of the spawned
node in the original node except for the ID attribute. It is not, however, possible to undo the spawning
operation without accessing the spawned node once the contents of the spawned node have been removed.

Merging
After processing, the spawned job must be merged back to its original location. Before this can occur,
however, duplicate information contained in any elements that are not required for further processing (such
as CustomerInfo or NodeInfo) may optionally be deleted by the agent executing the spawning and
merging. Once this has been accomplished, the spawned node is copied to the location of the original node,
completely overwriting the original node. The Status of the original node is then overwritten with the
result.

To complete the merging process, the merging agent must add a Log element of Type = Merged to the
AuditPool (see section 3.9 AuditPool). Furthermore, the AncestorPool container with all child elements
must be removed.

4.4.2 Case 2: Spawning and Merging with resource copying
Figure 4.5, shown below, represents an example of a job that requires that resources be copied during
spawning. In this job, the nodes B1 and B2 are linked to the same resource, which is localized in the
resource pool of an ancestor node, denoted as node A. This node is the parent node.

Figure 4.5 JDF node structure that requires resource copying during spawning and merging

When node B1 is spawned, its resources must also be duplicated. To accomplish this, the affected resources
must be copied to the spawned job and purged during merging, a process that is described below.

Spawning
Spawning begins as it did in case 1. The affected resources must then be copied to the resource pool of the
spawned job. The copied resources retains the same ID values as the original resources. These resources
can be spawned for read-only access, which allows multiple simultaneous spawning of one resource, or for
read/write access, in which case a resource may only be spawned one time. The read/write spawning of a
resource locks the resource in the original file in order to avoid conflicts that result from simultaneous
modification or reading and modification of a resource. The SpawnStatus attribute of the original
resource must be set to spawned_RW (which stands for “spawned read/write ”) or spawned_RO (which
stands for “spawned read-only ”) to indicate that the resource is spawned. In other words, a copy of the
resource is spawned together with the spawned job. Read/write access effectively locks the original

JDF-subnode: B1
- link to Res1

JDF-node: A
- Res1

JDF-subnode: B2
- link to Res1

96 Chapter 4 Life Cycle of JDF

resources, just as if the attribute Locked = true3 were present. If a resource is spawned as read-only, it is
not a good idea to modify the original resource that remains in the parent job ticket, as this may lead to
inconsistencies. The Locked attribute of spawned resources that are copied read-only should also be set
true. Furthermore, the value of the ID attribute of each copied resource must be appended to the
appropriate rRefsROCopied or rRefsRWCopied values of the Spawned element that resides in the
AuditPool of the parent node.

Merging
Merging begins as it did in Case 1. Then, if resources have been copied for spawning, they must be purged
after merging. Read-only resources may simply be deleted in the spawned node before merging. If the
original resource and the spawned resource are not identical, however, a JDF content error should be
logged by a Notification element of Class = error (see section 4.6 Error Handling). Read/write resources
must be copied into their original location, completely overwriting the original resource. The ID attributes
of the overwritten resources must be specified in the rRefsOverwritten attribute of the Merged element.
The Merged element is then inserted into the AuditPool container of the parent during the usual merging
procedure, which is shown as the return point in the spawning diagram.

4.4.3 Case 3: Parallel Spawning and Merging of Partitioned Resources
In many cases, it is desirable to define a parallel workflow for partitioned resources. This is modeled by
spawning a node that defines the process for each part that is to be processed individually using Selector
resources.

Spawning
Spawning begins as it did in case 1. Then, a Selector resource is added to the spawned node and the
spawned node, along with all the other sub-nodes, is linked to that Selector resource. If any Selector
resource exists prior to spawning, it must be merged with the newly created Selector resource to create
one, unified Selector resource. This resulting Selector selects those elements that would be selected if
both selectors had been applied sequentially. This is equivalent to a boolean (logical, mathematical) AND
operation. In addition, a copy of the spawned Selector resource (without the contents of the prior
Selector) is appended to the Spawned audit element. This copy may NOT contain an ID attribute. The
Status of any partitioned resource is defined individually for each partition.

The spawning procedure described in this section can be performed iteratively for multiple parts,
effectively generating one Spawned audit element per part.

Merging
After an individual partitioned spawned node has been processed, it is merged back to the parent as was
described in Case 1. In addition, a copy of the Selector resource is appended to the Merged element
(again, this copy may NOT contain an ID attribute), and any read/write resources are merged into their
appropriate parts. The selector resources are either removed, assuming no prior selector exists, or unfolded
to the original Selector resource using the information in the copied Selector resource contained in the
Spawned audit.

4.4.4 Case 4: Nested Spawning and Merging in Reverse Sequence
Figure 4.6 shows an example of nested spawning and merging in reverse sequence. Process A spawns node
B, and node B spawns node C. Even if B is merged back to A for any reason before C is merged back to B,

3 Usually resources become locked (Locked = true) if they are referenced by audit elements (see also
section 3.9 AuditPool).

Chapter 4 Life Cycle of JDF 97

C still contains the information of its grandparent in the AncestorPool element. In this way, C can trace
back its ancestors and find the localization of its parent, node B, in node A, even though the spawned job,
with B as root node, has already been deleted.

Time

Job A Job B

correctly nested

JDF-node: A
Status="waiting"

JDF-node: B
Status="spawned"

JDF-node: B
Status="waiting"
Ancestors := (A)

JDF-node: C
Status="spawned"

JDF-node: C
Status="waiting"
Ancestors := (A, B)

Spawning Depth

Job C

Spawning Diagrams

Time

Job A Job B

reversely nested

Job C

Figure 4.6 Example for a JDF node structure with nested spawning

98 Chapter 4 Life Cycle of JDF

4.4.5 Case 5: Spawning and Merging of Independent Jobs
It is useful to spawn and merge independent jobs in situations where the execution of separate, independent
small jobs is not efficient in a commercial sense. Business cards for individual customers that are printed
on one set of sheets and subsequently cut are an example of this kind of situation. In cases such as these,
small jobs can be collected in order to form a big job that may then be executed as a whole. This allows
job aspects such as production, equipment load, and balancing of implementation resources to be
performed more efficiently.

In this example, diagrammed in Figure 4.7, nodes C and E represent small jobs of identical type. Node
bigA represents a big job, which may exist already or which may have been created for the purposes of this
spawning-and-merging process. Once nodes C and E are gathered beneath node bigA, as described below,
big job may then be executed as a whole for the sake of efficiency.. When the big job is executed, the
small jobs are effectively executed simultaneously. Nodes A, B, and D are provided to demonstrate that
spawned nodes in this example may be related to other nodes in various ways.

Time

Jobs A, B, C

independent job A

Spawning Diagram

Time

Jobs D, E

JDF-node: B
Status=" waiting "

JDF-node: D
Status="waiting"

JDF-node: E
Status="spawned"
Type="XYZ"

JDF-node: bigA
Status="waiting"
Type="XYZ"
AuditPool:
 Merged (C, Indep.="true")
 Merged(E, Indep.="true")

JDF-node: C
Status="spawned"
Type="XYZ"

JDF-node: C
Status="waiting"
Type="XYZ"
Activity="inactive"

JDF-node: E
Status=" waiting "
Type="XYZ"
Activity="inactive"

JDF-node: A
Status=" waiting "

Job bigA

small Job C

small Job E

independent job D big job bigA

execution phase

Figure 4.7 Example of the spawning and merging of independent jobs

Spawning
Spawning begins as it did in case 1. Then, the process to be spawned (job C in Figure 4.7) is copied into a
newly created, or already existing, big job (job E in Figure 4.7). The process type of the root node of the
big job must be identical to that of the spawned processes. The Activation state of the spawned processes

Chapter 4 Life Cycle of JDF 99

is set to inactive, and an AncestorPool element is added to the inactive spawned job to define the ancestry
(as was described above). A Merged element containing information about the spawned independent jobs
and when they have been received is added to the big job.

In the original jobs, the Status of the process is designated as spawned, and a Spawned element with the
optional attribute jrefDestinationJDF specified is added to the parent of the original job. The attribute
jrefDestinationJDF contains the ID of the big job beneath which the spawned process has been placed.
The changes in the parent are the equivalent of those described in Case 1, except for the specification of the
attribute jrefDestinationJDF in the Spawned element.

Where necessary, resource instances must be copied and logged by appending the IDs to the appropriate
attribute (rRefsROCopied or rRefsRWCopied) of the Spawned element in the parent of the original job.
This is required in single spawning and merging. Furthermore, the ResourceLink elements of the
spawned process must be transferred in content to the ResourceLinkPool of the active, big process node.
In this way, the input resources and the resources to be produced are linked to the big job.

Merging
For each of the spawned small jobs, the return procedure is performed as it was in the preceding cases.
Once the process explained in Case 1 is performed, the completed job is copied back to its original location
and the attribute Activation is restored by setting it to the activation of the big-job node after completion.

Eventually, copied resources must be purged and handled just as they were in Case 2. Then, the merging
must be logged by appending the Merged element to the AuditPool container of the parent of the original
node. In independent spawning and merging, the attribute jrefSourceJDF must be specified in the
appropriate Merged element.

If the big job is retained, a Spawned element with the attribute Independent = true must be appended to
the AuditPool of the big job. For instance, saving the finished big job may be desirable if the audit
information contained in the big job should be available for an individual invoicing. Finally, the newly
created big JDF should be deleted to avoid the double existence of nodes.

4.4.6 Simultaneous Spawning and Merging of Multiple nodes
It is not possible to explicitly spawn multiple nodes simultaneously. The nodes must be grouped into a
single ProcessGroup node, and this node can then be spawned and merged as described in the previous
sections.

4.5 Node and Resource IDs
All nodes and resources must contain a unique identifier, not only because it is important to be able to
identify individual components of a job, but because JDF uses these IDs for internal linking purposes.
Each agent that creates resources and sub-nodes or that performs spawning and merging is responsible for
providing IDs that are unique in the scope of the file, taking into account all of the phases of a job’s life
cycle.

IDs come in two flavors: pure and composite. A pure ID is an ID that does not contain the character
period “.” A composite ID is made up of pure IDs delimited by periods. For example:

pureID :: = ID –{'.'}
compositeID :: = pureID ['.'pureID]+
ID :: = pureID | compositeID

100 Chapter 4 Life Cycle of JDF

IDs are used differently under different circumstances. Several different circumstances are described
below.

In case of no spawning:
If an agent inserts new elements requiring IDs into an original job, then the agent assigns pure IDs to the
new elements and must guarantee their uniqueness.

In case of single spawning:
If an agent inserts new elements into a spawned job, then the agent creates composite IDs by using the ID
of the root node and appending a unique pure ID delimited by a period. For example:

- ID of spawned root node: ID = "Job_01234.Proc1"
- ID used for new element: ID = " Job_01234.Proc1.newpureID"

In case of independent spawning:
The agent that merges the independent jobs beneath a big job inserts a unique, pure ID (delimited by a
period) in front of all IDs of each small job it receives. That means that the agent must replace all IDs of
each job it receives whenever it encounters an ID collision. If an agent inserts new elements into a
spawned job, then the agent creates composite IDs by using the ID of the respective root node of the small
job and appends unique pureID, delimited by a period. For example:

- ID of the big job with node ID = "A"
- Receives small job A1 with some IDs: ID = "A" ID = "A.A" ID = "A.B" where the first is the ID of the

root node.
- Receives small job A2 with some IDs: ID = "A" ID = "A.A" ID = "anything" …
- The agent creates locally unique pure IDs: ID = "A1" and ID = "A2" each prepended to all IDs of each

received small job; the IDs of the small job A1 become: ID = "A1.A" ID = " A1.A.A" ID = " A1.A.B"
and the IDs of the small job A2 become: ID = "A2.A" ID = " A2.A.A" ID = " A2.anything". All IDs in
the big job are unique.

- The agent creates a new element added to the small job A1 with ID: ID = "A1.A.C". Here the agent
must resolve the possible conflict if it would append the pure ID = "A" to the root ID = "A1.A". That
means the agent has to check the uniqueness of each created ID.

- Before merging the jobs back to its original location the agent must remove the prepended pure IDs of
all IDs, here "A1", "A2" respectively. Then the newly created element will be merged back with the
ID = "A.C".

4.6 Error Handling
Error handling is an implementation-dependent feature of JDF-based systems. The AuditPool element
provides a container where errors that occur during the execution of a JDF may be logged using
Notification elements. Notification elements may also be sent in JMF Signal messages. The content of
the Notification element is described in Table 3.23.

Further details about error handling are provided in the next four sections.

4.6.1 Classification of Notifications
Notification elements are classified by the attribute Class. Every workflow implementation must associate
a class with all events on an event-by-event basis. The following list shows the possible values for Class:

• event Indicates an event which occurred due to a certain operation-related action, for
example, machine events, operator activities, etc. This class is used for messaging.

Chapter 4 Life Cycle of JDF 101

• information Indicates not an error, but rather any information about a process that cannot be
expressed by the other classes, for example, the beginning of execution.

• warning Indicates that a minor error has occurred and an automatic fix was applied.

Execution continues. The node’s Status is unchanged. Appears in situations such
as A4-Letter substitutions, when toner is low, or when unknown extensions are
encountered in a required resource

• error Indicates that an error has occurred that requires user interaction. Execution

cannot continue until the problem has been fixed. The node’s Status is stopped.
This value appears in situations such as when resources are missing, when major
incompatibilities are detected, or when the toner is empty.

• fatal Execution must be aborted. The node’s Status is aborted. Seen with most

protocol errors or when major device malfunction has occurred.

4.6.2 Event Description
A description of the event is given by a generic Comment element, which is mandatory for the notification
classes information, warning, error, or fatal. For example, after a process is aborted, error information
describing a device error may be logged in the Comment element of the Notification element. If phase
times are logged, the PhaseTime element that logged the transition to the aborted state may also contain a
local Comment element that describes the cause of the process abortion. PhaseTime and Notification
elements are optional sub-elements of the AuditPool, which is described in section 3.9.

4.6.3 Error Logging in the JDF file
A JDF-compliant controller/agent should log an error by inserting a Notification element in the AuditPool
of the node that generated the error. The NodeInfo element may contain an NotificationClasses attribute
to define the minimum severity of events (or, more specifically, errors) that should be logged.

4.6.4 Error Handling via Messaging (JMF)
A JMF Signal message with a Notification element in the message body should be sent through all
persistent channels that are defined for events (or, more specifically, errors with an event severity that is
greater or equal to the event severity specified in the JMF element of the NodeInfo element. Note that this
is different from the NotificationClasses attribute of the NodeInfo element, which is defined for logging
events by Notification elements to the AuditPool. The mechanism described in this section is instead an
appropriate message definition.

4.7 Test Running
In JDF, the notion of a test run is similar to the press notion of preflight. The goal is to detect JDF content
errors and inconsistencies in a job before the job is executed.

The ability to perform a test run may be built into individual devices or controllers. Alternatively, a
controller implementation may perform test runs on behalf of its devices. A test run may be routed through
all of the different devices and controllers in a workflow, just as if the test run were a standard execution
run. For the routing of jobs and nodes through different devices and controllers for a test, the spawning and
merging mechanism may also be applied. The devices/controllers receiving a job read it and analyze
without initiating execution. Rather, they investigate the content of the node they would execute. A

102 Chapter 4 Life Cycle of JDF

device/controller with agent capabilities may record results into the audit pool associated with a given
process.

During test running, the requirements of the processes specified are compared to the capabilities of the
devices targeted. A device or controller explicitly tests whether the inputs that have been specified as
required are actually the inputs that are required, and that none are missing or in error. For example, an
input requirement may be a URL that, when a test run is performed, is found to point to an item that no
longer exists in that location. Test running is meant to prevent errors as a result of that kind of
misinformation. It is particularly useful when running expensive or time-consuming jobs.

It is also possible to test run specific parts of a workflow, or even individual nodes. An agent may request a
test of certain nodes by setting the JDF attribute Activation to testrun (see Table 3.3), which is inherited by
all descendant nodes that are not inactive (Activation = inactive). If a device or controller4 detects an error
in a node a Notification element containing a textual description should be appended to the AuditPool
element of the node in which the error occurred, and, if messaging is supported, the error should be also
communicated to the connected listeners via messaging (for more information see section 5.4 Error and
Event Messages). If an error has been detected the agent can modify the job in order to correct the error.
Once a test run has been completed successfully, the device/controller with agent capabilities changes the
Status attribute of the tested node to ready. If a test run fails, the device/controller is required to record the
process status as failed_testrun. After the test run has finished the agent should log the result by appending
a ProcessRun element to the AuditPool element. For more information about audits, see section 3.9
AuditPool.

In principle, execution and test runs may be run simultaneously. For example, one job part may be
executed while another part requests only a test.

JDF also defines an Activation value of testrun_and_go that requests a test run and, upon successful
completion, automatically initiates processing.

4.7.1 Resource Status During Testrun
In order to test run a complete set of nodes, it is sometimes necessary to imply the Status of resources that
are produced by prior nodes. Successful test running does not set the Status attribute of a resource to
available unless the resource actually is available. Nodes that require an output resource of a node that has
completed test running for purposes of test running may assume that these resources have a Status of
available for the purpose of test running as long as the producing node has a Status of ready.

4 Note that only devices and controllers with agent capabilities can write in a JDF-document.

Chapter 5 JDF Messaging with the Job Messaging Format (JMF) 103

Chapter 5 JDF Messaging with the Job Messaging
Format (JMF)

A workflow system is a dynamic set of interacting processes, devices and MIS systems, and for the
workflow to run efficiently, these processes and devices must communicate and interact in a well-defined
manner. Messaging is a simple but powerful way to establish this kind of dynamic interaction. The JDF-
based Job Messaging Format, or JMF, provides a wide range of capabilities to facilitate interaction between
the various aspects of a workflow, from simple uni-directional notification through the issuing of direct
commands.

This chapter outlines the way in which JMF, accomplishes these interactions. The following list of use
cases is considered:

• System setup
• Dynamic status and error tracking for jobs and devices
• Pipe control
• Device setup and job changes
• Queue handling and job submission

JMF messages are most often encoded in pure XML, without an additional MIME/Multipart wrapper.
Only controllers that support JDF job submission via the message channel must support MIME for
messages.

5.1 JMF Root
JMF and JDF have an inherently different structure. In order to allow immediate identification of
messages, JMF uses the unique name JMF as its own root-element name.

The root element of the XML fragment that encodes a message, like the root element of a JDF fragment,
contains a series of predictable attributes and instances of Message elements. These contents are defined
in the tables that follow, and illustrated in Figure 5.1. Message elements are abstract, as is indicated by
the dashed line surrounding the Message element in Figure 5.1.

Table 5.1 Contents of the JMF root

Name Data Type Description
DeviceID ? string Identifies the recipient device or controller. The envelope

of the message contains the URL address of the controller
that receives the message via HTTP. Therefore, if
DeviceID does not specify a recipient, that controller is
assumed to be the recipient.

SenderID string String that identifies the sender device, controller or agent.

TimeStamp timeInstant Time stamp that identifies when the message was created.

Version ? string JMF version. The current and default version is “1.0”.

Message + element Abstract message element.

The following table describes the contents of the abstract Message element. All messages contain an ID
and a Type attribute.

104 Chapter 5 JDF Messaging with the Job Messaging Format (JMF)

Table 5.2 Contents of the abstract Message element

Name Data Type Description
ID ID Identifies the message.

Time ? timeInstant Time at which the message was generated. This attribute is
only required if this time is different from the time specified
in the TimeStamp attribute of the JMF element.

Type NMOKEN Name that identifies the message type. Message types are
described in sections 5.5 and 5.6.

The following figure depicts the basic messaging structure and the message families.

Query

JMF
� TimeStamp
� SenderID
� Version?
� DeviceID?

Message*

Message
� ID
� Type
� Time?

Command
Subscription?
� URL
� RepeatStep?
� RepeatTime?
� ChangeAttributes?
� EventSeverity?

Message families:

Signal
� refID?
� LastRepeat?

Acknowledge
� refID
� returnCode?

Response
� refID
� ReturnCode?
� Subscribed?
� Acknowledged?

Notification

QueryTypeObj*

ResponseTypeObj*

CommandTypeObj*

AcknowledgeTypeObj*

ResponseTypeObj*

Notification?

Notification?

Figure 5.1 Contents of a JMF root element and the message families

5.2 JMF Semantics
JMF encodes messages of several types. The first part of this section describes message elements that
contain and convey content, while the second describes the way in which these element types can be used
to establish communication.

Chapter 5 JDF Messaging with the Job Messaging Format (JMF) 105

5.2.1 Message Families
A message contains one or more of the following five high-level elements, referred to as message families,
in the root node. These families are Query, Command, Response, Acknowledge, and Signal. An
explanation of each family is provided in the following sections, along with an encoding example.

5.2.1.1 Query
A query is a message that retrieves information from a controller without changing the state of that
controller. A query is sent to a controller. It contains an ID attribute and a Type attribute, which it inherits
from the abstract message type described in Table 5.2. JMF supports a number of well-defined query
types, and each query type can contain additional descriptive elements, which are described in sections 5.5
and 5.6. The following table shows the content of a Query message element.

Table 5.3 Contents of the Query message element

Name Data Type Description
QueryTypeObj * element Abstract element that is a placeholder for any descriptive

elements that provide details required for the query. The
element type of QueryTypeObj is defined by the Type
attribute of the abstract Message element.

Subscription ? element If specified creates a persistent channel. For the structure
of a Subscription element, see section 5.2.2.3 Persistent
Channels.

The following is an example of a query message:

<JMF TimeStamp="2000-07-25T11:38:23.3+02:00" SenderID="Controller-1">

<Query Type="KnownJDFServices" ID="007"/>
</JMF>

5.2.1.2 Response
A response to a query or a command is always a direct acknowledgement of a query or a command. A
response is returned from a controller to the controller that put the query/command. Responses are not
acknowledged themselves.

A command response indicates that the command has been received and interpreted. The response of
commands with short latency also includes the information about the execution. Commands with long
latency will generate additionally a separate Acknowledge message (see section 5.2.1.5 Acknowledge) to
broadcast the execution of the command. Command responses should comprise a Notification element that
describes textually the return status.

Responses contain an attribute called refID, which identifies the initiating query or command. The
following table shows the content of a Response message.

Table 5.4 Contents of the Response message element

Name Data Type Description
Acknowledged ? boolean Used only in responses to command messages. Indicates

whether the command will be acknowledged separately. If
true, an Acknowledge message will be supplied after
command execution. If false, no Acknowledge message

106 Chapter 5 JDF Messaging with the Job Messaging Format (JMF)

will be supplied.

Default = false

refID NMTOKEN Copy of the ID attribute of the initiating query or command
message to which the response refers.

ReturnCode ? integer Describes the result. 0 indicates success. For all other
possible codes see Appendix H.

Default = 0

Subscribed ? boolean If a Subscription element has been supplied by the
corresponding query, this attribute indicates whether the
subscription has been refused or accepted. If true, the
requested subscription is accepted. If false, the subscription
is refused because the controller does not support persistent
channels.

For details, see section 5.2.2.3 Persistent Channels.

Default = true

Notification ? element Textual description of the return code. The Notification
element should be provided if the ReturnCode is greater
than 0, which indicates that an error has occurred, or if the
initiating message is a command.

ResponseTypeObj * element Abstract element that is a placeholder for any descriptive
elements that provide details queried for or details about
command execution.

An example of a response on a command is provided in the section 5.2.1.4 Command. The encoding
example for the query, shown above, might generate the following response:

<JMF TimeStamp="2000-07-25T11:38:25+02:00" SenderID="RIP-1">
<Response Type="KnownJDFServices" ID="107" refID="007">

<JDFService Type="RIPping"/>
<JDFService Type="Imposition"/>
<JDFService Type="Trapping"/>

</Response>
</JMF>

5.2.1.3 Signal
A signal message, which is syntactically equivalent to a combination of a Query message and a Response
message, is a unidirectional message sent on any events to other controllers. This kind of message is used
to automatically broadcast some status changes.

Controllers can get signal messages in one of three ways. The first way is to subscribe for them with an
initiating query transmitted via a message channel that includes a Subscription element. The second way
is to subscribe for them with an initiating query defined in the NodeInfo element of a JDF node that
includes also a Subscription element (see JMF elements in Table 3.7). The first query is transmitted
separately via a mechanism such as HTTP, whereas the second is read together with the corresponding JDF
node. Once the subscription has been established, signals are sent to the subscribing controllers via
persistent channels. In both cases, however, the Signal message contains a refID attribute that refers to the
persistent channel. The value of the refID attribute identifies the persistent channel that initiated the
Signal.

Chapter 5 JDF Messaging with the Job Messaging Format (JMF) 107

The third way in which a controller may receive a signal is to have the signal channels hard-wired, for
example, by a tool such as a list of controller-URLs read from an initialization file. For example, signals
may be generated independently when a service is started, or when sub-controllers that are newly
connected to a network want to inform other controllers about their capabilities. Hard-wired signals,
however, may not have a refID attribute. If no refID is specified, the corresponding query parameters must
be specified instead.

Table 5.5 Contents of the Signal message element

Name Data Type Description
LastRepeat ? Boolean If true, the persistent channel is being closed by the

controller and no further messages will be generated that
fulfill the persistent channel criteria. If false, further signals
will be sent.

For further details, see section 5.2.2.3 Persistent Channels.

Default = false

refID ? NMTOKEN Identifies the initiating query message that subscribed this
signal message. Note that hard-wired signals may not
contain a refID attribute.

Notification ? element Textual description of the signal. The Notification element
should be provided if the severity of the event that caused
this signal is greater than warning, or if pure events have
been subscribed.

For details about subscribing pure events see section

5.5.1.1 Events.

QueryTypeObj ? element If no refID is specified, the corresponding query parameters
must be specified instead by providing this element.

This element is an abstract element and a placeholder for
any descriptive elements that provide details for the virtual
Query, which, if sent, would convey the same
ResponseTypeObj elements. The element type of
QueryTypeObj is defined by the Type attribute of the
abstract Message element.

ResponseTypeObj * element Abstract element that is a placeholder for any descriptive
elements that provide details subscribed. These element
types are the same as in the Response message element.

Example of a signal message:

<JMF TimeStamp="2000-07-25T12:28:01+02:00" SenderID="Press 45">
<Signal Type="Progress" ID="s123">

<ProgressQuParams JobID=”42” JobPartID=”66”/>
<Progress JobId="p1234" Unit="Page" Quantity="2000"/>

</Signal>
</JMF>

108 Chapter 5 JDF Messaging with the Job Messaging Format (JMF)

5.2.1.4 Command
A command is syntactically equivalent to a query, but rather than simply retrieving information, it also
causes a state change in the target device. The following table contains the contents of a Command
message.

Table 5.6 Contents of the Command message element

Name Data Type Description
CommandTypeObj * element Abstract element that is a placeholder for any descriptive

elements that provide details of the command.

The following example demonstrates how a ResumeQueueEntry command may cause a job in a queue to
begin executing:

<JMF DeviceID="A3 Printer" TimeStamp="2000-07-25T12:32:48+02:00"
SenderID="MIS master A">

<Command ID="009" Type="ResumeQueueEntry">
<QueueEntry EntryID="job-0032"/>

</Command>
</JMF>

The following example shows a possible response to the command example above:

<JMF … SenderID="A3 Printer">

<Response ID="109" Type="ResumeQueueEntry" refID="009">
<Notification Class="information">

<Comment>Start Job successful</Comment>
</Notification>
…

</Response>
</JMF>

5.2.1.5 Acknowledge
An Acknowledge message is a response to a command issued by a controller. Each acknowledge message
is unidirectional and syntactically equivalent to a command response, and the refID attribute of each refers
to the initiating command. Acknowledge messages are generated if commands with long latency have
been executed in order to inform the command sender about the results. They are announced in the
Response message to the command by the setting the attribute Acknowledged = true.

Table 5.7 Contents of the Acknowledge message element

Name Data Type Description
refID NMTOKEN Identifies the initiating command message the acknowledge

refers to.

ReturnCode ? integer Describes the result. 0 indicates success. For all other
possible codes see Appendix H.

Default = 0

AcknowledgeTypeObj * element Abstract element that is a placeholder for any descriptive
elements that provide details about command execution.

Notification element Textual description of the command execution.

Chapter 5 JDF Messaging with the Job Messaging Format (JMF) 109

The following is an example of an acknowledge message:

<JMF … >

<Acknowledge ID="109" Type="PipePush" refID="010">
<Notification Class="information">

<Comment>Requested pipe resource produced successful
</Comment>

</Notification>
…

</Acknowledge>
</JMF>

5.2.2 JMF Handshaking
JMF can seek to establish communication between system components in several ways. This section
describes the actions and appropriate reactions in a communication using JMF.

5.2.2.1 Single Query/Command Response Communication
The handshaking mechanisms for queries and commands are equivalent. The initiating controller sends a
Query or Command message to the target controller. The target parses the Query or Command and
immediately issues an appropriate Response message. If a Command with long latency is issued, an
additional Acknowledge message may be sent to acknowledge when the command has been executed.

5.2.2.2 Signal
JMF signal messages are “Fire and Forget.” In other words, no acknowledgment is sent by the receiver
besides the standard protocol HTTP response that is sent when a communication link is sought.

5.2.2.3 Persistent Channels
Queries may be made persistent by including a Subscription element that defines the persistent channel-
receiving end (see also Figure 5.1). The responding controller should initially send a Response to the
subscribing controller. Then, the responding controller should send Signal messages whenever the
condition specified by one of the attributes in the following table is true. This is referred to as a persistent
channel. The refID attribute of the Signal is defined by the ID attribute of the Query. In other words, the
refID of the signal identifies the persistent channel. Any Query may be set up as a persistent channel,
although in some cases this may not make sense.

Table 5.8 Contents of the Subscription element

Name Data Type Description
ChangeAttributes ? NMTOKENS Requests an update signal whenever the value of one of the

attributes specified by the ChangeAttributes string is
modified. A value of “*”, which is the default value,
denotes a message request for any attribute change.

110 Chapter 5 JDF Messaging with the Job Messaging Format (JMF)

NotificationClasses enumerations Defines the set of notification classes to be subscribed for.
Possible values are:
event

information

warning

error

fatal

For details on Notification elements and classes, see section
3.9.1.2 Notification.

RepeatStep ? integer Requests an update signal whenever the Amount associated
with the query is an integer multiple of RepeatStep.
Default = 0, which means no repeat.

RepeatTime ? number Requests an update signal every RepeatTime seconds.

Default = no repeat

URL URL URL of the persistent channel receiving end.

If a persistent signal channel has been set up and the device knows that this is the last time that the
condition for signaling will be true, it should set the LastRepeat flag of the corresponding Signal message
to true. In general, this will happen for a Progress query, as when the job that has been tracked is
completed. It may also happen when a device is shut down and will therefore not send any further updates.

If a controller that does not support persistent channels is queried to set up a persistent channel, it must
answer the query regularly with a Response and set Subscribed to false.

Multiple attributes of a Subscription element are combined as a Boolean OR operation of these attributes.
For instance, if RepeatStep and NotificationClasses are both specified, messages fulfilling either of the
requirements are requested. If the subscription element contains only a URL, it is up to the emitting
controller to define when to emit messages.

Creating Persistent Channels in a JDF Node
The NodeInfo element of a JDF node may contain JMF elements that contains a set of queries (not
commands) that define persistent channels. Executing the node is equivalent to sending the messages in the
JMF node to the processor whenever the JDF node is executed.

Deleting Persistent Channels
A persistent channel may be deleted by sending a StopPersistentChannel command, as described in
section 5.5.1.7 StopPersistentChannel.

5.3 JMF Messaging Levels
A JDF-conforming controller may opt to support one of the following messaging compliance levels offered
by JMF:

• No messaging Controllers have the option of supporting no messaging at all. For this level, JDF
includes Audit records for each process that allow the results of the process to be recorded.

Chapter 5 JDF Messaging with the Job Messaging Format (JMF) 111

• Notification Most controllers will choose to support some level of messaging capability.
Notification is the most basic level of support. Devices that support notification provide uni-
directional messaging by sending Signal messages. Notification messages inform the controller
when they begin and complete execution of some process within a job. They may also provide
notice of some error conditions. Setup of the notification channel can be defined in a JDF node or
hard-wired. In order to set up notification messages via a NodeInfo element, the controller must
be able to read JMF query elements from a JDF document.

• Query support The next level of communication supports queries. Controllers that support

queries respond to requests from other controllers by communicating their status using such tools
as current JobID attributes, queued JobID attributes, or current job progress. Queries require bi-
directional communication capabilities.

• Command support This level of support provides controllers with the ability to process

commands. The controller can receive commands, for instance, to interrupt the current job, to
restart a job, or to change the status of jobs in a queue.

• Submission support Finally, controllers may accept JDF jobs via an HTTP post request to the

messaging channel. In this case, the messaging channel must support MIME/Multipart/Related
documents. For more details on submission, see section 5.6.3.8 SubmissionMethods.

5.4 Error and Event Messages
If a command or a query message is not successfully handled, a processor must reply with a standardized
response that may contain a Notification element. Notification elements, described in detail in section
3.9.1.2 Notification, convey a textual description. The information contained in the Notification element
may be used by a user interface to visualize errors.

The response messages Response and Acknowledge contain an ReturnCode attribute. ReturnCode
defaults to 0, which indicates that the response is successful. In case of success and in responses to
commands an informational Notification element (Class=information) may be provided. In case of a
warning, error or fatal error, the ReturnCode is greater than 0 and indicates the kind of error committed.
Error codes are defined in Appendix H.

The following example uses a Notification element to describe an error:

<JMF … >

<Response ID="109" Type="ResumeQueueEntry" refID="009"
ReturnCode="5">

<Notification Class="error">
<Comment>StartJob unsuccessful – Device does not handle

commands</Comment>
</Notification>
…

</Response>
</JMF>

Notification elements are also used to signal usual events due to any activities of a device, operator, etc.,
for example scanning a barcode. Such pure events can be subscribed by the Events message described in
section
5.5.1.1 Events.

112 Chapter 5 JDF Messaging with the Job Messaging Format (JMF)

5.5 Standard Messages
The previous sections in this chapter provide a description of the overall structure of JMF messages. This
section contains a list of the standard messages that are defined within the JDF framework. It is not
required that every JDF-compliant application support every one of the signals and queries described in this
list. It is, however, possible to discover which messages are supported in a workflow. A controller
responds to the KnownMessages query by publishing a list of all the messages it supports (see section
5.5.1.3 KnownDevices, below).

At the beginning of each section there is a table that lists all of the message types in that category. These
tables contain three columns. The first is entitled “Message Type,” and it lists the elements that identify
each message type. The second column is entitled “Family.” The values in this column describe the kind
of message that is applicable in the circumstance being illustrated. The following abbreviations are used to
describe the values:

Q: Query
C: Command
R: Response
S: Signal
A: Acknowledgement

More than one of these values may be valid simultaneously. If that is the case, then all applicable letters
are included in the column. Additionally, there are a few special circumstances indicated by a particular
combinations of these letters. The letters “QR” or “CR” indicate that all Query and Command messages
cause a Response message to be returned. If the message may occur as a Signal, either from a
subscription or independently, the “Family” field in the table contains additionally the letter “S”. If an
additional “A” appears in the column it indicates that commands with long latency should initiate an
additional Acknowledge message after command execution.

Finally, the third column provides a description of each element.

At the beginning of each section describing the contents and function of the elements listed in the tables
described above is a table containing the instantiation—that is, the type—of all of the abstract sub-elements
applicable to the element being described. Each table contains an entry that describes the details of the
query or command as well as an additional entry that describes the details of the corresponding response or
acknowledgement. The tables resemble the following template:

Table 5.9 Messaging table template

Object Type Element name Description
Abstract element name of
the query or command:

Name and type of the sub-element
that defines specifics of the query or
command, followed by a cardinality
symbol.

Short description of the sub-
element(s), if applicable.

Abstract element name of
the response to a query or
command:

Name and type of sub-element that
contains specific information about
the response to the query or
command followed by cardinality
symbol.

Short description of the sub-
element(s), if applicable.

The name of the abstract query element is QueryTypeObj, and the name of the abstract command element
is CommandTypeObj. Abstract response elements are either ResponseTypeObj or
AcknowledgeTypeObj.

Chapter 5 JDF Messaging with the Job Messaging Format (JMF) 113

5.5.1 Controller Registration and Communication Messages
The message types of the following table are defined in order to exchange meta-data about controller or
device abilities and for general communication.

Table 5.10 Process registration and communication messages

Message type Family Description
Events QRS Used to subscribe pure events occurring randomly like

scanning of a barcode, activation of function-keys at a
console, etc.

KnownControllers QRS Returns a list of JMF capable controllers.

KnownDevices QRS Returns information about the devices that are controlled by a
controller.

KnownJDFServices QRS Returns a list of services (JDF Node Types) that are defined
in the JDF specification.

KnownMessages QRS Returns a list of all messages that are supported by the
controller.

RepeatMessages QR Returns a set of previously sent messages that have been
stored by the controller.

StopPersistentChannel CR Closes a persistent channel.

5.5.1.1 Events
Table 5.11 Contents of the Events element

Object Type Element name Description
QueryTypeObj - -

ResponseTypeObj - -

The Events message type is intended to be used only to subscribe for pure events of a device or controller.
Pure events, as described in section 4.5 Node and Resource IDs, occur randomly, and result from any
activities of a device or operator, such as scanning of a barcode, activating a function-key of a console etc.

The controller that subscribes for Events messages receives Signal messages that convey only
Notification elements containing information about the event. The event type and values of these messages
may then be provided by the Type and Value attributes of the Notification element, as described in section
3.9.1.2 Notification. Possible event types and values are given in Appendix I.

By specifying EventSeverity = error in the Subscription element during subscription, for example, it is
possible to subscribe for pure events together with error messages but without information and warning
messages.

Example of a subscription of Events and the response:

<JMF … >

<Query Type="Events" ID="170">
<Subscription NotificationClasses ="event error fatal"

URL="http://www.anycompany.com/MIS/JMF/JobTracker"/>
</Query>

114 Chapter 5 JDF Messaging with the Job Messaging Format (JMF)

</JMF>

<JMF … >
<Response ID="1001" refID="170" Type="Events">

<Notification Class="information">
<Comment>Event subscription successful;

Controller will provide the following pure events:
Barcode
FCN-Key
SystemTimeSet
anycompany:AnyPrivateEvent_1
anycompany:AnyPrivateEvent_2
Subscribed notification classes:
error
fatal</Comment>

</Notification>
<Response/>

</JMF>

5.5.1.2 KnownControllers
Table 5.12 Contents of the Known Controllers element

Object Type Element name Description
QueryTypeObj - -

ResponseTypeObj JDFController * Known controllers.

The KnownControllers query requests information about the controllers and devices that are known to the
controller and may be directly accessed by JMF messaging. KnownControllers is designed to define a
registration server. A processor that needs information about its system environment can query a
registration server for a list of known controllers. This list can subsequently be iterated using the other
process registration queries in this section. The URL of the master registration server must be defined
using a method outside of JDF.

JDFController
Table 5.13 Contents of the JDFController

Name Data Type Description
URL URL URL of the controller.

Example of a response to a KnownControllers query:

<Response ID="1" refID="Q1" Type="KnownControllers">

<JDFController URL="http::xyz" />
…

</Response>

5.5.1.3 KnownDevices
Table 5.14 Contents of the KnownDevices element

Chapter 5 JDF Messaging with the Job Messaging Format (JMF) 115

Object Type Element name Description
QueryTypeObj DeviceFilter ? Refines the list of devices queried. Only

devices that match the DeviceFilter are listed.
The default is to return a list of all known
devices.

ResponseTypeObj Device * The known devices.

The KnownDevices query requests information about the devices that are controlled by a controller. If a
higher level controller controls lower level controllers, it should also list the devices that are controlled by
these. The response is a list of Device resources (see section 7.2.31 Device) controlled by the controller
that receives the query, as demonstrated in the following example:

<Response ID="1" refID="Q1" Type="KnownDevices">

<Device DeviceID="Joe the SpeedMaster" DeviceType="Heidelberg SM102/6
rev. 47.11" />

…
</Response>

Structure of the DeviceFilter Element
The DeviceFilter element refines the list of devices that should be returned. Only devices that match all
parameters of one of the Device resources specified in the DeviceFilter element are included.

Table 5.15 Contents of the DeviceFilter element

Name Data Type Description
Device * element Only devices that match the attribute values specified in one of these

Device resources are included. Devices match the criteria if the
attribute values specified here in the Device resource match the
equivalent attribute values of the known devices. Unspecified
attributes always match.

5.5.1.4 KnownJDFServices
Table 5.16 Contents of the KnownJDFServices element

Object Type Element name Description
QueryTypeObj - -

ResponseTypeObj JDFService * Processes that the controller or device can
execute.

The KnownJDFServices query returns a list of services that are defined in the JDF specification, such as
ConventionalPrinting, RIPping, or EndSheetGluing. It allows a controller to publish the services
that the devices it controls are capable of providing. The response is a list of JDFService elements, one
for each supported process type.

JDFService
JDFService elements define the node types that can be processed by the controller. A JDF processor
should be capable of processing Combined nodes of any of the individual JDFService elements that are
specified. It is therefore not necessary to define every permutation of allowed combinations. It need not be

116 Chapter 5 JDF Messaging with the Job Messaging Format (JMF)

able to process individual nodes with a type defined in the Types attribute of a Combined JDFService
element.

Table 5.17 Contents of the JDFService element

Name Data Type Description
Type NMTOKEN JDF Type attribute of the supported process.

Types ? NMTOKENS If Type = Combined, this attribute represents the list of
combined processes. For details, see section 3.2.3.

The following is an example of a response to a KnownJDFServices query:

<Response ID="1" refID="Q1" Type="KnownJDFServices">

<JDFService Type="Rendering" />
<JDFService Type="Folding" />
<JDFService Type="Combined" Types="Gather Stitch"/>
…

</Response>

5.5.1.5 KnownMessages
Table 5.18 Contents of the KnownMessages element

Object Type Element name Description
QueryTypeObj KnownMsgQuParams ? Refines the query for known messages. If not

specified, list all supported message types.

ResponseTypeObj MessageService * Specifies the supported messages.

The KnownMessages query returns a list of all message types that are supported by the controller.

KnownMsgQuParams
The flags of the KnownMsgQuParams element filter out the types of messages that should be included in
the response list. Multiple flags are allowed.

Table 5.19 Contents of the KnownMsgQuParams element

Name Data Type Description
ListCommands ? boolean Lists all supported command types.

Default = true

ListQueries ? boolean Lists all supported query types.

Default = true

ListSignals ? boolean Lists all supported signal types.

Default = true

Persistent ? boolean If true, only lists messages that may use persistent channels.
If false, ignores the ability to use persistent channels.

Default = false

Chapter 5 JDF Messaging with the Job Messaging Format (JMF) 117

MessageService
The response is a list of MessageService elements, one for each supported message type. The flags of
the MessageService response element are set in each MessageService entry. They define the supported
usage of the message by the controller. Multiple flags are allowed.

Table 5.20 Contents of the MessageService element

Name Data Type Description
Command ? boolean If true the message is a command.

Default = false

Persistent ? boolean If true the message is supported as a persistent channel.

Default = false

Query ? boolean If true the message is a query.

Default = false

Signal ? boolean If true the message is a signal.

Default = false

Type NMTOKEN Type of the supported message.

The following is an example of a response to a KnownMessages query:

<Response ID="1" refID="Q1" Type="KnownMessages">

<MessageService Type="KnownMessages" Query="true"/>
<MessageService Type="Status" Query="true" Signal="true"

Persistent="true">
…

</Response>

5.5.1.6 RepeatMessages
Table 5.21 Contents of the RepeatMessages element

Object Type Element name Description
QueryTypeObj MsgFilter ? A filter for the messages to be repeated.

ResponseTypeObj Message * The recent messages queried.

The RepeatMessages query returns a list of messages that have been previously sent by the controller.
The optional MsgFilter element allows the list to be filtered. The list of JMF messages that fulfill the filter
criteria may be sorted by time, with the most recent listed first. This specification places no requirements
on the size of the message buffer of a controller that supports RepeatMessages.

Structure of the MsgFilter Element
Table 5.22 Contents of the MsgFilter element

Name Data Type Description
After ? timeInstant Messages sent only after a certain time.

Before ? timeInstant Messages sent only before a certain time.

118 Chapter 5 JDF Messaging with the Job Messaging Format (JMF)

Count ? integer Maximum number of messages, most recent first.

DeviceID ? string ID of the device whose messages are required.

Family ? enumeration Message family. Possible values are:

Acknowledge

Response
Signal

All – Default value. Response, Signal, and
Acknowledge messages are queried.

MessageRefID ? string The refID attribute must match the value of
MessageRefID.

MessageID ? string The ID attribute must match the value of MessageID.
MessageType ? string Type attribute of the requested messages.

ReceiverURL ? URL URL for which the messages are intended.

If the list is incomplete because the parameters supplied in the MsgFilter element cannot be fulfilled by the
application, the ReturnCode may be 108 (empty list) or 109 (incomplete list) and should be flagged as a
warning.

The following is an example of a response to a RepeatMessages query. Note the nesting of Response
messages, where the first layer is the response to the RepeatMessages query and its contents are the
repeated messages.

<JMF TimeStamp="2000-06-14T12:11+02:00" … >

<Response … >
<Response Time="2000-06-14T11:00+02:00" … />
<Response Time="2000-06-14T10:50+02:00" … />
<Signal Time="2000-06-14T08:20+02:00" … />
<Signal Time="2000-06-14T03:01+02:00" … />
…

</Response>
</JMF>

5.5.1.7 StopPersistentChannel
Table 5.23 Contents of the StopPersistentChannel element

Object Type Element name Description
CommandTypeObj StopPersChParams Specifies the persistent channel and the

message types to be unsubscribed.

ResponseTypeObj - -

The StopPersistentChannel command unregisters a listening controller from a persistent channel. No
more messages are sent to the controller once the command has been issued. A certain subset of signals
may be addressed for unsubscription by specifying a StopPersChParams element.

Structure of the StopPersChParams Element

Chapter 5 JDF Messaging with the Job Messaging Format (JMF) 119

If the optional attributes are not specified, those attributes default to match anything. Therefore it may be
possible to cancel the persistent channel for messages belonging to a certain type of message or to a certain
job.

Table 5.24 Contents of the StopPersChParams element

Name Data Type Description
ChannelID ? string ChannelID of the persistent channel to be deleted. If the channel

has been created with a Query message, the ChannelID specifies
the ID of the Query message (identical to the refID of the
Response message).

MessageType ? string Only messages with a matching message type are suppressed.
Message types are specified in the Type attribute of each Message
element.

DeviceID ? string Only messages from devices or controllers with a matching
DeviceID attribute are suppressed.

JobID ? string Only messages with a matching JobID attribute are suppressed.

JobPartID ? string Only messages with a matching JobPartID attribute are suppressed.

URL URL URL of the receiving controller. This must be identical to the URL
that was used to create the persistent channel. If no ChannelID is
specified, all persistent channels to this URL are deleted.

5.5.2 Device/Operator Status and Job Progress Messages
JDF Messaging provides methods to trace the status of individual devices and resources and additional job-
dependent job-tracking data. JDF makes a distinction between the Status of a device and of a job. The
status of a job is described by the Progress and Phase of that job.

Devices are uniquely identified by a name—that is, by the attribute DeviceID of the Device resource (see
section 7.2.31 Device)—while controllers are uniquely identified by their URL. In other words,
controllers are implicitly identified as a result of the fact that they are responding to a message.

One controller may control multiple devices.

The following queries and commands are defined for status and progress tracking:

Table 5.25 Status and progress messages

Query Family Description
Occupation QRS Queries the occupation of an employee.

Resource QRSC Queries and/or modifies JDF resources that are used by a device,
such as device settings, or by a job. This message can also be used
to query the level of consumables in a device.

Status QRS Queries the general status of a device, controller or job.

Track QRS Queries the location of a given job or job part.

120 Chapter 5 JDF Messaging with the Job Messaging Format (JMF)

5.5.2.1 Occupation
Table 5.26 Contents of the Occupation element

Object Type Element name Description
QueryTypeObj EmployeeDef * Defines the employees queried.

ResponseTypeObj Occupation * The occupation status of the employees.

Occupation queries the occupation status of an employee. No job context is required to issue an
Occupation message.

Structure of the EmployeeDef Element
The Occupation query may be focused to certain employees specifying a EmployeeDef element. If no
EmployeeDef element is specified, a list of all known employees is returned.

Table 5.27 Contents of the EmployeeDef element

Name Data Type Description
PersonalID ? string PersonalID of the employee being tracked.

Structure of the Occupation Element
The response returns a list of Occupation elements for the queried employees. These elements consist of
one entry for every job that is currently being executed. The list format accommodates both employees that
service multiple jobs or job parts in parallel and multiple employees working on one job.

Table 5.28 Contents of the Occupation element

Name Data Type Description
Busy ? number Busy state of the employee in percentage. A value of 100,

the default, means that the employee is fully occupied with
this task. The sum of all Busy values should not exceed
100.

Device * element Devices that the employee is currently assigned to.

JobID ? string JobID of the JDF node that the employee is assigned to. If
no JobID is specified but devices are, the employee is
performing non job-related tasks.

JobPartID ? string Job part ID of the JDF node that is currently being
executed.

Employee element Description of the employee being tracked.

The following is an example of response to an Occupation query:

<Response ID="1" refID="Q1" Type="Occupation">

<!—Two jobs on one device with one operator-->
<Occupation JobID="J1" Busy="30">

<Employee PersonalID="P1234"/>
<Device Name="Joe"/>

</Occupation>

Chapter 5 JDF Messaging with the Job Messaging Format (JMF) 121

<Occupation JobID="J2" Busy="70">
<Employee PersonalID="P1234"/>
<Device Name="Joe"/>

</Occupation>
<!—Another operator on job j2 -->
<Occupation JobID="J2" Busy="50">

<Employee PersonalID="P4321"/>
<Device Name="Joe"/>

</Occupation>
<!—No Job context -->
<Occupation Busy="0">

<Device Name="John"/>
<Employee PersonalID="P5678"/>

</Occupation>
</Response>

5.5.2.2 Resource
The Resource message can be used as a command or a query to modify or to query JDF resources. In
both cases (query and command), it is possible to address either global device resources, such as device
settings, or job-specific resources. The query simply retrieves information about the resources without
modifying them, while the command modifies those settings within the resource that are specified. Settings
that are not specified remain unchanged.

Structure of the Resource Query Message
Table 5.29 Contents of the Resource query message element

Object Type Element Name Description
QueryTypeObj ResourceQuParams ? Specifies the resources queried.

ResponseTypeObj ResourceInfo * Contains the amount data of resources and, if
requested, the resources itself.

The Resource query may be made selective by specifying a ResourceQuParams element. The presence
of the JobID attribute determines whether global device resources or job-related resources are returned. If
no ResourceQuParams element is specified, only the global device resources are returned.

The query response returns a list of ResourceInfo elements that contains the queried information
concerning the resources. If the list is empty because the selective query parameters of the
ResourceQuParams do lead to a null selection of the known device/job resources, then the ReturnCode
may be 103 (JobID unknown), 104 (JobPartID unknown) or 108 (empty list) and should be flagged as a
warning.

Structure of the ResourceQuParams Element
Table 5.30 Contents of the ResourceQuParams element

Name Data Type Description
Class ? enumerations List of the resource classes to be queried. For example, in

order to query the actual level of consumables in a device
outside of any job context, specify Class = Consumable in
the query without a JobID attribute.
Defaults to any class.

For possible resource class names, see the Class attribute

122 Chapter 5 JDF Messaging with the Job Messaging Format (JMF)

in Table 3.9.

Exact ? boolean Requests an exact description of the JDF resource. If true,
the response should also return the requested JDF resource.

Default = false

Location ? string Identifies the location of a resource, such as paper tray, ink
container, or thread holder. The name is the same name
used in the attribute LocName of the Location sub-
element of a physical resource (see also Table 3.11).

Default = all locations

ResourceName ? NMTOKEN Name of the resource being queried. For possible resource
names, see titles in Chapter 7 Resources.

ResourceUsage ? NMTOKEN Selects a resource in which the value of the ProcessUsage
attribute of the resource link (see Table 3.13) matches the
token specified here in this attribute.

Only necessary if a resource name is used more than once
by one node. For example, the Component output
resources of a ConventionalPrinting process can be
distinguished by specifying ResourceUsage = good and
ResourceUsage = waste, respectively.

The ResourceName and ResourceUsage attributes are
combined by a logical “and” conjunction to select the
resource to be queried.

JobID ? string Job ID of the JDF node that is being queried. If no JobID
is specified, global device settings are queried.

JobPartID ? string Job part ID of the JDF node that is being queried.

Structure of the Resource Command Message
Table 5.31 Contents of the Resource command message element

Object Type Element name Description
CommandTypeObj ResourceCmdParams Specifies the resources to be modified.

ResponseTypeObj ResourceInfo * Contains information about the resources and
the resources after modification.

The Resource command may be used to modify either global device settings or a running job. It may be
made selective by specifying the optional attributes in the ResourceCmdParams element. The presence
of the JobID attribute determines whether global device resources or job-related resources are modified.

The response contains a list of ResourceInfo elements with all resources and private extensions of the
device after the changes have been applied. The type of the resource that is given as a response depends on
the type of the resource given in the command.

If the resource command was successful, the value of the ReturnCode attribute is 0. If it is not successful,
the value of ReturnCode may be one of those that have been described above in the section about the
Resource query message; 200, which means invalid resource parameters; or 201, which means insufficient
resource parameters. Partial application of the resource should also be flagged as a warning. If the value of
ReturnCode is larger than 0, the controller that issued the command can evaluate the returned resource in
order to find the setting that could not be applied.

Chapter 5 JDF Messaging with the Job Messaging Format (JMF) 123

Structure of the ResourceCmdParams Element
Table 5.32 Contents of the ResourceCmdParams element

Name Data Type Description
Exact ? boolean Requests an exact description of the JDF resource. If true,

the response should also return the requested JDF-resource.

Default = false

JobID ? string Job ID of the JDF node that is being modified. If no JobID
is specified, global device settings are modified.

JobPartID ? string Job part ID of the JDF node that is being modified.

ResourceName ? NMTOKEN Name of the resource whose production amount shall be
modified. For possible resource names see titles in Chapter
7 Resources.

Defaults to any name.

ResourceUsage ? NMTOKEN Selects a resource in which the value of the ProcessUsage
attribute of the resource link (see Table 3.13) matches the
token specified here in this attribute.

Only necessary if a resource name is used more than once
by one node. For example, the Component output
resources of a ConventionalPrinting process can be
distinguished by specifying ResourceUsage = good and
ResourceUsage = waste, respectively.

The ResourceName and ResourceUsage attributes are
combined by a logical “and” conjunction to select the
resource to be queried.

ProductionAmount ? number New amount of resource production. This value replaces
the Amount in the output resource link of the resource
specified by the ResourceName attribute.

Resource * element Resources to be uploaded to the controller.

The resources to be modified are identified by their ID
values, which means that the ID attributes must be known
to the controller that issued the Resource command.

Structure of the ResourceInfo Element
Table 5.33 Contents of the ResourceInfo element

Name Data Type Description
Amount ? number Intended amount for consumption or production of a resource

in a job context. This corresponds to the value of the Amount
attribute in the corresponding resource link of the resource.

AvailableAmount ? number Device-specific amount of the Consumable resource that is
available in the device.

Level ? enumeration This attribute is device dependent. A device may specify the
level status that describes a low or empty consumable level.
Possible values are:

empty – Specification is left to the device manufacturer.

124 Chapter 5 JDF Messaging with the Job Messaging Format (JMF)

low – Specification is left to the device manufacturer.

OK – Default value.

LocName string Device-specific string to identify the location of a given
consumable, such as paper tray, ink container, or thread
holder. The name is the same name used in the Location sub-
element of a physical resource.

Default = all locations

ResourceName ? NMTOKEN Name of the resource if Exact = false in the query. Only one
of Resource or ResourceName shall be specified.

ResourceUsage ? NMTOKEN Selects a resource in which the value of the ProcessUsage
attribute of the resource link (see Table 3.13) matches the
token specified here in this attribute.

Only necessary if a resource name is used more than once by
one node. For example, the Component output resources of
a ConventionalPrinting process can be distinguished by
specifying ResourceUsage = good and ResourceUsage =
waste, respectively.

The ResourceName and ResourceUsage attributes are
combined by a logical “and” conjunction to select the
resource to be queried.

Unit ? string Unit of the amount attributes. In a job-context it is strongly
discouraged to specify a unit other than the unit defined in the
respective JDF resource, although this may be necessary due
to technical considerations, such as when Ink is specified in
weight (g) and ink measurement is specified in volume (liter).

CostCenter ? element Cost center to which the resource consumption is allocated.

Resource ? element JDF description of the resource.

The following is an example for retrieving settings:

<Query ID="Q1" Type="Resource">

<ResourceQuParams Class="Consumable" Exact="true"/>
</Query>

The following is a possible response to the query above:

<Response ID="1" refID="Q1" Type="Resource">

<ResourceInfo LocName="Paper Tray 1" AvailableAmount="2120" >
<Media>
... <!-- Media resource defined in JDF -->
</Media>

</ResourceInfo>
<ResourceInfo LocName="Ink1" AvailableAmount="0" Unit="l"

Level="Empty">
<Ink>
... <!-- Ink description resource defined in JDF -->
</Ink>

</ResourceInfo>
</Response>

The following is an example for modifying the production amount of a specific job to produce brochures:

Chapter 5 JDF Messaging with the Job Messaging Format (JMF) 125

<Command ID="C1" Type="Resource">

<ResourceCmdParams JobID="MakeBrochure 012" ResourceName="Component"
ProductionAmount="7500"/>
</Command>

The following is a possible response to the resource command above:

<Response ID="2" refID="C1" Type="Resource">

<ResourceInfo Amount="7500" ResourceName="Component"/>
</Response>

5.5.2.3 Status
Table 5.34 Contents of the Status element

Object Type Element name Description
QueryTypeObj StatusQuParams Refines the query to include various aspects of

the device and job states.

ResponseTypeObj DeviceInfo Describes the actual device status.

 Queue ? Provides information about the queue and all
its entries. This element will only be provided
if the device has queue capabilities. The
Queue element is described in section 5.6.4
Queue-Handling Elements.

The Status message queries the general status of a device or a controller and the status of jobs associated
with this device or controller. No job context is required to issue a Status message. The response contains
one DeviceInfo element, which contains the device specific information and which may contain other
JobPhase elements that in turn contain the job specific information. The response also provides a Queue
element when commanded to do so.

Structure of the StatusQuParams Element
The various aspects of the device, queue, and job states may be refined by the StatusQuParams element.
This element contains three groups of parameters. The first group serves to refine the device-specific status
information queried. The parameters EmployeeInfo and ModuleDetails belong to this group. The second
group serves to refine the job specific status information. These are JobDetails, JobID, and JobPartID.
And the third determines simply whether a queue element should be appended. This is specified by the
attribute QueueInfo.

In order to focus on the status of a certain job the job must be uniquely identified using the JobID attribute.
It may be necessary to define a process or a part of a job as the query target under certain circumstances,
such as when a job is processed in parallel. This is accomplished using the JobPartID attribute of the
StatusQuParams element. A value of JobDetails = full requests a complete JDF description of a
snapshot of the specified job or job part.

If the specified job or job part is unknown, the value of the ReturnCode attribute is 103 or 104 (for error
codes see Appendix H).

Table 5.35 Contents of the StatusQuParams element

Name Data Type Description
EmployeeInfo ? boolean If true, Employee elements may be provided in the response.

Th l t d ib th l hi h i t d

126 Chapter 5 JDF Messaging with the Job Messaging Format (JMF)

Those elements describe the employees which are associated
to the device independent on any job.

Default = false.

JobDetails ? enumeration Refines the provided status information about the jobs
associated with the device. Each higher entry includes the
values specified in the lower entries. Possible values are:

none – Default value. Specify only JobID, JobPartID and
Amount and/or PercentCompleted.

MIS – Provide business with the relevant information
contained in the CostCenter element and the DeadLine,
DeviceStatus, Status, StatusDetails, and the various
Counter attributes.

brief – Provide all available status information except for
JDF.
full – Provide maximum available status information.
Includes a actual JDF which represents a snapshot of the
current job state.

JobID ? string Job ID of the JDF node whose status is being queried.
Defaults to list all known jobs.

JobPartID ? string JobPart ID of the JDF node whose status is being queried.

ModuleDetails ? enumeration Refines the provided status information about the states of
device modules independent on any job. Possible values are:

none – The default. No ModuleStatus elements are queried.

brief – ModuleStatus elements may be provided without
status details and without module specific employee
information.

full – Provide maximum available status information.

QueueInfo ? boolean If true, a Queue element may be provided. This is analogous
to a QueueStatus query (see section 5.6.3.6 QueueStatus).

Default = false.

Structure of the DeviceInfo Element
The response returns a DeviceInfo element for the queried device.

Table 5.36 Contents of the DeviceInfo element

Name Data Type Description
CounterUnit ? string The unit of the ProductionCounter, the

TotalProductionCounter and nominator unit of Speed.

The default unit is the default unit defined by JDF for the
output resource of the node executed by the device. For
example, in case of a sheet printer it is the number of
sheets, in case of a web printer, it is the length of printed
web in meters.

DeviceStatus enumeration The status of a device. Possible values are:

unknown – No device is known or the device cannot

Chapter 5 JDF Messaging with the Job Messaging Format (JMF) 127

provide a DeviceStatus. The default.

idle – No job is being processed and the device is
accepting new jobs.

down – If no job is being processed and the device
currently cannot execute a job. The device may be
broken, switched off, etc.

setup – The device is currently being set up. This state is
allowed to occur also during the execution of a job.

running – The device is currently executing a job.

cleanup – The device is currently being cleaned. This
state is allowed to occur also during the execution of a
job.

stopped – The device has been stopped, but running may
be resumed later. This status may indicate any kind of
break, including a pause, maintenance, or a breakdown,
as long as execution has not been aborted.

HourCounter ? timeDuratio
n

The total integrated time (life time) of device operation in
hours. Defaults to unknown.

PowerOnTime ? timeInstant Date and time when the device was switched on. Defaults
to unknown.

ProductionCounter ? number The current machine production counter. This counter
can be reset. Typically, it starts counting at power-on
time. The reset of this counter may be signaled by an
Events message of Type = CounterReset (see Appendix
I). Defaults to unknown.

Speed ? number The current machine speed. Speed is defined in the same
units as ProductionCounter / hour. Defaults to
unknown.

StatusDetails ? string String that defines the device state more specifically. For
a list of supported values, see Appendix F.

TotalProductionCounter ? number The current total machine production counter. Defaults to
unknown.

CostCenter ? element The cost center that the device is currently being charged
to. Defaults to unknown.

Device ? element A Device resource that describes details of the device.
Employee * element Employee resources that describe which employees are

currently working at the device.
JobPhase * element Describes the actual status of jobs in the device. For

details on using JobPhase elements, see Table 5.37.
ModuleStatus * element Status of individual modules. For details on using

ModuleStatus elements, see Table 5.38.

Structure of the JobPhase Element
A Status response may provide JobPhase elements. The JobPhase element represents the actual state
of a job. The JobPhase element is an analogue to the PhaseTime audit element described in section

128 Chapter 5 JDF Messaging with the Job Messaging Format (JMF)

3.9.1.3 PhaseTime. The main difference between a JobPhase element and a PhaseTime audit element
is that a Phase message reflects a snapshot of the current job status whereas the PhaseTime audit reflects
a timespan bordered by two (sub-)status transitions.

For exact information about the job phase a JobPhase element may embed a copy of the current state of
the job described as JDF. If an actual JDF is not supported by the controller, the same rules apply for the
Status response as those which apply for the Consumable response.

Table 5.37 Contents of the JobPhase element

Name Data Type Description
Amount? number Produced amount. The unit is specified in the CounterUnit

attribute of the parent element DeviceInfo.

DeadLine ? enumeration Scheduling state of the job. Possible values are:

InTime – The job or job part will probably not miss the
deadline.

Warning – The job or job part could miss the deadline.
Late – The job or job part will miss the deadline.

Default = InTime
For more details on scheduling, see section 3.5 Process and
Node Information.

JobID ? string Job ID of the JDF node the JobPhase belongs to.

JobPartID ? string Job part ID of the JDF node the JobPhase belongs to.

PercentCompleted ? number Node processing progress in % completed.

QueueEntryID ? string If the job was submitted to a Queue, and the
QueueEntryID is known, this attribute should be provided.

Speed ? number The current job speed. Speed is defined in the same units
as ProductionCounter / hour. Defaults to the speed
specified in the DeviceInfo element.

Status enumeration The status of the JDF node. Possible values are the same as
the possible values of a JDF node’s Status attribute:

waiting
quoted

ready
failed_testrun

setup
in_progress

cleanup
spawned

stopped
completed

aborted

For details, see Table 3.3 Contents of a JDF node.

StatusDetails ? string String that defines the job state more specifically. For a list
of supported values, see Appendix F.

Chapter 5 JDF Messaging with the Job Messaging Format (JMF) 129

CostCenter ? element The cost center that the job is currently being charged to.
Defaults to the cost center specified in the DeviceInfo
element.

JDF ? element Complete JDF node that represents a snapshot of the job
that is currently being processed.

Part ? element Describes which part of a job is currently being processed.

Structure of the ModuleStatus Element
The ModuleStatus element is identical to the ModulePhase element of the PhaseTime audit element
(see Table 3.25), except that the attributes Start and End are missing. These attributes specify the time
interval in the audit pendant ModulePhase and the DeviceID attribute, which, here, is unnecessary. The
ModuleStatus element is described in the following table.

Table 5.38 Contents of the ModuleStatus element

Name Data Type Description
DeviceStatus enumeration Status of the module. Possible values are:

idle – The module is not used. An example is a color print module
that is inactive during a black-white print.

down – The module cannot be used. It may be broken, switched off
etc.

setup – The module is currently being set up.

running – The module is currently executing.

cleanup – The module is currently being cleaned.

stopped – The module has been stopped, but running may be
resumed later. This status may indicate any kind of break,
including a pause, maintenance, or a breakdown, as long as running
can be easily resumed.

ModuleIndex IntegerRange-
List

0-based indices of the module or modules. If multiple module
types are available on one machine, indices must also be unique.

ModuleType NMTOKEN Module description. The allowed values depend on the type of
device that is described. The predefined values are listed in
Appendix G.

StatusDetails ? string Description of the module status phase that provides details beyond
the enumerative values given by the DeviceStatus attribute. For a
list of supported values, see Appendix F.

Employee * element Links to Employee resources that are working at this module (the
module is specified by the attributes ModuleIndex and
ModuleType).

The following is an example of a response to a Status query. The device in this example holds one job and
executes another job that is currently printed duplex each side on four-color modules for the front and
three-color modules for the back, with one idle:

<Response ID="1" refID="Q1" Type="Status">

<DeviceInfo JobID="678" JobPartID="01" DeviceStatus="running"
StatusDetails="Waste">

130 Chapter 5 JDF Messaging with the Job Messaging Format (JMF)

<JobPhase Amount="2560" DeadLine="InTime" JobID="678"
JobPartID="01" PercentCompleted="52" QueueEntryID="Job-05"
Status="in_progress" StatusDetails="Waste"/>

<JobPhase Amount="0" DeadLine="Warning" JobID="679" JobPartID="01"
PercentCompleted="0" QueueEntryID="Job-06" Status="ready"/>

<ModuleStatus ModuleIndex="0~3 6~8" ModuleType="PrintModule"
DeviceStatus="running"/>

<ModuleStatus ModuleIndex="4" ModuleType="PrintModule"
DeviceStatus="idle"/>

<ModuleStatus ModuleIndex="5" ModuleType="PerfectingModule"
DeviceStatus="running"/>

</DeviceInfo>
</Response>

5.5.2.4 Track
Table 5.39 Contents of the Track element

Object Type Element name Description
QueryTypeObj TrackFilter ? Refines the Track query.

ResponseTypeObj TrackResult * Details of the tracked jobs

The Track query requests information about the location of Jobs that are known by a controller. If a higher
level controller controls lower level controllers, it should also list the jobs that are controlled by these. The
response is a list of TrackResult elements.

Structure of the TrackFilter Element
The TrackFilter element refines the list of TrackResults that should be returned. Only jobs that match all
parameters specified are included.

Table 5.40 Contents of the TrackFilter element

Name Data Type Description
JobID ? string Job ID of the JDF node that is being tracked. Defaults to list

JobPhase elements of all known nodes.

JobPartID ? string JobPart ID of the JDF node that is being tracked.

Status enumerations The status of the jobs being tracked. Possible values are a
combination of any of the possible values of a JDF node’s
Status attribute:

waiting
quoted

ready
failed_testrun

setup
in_progress

cleanup
spawned

stopped

Chapter 5 JDF Messaging with the Job Messaging Format (JMF) 131

completed

aborted

For details, see Table 3.3 Contents of a JDF node.

Structure of the TrackResult Element
One TrackResult is returned for each known job or spawned job part. TrackResult elements contain
information about the location of distributed jobs.

Table 5.41 Contents of the TrackResult element

Name Data Type Description
JobID string Job ID of the JDF node that is being tracked.

JobPartID ? string JobPart ID of the highest level node of the JDF node that is
being tracked.

URL URL URL of the controller that owns this job.

IsDevice boolean If true, the controller that emitted this message is the device
that has access to the job and may be queried for details of
the job.

The following is an example of a response on a Track message:

<Response ID="1" refID="Q1" Type="Track">

<TrackResult URL="http:://wherever.controller.de/MyController"
JobID=”1” JobPartID=”42” IsDevice=”true”/>

…
</Response>

5.5.3 Pipe Control
JDF Messaging provides methods to control dynamic pipes. Dynamic pipes are described in detail in
section 4.3.2 Overlapping Processing Using Pipes.

Table 5.42 Dynamic pipe messages

Query Family Description
PipeClose CRA Closes a pipe because no further resources are required. This

is typically used to terminate the producing process.

PipePull CRA Requests a new resource from a pipe.

PipePush CRA Notifies that a new resource is available in a pipe.

PipePause CRA Pauses a process if no further resources can be consumed or
produced.

5.5.3.1 PipeClose
Table 5.43 Contents of the PipeClose element

132 Chapter 5 JDF Messaging with the Job Messaging Format (JMF)

Object Type Element name Description
CommandTypeObj PipeParams Describes the pipe resource.

ResponseTypeObj JobPhase The status of the responding process.

AcknowledgeTypeObj PipeCmdResult Describes the execution result of the pipe
command (see Table 5.46).

The PipeClose message notifies the process at the other end of a dynamic pipe that the sender of this
message needs no further resources or will produce no further resources through the pipe.

The PipeClose command response is equivalent to the PipePull and PipePush command responses
described below. The PipeParams and the PipeCmdResult are described in section 5.5.3.2 PipePull.

5.5.3.2 PipePull
Table 5.44 Contents of the PipePull element

Object Type Element name Description
CommandTypeObj PipeParams Describes the requested pipe resource.

ResponseTypeObj JobPhase The status of the responding process.

AcknowledgeTypeObj PipeCmdResult Describes the execution result of the pipe
command.

The PipePull message requests resources that are described in a JDF dynamic pipe (see sections 3.6.3 Pipe
Resources and 4.3.2 Overlapping Processing Using Pipes). PipePull messages are the JMF equivalent of
a dynamic input resource link. Figure 5.2, below, depicts the mode of operation of a PipePull message.

The PipePull command response returns a ReturnCode of 0 if the command has been accepted by the
receiving controller. If not successful the ReturnCode may be one of the codes presented in Appendix H.
The response may contain a Notification element. The JobPhase element (see section 5.5.2.3 Status)
returned should provide only the Status attribute that describes the job status of the responding process
after receiving the command.

JMF - PipePull command message

immediate: JMF - PipePull command response
delayed: JMF - Pipe acknowledge

input, consum.

Res.A P1

P2 Res.B

pipe resource
output, prod.

PipeURL?

Updated

input resources
Upda

ted
 ou

tpu
t

reso
urce

 lin
k

Figure 5.2 Mechanism of a PipePull message

Chapter 5 JDF Messaging with the Job Messaging Format (JMF) 133

Structure of the PipeParams Element
The PipeParams element is also used by the messages PipeClose, PipePush, and PipePause.

Table 5.45 Contents of the PipeParams element

Name Data Type Description
PipeID string PipeID of the JDF resource that defines the dynamic pipe.

ReturnURL ? URL URL where the Acknowledge should be sent when the pipe
command has been executed (PipeClose: when the process
has been finished, PipePull: when the resource is available,
PipePush: when the resource has been accepted, and
PipePause: when the process has been stopped). In general,
this is the URL of the controller that is issuing the pipe
command.

Status ? enumeration Process status after the request. Possible values are defined in
Table 3.3.

Default = in_progress

Resource * element Updated input resources to be used by the process that
receives the pipe command (PipePull: the receiver creates the
pipe resource, PipePush: the receiver consumes the pipe
resource, and PipePause: the receiver only updates the
inputs).

The resource to be updated is identified by the ID, that means
the ID attribute must be known to the controller that issued
the pipe command (possible commands are: PipePull,
PipePush, or PipePause). In case of the PipeClose
command, the resources are ignored.

ResourceLink ? element Updated resource link to the pipe resource (PipePull: it is an
output link, PipePush: it is an input link, and PipePause:
depends on the pipe end). This resource link may be used by
the process that links to the pipe resource.

The attributes rRef and Usage of a resource link must not be
updated (for details see section 3.7 Resource Links). In the
context of dynamic pipes the two said attributes have no
meaning.

In case of the PipeClose command, the resource link is
ignored.

UpdatedStatus ? enumeration This value represents the actual status of the pipe resource and
may be used by the receiving process for process termination
control (for details see section 4.3.4.2 Formal Iterative
Processing).

For possible values of the resource Status attribute see Table
3.9.

Structure of the PipeCmdResult Element
An Acknowledge message may be sent to acknowledge the execution of a previously received pipe
command. The refID attribute of a Acknowledge message is set to the ID of the issuing pipe message.

134 Chapter 5 JDF Messaging with the Job Messaging Format (JMF)

Table 5.46 Contents of the PipeCmdResult element

Name Data Type Description
PipeID string PipeID of the JDF resource that defines the dynamic pipe.

Status enumeration The status of the process after execution. Possible values are
defined in Table 3.3.

5.5.3.3 PipePush
Table 5.47 Contents of the PipePush element

Object Type Element name Description
CommandTypeObj PipeParams Describes the produced pipe resource.

ResponseTypeObj JobPhase The status of the responding process.

AcknowledgeTypeObj PipeCmdResult Describes the execution result of the pipe
command (see Table 5.46).

The PipePush message notifies the availability of pipe resources that are described in a JDF dynamic pipe
(see sections 3.6.3 Pipe Resources and 4.3.2 Overlapping Processing Using Pipes). PipePush messages
are the JMF equivalent of a dynamic output resource link. Figure 5.3 depicts the mode of operation of a
PipePush message.

The PipePush command response is equivalent to the PipePull command response described above. The
PipeParams and PipeCmdResult messages are also described in section 5.5.3.2 PipePull.

pipe resource
PipeURL?

immediate: JMF - PipePush command response
delayed: JMF - Pipe acknowledge

JMF - PipePush command message

input, consum.

Res.A P1

P2 Res.B

output, prod.

Up
da

te
d

inp
ut

 re
so

ur
ce

s

Up
da

te
d

inp
ut

 re
so

ur
ce

 lin
k

Res.C

Figure 5.3 Mechanism of a PipePush message

5.5.3.4 PipePause
Table 5.48 Contents of the PipePause element

Object Type Element name Description

Chapter 5 JDF Messaging with the Job Messaging Format (JMF) 135

CommandTypeObj PipeParams Describes the pipe resource.

ResponseTypeObj JobPhase The status of the responding process.

AcknowledgeTypeObj PipeCmdResult Describes the execution result of the pipe
command (see Table 5.46).

The PipePause message pauses execution of a process that is at the other end of a dynamic pipe.

The PipePause command response is equivalent to the PipePull command response described above.
The PipeParams and PipeCmdResult messages are also described in section 5.5.3.2 PipePull.

5.6 Queue Support
In JMF, a device is assumed to have one input queue that accepts submitted jobs. If a real device supports
multiple queues, it is represented by multiple logical devices in JDF. The simple case of a device with no
queue can be mapped to a queue with two Status states: waiting and full.

JMF supports simple handling of priority queues. The following assumptions are made:

• Queues support priority. Priority may only be changed for waiting jobs. A queue may round
priorities to the number of supported priorities, which may be one, indicating no priority handling.

• Priority is described by an integer from 0 to 100. Priority 100 defines a job that should pause a job

that is in progress and commence immediately. If a device does not support pausing running jobs,
it should queue a priority-100 job before the last pending priority-100 job.

• A controller may control multiple devices/queues.

• Queue entries can be unambiguously identified by a QueueEntryID.

Some conventions used in the following sections have already been introduced in section 5.5 Standard
Messages. This affects the message families and the descriptive tables at the beginning of each message
section that describe the type objects related to the corresponding message. The type objects are
QueryTypeObj, CommandTypeObj, ResponseTypeObj, and AcknowledgeTypeObj (see also Figure
5.1).

5.6.1 Queue Entry ID Generation
Queue entries are accessed using a QueueEntryID attribute, which is generated by the controller of the
queue when the job is submitted. This attribute must uniquely identify an entry within the scope of one
queue. An implementation is free to choose the algorithm that generates QueueEntryIDs.

5.6.2 Queue Entry Handling Commands
Queue-entry handling is provided so that the state of individual jobs within a queue can be changed. Job
submission, queue-entry grouping, priorities, and hold/resume of entries are all supported. The individual
commands are defined in the table and explained in greater detail in the sections that follow.

Table 5.49 QueueEntry handling messages

Command Family Description
AbortQueueEntry CRA If a job is already running, it is aborted and removed. If it is

not alread r nning it is remo ed from the q e e

136 Chapter 5 JDF Messaging with the Job Messaging Format (JMF)

not already running, it is removed from the queue.

HoldQueueEntry CR The entry remains in queue but is never executed.

RemoveQueueEntry CR A job is removed from the queue.

ResubmitQueueEntry CR Replaces a queue entry without affecting the entry’s
parameters. The command is used, for example, for late
changes to a submitted JDF.

ResumeQueueEntry CR A held job is resumed. The job is requeued at the position
defined by its current priority. Submission time is set to the
current time stamp.

SetQueueEntryPosition CR Queues a job behind a given position n, where n represents a
numerical value. 0 = pole position. Priority is set to the
priority of the job at position n.

SetQueueEntryPriority CR Sets the priority of a queued job to a new value. This does
not apply to jobs that are already running.

SubmitQueueEntry CR A job is submitted to a queue in order to be executed.

5.6.2.1 AbortQueueEntry
Table 5.50 Contents of the AbortQueueEntry element

Object Type Element name Description
CommandTypeObj QueueEntryDef Defines the queue entry.

ResponseTypeObj Queue Describes the state of the queue after the
command has been executed.

 For the definition of the elements listed above, see section 5.6.4.

Once this command is issued, the entry specified by QueueEntryDef is removed from the queue. If the
device on which the entry is running has already commenced processing, the entry is aborted.
AbortQueueEntry commands may be terminated by an Acknowledge message to indicate the completion
of the abortion. Then no predefined AcknowledgeTypeObj is provided.

5.6.2.2 HoldQueueEntry
Table 5.51 Contents of the HoldQueueEntry element

Object Type Element name Description
CommandTypeObj QueueEntryDef Defines the queue entry.

ResponseTypeObj Queue Describes the state of the queue after the
command has been executed.

 For the definition of the elements listed above, see section 5.6.4.

The entry specified by QueueEntryDef remains in the queue but is never executed. The
HoldQueueEntry command has no effect on running jobs.

Chapter 5 JDF Messaging with the Job Messaging Format (JMF) 137

5.6.2.3 RemoveQueueEntry
Table 5.52 Contents of the RemoveQueueEntry element

Object Type Element name Description
CommandTypeObj QueueEntryDef Defines the queue entry.

ResponseTypeObj Queue Describes the state of the queue after the
command has been executed.

 For the definition of the elements listed above see, section 5.6.4.

This command causes the entry specified by QueueEntryDef to be removed from the queue. It does not
affect running jobs.

5.6.2.4 ResubmitQueueEntry
Table 5.53 Contents of the ResubmitQueueEntry element

Object Type Element name Description
CommandTypeObj ResubmissionParams Defines the job resubmission.

ResponseTypeObj Queue Describes the state of the queue after the
command has been executed.

 For the definition of the Queue element, see section 5.6.4.

A job is resubmitted to a queue using the ResubmitQueueEntry message. This allows late changes to be
made to a job without affecting queue parameters and without exporting the internal structure of a queue.
Resubmission overwrites the job specified in the URL attribute of the ResubmissionParams element.
The job must not run. Job resubmission does not affect other queue parameters as specified, for example,
resubmission does not affect queue ordering.

Structure of the ResubmissionParams Element

Table 5.54 Contents of the ResubmissionParams element

Name Data Type Description
QueueEntryID string ID of the queue entry to be replaced.

URL URI Location of the JDF to be submitted. May be either a URL or, in the
case of MIME/Multipart/Related, a CID.

5.6.2.5 ResumeQueueEntry
Table 5.55 Contents of the ResumeQueueEntry element

Object Type Element name Description
CommandTypeObj QueueEntryDef Defines the queue entry.

ResponseTypeObj Queue Describes the state of the queue after the
command has been executed.

 For the definition of the elements listed above, see section 5.6.4.

138 Chapter 5 JDF Messaging with the Job Messaging Format (JMF)

The hold status of the queue entry specified by QueueEntryDef is removed.

5.6.2.6 SetQueueEntryPosition
Table 5.56 Contents of the SetQueueEntry element

Object Type Element name Description
CommandTypeObj QueueEntryPosParams Defines the queue entry.

ResponseTypeObj Queue Describes the state of the queue after the
command has been executed.

 For the definition of the Queue element, see section 5.6.4.

The position of the queue entry is modified. The QueueEntryPosParams element provides the required
parameters.

Structure of the QueueEntryPosParams Element
QueueEntryID specifies the queue entry to be moved. Jobs may either be set to a specific position within
the queue or positioned next to an existing queue entry. The priority of the entry matches the priority of the
entry that precedes it, after it has been repositioned.

Table 5.57 Contents of the QueueEntryPosParams element

Name Data Type Description
NextQueueEntryID? string ID of the queue entry that should be ordered directly behind

the entry.

QueueEntryID string ID of a queue entry. The ID is generated by the queue owner.

PrevQueueEntryID? string ID of the queue entry that should be ordered directly in front
of the entry.

Position? integer Position in the queue.

0 = pole position.

5.6.2.7 SetQueueEntryPriority

Object Type Element name Description
CommandTypeObj QueueEntryPriParams Defines the queue entry.

ResponseTypeObj Queue Describes the state of the queue after the
command has been executed.

 For the definition of the Queue element, see section 5.6.4.

The priority of the queue entry is modified. The QueueEntryPriParams element provides the required
parameters.

Chapter 5 JDF Messaging with the Job Messaging Format (JMF) 139

Structure of the QueueEntryPriParams Element
QueueEntryID, described in the table below, specifies the queue entry that has its priority modified.

Table 5.58 Contents of the QueueEntryPriParams element

Name Data Type Description
Priority integer Number from 0 to 100, where 0 = lowest priority and 100 =

maximum priority.

QueueEntryID string ID of a queue entry. The ID is generated by the queue owner.

5.6.2.8 SubmitQueueEntry
Table 5.59 Contents of the SubmitQueueEntry element

Object Type Element name Description
CommandTypeObj QueueSubmissionParams Defines the job submission.

ResponseTypeObj QueueEntry Provides the queue entry of the submitted job.

 Queue Describes the state of the queue after the
command has been executed.

 Definition of the QueueEntry and Queue elements, see section 5.6.4.

The SubmitQueueEntry message submits a job to a queue. The QueueSubmissionParams element
provides the required parameters.

Structure of the QueueSubmissionParams Element
The job submission may contain queue-ordering attributes equivalent to those used by the
SetQueueEntryPriority and SetQueueEntryPosition messages.

The URL attribute specifies the location where the JDF file to be submitted can be retrieved by the queue
controller. The location type in the URL attribute (such as File, http or CID) defines the submission
method. The optional ReturnURL attribute specifies the location where the modified JDF should be sent
after the job is completed or aborted.

Table 5.60 Contents of the QueueSubmissionParams element

Name Data Type Description
Hold ? boolean If true, the entry is submitted as held.

Default = false

NextQueueEntryID ? string ID of the queue entry that should be ordered directly behind the
entry.

PrevQueueEntryID ? string ID of the queue entry that should be ordered directly in front of
the entry.

Priority ? integer Number from 0 to 100, where 0 = lowest priority and 100 =
maximum priority.

Default = 1

ReturnURL ? URL URL where the JDF file should be sent when the job is
completed or aborted. If not specified, the JDF should be

140 Chapter 5 JDF Messaging with the Job Messaging Format (JMF)

placed in the default output hot-folder of the queue controller.

URL URL Location of the JDF to be submitted. In the case of
MIME/Multipart/Related, the location may be either a URL or
a CID.

WatchURL ? URL URL of the controller that should be notified when the status of
the QueueEntry changes. Specifying this URL is the
equivalent of sending a QueueEntryStatus query with a
persistent channel and ChangeAttribute = “*” to this URL.

File Submission
If the URL defines a file, the controller may retrieve the file at the location specified in the URL attribute.

The following example declares a file on the network:

<Command Type="SubmitQueueEntry" URL=" File:\\AnyDirectory\job1.jdf"/>

HTTP External JDF Submission
The following example declares an intranet or internet location. In this example, the queue controller can
retrieve the file with a standard http get command. Note that the job itself may be a MIME/Multipart
entity. It may also be dynamically generated by a CGI script or another such tool.

<Command Type="SubmitQueueEntry" URL="HTTP://JobServer.JDF.COM?job1"/>

HTTP MIME/Multipart/Related Submission
If a message controller is capable of decoding MIME, it is legal to submit a MIME/Multipart/Related
message. The first section of the multipart MIME document must be the JMF submission command.
Internal links are defined using the Content-ID (CID) label in MIME. The second section must be the JDF
job. Subsequent sections are the linked entities, such as the preview images shown in the following
example:

MIME-Version: 1.0
Content-Type: multipart/Related; boundary=unique-boundary

--unique-boundary
Content-type: text/xml
…
<JMF TimeStamp="2000-06-12T08:56+02:00" SenderID="JobCreator P_01">
<Command ID="Cmd-0234" Type="SubmitQueueEntry"">
<QueueSubmissionParams URL="CID:JDF1/>
</Command>
</JMF>
…

--unique-boundary
Content-type: text/xml
Content-ID: JDF1

<JDF … >

--unique-boundary

Chapter 5 JDF Messaging with the Job Messaging Format (JMF) 141

Content-type: image/png
Content-ID: Yellow-PNG-Page1

png image of a separation may be here

--unique-boundary--

5.6.3 Global Queue Handling
Whereas the commands in the preceding section change the state of an individual queue entry, the
commands in this section modify the state of an entire queue. Note that entries that are executing in a
device are not affected by the global queue-handling commands and must be accessed individually. An
individual queue can be selected by specifying the target device/queue in the DeviceID attribute of the
JMF root. If no DeviceID is specified, the commands or queries are applied to all devices/queues that are
controlled by the controller that received the message.

The following individual messages are defined:

Table 5.61 Global queue-handling commands

Command Family Description
CloseQueue CR The queue is closed. No jobs may be accepted by the queue.

FlushQueue CR All entries in the queue are removed.

HoldQueue CR The queue is held. No jobs within the queue may be executed.

OpenQueue CR The queue is opened. Jobs may be accepted.

QueueEntryStatus QRS Returns a QueueEntry element.

QueueStatus QRS Returns the Queue elements that describe a queue or set of
queues.

ResumeQueue CR The queue is activated and queue entries may be executed.

SubmissionMethods QR Queries a list of supported submission methods to the queue.

5.6.3.1 CloseQueue
Table 5.62 Contents of the CloseQueue element

Object Type Element name Description
CommandTypeObj -

ResponseTypeObj Queue Describes the state of the queue after the
command has been executed.

 For the definition of the Queue element, see section 5.6.4.

The queue is closed. No further queue entries are accepted by the queue. The status of entries that are
already in the queue remains unchanged and prior entries may be executed.

5.6.3.2 FlushQueue
Table 5.63 Contents of the FlushQueue element

142 Chapter 5 JDF Messaging with the Job Messaging Format (JMF)

Object Type Element name Description
CommandTypeObj -

ResponseTypeObj Queue Describes the state of the queue after the
command has been executed.

 For the definition of the Queue element, see section 5.6.4.

All queue entries in the queue are removed. Only pending queue entries may be removed.

5.6.3.3 HoldQueue
Table 5.64 Contents of the HoldQueue element

Object Type Element name Description
CommandTypeObj -

ResponseTypeObj Queue Describes the state of the queue after the
command has been executed.

 For the definition of the Queue element, see section 5.6.4.

The queue is held. No entries may be executed. Note that the status of a held entry prior to HoldQueue is
retained so that held jobs should remain held after a ResumeQueue. New entries may, however, still be
submitted to a held queue.

5.6.3.4 OpenQueue
Table 5.65 Contents of the OpenQueue element

Object Type Element name Description
CommandTypeObj -

ResponseTypeObj Queue Describes the state of the queue after the
command has been executed.

 For the definition of the Queue element, see section 5.6.4.

The queue is opened and new queue entries may be accepted by the queue. A held queue remains held.
The OpenQueue command is the opposite of a CloseQueue command.

5.6.3.5 QueueEntryStatus
Table 5.66 Contents of the QueueEntryStatus element

Object Type Element name Description
QueryTypeObj QueueEntryDef * Defines the addressed queue entries.

ResponseTypeObj QueueEntry * Describes the status of the queried queue
entries.

 For the definition of the elements above see section 5.6.4.

Chapter 5 JDF Messaging with the Job Messaging Format (JMF) 143

The QueueEntryStatus message returns queue entry descriptions. The QueueEntryDef elements specify
the queue entries to be queried. If no QueueEntryDef element is specified, the query returns a list of
QueueEntry elements, one for each entry in the queue. If no QueueEntryDef is specified and the query
defines a persistent channel, a Signal is emitted for any entry whose status changes. This includes changes
as a result of modifications of the queue status, such as hold or resume.

5.6.3.6 QueueStatus
Table 5.67 Contents of the QueueStatus element

Object Type Element name Description
QueryTypeObj -

ResponseTypeObj Queue Describes the status of the queue.

 For the definition of the Queue element, see section 5.6.4.

Returns a queue description.

5.6.3.7 ResumeQueue

Object Type Element name Description
CommandTypeObj -

ResponseTypeObj Queue Describes the state of the queue after the
command has been executed.

 For the definition of the Queue element, see section 5.6.4.

The queue is activated and queue entries may be executed. The ResumeQueue command is the opposite
of a HoldQueue command.

5.6.3.8 SubmissionMethods
Table 5.68 Contents of the SubmissionMethods element

Object Type Element name Description
QueryTypeObj -

ResponseTypeObj SubmissionMethods ? Describes the submission methods supported
by the queue.

The SubmissionMethods message returns the submission methods that are supported by a queue
controller.

Structure of the SubmissionMethods Element
The response element may contain multiple attributes, as defined below. If an attribute is not specified, the
corresponding submission method is not supported.

144 Chapter 5 JDF Messaging with the Job Messaging Format (JMF)

Table 5.69 Contents of the SubmissionMethods element

Name Data Type Description
File ? boolean Can retrieve a JDF from a File specified in the URL

Default = false

HotFolder ? URL URL specification of a hot-folder location.

Default = no hot-folder

HttpGet ? boolean Can retrieve a JDF via HTTP get commands.

Default = false

MIME ? boolean Accepts MIME/Multipart/Related submission messages via a message
post.

Default = false

The following is an example of a response to a SubmissionMethods query:

<Response ID="1" refID="Q1" Type="SubmissionMethods"/>

<SubmissionMethods File="true"
HotFolder="File://MyDevice/HotFolder" HttpGet="true" MIME="false"/>

</Response>

5.6.4 Queue-Handling Elements
In this section elements used by queue-handling commands are defined.

Structure of the Queue Element
The attributes in the following table are defined for Queue message elements.

Table 5.70 Contents of the Queue element

Name Data Type Description
Status enumeration Status of the queue. Possible values are:

blocked – Queue is completely inactive. No entries may be added and
no entries are executed. The queue is closed and held.
closed – Queue entries that are in the queue are executed, but no new
entries may be submitted. The lock must be removed explicitly.
full – Queue entries that are in the queue are executed but no new
entries may be submitted. The lock is removed by the queue
controller as soon as it is able to do so.
running – An process is executing. Entries may be submitted but will
not be executed until they reach their turn in the queue.
waiting – Queue accepts new entries and has free resources to
immediately commence processing.
held – Entries may be submitted but will not be executed until the
queue is resumed.

DeviceID string Identifies the queue/device.

Device * element The devices that execute entries in this queue.

Chapter 5 JDF Messaging with the Job Messaging Format (JMF) 145

QueueEntry * element Queue entry elements (see Table 5.71, below). The entries are
ordered in the sequence they will be executed, beginning with the
running entries.

Example of a Queue message element:

<Queue Status="running" DeviceID="Q12345">

<QueueEntry QueueEntryId="111-1" Priority="1" Status="running"
JobId="111" JobPartId="1"/>

<QueueEntry QueueEntryId="111-2" Priority="1" Status="waiting"
JobId="111" JobPartId="2"/>

<QueueEntry QueueEntryId="112-1" Priority="55" Status="held"
JobId="112" JobPartId="1"/>
</Queue>

Structure of the QueueEntry Element
Table 5.71 Contents of the QueueEntry element

Name Data Type Description
JobID string The Job ID of the JDF process.

JobPartID ? string The JobPartID of the JDF process.

Priority integer Priority of the QueueEntry. Values are 0-100. 0 = lowest
priority, while 100 = highest priority.

QueueEntryID string ID of a QueueEntry. This ID is generated by the queue
owner.

Status enumeration Status of the individual entry. Possible values are:

running – The queue entry is running and is no longer
represented in the queue.

waiting – The queue entry is waiting and will be executed
when resources are available.

held – The queue entry is held and will not execute until
resumed.

removed – The queue entry has been removed. This status can
only be sent when a persistent channel watches a queue and the
queue entry is removed.

SubmissionTime ? timeInstant Time when the entry was submitted to the queue.

Structure of the QueueEntryDef Element
The element specifies a queue entry and is used to refer to a certain queue entry.

Table 5.72 Contents of the QueueEntryDef element

Name Data Type Description
QueueEntryID string ID of the queue entry. The ID is generated by the queue

owner.

146 Chapter 5 JDF Messaging with the Job Messaging Format (JMF)

5.7 Extending Messages
This specification defines a set of predefined messages for general usage. Additional message types may
be defined using the standard namespace syntax as described in section 3.10.1 Namespaces in XML. The
content of the Type attribute may be specified with a prefix that identifies the organization that uses the
Type extension. The prefix and name should be separated by a single colon (‘:’). Any additional attributes
and elements are allowed, and internal elements may be declared with explicit namespaces. The default
namespace of JMF elements is xmlns="…TBD…". An example is provided:

<JMF … xmlns="JMFSchema URI" xmlns:Circus="Circus Schema URI">

<Query Type="Circus:IsClownHappy" ID="Q1">
<Circus:ClownParams Gender="male"/>

</Query>
</JMF>

The response will also have the “Circus:” namespace identifier. All Circus elements are explicitly
declared.

<JMF … xmlns="JMFSchema URI" xmlns:Circus="Circus Schema URI">

<Response ID="1" refID="Q1" Type="Circus:IsClownHappy">
<Circus:Clown name="Joe" happy="true">
<Circus:Clown name="John" happy="false">

</Response>
</JMF>

5.7.1 IFRATrack Support
The extending mechanism can be used to implement compatibility with other XML-based messaging
standards, for example version 3.0 of IFRATrack. The Type attribute is set to the appropriate namespace,
and the foreign message is included, as demonstrated in the following example:

<JMF … xmlns="JMFSchema URI" xmlns:IFRA="IFRATrack URI">

<Query ID="Q1" Type="IFRA:IMF">
<IMF xmlns="IFRATrack URI">

Whatever you want (may be multiple top level elements)
</IMF>

</Query>
</JMF>

The legal response would be:

<JMF … xmlns="JMFSchema URI" xmlns:IFRA="IFRATrack URI">

<Response ID="1" refID="Q1" Type="IFRA:IMF">
<IMF xmlns="IFRATrack URI">

The appropriate IFRA response(s)
</IMF>

</Response>
</JMF>

Note that the application is free to select the appropriate response types in order to fulfill its local
(IFRATrack) protocol requirements if it uses its own namespace. In the examples above the default
namespace associated with the IMF query and response elements has been overwritten by the IFRA-
namespace. Additional information on using IFRATrack and JDF is in Appendix E Modelling IFRAtrack
in JDF.

Chapter 6 Processes 147

Chapter 6 Processes
The following chapter describes the processes that are defined in detail for JDF.

6.1 Process Template
Processes are defined by their input and output resources, so all relevant resource information is provided
in tables for each process. Furthermore, although they are not listed for each process, additional, optional
ApprovalSuccess input resources that allow Approval processes, as well as any implementation
resources are implied for all processes defined in this chapter.

Input Resources
Name Description
Resource Represents any input resource.

Res1 (usage1) A resource of type Res1 with the ProcessUsage attribute usage1

Res1 (usage2) A resource of type Res1 with the ProcessUsage attribute usage2

ApprovalSuccess* Any number of ApprovalSuccess resources may be appended to
processes in order to model proofing and verification requirements.
This is implied and not specified explicitly in the tables in the
following section. For more information on the Approval process,
see section 6.2.1.

Implementation * Abstract resource that is a placeholder for any implementation
resource (examples are Employee and Device) that is associated
with processing this node.

Output Resources
Name Description
Resource Represents any output resource.

6.2 General Processes

6.2.1 Approval
The Approval process can take place at various steps in a workflow. For example, a resource, such as a
printed sheet or a finished book, is used as the input to be proven, and an ApprovalSuccess (given, for
example, by a customer or foreman) is produced.

Combining the Approval process with any other process can be used to represent a request for a receipt.

Input Resources
Name Description

148 Chapter 6 Processes

ApprovalParams Details of the approval process.

Resource * The resources to be proofed. The input will most often be a resource
of class Handling or Quantity.

Output Resources
Name Description
ApprovalSuccess Result of any proofing process given, for example, by a customer or

foreman. Note that ApprovalSuccess resources are only
available on success.

Resource * Represents the input resources as outputs that must be accepted for
further processing by the approval process. This is typically used to
transfer the resource Status of draft to available (see also 4.3.4.2
Formal Iterative Processing).

6.2.2 Combine
The Combine process is used to combine multiple physical resources of the same content to form one
physical resource. The quantity of the input and output of resources should be equal.

Input Resources
Name Description
PhysicalResource + The physical resources to be combined. These may be any resource

whose class is Consumable, Handling or Quantity.

Output Resources
Name Description
PhysicalResource Result of combining. The physical resource formed as a result of

the Combine process. The resulting resource must have a class of
Consumable, Handling or Quantity.

6.2.3 Delivery
This process can be used to describe the delivery of a physical resource to or from a location. This delivery
may be internal—meaning within the company—or to an external company or customer. The
CustomerInfo element of the JDF node can also be used if the delivery to is to be made to only one
customer.

Note, that a delivery receipt can be requested by combining the Delivery process with an Approval
process.

Input Resources
Name Description

Chapter 6 Processes 149

DeliveryParams Necessary information about the item or items to be delivered is
stored here.

Resource Any resource delivered to a location. This can be a physical
resource or a Parameter resource that is delivered electronically.

Output Resources
Name Description
Resource Any resource picked up from a location. This can be a physical

resource or a Parameter resource that is delivered electronically.

6.2.4 Ordering
This process can be used to describe the Ordering of a PhysicalResource element. Orders can be placed
internally—that is, within the company—or externally.

Input Resources
Name Description
OrderingParams Necessary information about the items to be ordered, such as the

supplier address, item quantity, or unit type.

Output Resources
Name Description
PhysicalResource All kinds of physical resources can be ordered.

6.2.5 ResourceDefinition
This process can be used to describe the interactive or automated process of defining resources such as set-
up information. This process creates output resources or modifies input resources of the same type as the
output resources.

The ResourceDefinition process is designed to monitor interactive work such as creating impositioning
templates. It can also be used to model a hot-folder process that accepts resources from outside of a JDF
based workflow.

Input Resources
Name Description
Resource ? Any type of resource.

Output Resources
Name Description
Resource The same type of resource as the input.

150 Chapter 6 Processes

6.2.6 Split
This process is used for splitting one physical resource into multiple physical resources containing the same
content as the original. The quantity of the input and output of resources should be equal.

Input Resources
Name Description
PhysicalResource The physical resource to be split.

Output Resources
Name Description
PhysicalResource + The resources formed as a result of splitting.

6.2.7 Verification
The Verification process is used to confirm that a process has been completely executed. In the case of
variable data printing, in which every document is unique and must be validated individually, database
access is required. Verification in this situation may involve scanning the physical sheet and interpreting a
barcode or alphanumeric characters. The decoded data may then be either recorded in a database to be later
cross referenced with a verification list, or cross referenced and validated immediately in real time.

Input Resources
Name Description
DBSchema ? Schema description of the cross-reference database.

DBSelection ? Database link that defines the database that contains cross-reference
data.

IdentificationField * Identifies the position and type of data for an automated, OCR-based
verification process.

VerificationParams Controls the verification requirements.

Output Resources
Name Description
ApprovalSuccess ? Signature file that defines verification success.

DBSelection ? Database link where the verification data should be recorded.

6.3 Prepress Processes

6.3.1 Scanning
Creates bitmaps from analog images using a scanner.

Input Resources
Name Description

Chapter 6 Processes 151

ExposedMedia * Description of the media to be scanned.

ScanParams High-level scanner settings. These settings are specifically not
intended as a replacement for low-level device interfaces such as
TWAIN.

Output Resources
Name Description
RunList List of ByteMap resources or LayoutElement resources of Type

= image.

6.3.2 LayoutElementProduction
This process describes the creation of page elements. It also explains how to create a layout that can put
together all of the necessary page elements, including text, bitmap images, vector graphics, PDL, or
application files such as InDesign, PageMaker, and XPress. The elements might be produced using any
of a number of various software tools. This process is often performed several times in a row before the
final LayoutElement, representing a final layout file, is produced.

Input Resources
Name Description
LayoutElement * URL of the PDL or application file, bitmap image file, text file,

vector graphics file, etc. Additional information (such as the page
number or X, Y-coordinates) might be stored in the Comment
element of the LayoutElement resource. Customer information
such as the file templates, manuscripts, and sketches are handled via
URL or URI.

Output Resources
Name Description
LayoutElement ? A URL of the PDL or application file is produced by this process if

no RunList is produced. Additional information such as page
number or X, Y-coordinates might be stored in the Comment of the
LayoutElement.

RunList ? A RunList of LayoutElement resources of ElementType page
or document is produced if this LayoutElementProduction task
is the last process of type LayoutElementProduction.

6.3.3 DBDocTemplateLayout
This process specifies the creation of a master document template that is used as an input resource for the
DBTemplateMerging process. It is similar to the LayoutElementProduction process except that the
output is a set of document templates. Document template are represented in JDF as LayoutElement
resources with Template = true.

Input Resources
Name Description

152 Chapter 6 Processes

LayoutElement * Page elements without links to a database.

DBRules Description of the rules that should be applied to database records in
order to generate graphic output.

DBSchema Database schema that describe the structure of data in the database.

Output Resources
Name Description
LayoutElement * The document template is a LayoutElement with links to a

database. These links are proprietary to the linking application and
are not described in JDF. The Template attribute must be true.

6.3.4 DBTemplateMerging
This process specifies the creation of personalized PDL instance documents by combining a document
template and instance data records from a database. The resulting instance documents will generally be
consumed by an Imposition, a RIPping, and ultimately by a DigitalPrinting process.

Input Resources
Name Description
DBMergeParams Parameters of the merge process.

DBSelection Instance database records to be merged into the document.

LayoutElement * Document template page element with internal links to a database.

Output Resources
Name Description
RunList Page element without links to a database. This element usually

contains a printable LayoutElement resource such as PPML,
vPDF or even plain ASCII.

6.3.5 ColorSpaceConversion
ColorSpaceConversion, as the name implies, is the process of converting all colors used in the job to a
known colorspace. There are two ways in which a controller can use this process to accomplish the color
conversion. It can simply order the colors to be converted by the device assigned to the task, or it can
request that the process simply tag the input data for eventual conversion. Additionally, the process may
remove all tags from the content.

The parameters of this resource provide the ability to control, selectively, the conversion or tagging of
graphical objects based on object class and/or incoming color space.

Like all other color manipulation supported in JDF, the color conversion controls are based on the use of
ICC profiles. While the assumed characterization of input data can take many forms, each can internally be
represented as an ICC profile. In order to perform the transformations, input profiles must be paired with
the identified final target device profile to create the transformation.

Chapter 6 Processes 153

In order to avoid the loss of black color fidelity resulting from the transformation from a four-component
CMYK to a three-component interchange space, the agent may select a DeviceLink1 profile as the assumed
color space characterization. In these instances, the final target profile is ignored. Since there is no
algorithmic way to determine that the output characterization in a device link profile is equivalent to
another profile, some of the responsibility to select a sensible combination falls on the agent or end user.

Input Resources
Name Description
ColorantControl Identifies the assumed color model for the job.

ColorPool Identifies the specifics of individual colorants used by the job.

ColorSpaceConversionParams Parameters that define how colorspaces will be converted in the
file.

RunList List of pages on which to perform the selected operation.

Output Resources
Name Description
ColorantControl Identifies the assumed color model for the job. The ColorantControl

resource may be modified by a ColorSpaceConversion Process.

ColorPool Identifies the specifics of individual colorants used by the job.

RunList List of pages on which the selected operation has been performed.

6.3.6 ColorCorrection
ColorCorrection is the process of modifying the specification of colors in documents to achieve some
desired visual result. The process may be performed to ensure consistent colors across multiple files of a
job, or to achieve a specific design intent (such as, ‘Brighten the image up a little’).

ColorCorrection is distinct from ColorSpaceConversion, which is the process of changing how the
colors specified in the job will be produced on paper. Rather, ColorCorrection is the process of
modifying the desired result, whatever the specified colorspace might be.

Input Resources
Name Description
ColorantControl Identifies the assumed color model for the job.

RunList List of content elements that are to be operated on.

Output Resources
Name Description
RunList List of color-corrected pages.

1 DeviceLink profiles are ICC profiles that map directly from one device color space to another device
color space. Therefore it represents a one-way link or connection between devices. Examples for
DeviceLink profiles are CMYK to CMYK print process conversions or RGB to CMYK color separations.

154 Chapter 6 Processes

6.3.7 Preflight
Preflighting is the process of examining the components of a print job to ensure that the job will print
successfully and with the expected results. Preflight checks may be performed on each PDL document
identified within the associated RunList resource.

Preflighting a file is generally a three-step process. First, the pages are inventoried against a preflight
profile, detailing the expected or hoped-for results. The resulting inventory identifies the significant
characteristics of all the pages in the job. Next, the characteristics are tested against a set of criteria
specified by a series of preflight constraint resources. Finally, results and discrepancies are reported in a
PreflightAnalysis hierarchy log as analysis.

Agents record the instructions for, and devices the results of, preflight operations in JDF jobs, using
hierarchies headed by three types of resources: Inventory, Profile, and Results. The Inventory hierarchy
may be used to record all the information gathered in the first step, although devices need not record this
information. The Profile hierarchy is used to record the criteria used to test the file in the second step. And
the Results hierarchy is used to record the results of the tests. In all three hierarchies, information is
grouped into categories. There are six pre-defined categories in JDF—Colors, Document, Fonts, FileType,
Images and Pages—but applications may define other categories if needed.

In a profile hierarchy, each category is populated with PreflightConstraint elements. Each
PreflightConstraint element specifies a test that the application will perform when analyzing the file. In
the Inventory and Results hierarchies, each category is populated with two kinds of sub-elements that
record information about specific characteristics of the file: PreflightInstance and PreflightDetail. Such
information is recorded in the following two ways:

1. Information that is specific to one instance of some file object is recorded via PreflightInstance
sub-elements that occur in each of the results pools such as FontResultsPool and
ImageResultsPool). Within each PreflightInstance element, PreflightInstanceDetail sub-
elements provide detailed information about that instance. For example, to record information
about each font used in the file, the FontResultsPool contains one PreflightInstance sub-
element, which groups a set of PreflightInstanceDetail sub-elements. Each of these sub-
elements records one specific characteristic of the font.

2. Information that applies to the file as a whole is recorded via PreflightDetail sub-elements, which

occur in the various results pools. For example, to record all the page sizes used in the file, the
PagesResultsPool would contain several PreflightDetail sub-elements, one for each page size
used in the file.

An Inventory hierarchy may be used to record all information about a file. Preflight tools are not required
to create an Inventory hierarchy as part of the preflight information they record. However, tools may find it
useful to record this information, allowing them to avoid re-parsing the entire file in order to perform a new
Analysis.

Profile hierarchies specify the constraints against which the file is tested. Each Analysis hierarchy reflects
the results of evaluating the file characteristics, which may be recorded in an Inventory hierarchy, against a
set of tests recorded in a Profile hierarchy.

PreflightConstraint elements record the specific details for the constraints specified in the
PreflightProfile resource. PreflightDetail and PreflightInstanceDetail elements record results, while
PreflightInstance elements group PreflightInstanceDetail sub-elements for instances of file objects. The
details recorded are PDL-specific.

Applications can define constraints within any of the defined constraint categories for any file type. In
addition, applications may add to the set of defined constraints and constraint categories, defining both the
new category and the constraint within the category.

Chapter 6 Processes 155

Whether constraints are specified for predefined or new constraint categories, the eventual values for those
constraints are always expressed as PreflightConstraint elements which are part of a PreflightProfile.
Furthermore, the results are always expressed as either PreflightDetail elements or PreflightInstance
elements , which group PreflightInstanceDetail sub-elements for Analysis results.

Input Resources
Name Description
PreflightInventory ? Provides an exhaustive list of all items already resolved in a previous

preflight.

PreflightProfile A specified list of constraints against which pages may be tested.

RunList The list of pages to be preflighted.

Output Resources
Name Description
PreflightAnalysis ? Describes the results of a preflight operation. Provides analytical

information for the constraints against which the file was tested.

PreflightInventory ? Provides an exhaustive list of all items considered in preflight.

RunList ? A list of pages that may or may not have been modified as a result of
a fix-up operation.

6.3.8 ImageReplacement
This process provides a mechanism for manipulating documents that contain referenced image data. It
allows for the “fattening” of files that simply contain a reference to external data or contain a low-
resolution proxy. Additionally, the ImageReplacementParams resource can be specified so that this
process generates proxy images from referenced data.

ImageReplacement is intentionally neutral of the conventions used to identify the externally referenced
image data.

Input Resources
Name Description
ImageReplacementParams Describes the controls selected for the manipulation of images.

RunList List of page contents on which to perform the selected operation.

Output Resources
Name Description
RunList List of page contents with images that have been manipulated as

indicated by the ImageReplacementParams resource.

6.3.9 Separation
The Separation process specifies the controls associated with the generation of color-separated data, and
is designed to be flexible enough to allow a variety of possible methods for accomplishing this task. First

156 Chapter 6 Processes

of all, it sponsors host-based PDF separating operations, in which a RunList of pre-separated PDF data is
generated. It can also be combined with a RIP to allow control of In-RIP separations. In this scenario a
RunList containing ByteMap resources is generated as the output. Yet another anticipated combination
is with the ColorCorrection process to deal with incoming device-dependent data. And finally, it may be
combined with an ImageReplacement process in order to do image substitution for omitted or proxy
images.

Input Resources
Name Description
ColorantControl Identifies which colorants in the job are to be output.

ColorPool Identifies the specifics of individual colorants used by the job.

RunList List of pages that are to be operated on.

SeparationControlParams Controls for the separation process

Output Resources
Name Description
RunList List of separated pages or separated raster bytemaps.

6.3.10 Trapping
Trapping is a prepress process that modifies PDF files to compensate for a type of error that occurs on
presses. Specifically, when more than one colorant is applied to a piece of media using more than one
inking station, the media may not stay in perfect alignment when moving between inking stations. Any
misalignment will result in an error called misregistration. The visual effect of this error is either that inks
are erroneously layered on top of one another, or, more seriously, that gaps occur between inks that should
abut. In this second case, the color of the media is revealed in the gap and is frequently quite noticeable.

So Trapping, in short, is the process of modifying PDL files so that abutting colorant edges intentionally
overlap slightly, in order to reduce the risk of gaps.

The Trapping process specifies that a set of document pages should be modified to reduce or (ideally)
eliminate visible misregistration errors in the final printed output. The process may be combined with
RIPping or specified as a stand-alone process.

Input Resources
Name Description
ColorantControl Identifies color model used by the job.

ColorPool Identifies the specifics of individual colorants used by the job.

RunList Structured list of incoming page contents that are to be trapped.

TrappingDetails Describes the general setting needed to perform trapping.

TrappingParams A set of TrappingParams resources that are referenced from the
TrapRegion resources.

TrapRegion A set of TrapRegion resources that identify the pages to be
trapped, the geometry of the areas to trap on each page, and the
trapping settings to use for each area.

Chapter 6 Processes 157

Output Resources
Name Description
RunList Structured list of the modified page contents to which traps have been

added.

6.3.11 Imposition
The Imposition process is responsible for combining several pages of input graphical content on to a
single surface whose dimensions are reflective of the physical output media. Printer’s marks can be added
to the surface in order to facilitate various aspects of the production process. Among other things, these
marks are used for press alignment, color calibration, job identification, and as guides for cutting and
folding.

There are two mechanisms provided for controlling the flow of page images onto Media. The default
mechanism, which provides the functionality of Layout in PJTF, explicitly identifies all page content for
each Sheet imaged and references these pages by means of the Documents and/or MarkDocuments
array. Setting the Automated attribute of the Layout resource to true activates a template approach to
printing and relies upon the full Documents hierarchy to specify the page content to image. Automated
impositioning is equivalent to the PrintLayout functionality in PJTF.

In JDF, there is a single Layout resource definition. Its structure is broad enough to encompass the needs
of both fully specified and template-driven imposition. When described fully, the Layout resources
include a SignaturesPool which specifies an array of Signatures. Each Signature in turn specifies an
array of Sheets, and each Sheet can have up to two Surfaces (Front and Back), on which the page
images and any marks are to be placed using PlacedObjects. A Sheet that specifies no Surface content
will be blank. Pages that are to be printed must be placed onto Surfaces using ContentObject sub-
elements which explicitly identify the page (via the Ord attribute which specifies an index into the
document RunList). Thus, the Layout hierarchy specifies explicitly which pages will be imaged.

When describing automated imposition, Layout resources specify a single Signature of Sheet(s) where
page contents are imaged. The (virtual) sequence of pages which is to be imaged via automated layout is
defined by the Document RunList. Pages are drawn in order from this sequence to satisfy the
ContentObjects in the Surfaces for the Signature in the Layout, and the Signature is repeated until all
pages of the sequence are consumed. Each time the Signature is repeated, pages are consumed in ‘chunks’
whose size is determined by the value of MaxOrd + 1 (if present in the Layout), or by the largest Ord
value or calculated OrdExpression value for any ContentObject in the Signature (if MaxOrd is absent).

Attributes of the Media are given for each Sheet used in printing. Because the same Signature is
repeated until all pages are consumed, the Layout hierarchy can provide hints or preferences about special
needs for sets of page content via InsertSheet elements. Inserting media is a way to separate sections of
the document content. Thus alternate content is printed only as necessary to fill areas which would
normally have page content because new media has been added, or to designate where a document section
will begin as specified by the odd or even position of the Signature.

In a JDF model, impositioning is defined separately from other processes, which may precede or follow it.
A Combined node may combine Imposition with other processes (such as Separation or Interpreting)
to describe a device that happens to perform both in a single execution module.

Input Resources
Name Description
Layout A Layout resource that indicates how the content pages from the

Document RunList and marks from the Marks RunList (see

158 Chapter 6 Processes

below) shall be combined onto imposed surfaces.

RunList (Document) Structured list of incoming page contents which is transformed to
produce the imposed surface images.

RunList ? (Marks) Structured list of incoming marks. These are typically printer’s
marks such as fold marks, cut marks, punch marks, or color bars.

Output Resources
Name Description
RunList Structured list of imposed surfaces. The value of the Type attribute

of the LayoutElement resources must all be surface.

6.3.12 PDFToPSConversion
The PDFToPSConversion process controls the generation of PostScript from a single PDF document.
This process may be used at any time in a host-based PDF workflow to exit to PostScript for use of tools
that consume such data. Additionally, it may be used to actively control the physical printing of data to a
device that consumes PostScript data. The JDF model of this may include a PDFToPSConversion
process in a Combined node with a PSToPDFConversion process.

Input Resources
Name Description
PDFToPSConversionParams Set of parameters required to control the generation of PostScript.

RunList List of documents and pages to be converted to PostScript.

Output Resources
Name Description
RunList Stream or streams of resulting PostScript code. This PostScript code

may end up physically stored in a file or be piped to another process.
The GeneratePageStreams attribute of the
PDFToPSConversionParams resource determines whether there
is a single stream generated for all pages in the RunList or whether
each page is generated in to a separate consecutive stream.

6.3.13 PSToPDFConversion
This section defines the controls required to invoke a device that accepts a PostScript stream and produces
a set of PDF pages as output.

Input Resources
Name Description
FontParams ? These parameters determine how the conversion process will

handle font errors encountered in the PostScript stream.

ImageCompressionParams ? This resource provides a set of controls that determines how
images will be compressed in the resulting PDF pages.

PSToPDFConversionParams ? These parameters control the operation of the process that
interprets the PostScript stream and produces the resulting PDF

Chapter 6 Processes 159

interprets the PostScript stream and produces the resulting PDF
pages.

RunList This resource specifies where the PostScript stream is to be
found.

Output Resources
Name Description
RunList This resource identifies the location of the resulting PDF pages.

6.3.14 RIPping
RIPping is, in the context of a workflow, a Combined process that is an amalgamation of at least two
processes. Most often it includes Interpreting and Rendering, but it may also include Trapping,
Separation, Imposition, and Screening. Thus a typical RIP node is of Type Combined, as shown in
the following example:

<JDF Type="Combined" Types="Interpreting Rendering Screening" … />

The RIPping process consumes page descriptions and instructions for producing the graphical output. It
parses the graphical contents in the page descriptions, renders the contents, and produces a rasterized image
of the page. This raster may contain contone data and be represented upon output as a ByteMap.
Alternatively, the RIPping process may also perform halftone screening, in which case the output is in the
form of a bitmap. It is also responsible for resolving all system resource references that include font
handling and resource aliasing.

Instructions read by the RIP include information about the media, halftoning, color transformations,
colorant controls and other items that affect that rasterized output. They do not, however, represent any
specific controls for the physical output device, nor do they deal with any instructions intended for the
finishing device.

When a RIPping process is comprised of only the Interpreting and Rendering processes, various
intermediary steps are required before the output can be run through a ConventionalPrinting process. In
theory, however, a workflow could include no intermediary steps between a RIPping process and a
DigitalPrinting process. The following workflow scenarios represent possible process chains in each
circumstance:

• RIP→Screening→ImageSetting→FilmToPlateCopying→ConventionalPrinting
• RIP→(Screening)→DigitalPrinting

Since RIPping never stands alone as a process, see the processes that contribute to the RIP for input and
output resources.

6.3.15 Interpreting
The interpreting device consumes page descriptions and instructions for controlling the printing device.
The parsing of graphical content in the page descriptions produces a canonical display list of the elements
to be drawn on each page.

The interpreter may encounter, and must act upon, device control instructions that affect the physical
functioning of the printing device, such as media selection and page delivery. Media selection determines

160 Chapter 6 Processes

which type of medium is used for printing and where that medium can be obtained. Page delivery controls
the location, orientation and quantity of physical output.

The interpreter is also responsible for resolving all system resource references. This includes handling font
substitutions and dealing with resource aliases. However, the interpreter specifically does not get involved
with any functions of the device that could be considered finishing features, such as stapling, duplexing and
collating.

Input Resources
Name Description
ColorantControl Identifies the color model used by the job.

ColorPool Identifies the specifics of individual colorants used by the job.

FontPolicy ? Describes the behavior of the font machinery in absence of requested
fonts.

InterpretingParams Provides the parameters needed to interpret the PDL pages specified
in the RunList resource.

PDLResourceAlias * These resources allow a JDF to reference resources which are
defined in a Page Description Language (PDL). For example, a
PDLResourceAlias resource could refer to a font embedded in a
PostScript file.

RunList This resource identifies a set of PDL pages which will be interpreted.

Output Resources
Name Description
InterpretedPDLData Pipe of streamed data which represents the results of Intrepreting

the pages in the RunList. The format and detail of these data is
implementation specific. In particular, it is assumed that the
Interpreting and Rendering processes are tightly coupled and that
there is no value in attempting to develop a general specification for
the format of this data.

6.3.16 Rendering
The Rendering process consumes the display list of graphical elements generated by an interpreter. It
color manages and scan converts the graphical elements according to the geometric and graphic state
information contained within the display list.

The controls governing the external rendering processes provide overrides and additional parameters for
controlling the behavior of the process.

Input Resources
Name Description
Media This resource provides a description of the physical media which

will be marked. The physical characteristics of the media may affect
decisions made during Rendering.

InterpretedPDLData Pipe of streamed data that represents the results of Intrepreting the
pages in the RunList. The format and detail of these data is
implementation specific. In particular, it is assumed that the

Chapter 6 Processes 161

Interpreting and Rendering processes are tightly coupled and that
there is no value in attempting to develop a general specification for
the format of this data.

RenderingParams ? This resource describes the format of the ByteMap resources to be
created.

Output Resources
Name Description
RunList Ordered list of rasterized ByteMap resources representing pages

6.3.17 ContoneCalibration
This process specifies the process of contone calibration. It consumes contone raster data, such as that
output from an interpreting and rendering process. It produces contone raster data, which has been
calibrated to a press using a well-defined screening process.

Input Resources
Name Description
RunList Ordered list of rasterized ByteMap resource representing pages or

surfaces.

ScreeningParams Parameters specifying which halftoning mechanism is to be applied
and with what specific controls.

TransferCurvePool Specifies which calibration to apply.

Output Resources
Name Description
RunList Ordered list of rasterized ByteMap resources representing pages or

surfaces.

6.3.18 Screening
This process specifies the process of halftone screening. It consumes contone raster data, such as that
output from an interpreting and rendering process. It produces monochrome which has been filtered
through a halftone screen to identify which pixels are required to approximate the original shades of color
in the document.

This process definition includes capabilities for post-RIP halftoning according to the PostScript definitions.
Alternatively it allows for the selection of FM screening/error diffusion techniques. However, in these
circumstances no specific parameter sets are defined.

In general, an actual screening process will be a Combined process of Calibration and Screening.

Input Resources
Name Description
RunList Ordered list of rasterized ByteMap resources representing pages or

surfaces.

162 Chapter 6 Processes

ScreeningParams Parameters specifying which halftoning mechanism is to be applied
and with what specific controls.

Output Resources
Name Description
RunList Ordered list of rasterized and screened output pages. Assumes that

the resolution remains the same and that resulting data is one bit per
component.

Furthermore, the organization of planes within the data does not
change.

6.3.19 SoftProofing
SoftProofing is the process of reviewing final-form output on a monitor rather than in paper form.

The inputs are a RunList, which identifies the pages to proof; the ProofingParams resource, which
describes the type of proof to be created.

Within the ProofingParams resource, the proof device parameter specifies the characterization the
monitor on which the proof will be viewed. This processor must create and perform a transformation from
the final target device to the proof device colors before displaying the document contents.

The soft proofing parameters allow sufficient control to determine whether any images are displayed in the
proof. If so, the ability to select low-resolution proxies or full resolution images is provided. The
mechanism for approving proofs requires the generation of a PDF file containing the proofing parameters
and a digital signature noting the acceptance of them. The approval PDF file need not contain any
graphical data.

Like all other color manipulation supported in JDF, the color conversion controls are based on the use of
ICC profiles. While the assumed characterization of input data can take many forms, each can internally be
represented as an ICC Profile. In order to perform the transformations input profiles must be paired with
the identified final target device profile to create the transformation.

Input Resources
Name Description
ColorantControl Identifies the color model used by the job.

ColorPool Identifies the specifics of individual colorants used by the job.

ColorSpaceConversionParams ? This resource provides information needed to convert
colorspaces in the pages for proofing. Generally present if a
color proof is desired, unless the pages in the RunList have
already been operated on by a previous colorspace conversion
process.

Layout ? Required if an imposition proof is desired.

ProofingParams Provides the parameters needed to produce the desired proof.

RunList (Document) Identifies the pages to be proofed. When the Layout
resource is present in the ProofingParams resource, Ord
values from ContentObject sub-elements refer to pages in
this RunList.

Chapter 6 Processes 163

RunList ? (Marks) Structured list of incoming marks. These are typically
printer’s marks such as fold marks, cut marks, punch marks,
or color bars.

When the Layout resource is present in the
ProofingParams resource, Ord values from MarkObject
sub-elements refer to pages in this RunList.

Output Resources
None. The SoftProofing process is always combined with an Approval process.

6.3.20 Proofing
The Proofing process results in the creation of a physical proof, represented by an ExposedMedia
resource. Proofs can be used to check an imposition, or the expected colors for a job.

The inputs of this process are a RunList, which identifies the pages to proof; the ProofingParams
resource, which describes the type of proof to be created; and a Media resource to describe the physical
media that will be used.

Input Resources
Name Description
ColorantControl Identifies the color model used by the job.

ColorPool Identifies the specifics of individual colorants used by the job.

ColorSpaceConversionParams ? This resource provides information needed to convert
colorspaces in the pages for proofing. Generally present if a
color proof is desired, unless the pages in the RunList have
already been operated on by a previous colorspace conversion
process.

Layout ? Required if an imposition proof is desired.

Media This resource characterizes the output media for the proof.

ProofingParams This resource provides the parameters needed to produce the
desired proof.

RunList (Document) Identifies the pages to be proofed. When the Layout
resource is present in the ProofingParams resource, Ord
values from ContentObject sub-elements refer to pages in
this RunList.

RunList ? (Marks) Structured list of incoming marks. These are typically
printers marks, such as fold, cut or punch marks, or color
bars.

When the Layout resource is present in the
ProofingParams resource, Ord values from MarkObject
sub-elements refer to pages in this RunList.

Output Resources
Name Description
ExposedMedia The resulting physical proof.

164 Chapter 6 Processes

6.3.21 PreviewGeneration
The PreviewGeneration process produces a low-resolution Preview of each separation that will be
printed. The Preview can be used in later processes such as InkZoneCalculation. The
PreviewGeneration process typically takes place after Imposition or RIPping.

The PreviewGeneration can be performed in one of the following two ways: either the imaged printing
plate is scanned by a conventional plate scanner or high resolution digital data are used to generate the
Preview for the separation(s).

The extent of the PDL coordinate system as specified by the MediaBox attribute, the resolution of the
preview image, and width and height of the image must fulfill the following requirements:

MediaBox length / 72 * x-resolution = width ± 1
MediaBox height / 72 * y-resolution = height ± 1

A gray value of 0 represents full ink, while a value of 255 represents no ink (see the DeviceGray color
model in chapter 4.8.2. of the PostScript Language Reference Manual).

Rules for the Generation of the Preview Image
To be useful for the ink consumption calculation, the preview data must be generated with an appropriate
resolution. This does not only mean spatial resolution, but also color or tonal resolution. Spatial resolution
is important for thin lines, while tonal resolution becomes important with large areas filled with a certain
tonal value.

The maximum error caused by limited spatial and tonal resolution should be less than 1 %.

Spatial Resolution
Since some pixel of the preview image might fall on the border between two zones, their tonal values must
be split up. In a worst-case scenario, the pixels fall just in the middle between a totally white and a totally
black zone. In this case, the tonal value is 50%, but only 25% contributes to the black zone. With the
resolution of the preview image and the zone width as variables, the maximum error can be calculated
using the following equation:

][_*]/[*4
100

mmwidthzonemmLresolution
[%]=error

For zone width broader than 25 mm, a resolution of 2 lines per mm will always result in an error less than
0.5 %. Therefore a resolution of 2 lines per mm (equal to 50.8 dpi) is suggested.

Chapter 6 Processes 165

zone 2zone 1

border between zones

overlapping pixel

Figure 6.1 Worst-case scenario for area coverage calculation

Tonal Resolution
The kind of error caused by color quantization depends on the number of shades available. If the real tonal
value is rounded to the closest (lower or higher) available shade, the error can be calculated using the
following equation:

shadesofnumber
[%]=error

__*2
100

Therefore, at least 64 shades should be used.

Line-Art Resolution
When rasterizing line-art elements, the minimal line width is 1 pixel, which means 1/resolution. Therefore,
the relationship between the printing resolution and the (spatial) resolution of the preview image is
important for these kind of elements. In addition , a specific characteristic of PostScript RIPs adds another
error—within PostScript, each pixel that is touched by a line is set.

Tests with different PostScript jobs have shown that a line-art resolution of more than 300 dpi is normally
sufficient for ink-consumption calculation.

Conclusion
There are quite a few different ways to meet the requirements listed above. The following list includes
several examples:

• The job can be RIPped with 406.4 dpi monochrome.

• With anti-aliasing, the image data can be filtered down by a factor of 8 in both directions. This
results in an image of 50.8 dpi with 65 color shades.

• High-resolution data can also be filtered using anti-aliasing. First, the RIPped data, at 2540 dpi
monochrome, is taken and filtered down by a factor of 50 in both directions. This produces an

166 Chapter 6 Processes

image of 50.8 dpi with 2501 color shades. Finally those shades are mapped to 256 shades, without
affecting the spatial resolution.

Rasterizing a job with 50.8 dpi and 256 shades of gray is not sufficient. The problem in this case is the
rendering of thin lines (see: Line Art Resolution).

Recommendations for Implementation
The following three guidelines are strongly recommended:
• The resolution of RIPped line art must be at least 300 dpi.
• The spatial resolution of the preview image must be approximately 20 pixel/cm (= 50.8 dpi).
• The tonal resolution of the preview image must be at least 64 shades.

Input Resources
Name Description
ExposedMedia ? The PreviewGeneration process can use an exposed printing plate

to produce a Preview resource. This task is performed using an
analog plate-scanner.

PreviewGenerationParams Parameters specifying the size and the type of the preview.

RunList ? High-resolution bitmap data is consumed by the
PreviewGeneration process. These data represent the content of a
separation that is recorded on a printing plate or other such item.

Output Resources
Name Description
Preview The Preview data are comprised of low-resolution bitmap files

representing, for example, the content of a separation that is recorded
on a printing plate or other such item.

6.3.22 InkZoneCalculation
The InkZoneCalculation process takes place in order to preset the ink zones before printing. The
Preview data are used to calculate a coverage profile that represents the ink distribution along and
perpendicular to the ink zones within the printable area of the preview. The InkZoneProfile can be
combined with additional, vendor-specific data in order to preset the ink zones and the oscillating rollers of
an offset printing press.

Input Resources
Name Description
InkZoneCalculationParams Specific information about the printing press geometry(such as the

number of zones) to calculate the InkZoneProfile.

Preview A low-resolution bitmap file representing the content to be printed.

Sheet ? Specific information about the Media (including type and color) and
about the Sheet (placement coordinates on the printing cylinder).

TransferCurvePool ? Function to apply FilmToPlateCopying, DigitalPrinting, and
ConventionalPrinting process characteristics such as press,
climate, and substrate under certain standardized circumstances.

Chapter 6 Processes 167

This function can be used to generate an accurate InkZoneProfile.

Output Resources
Name Description
InkZoneProfile Contains information about ink coverage along and perpendicular to

the ink zones for a specific press geometry.

6.3.23 Tiling
The Tiling process allows the contents of Surfaces to be imaged onto separate pieces of media. Note that
many different workflows are possible. Tiling must always follow Imposition, but it can operate on
imposed PDL page contents or on contone or halftone data.

Tiling will generally be combined with other prepress processes. For example, Tiling might be combined
with ImageSetting. In that case, the input would be a RunList that contains ByteMap resources for
each Surface.

Input Resources
Name Description
RunList (Surface) Structured list of imposed page contents or ByteMap resources that

are to be decomposed to produce the images for each tile. The
Type value of LayoutElement resources must all be surface.

RunList ? (Marks) Structured list of incoming marks. These are typically printer’s
marks that provide the information needed to combine the tiles.

Tile A partitioned Tile resource that describes how the Surface contents
are to be decomposed.

Output Resources
Name Description
RunList Structured list of portions of the decomposed surfaces. The value of

the Type attribute of the LayoutElement resources must be tile.

6.3.24 ImageSetting
The image recording process is executed by an image setter or plate setter that images a bitmap onto the
film or plate media. Its inputs are Media, a RunList of bytemaps or images that represents the image, and
some additional ImageSetterParams.

Input Resources
Name Description
ImageSetterParams Controls the device specific features of the image setter.

Media The unexposed media.

RunList Identifies the set of bitmaps to image. May contain bytemaps or
images.

168 Chapter 6 Processes

Output Resources
Name Description
ExposedMedia The exposed media resource.

6.3.25 FilmToPlateCopying
FilmToPlateCopying is the process of making an analog copy of a film onto a printing plate.

Input Resources
Name Description
ExposedMedia The film or films to be copied onto the plate.

Media The unexposed plate.

PlateCopyParams The settings of the exposure task.

Output Resources
Name Description
ExposedMedia The resulting exposed plate.

6.4 Press Processes
Press processes are various technological procedures involving the transfer of ink to a substrate. From a
technical standpoint they are often classified in impact and non-impact printing technologies. The impact
printing class can be further subdivided into relief, intaglio, planograph or screen technologies, which in
turn can be divided in further subparts. Because of the way a workflow is constructed in JDF, however, a
different approach to classification was used. All of the various printing technologies are gathered into two
categories: ConventionalPrinting, which involves printing from a physical master, or DigitalPrinting,
which involves printing from a digital master.

The most prominent physical, planographic printing technologies are offset-lithography and
electrophotography and they are also the printing processes with the highest adoption in today’s Graphic
Arts industry. Consequently, the ConventionalPrinting process in JDF takes them as models. That
does not mean, however, that other printing techniques can not make use of the ConventionalPrinting
process and its resources. The extensibility features of JDF may be used to fill other requirements related
to printing technology.

6.4.1 ConventionalPrinting
This process covers several conventional printing tasks, including sheet-fed printing, web printing,
web/ribbon coating, converting, and varnishing. Typically, each takes place after prepress and before
postpress processes.

Press machinery often includes postpress processes such as Folding, Numbering, and Cutting as inline
finishing operations. The ConventionalPrinting process itself does not cover this postpress tasks.

Using a conventional printing press for producing a pressproof can be performed in the following two
ways:

• A proof of type Component is produced with a ConventionalPrinting process. The result of
this process is then sent to the Approval process, which in turn produces an ApprovalSuccess

Chapter 6 Processes 169

resource. That resource is then passed on to a second ConventionalPrinting process, which
requires that the press be set up a second time.

• The DirectProof attribute of the ConventionalPrintingParams can be used to specify the

proof if it is produced during the ConventionalPrinting process . In this case, the press need
only be set up once.

Note, the definition and ordering of separations is specified by the DeviceColorantOrder attribute of the
appropriate ColorantControl resource, which is located in the Layout tree.

Input Resources
Name Description
ColorantControl ? The ColorantControl resources that define the ordering and

usage of inks in print modules.

ColorPool ? Identifies the specifics of individual colorants used by the job.

Component ? (input) Various components in the form of preprints can be used in
ConventionalPrinting in lieu of Media. Examples include
waste or a set of pre-printed sheets.

Component ? (Proof) A Proof component is used if a proof was produced during an
earlier ConventionalPrinting process.

ConventionalPrintingParams Specific parameters to set up the press.

ExposedMedia ? (Proof) A Proof is used to compare color and content during
ConventionalPrinting. This Proof is produced by a prepress
proofing device.

ExposedMedia (Plate) The printing plate and information about it (such as Thickness and
RegisterPunch) is used to set up the press.

Ink Information (brand, type, clone) about the ink is useful to set up
the press.

InkZoneProfile * The InkZoneProfile contains information about how much ink is
needed along the printing cylinder of a specific printing press. It
is only useful for Offset-Lithography presses with ink key
adjustment functions.

Layout ? Sheet elements such as the CIELABMeasuringField,
DensityMeasuringField, or ColorControlStrip can be used
for quality control at the press. The quality control field value and
position can be of interest for automatic quality control systems.
RegisterMark can be used to line up the printing plates for the
press run, and its position can in turn be used to position items
such as a camera.

Media ? The physical substrate—for example, paper or foil—and
information about the Media—such as thickness, type, and size—
are useful in setting up paper travel in the press.

This resource must be present if no pre-printed Component
(input) resource is used.

Output Resources
Name Description
Component (Good) Describes the printed sheets or ribbons which may be used by

170 Chapter 6 Processes

another printing process or postpress processes.

Component (Waste) Produced waste of printed sheets or ribbons.

6.4.2 DigitalPrinting
DigitalPrinting is a direct printing process that, like ConventionalPrinting, occurs after prepress
processes but before postpress processes. In DigitalPrinting, the data to be printed are not stored on an
extra medium (such as a printing plate or a printing foil), but instead are stored digitally. The printed image
is generated for every print out using the digital data, and electrophotography, inkjet and other technologies
are used for transferring ink (both liquid ink and dry toner) onto the substrate. Furthermore, both sheet and
web presses can be used as machinery for DigitalPrinting.

DigitalPrinting is often used to image a small area on preprinted Components to perform actions such
as addressing or numbering another Component. This kind of process can be executed by imaging with
an inkjet printer during press, postpress, or packaging operations. Therefore, DigitalPrinting is not only a
press or prepress operation but sometimes also a postpress process.

Note: Putting a label on a product or package is not DigitalPrinting but Inserting.

Input Resources
Name Description
ColorantControl ? The ColorantControl resources that define the ordering and usage

of inks in print modules.

ColorPool Identifies the specifics of individual colorants used by the job.

Component ? (input) Various components can be used in DigitalPrinting instead of
Media. Examples include waste, precut Media, or a set of pre-
printed sheets or webs.

Component ? (Proof) A Proof component is used if a proof was produced during an earlier
ConventionalPrinting process (see description a. above).

DigitalPrintingParams Specific parameters to set up the machinery.

ExposedMedia ? A Proof is useful for comparisons (completeness, color accuracy)
with the print out of the DigitalPrinting process.

Ink Toner and information about it is needed for DigitalPrinting.

Layout ? Sheet elements such as the CIELABMeasuringField,
DensityMeasuringField, or ColorControlStrip can be used for
quality control at the press. The value and position of the quality can
be of interest for automatic quality control systems.
RegisterMarks can be used to line up the printing registration
during press run, and its position can in turn be used to position an
item such as a camera.

Media ? The physical Media and information about the Media, such as
thickness, type, and size, is used to set up paper travel in the press.
This has to be present if no pre-printed Component (input)
resource is present.
Note: Printing a job on more than one web or sheet at the same time
is parallel processing.

RunList RIPped data that will be printed on the digital press is needed for
DigitalPrinting. The RunList contains only ByteMap resources.

Chapter 6 Processes 171

Output Resources
Name Description
Component (Good) Components are produced for other printing processes or postpress

processes.

Component (Waste) Produced waste, may be used by other processes.

6.4.3 IDPrinting
IDPrinting, which stands for Integrated Digital Printing, is a specific form of digital printing. It combines
functionality that might be represented by the Interpreting, Rendering, Screening and
DigitalPrinting processes in a single process.

Controls for IDPrinting are provided in the IDPrintingParams resource. These controls are intended to
be somewhat limited in their scope. If greater control over various aspects of the printing process is
required, IDPrinting should not be used. Ultimately, the controls specified for IDPrinting can be used to
generate an Internet Printing Protocol job.

IDPrinting may be combined with other processes, such as Trapping or ColorSpaceConversion.

Input Resources
Name Description
ColorantControl ? The ColorantControl resources that define the ordering and usage

of inks in print modules.

ColorPool Identifies the specifics of individual colorants used by the job.

Component ? (cover) A finished cover may be combined with the pages that will be output
by this process.

Component ? (input) Various components can be used in IDPrinting instead of Media.
Examples include waste, precut Media, or a set of pre-printed sheets
or webs.

Component ? (Proof) A Proof component is used if a proof was produced during an earlier
ConventionalPrinting process.

ExposedMedia ? A Proof is useful for comparisons (completeness, color accuracy)
with the print out of the IDPrinting process.

FontPolicy ? Describes the behavior of the font machinery in absence of requested
fonts.

InterpretingParams * A set of resources that specify how the device should interpret the
pdl files which are referenced by the RunList for the process. Note
that InterpretingParams is an abstract resource – instances are
pdl-specific.

IDPrintingParams Specific parameters to set up the machinery.

Media ? The physical Media and information about the Media, such as
thickness, type, and size, is used to set up paper travel in the press.
This has to be present if no pre-printed Component (input)
resource is present.

Note: Printing a job on more than one web or sheet at the same time
is parallel processing.

RenderingParams ? This resource describes the format of the ByteMaps to be created.

172 Chapter 6 Processes

RunList The set of pages to be printed.

ScreeningParams ? Parameters specifying which halftoning mechanism is to be applied
and with what specific controls.

Output Resources
Name Description
Component (Good) Components are produced for other printing processes or postpress

processes. Note that the Amount attribute of the ResourceLink to
this resource indicates the number of copies which shall be
produced.

Component (Waste) Produced waste, may be used by other processes.

6.5 Postpress Processes
In this specification, the postpress processes are divided into sub-chapters for structuring purposes. This
structuring is useful to find specific processes. Please note that processes, in some cases can be used to
describe operations that go beyond the scope of the a specific chapter. Therefore, it is a good idea not only
to look at certain processes within a subchapter but also to find out what functionality other processes offer
if a specific task needs to be addressed.

6.5.1 Web Processes
This sub-chapter of the postpress processes is dedicated to web and ribbon operations—that is, operations
that require a web or a ribbon to execute. In essence, a ribbon is a web that has been slit or cross-cut. More
specifically, a web is a continuous strip of Media to be used for printing, such as paper or foil. This
substrate is called “web” while it is treaded through the printing machinery, but once it has run through the
Dividing process and been slit, the web no longer exists. In its place are ribbons or sheets.

A ribbon, then, is the part of the web that enters the folder. If the web is never slit, however, the web and
the ribbon are identical. Slitting and salvage-trim operations on a web can result in one or more ribbons; a
ribbon can be further subdivided after it has been slit.

After the Dividing process, sheets are treated further. The Gathering process and Folding process also
handle web and ribbon applications.

6.5.1.1 Dividing
Inline finishing of web presses often include equipment for cutting the ribbon(s) in cross direction. This
operations can be described with the Dividing process. Dividing in cross direction is likely to happen
after former folding, which is a LongitudinalRibbonOperations process. It may affect one or more
ribbons at the same time that are all part of one Component.

Input Resources
Name Description
Component The Dividing process consumes one Component: the web(s) or

ribbon(s) entering the cross-cutting machinery. The substrate might
have been treated with LongitudinalRibbonOperations and
folded with a former fold.

Chapter 6 Processes 173

DividingParams Specific parameters to set up the machinery.

Output Resources
Name Description
Component One Component is produced: either the divided web or ribbon.

6.5.1.2 LongitudinalRibbonOperations
Inline finishing within web printing presses can include folding, perforating, or applying a line of glue on
the ribbon while it is traveling in longitudinal direction.

Input Resources
Name Description
Component The Component can consist of more than one web or ribbon that

have been combined with the Gathering process.

LongitudinalRibbonOperati
onParams

Specific parameters to set up the machinery tools for the
LongitudinalRibbonOperations process.

Output Resources
Name Description
Component + A ribbon is produced that is used in other postpress processes. If the

LongitudinalRibbonOperations process was slitting, more than
one Component is produced.

6.5.2 HoleMaking
A variety of machines, such as those responsible for stamping and drilling, can perform the HoleMaking
process. This postpress process is needed for different binding techniques, such as spiral binding. One or
several holes with different shapes can be made that are later on used for binding the book block together.

Input Resources
Name Description
Component One Component, such as a printed sheet or a pile of sheets, are

modified in the HoleMaking process.

HoleMakingParams Specific parameters, including hole diameter, and positions, used to
set up the machinery.

Output Resources
Name Description
Component A Component with holes, such as a book block or a single sheet, is

produced for further postpress processes.

174 Chapter 6 Processes

6.5.3 Tip-on/in
The following processes (EndSheetGluing, Inserting) are part of the postpress operations. They can be
grouped together as the tip-on/in-processes. Both processes can be performed by hand, tip-on/in machine,
or by a press.

6.5.3.1 EndSheetGluing
EndSheetGluing finalizes the folded Sheet or book block in preparation for case binding. It requires
three Components—the back-end sheet, the book block, and the front-end sheet—and information about
how they are merged together.

Back-end sheets and front-end sheets are in most cases sheets folded once before EndSheetGluing takes
place. The end sheets serve as connections between the book block and the cover boards.

Input Resources
Name Description
Component (back-end sheet) A back-end sheet to be mounted on the book block.

Component (book block) A back-end sheet and a front-end sheet are glued onto the book
block.

Component (front-end sheet) A front-end sheet to be mounted on the book block.

EndSheetGluingParams Specific parameters to set up the machinery.

Output Resources
Name Description
Component A book block is produced that includes the end sheets.

6.5.3.2 Inserting
This process can be performed at several stages in postpress. The process can be used to describe the
labeling of products, of packages, or the gluing-in of a Component (such as Card, Sheet, or CD-ROM).
Two Components are required for the Inserting process: the “mother” Component and the “child ”
Component. Inserting can be a selective process by means of inserting different “child”-Components.
Information about the placement is needed to perform the process.

Input Resources
Name Description
Component (mother) Designates where to insert the child Component.
Component (child) The Component to be inserted in the mother Component.
InsertingParams Specific parameters, such as placement, to set up the machinery.

DBRules ? Database input that describes whether the child should be inserted
for a particular instance component. In this version the schema is
only human readable text.

DBSelection ? Database input that describes whether the child should be inserted
for a particular instance component.

IdentificationField ? Information about identification marks on the component.

Chapter 6 Processes 175

Output Resources
Name Description
Component A mother Component is produced containing the inserted child

Component.

6.5.4 Block Production
This subcategory of the postpress processes merges together all the processes for making a book block.
First the block is compiled using the Collecting and Gathering processes. After that, it is combined using
one or several of the block joining processes, including AdhesiveBinding, SaddleStitching, SideSewing,
Stitching, and ThreadSewing. The workflow using these processes eventually produces a Component
that can be trimmed.

6.5.4.1 Block Compiling
The Gathering and Collecting processes are used to position unfolded sheets and/or folded sheets in a
planned order. These operations set a fixed page sequence in preparation for three-side trimming and
binding.

6.5.4.1.1 Collecting
This process collects folded sheets or partial products, some of which may have been cut. The first
Component to enter the workflow lies at the bottom of the pile collected on a saddle, and the sequence of
the input components that follows depends upon the produced component.

The operation coordinate system is defined as follows:
The y-axis is aligned with the binding edge. It increases from the registered edge to the edge opposite to
the registered edge. The x-axis is aligned with the registered edge. It increases from the binding edge to
the edge opposite to the binding edge (i.e. the product front edge).

Input Resources
Name Description
CollectingParams ? Specific parameters to set up the machinery.

Component + Variable amount of sheets to be collected.

DBRules * Database input that describes which sheets should be collected for a
particular instance component. In this version the schema is only
human readable text. One rule is applied for each individual
component.

DBSelection ? Database input that describes which sheets should be collected for a
particular instance component.

IdentificationField ? Information about identification marks on the component.

Output Resources
Name Description
Component A block of collected sheets is produced. This Component can be

joined in further postpress processes.

176 Chapter 6 Processes

6.5.4.1.2 Gathering
In the Gathering process, ribbons, sheets, or other Components are accumulated on a pile that will,
eventually, be stitched or glued in some way. The input Components may be output resources of a web
printing machine used in Collecting or of any machine that executes a ConventionalPrinting or
DigitalPrinting process. In sheet applications, a moving gathering channel is used to transport the pile.
But no matter what the inception of the Gathering process, the sequence of the input components dictates
the produced component.

Input Resources
Name Description
Component + Variable amount of components including single sheets or folded

sheets are used in the Gathering process.

GatheringParams Specific parameters to set up the machinery.

DBRules * Database input that describes which sheets should be gathered for a
particular instance component. The schema are only in the form of
human-readable text. One rule is applied for each individual
component.

DBSelection ? Database input that describes which sheets should be gathered for a
particular instance component.

IdentificationField ? Information about identification marks on the component.

Output
Name Description
Component Components gathered together, such as a pile of folded sheets.

6.5.4.2 Block Joining
The block joining processes can be grouped into two major subcategories: conventional binding methods,
which includes the processes of Stitching, SaddleStitching, AdhesiveBinding, ThreadSewing, and
SideSewing; and single-leaf binding methods, which are listed in section 6.5.4.2.6 Single Leaf Binding
Methods. Together they form a sub-category of block-production processes. All of these processes, which
are known as block-joining processes, unite sheets and/or folded sheets lying loose on top of each other.

There are numerous possible binding methods. The most prominent ones are modeled by the processes
described in the following sections. Many of them can be part of a combined production chain being
performed as inline tasks.

6.5.4.2.1 AdhesiveBinding
AdhesiveBinding is a process that addresses the following binding operations:

• perfect binding
• back preparation including milling and notching
• glue application
• spine taping
• cover application

Input Resources

Chapter 6 Processes 177

Name Description
AdhesiveBindingParams Specific parameters to set up the machinery.

Component (bookblock) The book block on which the cover is applied.

Component ? (cover) An additional component for many AdhesiveBinding processes is
the cover.

Output Resources
Name Description
Component The bound components forming an item such as a raw book.

6.5.4.2.2 SaddleStitching
In SaddleStitching, signatures are gathered so that all sections have a common spine, then stitched with
staples through the spine.

Input Resources
Name Description
Component The only required Component is the collected pile.

SaddleStitchingParams Specific parameters to set up the machinery.

Output Resources
Name Description
Component The stitched-together components.

6.5.4.2.3 SideSewing
This is a binding technique resulting in robust products that have a significant loss of inner margin space
and poor handling characteristics. For these reasons, other binding techniques are used more often.

In SideSewing, the first step is to create the holes in the book block and inject the glue (see section 6.5.2
HoleMaking). Then the entire book is sewn at once with a ThreadMaterial such as Cotton or Polyester. If
the book block is rather thick, a Stitching process using wire might be performed before SideSewing.

Input Resources
Name Description
Component The only required Component is the gathered sheets.

SideSewingParams Specific parameters to set up the machinery.

Output Resources
Name Description
Component The book is produced.

6.5.4.2.4 Stitching

178 Chapter 6 Processes

Gathered or collected sheets or signatures are stitched together with the cover.

Input Resources
Name Description
Component The only required Component is the pile of gathered or collected

sheets, including the cover.

StitchingParams Specific parameters to set up the machinery.

Output Resources
Name Description
Component One Component is produced: the gathered or collected sheets

including the cover stitched together.

6.5.4.2.5 ThreadSewing
This process may include a gluing application, which would be used principally between the first and the
second or the last and the last sheet but one. Gluing may also be necessary if different types of paper are
used.

Input Resources
Name Description
Component The operation requires one component: the gathered sheets.

Template string Template to define a sequence of variables consumed by

Format. A list of pre-defined values is found in the
description of the FileSpec resource. In addition,
DynamicInput elements of a RunList define further
variables.

ThreadSewingParams

Specific parameters to set up the machinery.

Output Resources
Name Description
Component One Component is produced: the thread sewn components forming

an item such as a raw book.

6.5.4.2.6 Single Leaf Binding Methods
Besides the conventional binding methods, there is a multifaceted group of binding methods for single leaf
bindings. This group can again be subdivided into two subtypes: loose leaf binding and mechanical
binding, each of which is described in the sections that follow.

6.5.4.2.6.1 Loose Leaf Binding Method
This binding techniques allow contents to be changed, inserted, or removed at will. There are two essential
groups of loose-leaf binding systems: those that require the paper to be punched or drilled and those that do

Chapter 6 Processes 179

not. The RingBinding method, described in the next section, is the most prominent binding in the loose
leaf binding category.

6.5.4.2.6.1.1 RingBinding
In this process, pre-punched sheets are placed in a ring-binder. Ring-binders have different numbers of
rings that are fixed to a metal backbone. In most cases, two, three, or four metal rings hold the sheets
together as long as the binding is closed. Depending on the amount of sheets to be bound together different
thicknesses of ring binders must be used.

Input Resources
Name Description
Component (bookblock) The operation requires one component: the pile of pre-punched

sheets to be inserted into the ring-binder.

Component ? (ringbinder) The empty ring-binder that might have been printed, for example,
before it is used during the RingBinding process.

RingBindingParams Specific parameters to set up the process/machinery.

Output Resources
Name Description
Component One Component is produced: the thread sewn components forming

an item such as a raw book.

6.5.4.2.6.2 Mechanical Binding Methods
Single leafs are fastened into what is essentially a permanent system that is not meant to be reopened.
However, special machinery can be used to re-open some of the mechanical binding systems described
below.

In mechanical binding, printing and folding can be done in a conventional manner. The gathered sheets,
however, ofter require the back to be trimmed, as well as the other three sides. Mechanical bindings are
often used for short-run jobs such as ones that have been printed digitally. The most prominent mechanical
binding processes are described in the sections that follow.

6.5.4.2.6.2.1 ChannelBinding
Various sizes of metal clamps can be used in ChannelBinding. The process can be executed in two
ways. In the first, a pile of single sheets—sometimes together with a front and back cover—is inserted into
a U-shaped clamp and crimped in a special machinery. In the second, a pre-assembled cover that includes
the open U-shaped clamp is used instead of the U-shaped clamp alone. The thickness of the pile of sheets
determines in both cases the width of the U-shaped clamp to be used for forming the fixed document,
which is not meant to be re-opened later.

Input Resources
Name Description
Component (bookblock) The operation requires one component: the block of sheets to be

bound.

Component ? (cover) The empty cover with the U-shaped clamp that might, for example,

180 Chapter 6 Processes

have been printed before it is used during the ChannelBinding
process.

ChannelBindingParams Specific parameters to set up the machinery.

Output Resources
Name Description
Component One Component is produced: the channel-bound component

forming an item such as a brochure.

6.5.4.2.6.2.2 CoilBinding
CoilBinding is a technique that creates bindings not meant to be re-opened later. Another name for
CoilBinding is spiral binding. Metal wire, wire with plastic, or pure plastic is used to fasten pre-punched
sheets of paper, cardboard, or other such materials. First, automated machinery forms a spiral of proper
diameter and length. The ends of the spiral are then “tucked-in”. Finally, the content is permanently fixed.
Note that every time a coil-bound book is opened, a vertical shift occurs as a result of the coil action. This
is a characteristic of the process.

Input Resources
Name Description
Component The operation requires one component: the pile of pre-punched

sheets often including a top and button cover.

CoilBindingParams Specific parameters to set up the machinery.

Output Resources
Name Description
Component One Component is produced: the coil-bound component forming

an item such as a calendar.

6.5.4.2.6.2.3 PlasticCombBinding
In the PlasticCombBinding process, a plastic insert wraps through pre-punched holes in the substrate.
Most often, these holes are rectangular and elongated. After the plastic comb is opened with a special tool,
the pre-punched block of sheets—often together with a top and button cover—is inserted onto the “teeth”
of the plastic comb. When released from the machine, the “teeth” return to their original cylindrical
positions with the points tucked into the backside of the spine area. Special machinery can be used to re-
open the plastic comp binding.

Input Resources
Name Description
Component The operation requires one component: the pile of sheets often

including a top and button cover.

PlasticCombBindingParams Specific parameters to set up the machinery.

Output Resources
Name Description

Chapter 6 Processes 181

Component One Component is produced: the plastic-comb-bound component
forming an item such as a calendar.

6.5.4.2.6.2.4 VeloBinding
Hard plastic strips are held together by plastic pins, which in turn are bound to the strips with heat. The
sheets to be bound must be pre-punched so that the top strip with multiple pins fits through the assembled
material. It is then connected to the bottom strip with matching holes for the pins. The binding edge is
often compressed in a special machine before the excess pin length is cut off. The backstrip is permanently
fixed with plastic clamping bars and cannot be removed without a special tool.

Input Resources
Name Description
Component The operation requires one component: the block of sheets to be

bound.

VeloBindingParams Specific parameters to set up the machinery.

Output Resources
Name Description
Component One Component is produced: the velo bound component forming

an item such as a book.

6.5.4.2.6.2.5 WireCombBinding
The WireCombBinding is a technique that creates bindings not meant to be re-opened later.
WireCombBinding is often named Wire-O®-binding. Metal wire, wire with plastic, or pure plastic is
used to fasten pre-punched sheets of paper, cardboard, or other such materials. The wire—often formed as
a double wire—is inserted into the holes, then curled to create a circular enclosure.

Input Resources
Name Description
Component The operation requires one component: the pile of pre-printed sheets

often including a top and button cover.

WireCombBindingParams Specific parameters to set up the machinery.

Output Resources
Name Description
Component One Component is produced: the wire-comb bound component

forming an item such as a calendar.

6.5.5 Numbering
Numbering is the process of stamping or applying variable marks in order to produce unique components,
for items such as lottery notes or currency. No database access is required, and the counters automatically
increase incrementally. Numbering is also used for alphanumeric, automatic, and unique marking.

182 Chapter 6 Processes

Input Resources
Name Description
Component One Component, such as a printed sheet or a pile of sheets, are

modified in the Numbering process.

NumberingParams Specific parameters, including start counter and positions, to set up
the machinery.

Output Resources
Name Description
Component One Component is produced: the numbered sheet.

6.5.6 Sheet Processes
Many printing processes produce sheets that must be processed further in finishing operations. The web
processes presented in the preceding sections result in sheets that are treated in much the same way as
sheets produced by sheet-fed printing presses. The following processes describe these sheet finishing
operations.

6.5.6.1 Cutting
Sheets are cut using a guillotine Cutting machine. Before Cutting, the sheets might be jogged and
buffered. CutBlocks and or CutMarks can be used for positioning the knife. After the Cutting process
is performed, the blocks are often again buffered on a pallet.

Since Cutting is described here in a way that is, as much as possible, machine independent, the CutBlock
elements specified do not directly imply a certain cutting sequence. Therefore, a sequence must be
determined by a specialized agent.

Input Resources
Name Description
Component ? This process consumes one Component: the printed sheets.

CutBlock * One or several CutBlocks can be used to find the Cutting
sequence.

CutMark * CutMark s can be used to adapt the theoretical cut positions to the
real positions of the corresponding blocks on the Component to be
cut.

Media ? Cutting can be performed to unprinted Media in order to adjust size
or shape.

Output Resources
Name Description
Component + One or several blocks of cut components are produced. When

Media are cut, the output Components can be input resources for
processes such as ConventionalPrinting.

Chapter 6 Processes 183

6.5.6.2 Folding
Buckle folders or knife folders are used for Folding sheets. One or more sheets can be folded at the same
time.

Web presses often provide inline Folding equipment. Longitudinal Folding is often performed using a
former, a plow folder, or a belt, while jaw folding, chopper folding, or drum folding equipment is used for
folding the sheets that have been divided.

The JDF Folding process covers both operations done in stand alone Folding machinery—typically
found for processing sheet fed printed materials—and inline equipment of web printing presses.

Creasing and/or slot perforating are sometimes necessary parts of the Folding operation that guarantee
exact process execution. They depend on the folder used, the Media, and the folding layout. The decision
to perform this operations is left to the agent.

Besides Folding, other processes that “add value” to the product, such as cutting creasing, gluing,
perforating, and thread-sealing might be performed in the Folding machine or in an extra machine. The
FoldingParams resource can be used to address these variations.

Input Resources
Name Description
Component Components including a printed Sheet or a pile of Sheets are used

in the Folding process.

FoldingParams Specific parameters to set up the machinery.

Output Resources
Name Description
Component + The process produces components, which in most cases are folded

Sheets that might be cut, creased, glued, perforated, or thread-
sealed for further postpress processes. If the input Component is
cut, several Component resources are produced.

6.5.7 Trimming
The Trimming process is performed to adjust the book block to its final size. In most cases, it follows a
block joining process, and the process is often executed as an inline operation of a production chain. For
example, the binding station may deliver the book blocks to the trimmer. A Combined operation in the
trimming machinery would then execute a cut at the front, head, and tail in a cycle of two operations.
Closed edges of folded signatures would then be opened while the book block is trimmed to its
predetermined dimensions.

Some trimming machines, such as magazine production systems, can produce multiple-ups. In every case,
however, the additional trimming cuts that divide the multiple-ups result in separated book blocks.
Sometimes a stripe is trimmed out between the book blocks. To describe these operations, multiple
Trimming processes must be defined in JDF.

Input Resources
Name Description
Component A bound book block is required for Trimming.

184 Chapter 6 Processes

TrimmingParams Specific parameters, such as trim size, to set up the machinery.

Output Resources
Name Description
Component One Component is produced: the trimmed component.

Chapter 7 Resources 185

Chapter 7 Resources
Resources represent inputs and outputs, the ‘things’ that are produced, modified, consumed or in any way
used by nodes. A more thorough description was provided in section 3.6 Resources.

The resources in this chapter are divided into two sections. The first section documents all of the resources
of class Intent. The second section documents the rest of the resources that have been defined for JDF.

7.1 Intent Resources
As was described in section 4.1.1 Product Intent Constructs, intent resources are designed to narrow down
the available options when defining a JDF job.

All intent resources share a set of sub-elements that allow a Request for Quote to describe a range of
acceptable values for various aspects of the product. These elements, taken together, allow an
administrator to provide a specific value for the quote. Section 7.1.1, below, describes these elements.

Each of the following sections begins with a brief narrative description of the resource. Following that is a
list containing details about the properties of the resource, as shown below. The first item in the list
provides the class of the resource, which, in this section is always Intent. For more information on resource
class, see Table 3.9. A template of this list is shown below.

After the list describing the resource properties, each section contains tables that outline the structure of
each resource and, when applicable, the abstract or sub-element information that pertains to the resource
structure. The first column contains the name of the attribute or element. In some cases, a resource will
contain an element with more than one value associated with it. If this is the case, the element name is
listed as often as it appears, and a term in parentheses that identifies the kind of element is included in the
column. A template of these tables is also provided below.

Resource Properties Template
Resource class: Defines the resource class or resource element.
Resource referenced by: List of parent resources that contain elements of this type. Only valid for

elements.
Partition: List of valid partitioning boundaries: PartVersion, Separation, Side,

SheetName, SignatureName, TileID. If a partition is specified, the resource
may contain a nested elements of its own type.

Input of processes: List of node types that use the resource as an input resource.
Output of processes: List of node types that create the resource as an output resource

Resource Structure Template
Name Data Type Description
Name of attribute or
element

data type of
attribute or
element

Usage of the structure.

7.1.1 Span Resource Sub-elements[DH3]
Intent resources contain sub-elements that allow spans of values to be specified. These sub-elements also
provide mechanisms to select a set of values from the range and map them to a set of quotes. These sub-

Deborah Harrison
TBD-DH come back to this

186 Chapter 7 Resources

elements are called span elements. Depending on the data type of the values to be recorded, different
abstract span elements exist. These elements are listed in the following table in the column entitled “Span
Element Types.” Furthermore, each span element contains further attributes or sub-elements. The contents
shared by all span elements are listed in the section 7.1.1.1 Structure of Abstract Span Elements, below,
and the contents particular to each span element type are described in the sections that follow.

Span Element Types Data Type Description
IntegerSpan element Describes a numerical range of integer values.

NameSpan element Describes a set of NMTOKEN values.

NumberSpan element Describes a numerical range of values.

OptionSpan element Describes an intent in which the principal information is
that a specific option is requested.

StringSpan element Describes a set of string values.

TimeSpan element Describes a set of timeInstant values.

7.1.1.1 Structure of Abstract Span Elements
Abstract span elements of intent resources have a common set of attributes and elements that define the
priority, data type, and requested identity of the element. These attributes are described in the following
table.

Name Data Type Description
DataType ? enumeration Describes the data type of the span element within an

intent resource. Possible values are:

IntegerSpan
NumberSpan
NameSpan
StringSpan
TimeSpan
OptionSpan
ColorSpan

Priority ? enumeration Indicates the importance of the specific intent. The
following values have prescribed meanings:

none – Default value.

suggested – The customer will accept a value of Actual
that is different than the value of Preferred or outside of
Range.

required – Actual must be equal to Preferred or within
Range.

Note that the attribute Preferred is available in the data
types which inherit from this abstract type. These are the
span element types IntegerSpan, NameSpan,
NumberSpan, StringSpan, and TimeSpan, all of
which are described in the following sections. In the case
of the OptionSpan type, the Priority attribute refers to
the Detail attribute.

Chapter 7 Resources 187

QuoteAll ? boolean If true, the customer wants a quote for all specified
options in Range.

Default = false, which means that the customer allows the
supplier to select a set of values from Range.

QuoteSelection * element Abstract sub-element that serves as a placeholder for any
selection element. Possible selection elements are:

IntegerSelection
NameSelection
NumberSelection
OptionSelection
StringSelection
TimeSelection.

7.1.1.2 Structure of the Span-Element Type IntegerSpan
This sub-element is used to describe ranges of integer values. The span-element type IntegerSpan inherits
from the abstract span-element described in section 7.1.1.1 Structure of Abstract Span Elements.

Name Data Type Description
Preferred ? integer Provides a value specified by the person submitting the

request, indicating what that person prefers. The value of
Preferred must fall within the range of values specified
in Range.

Range ? IntegerRange-
List

Provides either a set of discreet values, a range of values,
or a combination of the two that comprise all allowed
values for.

IntegerSelection * element Indicates a set of proposed values that a responder has
chosen to use to build the product. Depending on the
value of Priority, theActual attribute of an
IntegerSelection may not be within Range.

Structure of the IntegerSelection Sub-element
The IntegerSelection element inherits from the QuoteSelection element.

Name Data Type Description
Actual integer The value associated with the quote index.

Index ? IntegerRange-
List

Defines the list of options that the Actual attribute of this
Selection is valid for.

Default is “0~-1” which specifies that this Quote
Selection is valid for all quotes.

7.1.1.3 Structure of the Span-Element Type NameSpan
This sub-element is used to describe name ranges. The span-element type NameSpan inherits from the
abstract span-element described in section 7.1.1.1 Structure of Abstract Span Elements.

188 Chapter 7 Resources

Name Data Type Description
Range ? NMTOKENS Provides a set of discreet values.

Preferred ? NMTOKEN Provides a value specified by the person submitting the
request, indicating what that person prefers. Preferred
must fall within the range of values specified in Range.

NameSelection * element Indicates a set of proposed values that a responder has
chosen to use to build the product. Depending on the
value of Priority, theActual attribute of an
NameSelection may not be within Range.

Structure of the NameSelection Sub-element
The NameSelection element inherits from the QuoteSelection element.

Name Data Type Description
Actual string The value associated with the quote index.

Index ? IntegerRange-
List

Defines the list of options that the Actual attribute of this
Selection is valid for.

Default is “0~-1” which specifies that this Quote
Selection is valid for all quotes.

Specifying New Values in a NameSpan Sub-element
NameSpan attributes will generally define an open list of pre-defined values. If a value that is not included
in the list shall be specified, a comment that defines that value can be included in the NameSpan using the
new name as a Name attribute of the comment, as demonstrated in the following example:

<HoleType DataType=”NameSpan” Range=”36Hole 42Hole”>
<Comment Name=”36Hole”>6 equidistant holes on each side of a hexagonal
piece of paper </Comment>
<Comment Name=”42Hole”>7 equidistant holes on each side of a hexagonal
piece of paper </Comment>
</HoleType>

7.1.1.4 Structure of the Span-Element Type NumberSpan
This sub-element is used to describe a numerical range of values. The span-element type NumberSpan
inherits from the abstract span-element described in section 7.1.1.1 Structure of Abstract Span Elements.

Name Data Type Description
Preferred ? number Provides a value specified by the person submitting the

request, indicating what that person prefers. Preferred
must fall within the range of values specified in
Range.

Range ? NumberRange-
List

Provides either a set of discreet values, a range of
values, or a combination of the two.

NumberSelection * element Indicates a set of proposed values that a responder has
chosen to use to build the product. Depending on the
value of Priority, theActual attribute of an
NumberSelection may not be within Range.

Chapter 7 Resources 189

Structure of the NumberSelection Sub-element
The NumberSelection element inherits from the QuoteSelection element.

Name Data Type Description
Index ? IntegerRange-

List
Defines the list of options that the Actual attribute of this
Selection is valid for.
Default is “0~-1” which specifies that this Quote
Selection is valid for all quotes.

Actual double The value associated with the quote index.

7.1.1.5 Structure of the Span-Element Type OptionSpan
The span-element type OptionSpan inherits from the abstract span-element described in section 7.1.1.1
Structure of Abstract Span Elements.

Name Data Type Description
Detail ? string Detail provides information about the option.
OptionSelection * element Indicates a set of proposed values that a responder has

chosen to use to build the product. Depending on the
value of Priority, theActual attribute of an
OptionSelection may not be within Range.

Structure of the OptionSelection Sub-element
The OptionSelection element inherits from the QuoteSelection element.

Name Data Type Description
Actual string The value associated with the quote index.

Index ? IntegerRange-
List

Defines the list of options for which the Actual attribute
of this Selection is valid.

Default is “0~-1” which specifies that this Quote
Selection is valid for all quotes.

7.1.1.6 Structure of the Span-Element Type StringSpan
This sub-element is used to describe string ranges. The span-element type StringSpan inherits from the
abstract span-element described in section 7.1.1.1 Structure of Abstract Span Elements.

Name Data Type Description
Preferred ? telem Provides a value specified by the person submitting the

request, indicating what that person prefers. Preferred
must fall within the range of values specified in Range.

Range * telem Range provides a set of discreet string values.

StringSelection * element Indicates a set of proposed values that a responder has
chosen to use to build the product. Depending on the
value of Priority, the value of the Actual attribute of an
StringSelection element may not be within the range of
values specified in the Range attribute.

190 Chapter 7 Resources

Structure of the StringSelection Sub-element
The StringSelection element inherits from the QuoteSelection element.

Name Data Type Description
Actual string The value associated with the quote index.

Index ? IntegerRange-
List

Defines the list of options that the Actual attribute of this
Selection is valid for.

Default is “0~-1” which specifies that this Quote
Selection is valid for all quotes.

7.1.1.7 Structure of the TimeSpan Sub-element
Name Data Type Description
Range ? TimeRange Range provides a valid time period.

Preferred ? timeInstant Provides a value specified by the person submitting the
request, indicating what that person prefers. Preferred
must fall within the range of values specified in Range.

TimeSelection * element Indicates a set of proposed values that a responder has
chosen to use to build the product. Depending on the
value of Priority, the value of the Actual attribute of an
TimeSelection element may not be within the range of
values specified in the Range attribute.

Structure of the TimeSelection Sub-element
The StringSelection element inherits from the QuoteSelection element.

Name Data Type Description
Actual timeInstant The value associated with the quote index.

Index ? IntegerRange-
List

Defines the list of options that the Actual attribute of this
Selection is valid for.
Default is “0~-1” which specifies that this Quote
Selection is valid for all quotes.

7.1.2 Named Span resources
The datatypes defined in this section are all instances of NameSpan with a restricted list of allowed
NMTOKEN values. More values may be created.

NamedColorSpan
This data type provides a definition of named colors. It is not sufficient for process color definition, but
rather serves to define the colors of preprocessed products such as wire-o binders and cover leaflets.
Allowed values are any entry defined in Table A.1 Mapping of named colors to sRGB colors:
NamedColor.[DH4]

Deborah Harrison
TBD-RP I don’t quite follow this syntax—why the two colons? (RP) better?

Chapter 7 Resources 191

7.1.3 ArtDeliveryIntent

This resource specifies the prepress art delivery intent for a JDF job and maps the items to the appropriate
reader pages and separations.

Resource Properties
Resource class: Intent
Resource referenced by: -
Partition: -
Input of processes: -
Output of processes: -

Resource Structure
Name Data Type Description
Method ? NameSpan Identifies a required delivery method, such as eMail,

ExpressMail or InterofficeMail.[RP5]

ArtDelivery * element Individual delivery

Company ? element Address and further information of the addressee.

Structure of ArtDeliveryIntent Elements
Each ArtDelivery element defines a set of existing products that are required to create the specified
product.

Name Data Type Description
ArtDeliveryType NameSpan Type of artwork supplied. Possible values include:

DigitalMedia
DigitalNetwork [RP6]
ImposedFilm
LooseFilm
OriginalArt
ProofsOfScans
None[RP7]

Method ? NameSpan Identifies a required delivery method, such as eMail,
ExpressMail or InterofficeMail.[RP8]

PageList ? IntegerRangeList Set of Pages that are filled by this ArtDelivery.

rRef ? IDREF Reference to the resource to which this ArtDelivery refers.
This resource will typically be an ExposedMedia (film,
plate or hardcopy proof), Component (complete
prefabricated product) or RunList (digital delivery) resource.
If rRef is not specified, no details except the
ArtDeliveryType are known.

Company ? element Address and further information about the addressee.

Part * element ArtDelivery may contain any partitioning or amount attributes
valid for a ResourceLink in a ResourceLinkPool. This is
only valid if rRef is specified.

Dr. Rainer Prosi
TBD-PrintTalk: complete list

Dr. Rainer Prosi
Combine these two to RunList

Dr. Rainer Prosi
TBD printtalk: please define

Dr. Rainer Prosi
TBD-PrintTalk: complete list

192 Chapter 7 Resources

7.1.4 BindingIntent

This resource specifies the binding intent for a JDF job using information that identifies the type of binding
required and which side is to be bound.

Resource Properties
Resource class: Intent
Resource referenced by: -
Partition: -
Input of processes: -
Output of processes: -

Resource Structure
Name Data Type Description
BindingType NameSpan This resource describes the desired binding for the job.

Possible values are:

Adhesive – This type of binding can be handled with the
AdhesiveBinding process. It includes perfect binding.

AdhesiveTaped – This type of binding can be handled
with the AdhesiveBinding process.

ChannelBinding – This type of binding can be handled
with the ChannelBinding process.
CoilBinding – This type of binding can be handled with
the CoilBinding process.
PlasticComb – This type of binding can be handled with
the PlasticCombBinding process.
Ring – This type of binding can be handled with the
RingBinding process.
SaddleStitch – This type of binding can be handled with
the SaddleStitching process.
Sewn – This type of binding can be handled with the
ThreadSewing process.
SideSewn – This type of binding can be handled with the
SideSewing process.
SideStitch – This type of binding can be handled with the
Stitching process.
TheadSealing – This type of binding can be handled with
the Folding process.
VeloBind – This type of binding can be handled with the
VeloBinding process.
WireComb – This type of binding can be handled with the
WireCombBinding process.

BindingColor ? ColorSpan Defines the color of the binding spine’s material.

BindingSide NameSpan Indicates which side should be bound. Possible values
are:
Top

Chapter 7 Resources 193

Button
Right
Left
Each of these values is intended to identify an edge of the
job. These edges are defined relative to the orientation of
the first page in the job with content on it.

CastingMaterial ? NameSpan Casting material of the thread in ThreadSewing.
Possible values are:
Cotton
Nylon
Polyester

ChannelCover ? OptionSpan If true the clamp used in ChannelBinding includes a
pre-assembled cover.
Default = false

CoilMaterial ? NameSpan The following coil materials are available for
CoilBinding:

LaqueredSteel
NylonCoatedSteel
PVC
TinnedSteel
ZincsSteel

CoreMaterial ? NameSpan Core material of ThreadSewing. This attribute must be
used to define the thread material if there is no casting.
Possible values are:

Cotton
Nylon
Polyester

EndSheetGlue ? NameSpan Glue type used to define EndSheetGluing procedures.
Possible values are:

ColdGlue
Hotmelt
PUR – Polyurethane
None

Milling ? OptionSpan Milling features for AdhesiveBinding.

Notching ? OptionSpan Notching features for AdhesiveBinding.
PlasticCombType ? NameSpan The distance between the “teeth” in

PlasticCombBinding and the distance between the
holes of the pre-punched sheets must be the same. The
following standards exist:

Euro (Distance = 12 mm; Holes = 7 mm x 3 mm)
USA1 (Distance = 14.28 mm; Holes = 8 mm x 3 mm)

RingMechanic ? OptionIntent The ring binder used includes a lever for opening and
closing

194 Chapter 7 Resources

closing.
Default = false

RingSystem ? NameSpan The following RingBinding systems are used:

2Hole – in Europe
3Hole – in North America

4Hole – in Europe
Scoring ? NameSpan Scoring option for AdhesiveBinding:

TwiceScored
QuadScored
None

Sealing ? OptionSpan If true, thermo-sealing is required in ThreadSewing.

SpineGlue ? NameSpan Glue type used to define AdhesiveBinding procedures.
Possible values are:
ColdGlue
Hotmelt
PUR – Polyurethane

None
StapleShape ? NameSpan Shape of staples for SaddleStitching and Stitching

processes. Possible values are:

Crown
Overlap
Butted
ClinchOut
Eyelet
These values are displayed in Figure 7.14.

StapleOpening ? NameSpan Defines the side where the staple is open.
One of inside (the default) or

outside.
ThreadSewingGlue ? NameSpan Glue type used to define ThreadSewing procedures.

Possible values are:

ColdGlue
Hotmelt
PUR – Polyurethane
None

WireCombMaterial ? NameSpan The material used for forming the WireCombBinding:
LaqueredSteel
TinnedSteel
ZincsSteel

WireCombShape ? NameSpan The shape of the WireCombBinding:

Dr. Rainer Prosi
tbd pt complete list

Chapter 7 Resources 195

single: each “tooth” is made with one wire
twin: the shape of each “tooth” is made with a double
wire

7.1.5 ColorIntent
This resource specifies the type of ink to be used. Typically, the parameters consist of a manufacturer
name and additional identifying information. The resource also specifies any coatings and colors to be
used, including the process color model and any spot colors.

Resource Properties
Resource class: Intent
Partition: Side, Sheet, Signature
Resource referenced by: -
Input of processes: Any product node
Output of processes: -

Resource Structure
Name Data Type Description
Coatings NameSpan Material usualy applied on press as a protective or gloss

enhancing layer over ink. Possible values include:

Varnish
Laminant[RP9]

ColorsUsed NameSpan Possible values are:[DH10]
CMYK
6ColorProcess
GreyScale
DuoTone
ProcessPlusSpot
SpotColors

ColorModel ? NameSpan The color space definition. Possible values include:

SNAP
GRACOL

SWAP
CieLAB[RP11]

Coverage ? NameSpan Describes the relative amount of the surface area that is
covered. Possible values are:
Light
Medium
Heavy
Unknown

InkManufacturer ? NameSpan Name of the manufacturer of the ink requested.

Deborah Harrison
Please add description

Dr. Rainer Prosi
TBD-PT ??? why does the customer care about this??

196 Chapter 7 Resources

InkFamily ?[RP12] NameSpan A name that the manufacturer uses to describe the family
of inks to be used.

SeparationSpec [RP13]* element Array of color names that are requested.

7.1.6 DeliveryIntent
Summarizes the options that describe pickup or delivery time and location options of a job. It also defines
the number of copies that are requested for a specific job or delivery.

Resource Properties
Resource class: Intent
Resource referenced by: -
Partition: -
Input of processes: Any product node
Output of processes: -

Resource Structure
Name Data Type Description
Earliest ? TimeSpan Specifies the earliest time after which the delivery may be made.

Method ? NameSpan Identifies a required delivery method, such as eMail,
ExpressMail or InterofficeMail.

Pickup ? boolean Specifies whether the delivery brings or picks up the
merchandise.
Default = false, which means that the drop is delivered.

Required ? TimeSpan Specifies the time by which the delivery must be made.

Company element Address and further information of the addressee.
DropIntent + element Includes all locations where the product will be delivered.

Structure of DeliveryIntent Elements

DropIntent
This element contains information about the intended individual drop of a delivery. Attributes that are
specified in a DropIntent element overwrite those that are specified in their parent DeliveryIntent element.

Name Data Type Description
Earliest ? TimeSpan Specifies the earliest time after which the delivery may be made.

Method ? NameSpan Identifies a required delivery method, such as ExpressMail or
InterofficeMail.[RP14]

Pickup ? boolean If true, the merchandise is picked up. If false, the merchandise
is delivered.
Default = false

Required ? TimeSpan Specifies the time by which the delivery must be made.

Company element Address and further information of the addressee.

Dr. Rainer Prosi
what if the process and spot colors are different? shouldn’t we use colornantintent instead of separationspec?

Dr. Rainer Prosi
tbd-rp options here!

Dr. Rainer Prosi
TBD-PrintTalk: complete list

Chapter 7 Resources 197

PackageIntent * element A DropIntent may consist of multiple products, which are
represented by their respective Component resources. Each
PackageIntent describes a number of individual resources that
is part of this DropIntent.

Structure of the PackageIntent Sub-element

Name Data Type Description
Amount ? IntegerSpan Specifies the number of resources ordered. If not specified,

defaults to the total amount of the resource that is referenced by
rRef.

rRef IDREF Reference to the resource that this PackageIntent contains.

Unit ? string Unit of measurement for the Amount specified in the
ComponentLink attribute.

Defaults to the value of Unit defined in the resource linked by
the rRef attribute.

Part * element PackageIntent may contain any partitioning or amount
attributes valid for a ResourceLink in a ResourceLinkPool
element.

7.1.7 FoldingIntent
This resource specifies the fold intent for a JDF job using information that identifies the number of folds,
the height and width of the folds, and the folding catalog number. Note that the folding catalog is in JDF
Spec 3.0 section 7.35 and that the number of folds and the folding catalog are related.

Resource Properties
Resource class: Intent
Resource referenced by: -
Partition: -
Input of processes: -
Output of processes: -

Resource Structure
Name Data Type Description
FoldingCatalog NameSpan Description of the folding scheme as specified in the

FoldingParams folding catalog attribute. (See JDF
Folding Catalog descriptions in Figure 7.10 FoldCatalog
part 1 and Figure 7.11 FoldCatalog part 2).

Note that the folding scheme in this context refers to the
folding of the finished product as seen after cutting, not
the folding of the flat as seen in production.

198 Chapter 7 Resources

7.1.8 HoleMakingIntent

This resource specifies the holemaking intent for a JDF job, using information that identifies the type of
HoleMaking operation or alternatively, an explicit list of holes.

Resource Properties
Resource class: Intent
Resource referenced by: -
Partition: -
Input of processes: -
Output of processes: -

Resource Structure
Name Data Type Description
HoleType NameSpan Type of holemaking operation. Possible values include:

2Hole – Holes for the RingBinding process with the
2Hole RingSystem used in Europe.

3Hole – Holes for the RingBinding process with the
3Hole RingSystem used in North America.

4Hole – Holes for the RingBinding process with the
4Hole RingSystem used in Europe.

PlasticCombEuro – Holes for PlasticCombBinding
with the (Distance = 12 mm; Holes = 7 mm x 3 mm)

PlasticCombUSA1 – Holes for PlasticCombBinding
with the (Distance = 14.28 mm; Holes = 8 mm x 3 mm)

Explicit – Holes are defined in an array of Hole elements.
HoleIntent * element Array of all Hole elements. Used when HoleType =

Explicit. This is common in CoilBinding,
VeloBinding,WireCombBinding.

Structure of HoleIntent Sub-element
Name Data Type Description
Center XYPair Position of the center of the hole relative to the

Component coordinate system. For more information,
see section 6.5.2.

Extent XYPair Size of the hole in pt. If Shape is round, only the first
entry of Extent is evaluated and defines the hole
diameter.

Shape NameSpan Shape of the hole. Possible values are:

round
rectangular

7.1.9 InsertingIntent

This resource specifies the inserting for a JDF job, using information that identifies ...

Chapter 7 Resources 199

Resource Properties
Resource class: Intent
Resource referenced by: -
Partition: -
Input of processes: Any product node
Output of processes: -

Resource Structure
Name Data Type Description
FolioNumbers [RP15] IntegerRange-

List
 (14~15 23~24)

GlueType NameSpan Possible values are:[DH16]
ColdGlue

Hotmelt
PUR
None

Insert list [RP17]
Location enumeration Possible values are:

front
overFoldLeft[RP18]

Method NameSpan Possible values are:

bind-in
blow-in

Quantity[RP19]

SheetOffset XYPair

StartPosition XYPair

7.1.10 LaminatingIntent

This resource specifies the finish laminating intent for a JDF job using information that identifies whether
or not the product is laminated and, if desired, the temperature and thickness of the laminant.

Resource Properties
Resource class: Intent
Resource referenced by: -
Partition: -
Input of processes: -
Output of processes: -

Resource Structure
Name Data Type Description
Laminated OptionSpan If true, the product is laminated.

Dr. Rainer Prosi
tbd-printtalk what does this mean

Deborah Harrison
Please include introduction

Dr. Rainer Prosi
??? the inserts are components of processusage child

Dr. Rainer Prosi
why do I need this if I have folio?

Dr. Rainer Prosi
??? defining multiple cds ? or what is the intent of this???

200 Chapter 7 Resources

Default = false

Temperature NameSpan Temperature used in the lamnation process. Possible
values are:

Hot
Cold

Thickness[MS20] NumberSpan Thickness of the laminant.

7.1.11 MediaIntent
This resource describes the media to be used for the product component. In some cases, the exact identity
of the medium is known, while in other cases, the characteristics are described and a particular stock is
matched to those characteristics.

Resource Properties
Resource class: Parameter
Partition: -
Resource referenced by: IDPrintingParams
Input of processes: Any product node, DigitalPrinting
Output of processes: -

Resource Structure
Name Data Type Description
BuyerSupplied ? OptionSpan Indicates whether the customer will supply the media.

Coatings NMTOKENs What pre-process coating has been applied to the front and
back of the media. Either 1 or 2 values may be provided.
If 1 is provided, it is used for the front of the media. If 2
are provided, the first is used for the front, and the second
is used for the back. Possible values are:

none
any
glossy
high-gloss
semi-gloss
satin
matte

Finish ? NameSpan The intended finish of the media.

Grade ? NameSpan The intended grade of the media.

Opacity ? enumeration The opacity of the media. Possible values are:

opaque – the media is opaque
transparent – the media is transparent

Recycled ? boolean If true, recycled media is requested.

Size ? XYPair Specifies the size of the media in inches.

Moritz Schwarz
TBD: MS Clarify if thickness or weight per area is common to describe the laminating material. It should also be possible to state where laminating should be used e.g. on the front side of a book

Chapter 7 Resources 201

StockType ? NameSpan Strings describing the available stock.

Weight ? NumberSpan The intended weight of the media, measured in (g/m2).

7.1.12 Numbering Intent
*** Tentative Intent resource definition (9/19) ***

NOTE: this intent not ready for prime time …

Resource Properties
Resource class: Intent
Resource referenced by: -
Partition: -
Input of processes: -
Output of processes: -

Resource Structure
Name Data Type Description
Generic enumeration Possible values are:[DH21]

InkJet
Crash

Numbers list

Orientation

Position XYPair

StartValue

Step

7.1.13 PackingIntent[RP22]

This resource specifies the packaging intent for a JDF job, using information that identifies the type of
package, the wrapping used, and the shape of the package.

Resource Properties
Resource class: Intent
Resource referenced by: -
Partition: -
Input of processes: -
Output of processes: -

Resource Structure
Name Data Type Description
Shape ? shape Describes the length, width and height of the package in pts.

For example, 288 544 1012

Type ? NameSpan Type of package. Possible values include:

Deborah Harrison
Please include description

Dr. Rainer Prosi
tbd synch with delivery

202 Chapter 7 Resources

RSC
sleeve
STE[RP23]
None – Default value.

Wrapping ? NameSpan Type of wrapping technology used. Possible values are:
Paperband
Rubberband
ShrinkWrap
None – Default value.

7.1.14 PocketingIntent

NOTE: this intent not ready for prime time …

Resource Properties
Resource class: Intent
Resource referenced by: -
Partition: -
Input of processes: -
Output of processes: -

Resource Structure
Name Data Type Description[DH24]
Capacity

Generic enumeration Possible values are:
Folded

Glued

Location enumeration Possible values are:

left
right
both

Pockets list

Size XYPair

7.1.15 ProofingIntent
This resource specifies the prepress proofing intent for a JDF job, using information that identifies the type,
quality, brand name and overlay of the proof.

Resource Properties
Resource class: Intent
Resource referenced by: -

Dr. Rainer Prosi
tbd-printtalk define

Deborah Harrison
Don’t forget to include descriptions... (throughout—I won’t add any more specific requests, unless people would rather I did...)

Chapter 7 Resources 203

Partition: -
Input of processes: Proofing
Output of processes: -

Resource Structure
Name Data Type Description
BrandName ? StringSpan Brand name of the proof, such as “Iris”

NumberOfCopies ? IntegerSpan Specifies how many copies of this proofs are required

ProofingTarget ? uri Identifies a remote target for the proof output.

ProofingType NameSpan Technology used for making the proof. Possible values are:

DyeSub
InkJet
Laser
RemoteDigital
SoftProof
PressProof
Unspecified[RP25]

Quality ? NameSpan Specification level required for the proof. Possible values are:

BasicColor = conceptual
ContractColor = half-tone, contone (w / wo screening)
Imposition = bw?[RP26]

Notes:

1. Proof dates will be in the business object (i.e. RFQ, Quote, Order).
2. Film-based will not be used as a proofing type since it specifies a manufacturing process and is not

commonly referred to by buyers.
3. JDF “ProofIntent” (none, half-tone, contone, conceptual) is part of JDF ExposedMedia Object, and

will not be explicitly used in ProofingIntent.

7.1.16 ScanningIntent[RP27]
This resource specifies the prepress scanning intent for a JDF job using information that identifies the type
and resolution of the scan, size of the supplied media, size and type of the output media, and screen
frequency needed for the print job to be used for a digital scan.

Resource Properties
Resource class: Intent
Resource referenced by: -
Partition: -
Input of processes: Scanning
Output of processes: -

Resource Structure

Dr. Rainer Prosi
synch with proofparams

Dr. Rainer Prosi
tbd printtalk define.

Dr. Rainer Prosi
this is already very process related – you might as well define platemakingintent

204 Chapter 7 Resources

Name Data Type Description
BitDepth IntegerSpan Bit depth of a one-color separation.

InputBox ? rectangle Rectangle that describes the image section to be scanned, in
points. The origin of the coordinate system is the lower left
corner of the physical item to be scanned.

Magnification ? XYPair Size of the output/size of the input for each dimension.
Defaults to 1.0.

OutputResolution XYPair X and Y resolution of the output bitmap (in DPI).

OutputSize ? XYPair X-,Y-dimension of the intended output image (in pt).

OutputColorSpace ? NumberSpan Possible values are:[DH28]
RGB
CMYK[RP29]
CIELab
GreyScale

OutputType ? enumeration Type of item resulting from the scan, such as a page for
display on a website. Possible values are:
Digital
Film

7.1.17 ScreeningIntent
This resource specifies the screening intent for a JDF job using information that identifies the family,
frequency, and spot function of the job that will be screened.

Resource Properties
Resource class: Intent
Resource referenced by: -
Partition: -
Input of processes: Screening
Output of processes: -

Resource Structure
Name Data Type Description
Frequency ? NumberSpan Specifies the line frequency of the screen when AM

screening is used.

ScreeningType ? NameSpan General type of the screen. Possible values are:
AM
FM
Adaptive

ScreeningFamily ? StringSpan Vendor specific screening family name. Possible
values include:
Rational Tangent
Adobe Accurate

Deborah Harrison
TBD-RP please include description

Dr. Rainer Prosi
which cmyk? (we are moving right into process…

Chapter 7 Resources 205

Agfa Balanced
Soft-IS
ErrorDiffusion

SpotFunction ? StringSpan Specifies the spot function of the screen when AM
screening is used.

The list of spot functions is the same as that defined in
ScreeningParams[DH30]

7.1.18 ShapeIntent

This resource specifies form and line cutting for a JDF job. The cutting processes are applied for producing
special shapes like an envelope-window or a heart-shaped beer mat. Information that identifies the type
and shape of cuts can be described. The cutting process(es) can be performed using tools such as hollow
form punching, perforating or die-cutting equipment.

Resource Properties
Resource class: Intent
Resource referenced by: -
Partition: -
Input of processes: -
Output of processes: -

Resource Structure
Name Data Type Description
ShapeCut * element Array of all ShapeCut elements. Used when each shape

is exactly specified.

Structure of Shape Sub-element
Name Data Type Description
CutBox ? rectangle Specification of a rectangular window.

CutOut ? boolean If true, the inside of a specified shape shall be removed. If
false, the outside of a specified shape shall be removed. An
example of an inside shape is a window, while an example of
an outside shape is a shaped greeting card.

CutPath ? path Specification of a complex path. This may be an open path in
the case of a single line.

Material ? StringSpan Transparent material that fills a shape, such as a window, that
was cut out when CutOut = true.

CutType ? NameSpan Type of cut or perforation used. Possible values are:
Cut
Interruptedanders
T-perf[MS31]
MicroPerforation[MS32]

Pages ? IntegerRange-
List

List of pages to which this shape shall be applied.

Deborah Harrison
I think we should include that list here.

Moritz Schwarz
What is this?

Moritz Schwarz
If not already defined above

206 Chapter 7 Resources

List

ShapeType NameSpan Describes any precision cutting other than hole making.
Possible values are:

Rectangular
Round
Path

TeethPer-
Dimension ?

NumberSpan Number of teeth in a given perforation extent in teeth/point.

7.1.19 SizeIntent
This resource records the size of the finished pages for the product component. It does not, however,
specify the size of any intermediate results, such as press sheets.

Resource Properties
Resource class: Intent
Partition: -
Resource referenced by: -
Input of processes: Any Product Node
Output of processes: -

Resource Structure
Name Data Type Description
Height NumberSpan Specifies the height of the product component.
Pages ? IntegerSpan Specifies the number of pages of the product component.

Type ? enumeration Specifies whether the product component referred to is flat or
finished. Possible values are:

Finished = Default value
Flat

Width NumberSpan Specifies the width of the product component.

7.1.20 StampingIntent

NOTE: this intent not ready for prime time …

Resource Properties
Resource class: Intent
Resource referenced by: -
Partition: -
Input of processes: -
Output of processes: -

Resource Structure

Chapter 7 Resources 207

Name Data Type Description
Area XYPair

Dies list

Generic enumeration Possible values are:

embossed
debossed

foil

7.2 Process Resources
The rest of the resources described in this chapter are what are known as process resources. This means
that they serve as necessary components in each of the JDF processes.

Section 7.2.1 describes the template for all of the sections that follow. Then every resource already defined
for JDF is chronicled, in alphabetical order, below.

7.2.1 Process Resource Template
Each of the following sections begins with a brief narrative description of the resource. Following that is a
list containing details about the properties of the resource, as shown below. The first item in the list
provides the class of the resource. As was described in section 3.2 Common Node Types, all resources are
derived from one of the following eight superclasses: Intent, Parameter, Implementation, Consumable,
Quantity, Handling, PlaceHolder and Selector. All resources inherit additional contents (which may be
attributes or elements) from their respective superclasses, and those attributes and elements are not repeated
in this section. Thus those attributes associated with a resource of class Parameter, for example, can be
found in Table 3.9.

If the resource described is not an atomic resource, the resource class item in the resource properties list
defines an element known as a resource element, rather than a class. Resource elements are listed in
separate sections if they may be referenced by more than one resource. For an example, see the resource
element SeparationSpec. If the resource may not be referenced by multiple resources, it is described
inside the resource section of the resource to which it belongs. For an example, see the abstract
FoldOperation element of the FoldingParams resource. The resource class of an atomic resource also
defines the superclasses from which the resource inherits additional contents. The Consumable,
Quantity, and Handling resource elements inherit from the PhysicalResource element, which in turn
inherits from the Resource element. Parameter and Implementation resource elements inherit from the
Resource element directly. Non-atomic resources—that is, resource sub-elements—do not inherit
contents from resource superclasses.

After the list describing the resource properties, each section contains tables that outline the structure of
each resource and, when applicable, the abstract or sub-element information that pertains to the resource
structure. The first column contains the name of the attribute or element. In some cases, a resource will
contain an element with more than one value associated with it. If this is the case, the element name is
listed as often as it appears, and a term in parentheses that identifies the kind of element is included in the
column. For an example, see section 7.2.36 EndSheetGluingParams.

An example of the tables in this section is provided below.

Resource Properties Template
Resource class: Defines the resource class or resource element.

208 Chapter 7 Resources

Resource referenced by: List of parent resources that contain elements of this type. Only valid for
elements.

Partition: List of valid partitioning boundaries: PartVersion, Separation, Side,
SheetName, SignatureName, TileID. If a partition is specified, the resource
may contain a nested elements of its own type.

Input of processes: List of node types that use the resource as an input resource.
Output of processes: List of node types that create the resource as an output resource

Resource Structure Template
Name Data Type Description
Name of attribute
or element

data type of
attribute or
element

Usage of the structure.

7.2.2 Address
Definition of an address. The structure is derived from the vCard format and therefore is comprised of all
address sub-types (ADR:) of the delivery address of the vCard format. The corresponding XML types of
the vCard are quoted in the table.

Resource Properties
Resource class: Element
Resource referenced by: Contact
Partition: -
Input of processes: -
Output of processes: -

Resource Structure
Name Data Type Description
City ? string City or locality of address (vCard: ADR:locality).

Country ? string Country of address (vCard: ADR:country).

CountryCode ? string Country of address. This value conforms to the ISO 3166
standard in which countries are represented as 2-character
codes.

PostBox ? string Post office address (vCard: ADR:pobox. For example: P.O.
Box 101).

PostalCode ? string Zip code or postal code of address (vCard: ADR:pcode).

Region ? string State or province (vCard: ADR:region).

Street ? string Street address (vCard: ADR:street).

ExtendedAddress ? telem Extended address (vCard: ADR:extadd. For example: Suite
245).

7.2.3 AdhesiveBindingParams
This resource describes the details of the following four sub-processes of the AdhesiveBinding process:

Chapter 7 Resources 209

• back preparation
• multiple glue applications
• spine taping
• cover application

These subprocesses are identified as instances of the abstract ABOperation element. Although a workflow
may exist that groups these processes according to its own capabilities, it is likely that they will be
performed in the order presented. A description of each follows the table containing the contents of the
AdhesiveBindingParams resource.

Resource Properties
Resource class: Parameter
Resource referenced by: -
Partition: -
Input of processes: AdhesiveBinding
Output of processes: -

Resource Structure
Name Data Type Description
FlexValue ? double Flex quality parameter given in [N/cm].

PullOutValue ? double Pull out quality parameter given in [N/cm].

ABOperation + element Each ABOperation element describes the parameters of one
single operation of the complete AdhesiveBinding process.

Structure of AdhesiveBinding Elements

ABOperation
Resource class: Abstract element

ABOperation is an abstract element that describes the AdhesiveBinding process. The defined instances
(sub-classes) of ABOperation are BackPreparation, GlueApplication, SpineTaping and
CoverApplication.

BackPreparation
Resource class: ABOperation

Name Data Type Description
MillingDepth double Milling depth.
NotchingDistance ? double Notching distance.

NotchingDepth ? double Notching depth.

StartPosition double Starting position of milling tool (along the Y-axis of the
operation coordinate system).

WorkingLength double Working length of milling operation.

210 Chapter 7 Resources

notching
distance

notch

block
x

y

working
length

start
position

Figure 7.1 Parameters and coordinate systems for back-preparation process

GlueApplication
Resource class: ABOperation

Name Data Type Description
GluingTechnique enumeration Type or technique of gluing application. Possible values are:

SpineGluing
SideGluingFront
SideGluingBack

GlueLine element Structure of the glue line.

Chapter 7 Resources 211

block

side gluing on
back side

side gluing on
front side

spine gluing

front side
back side

x

x

x

y
y

y

start
position

glue line

Figure 7.2 Parameters and coordinate system for glue application

SpineTaping
Resource class: ABOperation

Name Data Type Description
HorizontalExcess double Taping spine excess on each side. The tape is assumed to be

centered between left and right.

StripBrand ? string Strip brand.

StripColor ? colorant Color of the strip.

StripLength double Length of strip material along binding edge.
StripMaterial ? enumeration Strip material. Possible values are:

Gauze
Calico
PaperlinedMules
CrepePaper
Tape

TopExcess double Top spine taping excess. This value may be negative.

212 Chapter 7 Resources

block

x

y

strip

top excess

horizontal
excess

origin of
operation

coordinate
system

Figure 7.3 Parameters and coordinate system for the spine-taping process

CoverApplication
Resource class: ABOperation

Name Data Type Description
CoverOffset XYPair Position of the cover in relation to the book block given in the

cover-sheet coordinate system.
Score * element Describes where and how to score the cover.

Structure of Score Sub-element
Resource class: Element

Name Data Type Description
Offset double Position of scoring given in the operation coordinate system.

Side enumeration Specifies the side from which the scoring tool works. Possible
values are:

FromInside
FromOutside

Chapter 7 Resources 213

negative
score offset

y y

x

x

score
positive
score offset

center line

cover offset origin of
operation
coordinate
system

origin of
cover sheet
coordinate

system

block

scored from
outside

scored from
inside

book block

Figure 7.4 Parameters and coordinate system for cover application

7.2.4 ApprovalParams
This resource provides the details of an approval process.

Resource Properties
Resource class: Parameter
Resource referenced by: -
Partition: -
Input of processes: Approval
Output of processes: Verification

Resource Structure
Name Data Type Description
ApprovalPerson * element List of people (such as a customer, printer, or manager) who

can sign the approval.

Structure of ApprovalPerson Sub-element
Name Data Type Description
Obligated ? boolean If true, the person has to sign this approval.

Default = true

Contact element Contact (such as a customer, printer, or manager) who must
sign the approval. The value of the ContactType attribute

214 Chapter 7 Resources

of this Contact element should be Administrator.

7.2.5 ApprovalSuccess
The signed ApprovalSuccess resource indicates the success of a soft proof, color proof, printing proof,
or any other sort of proof.

Resource Properties
Resource class: Parameter
Resource referenced by: -
Partition: -
Input of processes: -
Output of processes: Approval

Resource Structure
Name Data Type Description
FileSpec ? element The file that contains the approval signature. If FileSpec

does not exist, ApprovalSuccess is a logical
placeholder.

7.2.6 ByteMap
This resource specifies the structure of bytemaps produced by various processes within a JDF system. A
ByteMap represents a raster of image data. This data may have multiple bits per pixel, may represent a
varying set of color planes, and may or may not be interleaved.

A Bitmap is a special case of a ByteMap in which each pixel is represented by a single bit per color.

Personalized printing requires that certain regions of a given page be dynamically replaced. The optional
mask associated with each band of data allows for the omitting certain pixels from the base image
represented by the ByteMap so that they may be replaced.

Resource Properties
Resource class: General
Resource references: RunList
Partition: -
Input of processes: Screening
Output of processes: RIPping, Scanning, Rendering, Screening

Resource Structure
Name Data Type Description
BandOrdering ? enumeration Identifies the precedence given when ordering the

produced bands. Possible values are:
BandMajor – The position of the bands on the page is
prioritized over the color.
ColorMajor – All bands of a single color are played in
order before progressing to the next plane. This is only

Chapter 7 Resources 215

possible with non-interleaved data.
This field is required for non-interleaved data and is
ignored for interleaved data.

FrameHeight integer Height of the overall image that may be broken into
multiple bands

FrameWidth integer Width of overall image that may be broken into multiple
columns

Halftoned boolean Indicates whether or not the data has been halftoned.

Interleaved boolean If true, the data is interleaved, or chunky. Otherwise the
data is non-interleaved, or planar.

PixelSkip ? integer Number of bits to skip between pixels of interleaved data.

Resolution XYPair Output resolution.

Band + element Array of bands containing raster data.

PixelColorant + element Ordered list containing information about which
colorants are represented and how many bits per pixel are
used.

Structure of Band Sub-element
Name Data Type Description
Data URL Actual bytes of data.

Height integer Height in pixels of the band.

Mask ? URL 1-bit mask of raster data indicating which bits of the band
data should actually be used. It is required that the mask
dimensions and resolution be equivalent to the contents
of the band itself.

WasMarked boolean Indicates whether any rendering marks were made in this
band. This attribute allows a band to be skipped if no
marks were made in the band.

Width integer Width in pixels of the band.

Structure of PixelColorant Sub-element
Name Data Type Description
ColorantName string Name of colorant.

PixelDepth integer Number of bits per pixel for each colorant.

7.2.7 ChannelBindingParams
This resource describes the details of the ChannelBinding process. The following figure depicts the
ChannelBinding process.

W U-shaped clamp pile of sheets

216 Chapter 7 Resources

 L

 W - ClampD channel bound document

The symbols W, L, and ClmapD of the illustration above are described by the attributes ClmapD and
ClampSize of the table below.

Resource Properties
Resource class: Parameter
Resource referenced by: -
Partition: -
Input of processes: ChannelBinding
Output of processes: -

Resource Structure
Name Data Type Description
Brand ? string The name of the clamp (or pre-assembled cover with clamp)

manufacturer and the name of the specific item.

ClampColor ? colorant Determines the color of the clamp/cover. If the clamp is
inside of a pre-assembled cover then the color of the cover is
meant.

ClampD ? double The distance of the clamp that was “pressed away” (see
illustration above).

ClampSize ? shape The shape size of the clamp: the first number of the shape data
type corresponds to the clamp width W (see illustration above)
which is determined by the final height of the block of sheets
to be bound. The second number corresponds to the length L
(see illustration above) and the third to the spine length (not
visible in the illustration above).[MM33]

ClampSystem ? boolean If true the clamp is inside of a pre assembled cover.

Default = false

7.2.8 CIELABMeasuringField
Information about a color measuring field. The color is specified as CIE-L*a*b* value.

Resource Properties
Resource class: Element
Resource referenced by: Surface
Partition: -
Input of processes: Any printing process
Output of processes: Imposition

Resource Structure
Name Data Type Description

Dr. Markus Möller
TBD-MS: check my (MM) changes.

Chapter 7 Resources 217

Center XYPair Position of the center of the color measuring field in the
coordinates of the SurfaceContentsBox.

CIE-Lab Lab color L*a*b* color specification.

Diameter double Diameter of measuring field.

DensityStandard ? enumeration Density filter norm. Possible values are:
DIN16536
DIN16536NB
ANSIA
ANSIT

Light NMTOKEN Type of light. Possible values include:

D50
D65

Observer integer Observer in degree (2 or 10)
Percentages ? NumberList Film percentage values for each separation. The number

of array elements must match the number of separations.

ScreenRuling ? NumberList Screen ruling values in lines per inch for each separation.
The number of array elements must match the number of
separations.

ScreenShape ? string Shape of screening dots.

Setup ? string Description of measurement setup.

Tolerance double Tolerance in ∆E.

7.2.9 CoilBindingParams
This resource describes the details of the CoilBinding process.

Resource Properties
Resource class: Parameter
Resource referenced by: -
Partition: -
Input of processes: CoilBinding
Output of processes: -

Resource Structure
Name Data Type Description
Brand ? string The name of the coil manufacturer and the name of the

specific item.
Color ? colorant Determines the color of the coil.

Diameter ? double The coil diameter to be produced is determined by the height
of the block of sheets to be bound.

Material ? enumeration The material used for forming the wire-comb binding:
LaqueredSteel
NylonCoatedSteel

218 Chapter 7 Resources

PVC
TinnedSteel
ZincsSteel

Shift ? double Amount of vertical shift that occurs as a result of the coil
action while opening the document. It is determined by the
distance between the holes.

Thickness ? double The coil’s thickness.
Tucked ? boolean If true, the ends of the coil are “tucked in”.

7.2.10 CollectingParams
The Collecting process needs no special attributes. However, this resource is provided as a container for
extensions of the Collecting process.

Resource Properties
Resource class: Parameter
Resource referenced by: -
Input of processes: Collecting
Output of processes: -

direction of travel

collecting chain

target or
operation
coordinate
system

source or
component
coordinate
system

width

height

x

x

y

y

Figure 7.5 Coordinate Systems Used for Collecting

7.2.11 Color
JDF describes spot color inks and, along that line, process color (inks). Spot colors are named colors that
may either be separated or converted to process colors.

Chapter 7 Resources 219

It is important to know the density of the colorant (for trapping) and, in many cases, the Lab values (for
representing them on screen). If you know the Lab value, you can calculate the density. When
representing colors on screen, a conversion to process colors must be defined. This conversion is a simple
linear interpolation between the CMYK value of the 100% spot color and its tint.

A color is represented by a Color element. It has a required Name attribute, which represents the name of
either a spot color or a process color. The four names that are reserved for representing ProcessCMYK
color names are Cyan, Magenta, Yellow, and Black. Every colorant can have a Lab and/or CMYK color
value. If both are specified and a system is capable of interpreting both values, the Lab value overrides the
CMYK definition, unless the target device is compatible with the CMYKTarget. In this case the CMYK
value has precedence.

The Lab value represents the lab readings of the ink on certain media. This means that spot inks printed on
two different kinds of stocks have different Lab values. Pantone books, for example, provide Lab values
for two kinds of paper: coated (not necessarily glossy) and uncoated. Thus a color of ink should identify
the media for which it is specified.

CMYK colors are used to approximate spot colors when they are not separated. This conversion can be
done by a color management system or there can be fixed CMYK representation defined by colorbooks
such as Pantone.

Resource Properties
Resource class: Element
Resource referenced by: ColorPool, Media, TrappingDetails
Partition: -
Input of processes: -
Output of processes: -

Resource Structure
Name Data Type Description
CMYK ?[RP34] CMYKColor CMYK value of the 100 % tint value of the colorant.

Although optional, it is highly recommended that
this value be filled.

ColorType ? enumeration A name that characterizes the colorant. If no value
is specified, the device shall provide a default value.
Possible values are:
DieLine – Marks made with colorants of this type
are ignored for trapping. Trapping processes need
not generate a color plane for this colorant.
Transparent can be used for auxillary process
separations.

Normal – Marks made with colorants of this type,
marks covered by colorants of this type, and marks
on top of colorants of this type are trapped.
Transparent – Marks made with colorants of this
type are ignored for trapping. Trapping processes
need not generate a color plane for this colorant.
Transparent can be used for varnish.
Opaque – Marks covered by colorants of this type
are ignored for trapping. Opaque can be used for
metallic inks.

Dr. Rainer Prosi
TBD-WW according to our experts, defining CMYK for a colorant separation in a PDL is non trivial, e.g. you need to look up a pantone table etc.

Dr. Rainer Prosi
tbd-rp ??? default input profiles

220 Chapter 7 Resources

OpaqueIgnore – Marks made with colorants of this
type and marks covered by colorants of this type are
ignored for trapping. OpaqueIgnore can be used for
metallic inks.

Lab ? LabColor Lab value of the 100 % tint value of the colorant.

MediaType ? string Specifies the mediatype. Possible values are:

coated
uncoated

Name string Name of the colorant.

NeutralDensity ? number A number in the range of 0.001 to 10 that represents
the neutral density of the colorant. If no value is
specified, the device shall provide a default.

sRGB ? sRGBColor sRGB value of the 100 % tint value of the colorant.

TargetProfile? URL ICC profile that defines the target output device in
case the object that uses the Color has been
colorspace converted to a device color space.

UsePDLAlternateCS ? boolean If true, the alternate colorspace definition defined in
the PDL shall be used for color space
transformations when available. If false, the
alternate color space definitions defined in sRGB,
CMYK or DeviceNColor of this Color shall be
used depending on the value of
ProcessColorModel in ColorantControl.
Default = true

DeviceNColor * element Elements that defines the colorant in a non-standard
device-dependent process color space.

TransferCurve * element A list of color transfer functions that is used to
convert a tint value to one of the alternative
colorspaces. The transfer functions that are not
specified here default to a linear transfer: “0 0 1 1”

Structure of DeviceNColor [RP35]Sub-element

Name Data Type Description
ColorList NumberList Value of the 100 % tint value of the colorant in the

ordered DeviceN space. The list must have N
elements. A value of 0 specifies no ink and a value
of 1 specifies full ink.
The mapping of indices to colors is specified in the
DeviceNSpace element of the ColorantControl
resource.

N integer Number of colors that define the color space.

Name? string Color space name, such as HexaChrome or HiFi.
Name must match the Name attribute of a
DeviceNSpace element defined in a
ColorantControl resource.

Chapter 7 Resources 221

Structure of TransferCurve Sub-element1

Name Data Type Description
Curve TransferFunction The transfer function.

Separation string The name of the separation.

If Separation = All, this curve should be applied to
all separations.

Color Example
This is an example of the structure for colorant. The transfer curves in this example are defined for process
CMYK and sRGB, independently.

<Color Name="Pantone Deep Blue" Density="3.14" MediaType="Coated"
Lab="0.2 0.3 0.4" CMYK="0.2 0.3 0.4 0.5" sRGB="0.6 0.7 0.9">
<TransferCurve Separation ="Cyan" Curve="0 0 .5 .4 1 1"/>
<TransferCurve Separation ="Magenta" Curve="0 0 .5 .6 1 1"/>
<TransferCurve Separation ="Yellow" Curve="0 0 1 1"/>
<TransferCurve Separation ="Black" Curve="0 0 1 1"/>
<TransferCurve Separation ="sRed" Curve="0 0 1 1"/>
<TransferCurve Separation ="sGreen" Curve="0 0 1 1"/>
<TransferCurve Separation ="sBlue" Curve="0 0 1 1"/>
<Color/>

7.2.12 ColorantControl
ColorantControl is a resource used to control the use of color when processing PDL pages. The
attributes and elements of the ColorantControl resource describe how color information embedded in
PDL pages shall be translated into device colorant information.

Colorants are referenced in ColorantControl by name only. Additional details about individual colorants
can be found in the Color element of the ColorPool resource.

ColorantControl resources control which device colorants will be used as well as how document colors
will be converted into device color spaces and how conflicting color information should be resolved.

Resource Properties
Resource class: Parameter
Resource referenced by: Any process that uses RunList resources
Partition: -
Input of processes: Separation, ColorCorrection, ConventionalPrinting, DigitalPrinting,

IDPrinting
Output of processes: -

Resource Structure
Name Data Type Description
ForceSeparations ? boolean If true, forces all colorants to be output as individual

separations, regardless of the values defined in

1 Note that this is identical to the TransferCurve element in a TransferCurvePool resource.

222 Chapter 7 Resources

ColorSpaceSubstitute and ColorantAlias.
Default = false, which means respect the above elements.

ProcessColorModel NMTOKEN Specifies the model to be used for rendering the colorants
defined in color spaces into process colorants. Possible
values include:
DeviceCMY
DeviceCMYK
DeviceGray
DeviceN
DeviceRGB

ReplacementColorant-
Name

string The name of the colorant to be substituted for the
colorants named in the Alias element list.

ColorantAlias * element Identify one or more named colorants that should be
replaced with a specified named colorant.

ColorantOrder ? element The ordering of named colorants to be processed, for
example in the RIP. All of the colorants named must
either occur in the ColorantParams list, or be implied by
the ProcessColorModel

ColorantParams ? element A set of named colorants. This list defines all the
colorants that are expected to be available on the device
where the process will be executed. The colorants implied
by the value of ProcessColorModel are assumed.

ColorPool element Pool of Color elements that define the specifics of the
colors named in ColorantControl.2

ColorSpaceSubstitute * element These sub-elements identify a colorant that should be
replaced by another colorant.

DeviceColorantOrder ? element The ordering of named colorants to be output on the
device3, such as press modules. All of the colorants
named must occur in the ColorantParams list, or be
implied by the ProcessColorModel. If the
DeviceColorantOrder element is not specified, the
element defaults to ColorantOrder.

DeviceNSpace * element Defines the colorants that make up a DeviceN color
space.

Structure of ColorantAlias Sub-element
Name Data Type Description
SeparationSpec * telem The names of the colorants to be replaced in PDL files.

Structure of ColorantOrder, ColorantParams, and DeviceColorantOrder Elements
Name Data Type Description
SeparationSpec * element The names of the colorants that define the respective lists.

2 Note that this will generally be an inter-resource link.
3 Note that this must be synchronized with the device output ICC profile.

Chapter 7 Resources 223

Structure of ColorSpaceSubstitute [RP36]Sub-element
Name Data Type Description
PDLResourceAlias element A reference to a color space description that replaces the

color space defined by TargetColorantName.

TargetColorantName + telem A list of names that defines the colorants to be replaced.
This could be a single name in the case of a Separation
color space, or more than one name in the case of a
DeviceN color space.

Structure of DeviceNSpace Sub-element
Name Data Type Description
Name ? string Color space name, such as HexaChrome or HiFi.

N integer The number of colors that define the color space.

SeparationSpec * element Ordered list of colorant names that define the DeviceN
colorspace. The ordering maps to the ordering of
elements in the corresponding
Color::DeviceNColor::ColorList attribute. Note that
these colorants must have a ColorantUsage attribute of
process or spot. In other words, they must be real physical
colorants.

7.2.13 ColorControlStrip
This resource describes a color control strip. The type of the color control strip is given in the StripType
attribute. If it is known at the system reading the JDF file, there is no need to define the elements of the
strip, and the attribute DensityMeasuringFields is not needed. Otherwise, this attribute must contain a
definition of the contained measuring fields. The lower left corner of the control strip box is used as the
origin of the coordinate system used for the definition of the measuring fields. It can be calculated using
the following formula:

)cos(
2

)sin(
2

)sin(
2

)cos(
2

0

0

ϕϕ

ϕϕ

hwyy

hwxx

−−=

+−=

where x = X element of the Center attribute

y = Y element of the Center attribute
w = X element of the Size attribute
h = Y element of the Size attribute
ϕ = Value of the Rotation attribute

Resource Properties
Resource class: Element
Resource referenced by: Surface
Partition: -
Input of processes: Any printing process
Output of processes: Imposition

Dr. Rainer Prosi
tbd-ww – is this correct? we thought this would be used to replace an adobe red by a pantone xyz red? That is ColorantAlias (ing).

224 Chapter 7 Resources

Resource Structure
Name Data Type Description
Center XYPair Position of the center of the color control strip in the

coordinates of the SurfaceContentsBox.

Rotation ? double Rotation in degrees. Positive graduation figures indicate
counter-clockwise rotation; negative figures indicate
clockwise rotation.

Size XYPair Size of the color control strip.

StripType ? NMTOKEN Type of color control strip. This attribute can be used for
specifying a predefined, company-specific color control
strip.

7.2.14 ColorCorrectionParams
This resource provides the information needed for an operator to correct colors on some PDL pages or
content elements such as image, graphics, or formatted text.

Resource Properties
Resource class: Parameter
Resource referenced by: -
Partition: -
Input of processes: ColorCorrection
Output of processes: -

Name Data Type Description
ColorManagement-
System ?

string Identifies the preferred ICC color-management system to
use when performing corrections. Overrides the default
selection of the application or the selection contained in
any of the profiles when specified.

FinalTargetDevice ? URI Describes the characterization of the final output target
device using an ICC profile.

WorkingColorSpace ? URI Describes the assumed characterization of CMYK, RGB
and Gray colorspaces using ICC Profiles.

ColorCorrectionOp * element List of ColorCorrectionOp sub-elements.

It is assumed that color correction will be peformed by a human operator; no attempt is made to encode
specific types of operations.

Sub-elements of the ColorCorrectionParams resource should contain a Comment to describe the
desired correction operation, and, optionally, to provide a region to be corrected via the Comment::Path or
Comment::Box elements.

Structure of ColorCorrectionOp Sub-element
Name Data Type Description
SourceObjects ? enumerations Identifies which class of incoming graphical objects will

be operated on. Possible values are:

All – Default value.

Chapter 7 Resources 225

ImagePhotographic – Contone images.

ImageScreenShot – Images largely comprised of
rasterized vector art.

Text
LineArt
SmoothShades – Gradients and blends.

7.2.15 ColorPool
The ColorPool resource contains a pool of all Color elements refered to in the job.

Resource Properties
Resource class: Parameter
Resource referenced by: -
Partition: -
Input of processes: ColorSpaceConversion, Proofing, SoftProofing, RIPping, Trapping
Output of processes: -

Resource Structure
Name Data Type Description
Color * element Individual named color.

7.2.16 ColorSpaceConversionParams
This set of parameters defines the rules for a ColorSpaceConversion process, the elements of which
define the set of operations to be performed.

Information inside the ColorSpaceConversionOp elements, described below, defines the operation and
identifies the colorspaces and types of objects to operate on.

Other attributes define the color management system to use, as well as the working color space and the
final target device.

Resource Properties
Resource class: Parameter
Resource referenced by: -
Partition: -
Input of processes: ColorSpaceConversion, Proofing, SoftProofing
Output of processes: -

Resource Structure
Name Data Type Description
ColorManagement-
System ?

string Identifies the preferred ICC color management system to
use when performing transformations. Overrides the
default selection of the application or that contained in
any of the profiles when specified.

226 Chapter 7 Resources

ConvertDevIndepColors ? boolean When true, incoming device-independent colors are
processed to the selected device space. If the chosen
operation is untag and the characterization data are in the
form of an ICC profile, then the profile is removed.
Otherwise, these colors are left untouched.

FinalTargetDevice ? URI Describes the characterization of the final output target
device using an ICC profile. This item is required when
converting, but optional for tagging or untagging.

WorkingColorSpace ? URI Describes the assumed characterization of CMYK, RGB
and Gray colorspaces using ICC Profiles. This item is
required for converting or tagging, but optional for
untagging.

ColorSpaceConversion-
Op *

element List of ColorSpaceConversionOp sub-elements.

Structure of ColorSpaceConversionOp Sub-element
Name Data Type Description
IgnoreEmbeddedICC? boolean If true, specifies that embedded source ICC profiles shall

be ignored and that the ICC profile defined by
SourceProfile shall be used instead. Default=false.

Operation enumeration Controls which of three functions the color space
conversion utility performs. Possible values are:

Convert – Transforms graphical elements to final target
color space.

Tag – Associates appropriate working space profile with
uncharacterized graphical element.

Untag – Removes all profiles and color characterizations
from graphical elements

Retag – Removes all profiles and color characterizations
from graphical elements and replaces them with the
appropriate values. Equivalent to a sequence of
UnTag –> Tag
ConvertIgnore – Removes all profiles and color
characterizations from graphical elements and converts to
the appropriate values. Equivalent to a sequence of
UnTag –> Convert

RenderingIntent ? enumeration Identifies the rendering intents associated with
SourceObjects elements. Possible ICC-defined
rendering intent values are:

Saturation

Perceptual
RelativeColorimetric

AbsoluteColorimetric

RGBGray2Black ? boolean This feature controls what happens to gray values (R = G
= B) when converting from RGB to CMYK. In the case
of MSOffice applications and screendumps, there are a
number of gray values in the images and lineart. Printers

Chapter 7 Resources 227

do not want to have CMY under the K (Registration).
Therefore, they prefer to have K only. This is not true for
photographic images. In that case, everything is moved
through a link.

Default = false

SourceCS enumeration Identifies which of the incoming color spaces will be
operated on. Possible values are:

CMYK – Operates on deviceCMYK or 4-component
ICCBased colorspaces.

RGB – Operates on deviceRGB, calRGB or 3-
component ICCBased colorspaces

Gray – Operates on deviceGray, calGray or 1-
component ICCBased colorspaces.

SourceObjects ? enumerations List of objects that identifies which class of incoming
graphical objects will be operated on. Possible values
are:

All – Default value.

ImagePhotographic – Contone images.

ImageScreenShot – Images largely comprised of
rasterized vector art.

Text
LineArt
SmoothShades – Gradients and blends.

SourceProfile ? url Link to an ICC profile that describes the assumed color
space. The default is to use embedded profiles.

7.2.17 ComChannel
A communication channel to a person or company such as an email address, phone number, or fax number.

Resource Properties
Resource class: Element
Resource referenced by: Contact, Person
Partition: -
Input of processes: -
Output of processes: -

Resource Structure
Name Data Type Description
ChannelType enumeration Type of the communication channel. Possible values are:

Phone – Telephone number.
Email – E-mail address.
Fax – Fax machine.
WWW – WWW home page or form.

228 Chapter 7 Resources

JMF – JMF messaging channel.

Locator string Locator of this type of channel in a form such as a phone
number or an email address.

7.2.18 Company
Specifies contacts to a company including detailed information about contact persons and addresses. This
structure can be used in many situations where addresses or contact persons are needed. Examples of
contacts are customer, supplier, company, and addressees. The structure is derived from the vCard format.
It comprises the organization name and organizational units (ORG) of the organizational properties defined
in the vCard format. The corresponding XML types of the vCard are quoted in the table.

Resource Properties
Resource class: Element
Resource referenced by: ArtDeliveryIntent, DeliveryIntent, DeliveryParams, DropIntent,

OrderingParams
Partition: -
Input of processes: -
Output of processes: -

Resource Structure
Name Data Type Description
OrganizationName string Name of the organization or company (vCard:

ORG:orgnam. For example: ABC, Inc.).

Contact * element A contact of the company.

OrganizationalUnit * telem Describes the organizational unit (vCard: ORG:orgunit
For example, if two elements are present: 1. “North
American Division” and 2. “Marketing”).

7.2.19 Component
Component is used to describe the various versions of semi-finished goods in the press and postpress
area, such as a pile of folded sheets that have been collected and must then be joined and trimmed.

Nearly every postpress process has a Component resource as an input as well as an output. Typically the
first components in the process chain are some printed sheets, while the last component is a book or a
brochure.

Component resources are grouped by kind, in much the same way that nodes are classified as Combined,
Process, or Product Intent. The four categories of Component resources are: Sheet, Block,
PartialProduct, and FinalProduct. These categories are defined in greater detail below:

Sheet This source type is appropriate if a flat sheet—such as a postcard to be glued in—is

used as an input component. "Flat" in this case means that the sheet has not been
folded or cut before the operation.

Block This source type is appropriate if a folded sheet, a cut portion of the sheet, or a cut and

folded portion of a sheet is used as an input component.

Chapter 7 Resources 229

PartialProduct This source type is appropriate if a partial product should be used as an input
component.

FinalProduct This source type is appropriate if this Component is the final product.

Coordinate Systems of Components and Processes
Each input Component of a process has, by default, its own coordinate system, which is called source or
component coordinate system. The coordinate system also implies a specific orientation of that
component.

On the other hand there is a coordinate system that is used to define various process-specific parameters.
This coordinate system is called target or process coordinate system.

It is often necessary to change the orientation of an input Component before executing the operation.
This can be done by specifying a transformation matrix. It is stored in the Transformation attribute of the
Component. This provides the ability to specify different matrices for the individual input components
of a process.

The following table shows some matrices that can be used to change the orientation of an input
Component. Most of the transformations require the X- (w) and the Y-dimension (h) of the
Component as specified in the Dimension element.

230 Chapter 7 Resources

Source

Coordinate System

Transformation Matrix

According Action

Target

Coordinate System

x

y

[1 0 0 1 0 0]
No Action x

y

x

y

[-1 0 0 -1 w h]
180° Rotation x

y

x

y

[0 1 -1 0 h 0]

90° Counterclockwise Rotation x

y

x

y

[0 -1 1 0 0 w]
90° Clockwise Rotation x

y

x

y

[-1 0 0 1 w 0]
Horizontal Flip x

y

x

y

[1 0 0 -1 0 h]
Vertical Flip x

y

x

y

[0 1 1 0 0 0]

90° Counterclockwise Rotation
+ Horizontal Flip

x

y

Chapter 7 Resources 231

x

y

[0 -1 -1 0 h w]
90° Clockwise Rotation +

Horizontal Flip
x

y

Table 7.1 Matrices used to change the orientation of a Component

Terms and Definitions for Components
The descriptions of Component-specific attributes use some terms whose meaning depends on the culture
in which they are used. For example, different cultures mean different things when they refer to the “front”
side of a magazine. Other terms, such as binding, are defined by the production process and therefore do
not depend on the culture.

Whenever possible, this specification endeavors to use culture-independent terms. In cases where this is
not possible, Western style (left-to-right writing) is assumed. Please note that these terms may have a
different meaning in other cultures (such as those writing from right to left).

product front edge

product top edge

product bottom edge

binding edge
(spine)

book-like partial product viewed from first page (front side)

product front side

product front edge

binding edge
(spine)

calendar-like partial product viewed from first page (front side)

product front side

Figure 7.6 Terms and Definitions for Components

The table below describes the terms used to define the components.

Table 7.2 Terms and Definitions for Components

Edge Description
Binding edge The edge on which the (partial) product is glued or stitched. This edge is also

often called working edge or spine.

Product front edge The side, where you open the (partial) product. This edge is opposite to the
binding edge.

Registered edge A side on which a collection of sheets or partial products is aligned during a
production step. All production steps require two registered edges, which
must not be opposite to each other. The two registered edges define the
coordinate system used within the production step. When there is a binding
edge, this is one of the registered edges.

Resource Properties
Resource class: Quantity

232 Chapter 7 Resources

Resource referenced by: -
Partition: Side, SheetName, Signature
Input of processes: Many
Output of processes: Many

Resource Structure
Name Data Type Description
ComponentType enumeration Specifies the category of the component. Possible values

are:

Sheet
Block
PartialProduct
FinalProduct

IsWaste ? boolean If true, the component waste may be used to set up a
machine.

Default = false

MaxHeat ? double Maximum temperature the Component can resist (in
degree centigrade).

SheetPart ? rectangle Only useful when ComponentType = Block and when
SourceSheet is present. Part of the Sheet in
SurfaceContentsBox coordinates used in this
Component.

SourceSheet ? string Only required when ComponentType = Sheet or Block.
SheetName of the sheet used in this Component.

Transformation ? matrix Matrix describing the transformation of the orientation of
a component for the next process. This is needed to
convert the coordinate system of the component to the
coordinate system of the process. When this attribute is
not present, the identity matrix (1 0 0 1 0 0) is assumed.

Dimensions ? element The dimensions of the component. At minimum, the
three dimensions X, Y and Z are required. These
dimensions differ from the original size of the original
product. For example, the dimensions of a folded sheet
may not be equal to the dimensions of the sheet before it
was folded.

Disjointing ? element A stack of components can be processed using physical
separators. This is useful in operations such as feeding.

Dimensions
Name Data Type Description
X double Expansion in dimension X.

Y double Expansion in dimension Y.

Z double Expansion in dimension Z.

Chapter 7 Resources 233

7.2.20 Contact
Element describing a contact to a person or address.

Resource Properties
Resource class: Element
Resource referenced by: ApprovalParams, Company
Partition: -
Input of processes: -
Output of processes: -

Resource Structure
Name Data Type Description
ContactType NMTOKENS Classification of the contact. Possible values include:

Administrator – Person to contact for queries concerning
the execution of the job.

Accounting – Address of where to send to the bill.

Delivery – Delivery address for all products of this job.

Supplier – Address of a supplier of needed goods.

Customer – The end customer.

Owner – The owner of a resource.

Address ? element Element describing the address.

ComChannel * element Communication channels to the company, not to a specific
person.

Person ? element Name of the contact person.

7.2.21 ConventionalPrintingParams
This resource defines the attributes and elements of the ConventionalPrinting process. The specific
parameters of individual printer modules are modelled by using the standard partitioning methods. These
methods are described in section 3.8.2.

Resource Properties
Resource class: Parameter
Resource referenced by: -
Partition: Separation, Side, SheetName, SignatureName
Input of processes: ConventionalPrinting
Output of processes: -

Resource Structure
Name Data Type Description
DirectProof ? boolean If true, the proof is directly produced and subsequently

an approval may be given by a person such as the
customer, foreman, or floor manager shortly after the first
final-quality printed sheet is printed. The approval is not
required for setup, but it is required for the actual print

Moritz Schwarz
There are also sheet-fed presses that are web-fed! However bevor entering the press this web material is cut into sheets.

234 Chapter 7 Resources

run. If the ConventionalPrinting process is waiting
for a DirectProof, its Status is switched to stopped with
the StatusDetails = WaitForApproval.

Drying ? enumeration The way in which ink is dried after a print run. Possible
values are:

UV – Ultraviolet dryer

Heatset – Heatset dryer
IR – Infrared dryer
On – Use the device default drying unit.

Off – Default value.
FirstSurface ? enumeration Printing order of the surfaces. Possible values are:

Either – Default value. The printer may choose.

Front
Back

FountainSolution ? enumeration State of the fountain solution module in the printing units.
Possible values are:

On
Off
If not specified use the device default setting, which may
be either On or Off.

MediaLocation ? string Identifies the location of the Media. The value identifies
a physical location on the press, such as unwinder 1,
unwinder 2, and unwinder 3.

ModuleDrying ? enumeration The way in which ink is dried in individual modules.
Possible values are:

UV – Ultraviolet dryer

Heatset – Heatset dryer
IR – Infrared dryer
On – Use the device default drying unit.

Off – Default.

ModuleIndex ? IntegerRange
List

Zero-based list of print modules that are used. Defaults to
device default.

Powder ? double Quantity of powder (in g/m²).

PrintingType enumeration Type of printing machine. Possible values are:

SheetFed
WebFed
The principal difference between SheetFed and WebFed
is the shape of the paper each is equipped to accept.
Presses that exectute WebFed processes use substrates
that are continuous and cut after printing is
accomplished. Most newspapers are printed on web-fed
presses. SheetFed printing, on the other hand, accepts
pre-cut substrates.[MS37]

Chapter 7 Resources 235

SheetLay ? enumeration Lay of input media. Possible values are:

Left
Right
Center
Default is the device default.

Speed ? number Maximum print speed in sheets/hour (sheet fed) or
meters/hour (web fed). Defaults to device specific full
speed.

WorkStyle ? enumeration The direction in which to turn. Possible values are:

Simplex – No turning

WorkAndBack – This WorkStyle describes the printing
on both sides of the substrate with a different plate (set)
in the second run. After the first run the side lays are
altered but the front lays stay as they were. Lays can be
turned by hand or using a pile reverser. Two-plate sets
are necessary for WorkAndBack.
Perfecting – Many sheet-fed printing presses have
perfecting cylinder(s) build in. The leading edge of the
print sheet changes as the sheet is turned by the
perfecting cylinder, but the side lays remain unaltered. In
this regard, this WorkStyle is similar to
WorkAndTumble, but Perfecting is an inline operation
during the press run. Therefore, an additional plate (set)
is required during this press run.
WorkAndTurn – Refers to the turning of the first-run
sheet for subsequent perfecting. The front lays remain
unchanged but the side lays must be altered. The
alteration can be made by hand or using a pile turner.
The plate (set) stay(s) in the machine and, during each
run, half of the surface is imaged.
WorkAndTumble – The WorkAndTumble method is also
used for perfecting. The leading edge of the print sheet
changes as the sheet is turned, but the side lays remain
unaltered. Tumbling happens after the first press run and
the plate (set) is used again in the second press run,
imaging the other sheet surface.
WorkAndTwist – Done between two press runs. The
palette is twisted 180 degree before the second run is
performed so that the front lay and the side lay both
change. The surface to be imaged is the same at both
runs. Each run prints only part of the surface. The plate
(set) stay in the machine. This WorkStyle is used for
saving plate or film material. It is no longer a common
WorkStyle.

Ink ? element Kind of varnishing. Defines the varnish to be used for
coatings on printed sides. Coatings are applied after
printing all the colors. Other coating sequences must use
the partion mechanism of this parameter resource.
Selective varnishing has to use a separate separation for
the respective varnish.

Dr. Rainer Prosi
TBD RP find someone who knows what a cost center is.

236 Chapter 7 Resources

Note, the color inks are direct input resources of the
ConventionalPrinting process.

7.2.22 CostCenter
Defines a cost center.[RP38]

Resource Properties
Resource class: Element
Resource referenced by: Device, Employee
Partition: -
Input of processes: -
Output of processes: -

Resource Structure
Name Data Type Description
CostCenterID string Identification of the cost center

Name ? string Name of the cost center.

IsActive? boolean If multiple cost centers are specified, this defines the
active cost center. Default=true.

7.2.23 CutBlock
Defines a cut block on a sheet.

It is possible to define a block that contains a matrix of elements of equal size. In this scenario, the
intermediate cut dimension is calculated from the information about element size, block size and the
number of elements in both directions.

Each cut block has its own coordinate system, which is defined by the BlockTrf attribute.

Resource Properties
Resource class: Parameter
Resource referenced by: -
Partition: -
Input of processes: Cutting
Output of processes: Imposition

Resource Structure
Name Data Type Description
BlockElementSize ? XYPair Element dimension in X and Y direction.

BlockElementType ? enumeration Element type. Possible values are:

CutElement – Cutting element.

PunchElement – Punching element.

BlockName NMTOKEN Name of the block. Used for reference by the CutMark
resource

Chapter 7 Resources 237

resource.

BlockSize XYPair Size of the block.

BlockSubdivision ? XYPair Number of elements in X and Y direction.

BlockTrf matrix Block transformation matrix. Defines the position and
orientation of the block relative to the Component
coordinate system.

BlockType enumeration Block type. Possible values are:

CutBlock – Block to be cut.

SaveBlock – Protected block, cut only via outer contour.
TempBlock –Auxiliary block that is not taken into
account during cutting.

MarkBlock –Contains no elements, only marks.

7.2.24 CutMark
This resource, along with CutBlock, provides the means to position cut marks on the sheet. After
printing, these marks can be used to adapt the theoretical block positions (as specified in CutBlock) to the
real position of the corresponding blocks on the printed sheet.

Resource Properties
Resource class: Element
Resource referenced by: Surface
Partition: -
Input of processes: Cutting
Output of processes: Imposition

Resource Structure
Name Data Type Description
Blocks NMTOKENS Values of the BlockName attributes of the blocks

defined by the CutMark resource.

MarkType enumeration Mark type. Possible values are:

CrossCutMark
TopVerticalCutMark
BottomVerticalCutMark
LeftHorizontalCutMark
RightHorizontalCutMark
LowerLeftCutMark
UpperLeftCutMark
LowerRightCutMark
UpperRightCutMark

Position XYPair Position of the logical center of the cut mark in the
coordinates of the SurfaceContentsBox.

Please note that the logical center of the cut mark does

238 Chapter 7 Resources

not always directly specify the center of the visible cut
mark symbol.

Position of symbol

Centered at logical positionCrossCutMark

Symbol Name

Slightly above logical positionTopVerticalCutMark

BottomVerticalCutMark Slightly below logical position

Slightly to the left of logical position

RightHorizonalCutMark

LeftHorizonalCutMark

Slightly to the right of logical position

LowerLeftCutMark Corner at logical position

UpperLeftCutMark Corner at logical position

LowerRightCutMark Corner at logical position

Corner at logical positionUpperRightCutMark

Figure 7.7 Cut Mark Types

7.2.25 DBMergeParams
This resource specifies the parameters of the DBTemplateMerging process.

Resource Properties
Resource class: Parameter
Resource references: -
Resource inheritance: -
Partition -
Input of processes: DBTemplateMerging
Output of processes: -

Resource Structure
Name Data Type Description

Chapter 7 Resources 239

SplitDocuments ? integer Indicates how often to split documents to create a new file.
FileSpec ? element URL of the generated destination file. This is most often a

printable file type, such as PDF of PPML. If FileSpec is not
specified, DBMergeParams must be a Pipe resource.

7.2.26 DBRules
This resource specifies the rules that should be applied to convert a database record into a graphic element.
It is described by a text element with a human-readable description of the selection rules.
For example:

insert the “Age” field behind the birthday;
 if income>100,000 use Porsche.gif, else use bicycle.jpeg for image #2.

The internal representation of the mapping of database fields to graphic content within the document
template is implementation-dependent. It can vary from fully variable, multi-page, automated document
layout to simply inserting some line-feed characters between database records in an address field.
Therefore, DBRules is defined as a simple human-readable text element.

Resource Properties
Resource class: Parameter or Element
Resource references: -
Resource inheritance: -
Partition: -
Input of processes: DBDocTemplateLayout, Inserting, Collecting, Gathering
Output of processes: -

Resource Structure
Name Data Type Description
Comment + telem Human-readable description of the database rules that map

database fields to image or text content.

7.2.27 DBSchema
This resource specifies the formal structure of a database record, regardless of type. It is encoded as a text
element with a human-readable description of the database schema.

Resource Properties
Resource class: Parameter or Element
Resource references: -
Resource inheritance: -
Partition -
Input of processes: DBDocTemplateLayout, Verification
Output of processes: -

Resource Structure
Name Data Type Description
DBSchemaType enumeration Database type. Possible values are:

240 Chapter 7 Resources

CommaDelimited
SQL
XML

Comment + telem Human-readable description of the database schema.

7.2.28 DBSelection
This resource specifies a selection of records from a database.

Resource Properties
Resource class: Parameter or Element
Resource references: -
Resource inheritance: -
Partition -
Input of processes: DBTemplateMerging, Inserting, Gathering, Collecting, Verification
Output of processes: Verification

Resource Structure
Name Data Type Description
DataBase URL URL of the database

Records ? IntegerRangeList The indices of the database records.

Select ? string Database selection criteria in the native language of the
database, such as SQL.

7.2.29 DeliveryParams
Provides information needed by a Delivery process. A Delivery process consists of sending a quantity of
a product to a specific location at, in some cases, a required date and time.

Resource Properties
Resource class: Parameter
Resource referenced by: -
Partition: -
Input of processes: Delivery
Output of processes: -

Resource Structure
Name Data Type Description
Earliest ? timeInstant Specifies the earliest time after which the delivery may be made.

Method ? string Identifies a required delivery method, such as ExpressMail or
InterofficeMail.

Pickup ? boolean If true, the merchandise is picked up. If false, the merchandise
is delivered.

Default = false

Chapter 7 Resources 241

Required ? timeInstant Specifies the time by which the delivery must be made.

Company element Address and further information of the addressee.

Drop + element All locations where the product will be delivered.

Structure of DeliveryParams Sub-elements
Drop

Name Data Type Description
Earliest ? timeInstant Specified the earliest time after which the delivery may be

made.

Method ? string Identifies a required delivery method, such as ExpressMail or
InterofficeMail.

Pickup ? boolean If true, the merchandise is picked up. If false, the merchandise
is delivered.

Default = false

Required ? timeInstant Specifies the time by which the delivery must be made.

Company element Address and further information of the addressee.

Package * element A Drop may consist of multiple products, which are represented
by their respective Component resources. Each Package
describes an indivdual resource that is part of this Drop.

Package

Name Data Type Description
Amount ? integer Specifies the number of Components ordered. If Amount is

not specified, defaults to the total amount of the Component
that is referenced by rRef.

rRef IDREF Reference to the Component that this Package contains.

Unit ? string Unit of measurement for the Amount specified in
ComponentLink. Defaults to the value of Unit defined in the
Component resource linked by rRef.

Part * element Package may contain any partitioning or amount attributes
valid for a ResourceLink in a ResourceLinkPool.

7.2.30 DensityMeasuringField
This resource contains information about a density measuring field.

Resource Properties
Resource class: Element
Resource referenced by: ColorControlStrip, Surface
Partition: -
Input of processes: Any printing process
Output of processes: Imposition

242 Chapter 7 Resources

Resource Structure
Name Data Type Description
Center XYPair Position of the center of the density measuring field in the

coordinates of the SurfaceContentsBox. If this
measuring field is inside a ColorControlStrip, the
position is relative to the coordinates of that strip.

Density CMYK color Density value measured with filter.

Diameter double Diameter of measuring field.

DotGain double Percentage of dot gain.

Percentage double Film percentage or equivalent.

Screen string Description of the screen.

Separation string Reference to separation.

Setup ? string Description of measurement setup.

ToleranceCyan XYPair Upper and lower cyan tolerance (in density units).

ToleranceMagenta XYPair Upper and lower magenta tolerance (in density units).

ToleranceYellow XYPair Upper and lower yellow tolerance (in density units).

ToleranceBlack XYPair Upper and lower black tolerance (in density units).

ToleranceDotGain XYPair Upper and lower tolerance (in percentage).

7.2.31 Device
Information about a specific device. For more information, see section 3.6.1.3 Implementation Resources.

Resource Properties
Resource class: Implementation
Resource referenced by: -
Partition: -
Input of processes: -
Output of processes: -

Resource Structure
Name Data Type Description
DeviceFamily? string Manufacturer family type ID.

DeviceID string Name of the device.

DeviceType? string Manufacturer type ID, including a revision stamp.

CostCenter * element MIS cost center ID.

7.2.32 DigitalPrintingParams
This resource contains attributes and elements used in executing the DigitalPrinting process.

The PrintingType attribute in this resource defines two types of printing: SheetFed and WebFed. The
principal difference between them is the shape of the paper each is equipped to accept. Presses that
exectute WebFed processes use substrates that are continuous and cut after printing is accomplished. Most

Chapter 7 Resources 243

newspapers are printed on web-fed presses. SheetFed printing, on the other hand, accepts pre-cut
substrates.

Resource Properties
Resource class: Parameter
Resource referenced by: -
Partition: Separation, Side, SheetName, SignatureName
Input of processes: DigitalPrinting
Output of processes: -

Resource Structure
Name Data Type Description
PrintingType enumeration Type of printing machine. Possible values are:

SheetFed
WebFed

SheetLay ? enumeration Lay of input media. Possible values are:

Left
Right
Center
Default = The device-specific machine default

MediaSource ? element Describes the source and physical orientation of the
media to be used.

MediaSource
Name Data Type Description
Class ? string Product-specific classification of media, which may

influence rendering. For example, transparent or glossy
media may affect the selection of a color rendering method
or a post-rendering technique specific to the device.

LeadingEdge ? number Specifies the size, in points, of the edge of the media that
represents the scanline direction. If this attribute is absent,
the scanline direction is assumed to be along the x-axis of
the Dimension parameter for the Media.

ManualFeed ? boolean Indicates whether the media will be fed manually.

Position ? integer In a device that has numbered input sources, identifies
which source is to be used.

7.2.33 Disjointing
The Disjointing resource describes how individual components are separated from one another on a stack.

Resource Properties
Resource class: Element
Resource referenced by: Component, GatheringParams

244 Chapter 7 Resources

Partition: -
Input of processes: -
Output of processes: -

Resource Structure
Name Data Type Description
InsertSheet ? element Some kind of physical marker (such as a paper strip or a

yellow paper sheet) that separates the components.

Number ? integer Number of sheets that make up one component.

Offset ? XYPair Offset dimension in X- and Y-dimensions that separates
the components.

OffsetAmount ? integer The number of components that are shifted in
OffsetDirection simultaneously.

OffsetDirection ? enumeration Offset-shift action for the first component. Possible
values are:

left
right
straight
alternate

Overfold ? double Expansion of the overfold of a sheet. This attribute may
be needed for the Inserting process.

IdentificationField + element Marks that identify the range of sheets to be used in a
process. A scanner will scan the sheets and detect a
component boundary by scanning a mark, such as a
barcode, that matches the description in the
IdentificationField element.

7.2.34 DividingParams
This resource contains attributes and elements used in executing the Dividing process.

Resource Properties
Resource class: Parameter
Resource referenced by: -
Partition: -
Input of processes: Dividing
Output of processes: -

Resource Structure
Name Data Type Description
DivideDistance number Distance between the cross cuts.

Chapter 7 Resources 245

7.2.35 Employee
Information about a specific device or machine operator (see section 3.6.1.3 Implementation Resources).
Employee is also used to describe the contact person who is responsible for executing a node, as defined
in the NodeInfo field of a JDF node.

Resource Properties
Resource class: Implementation, Element
Resource referenced by: -
Partition: -
Input of processes: -
Output of processes: -

Resource Structure
Name Data Type Description
PersonalID ? string ID of the relevant MIS employee.

Shift ? string Defines the shift to which the employee belongs.
CostCenter ? element MIS cost center ID.

Person ? element Describes the employee. If no Person element is
specified, the Employee resource represents any
employee who fulfills the selection criteria.

7.2.36 EndSheetGluingParams
This resource describes the attributes and elements used in executing the EndSheetGluing process.

Resource Properties
Resource class: Parameter
Resource referenced by: -
Partition: -
Input of processes: EndSheetGluing
Output of processes: -

Resource Structure
Name Data Type Description
EndSheet (Front) element Information about the front-end sheet. The Side attribute

of this element must be Front.
EndSheet (Back) element Information about the back-end sheet. The Side attribute

of this element must be Back.

Structure of EndSheetGluingParams Elements

EndSheet
Name Data Type Description
Offset XYPair Offset of end sheet in X and Y direction.

246 Chapter 7 Resources

Side enumeration Location of the end sheet. Possible values are:

Front
Back

GlueLine element Description of the glue line.

y

x

back end sheet

binding
edge

X offset

front end sheet
Y offset

block

glue line
start position

glue line
working length

Figure 7.8 Parameters and coordinate system used for end-sheet gluing

The process coordinate system is defined as follows: The y-axis is aligned with the binding edge of the
book block. It increases from the registered edge to the edge opposite to the registered edge. The x-axis is
aligned with the registered edge. It increases from the binding edge to the edge opposite the binding edge
(i.e. the product front edge).

7.2.37 ExposedMedia
This resource represents a processed Media-based handling resource such as film, plate or paper proof. It
is also used as an input resource for the Scanning process.

Resource Properties
Resource class: Handling
Resource referenced by: -
Partition: Separation, Side, SheetName, SignatureName, TileID
Input of processes: FilmToPlateCopying, ConventionalPrinting, PreviewGeneration,

DigitalPrinting, IDPrinting, Scanning, Proofing
Output of processes: ImageSetting, FilmToPlateCopying, Proofing

Resource Structure
Name Data Type Description

Chapter 7 Resources 247

ColorType ? enumeration Possible values are:

Color
GreyScale
BW – Black and white.

OutputProfile ? URL ICC Profile of the output process for which this media
was exposed.

Polarity ? boolean False if the media contains a negative image.

ProofIntent ? enumeration This attribute is present if the ExposedMedia resource
describes a proof. Possible values are:

none – Not a proof or don’t know. the default.

halftone – the halftones are emulated.

contone – No halftones but exact color.

conceptual – Color does not match precisely.

PunchType ? string Name of the registration punch scheme. Possible values
include, but are not limited to:

Bacher
Stoesser
Defaults to no punch holes.

Resolution ? XYPair Resolution of the output.

Media element Describes media specifics such as size and type.

ScreeningParams ? element Used to describe the screening in case of rasterized media

7.2.38 FileSpec
Specification of a file or a set of files.

Resource Properties
Resource class: Element
Resource referenced by: DBMergeParams, LayoutElement, PDLResourceAlias, ScanParams
Partition: Separation
Input of processes: -
Output of processes: -

Name Data Type Description
Application ? string Creator application, such as Photoshop.

AppOS ? enumeration Operating system of the application that created the file.
Possible values are:

Unknown – Default value
Mac
Windows
Linux
Solaris

248 Chapter 7 Resources

IRIX
DG_UX
HP_UX

AppVersion ? string Version of the value of the Application attribute.
Compression ? enumeration Indicates how the file is compressed. Possible values are:

none – Default value. The file is not compressed.

Deflate – The file is compressed using ZIP public domain
compression (RFC 1951)

gzip – GNU zip compression technology (RFC 1952)

compress –UNIX compression (RFC 1977)

Disposition ? enumeration Indicates what the device should do with the file when the
process that uses this resource as an input resource
completes. Possible values are:

Unlink – The device should release the file.

Delete – The device should attempt to delete the file.

Retain – Default value. The device should do nothing
with the file.

FileFormat ? string A formatting string used with the Template attribute to
define a sequence of filenames in a batch process.
If FileName is not present, both FileFormat and
FileTemplate must be present.

For more information, see the text following this table.

FileName ? URL Location of the file. This value is ignored if the
referencing resource is a pipe.

FileTemplate ? string A template, used with FileFormat, to define a sequence
of filenames in a batch process.
If FileName is not present, both FileFormat and
FileTemplate must be present.

MimeType ? string Mime type of the file.

OSVersion ? string Version of the operating system.

FileAlias * element Defines a set of mappings between file names that may
occur in the document and URIs (which may refer to
external files or parts of a MIME message).

Structure of FileAlias Sub-element
Name Data Type Description
Alias string The filename which is expected to occur in the file.

Disposition enumeration Indicates what the device should do with the file
referenced by this alias when the process that uses this
resource as an input resource completes. Possible values
are:

Unlink – The device should release the file.

Delete – The device should attempt to delete the file.

Chapter 7 Resources 249

Retain – The device should do nothing with the file.
MimeType ? string Mime type of the file.

URI uri The uri which identifies the file the alias refers to.

Usage of Format and Template
The function defined when using the attributes FileFormat and FileTemplate is drawn from the same root
as the standard C print function, and therefore overtly resembles the model of that function. FileFormat is
the first argument and FileTemplate is a comma-separated list of the additional arguments. FileTemplate
may contain the following operators : +,-,*,/,%,(,) which are evaluated using standard C-operator
precedence and the variables defined in the following table:

Table 7.3 Predefined variables used in FileTemplate

Name Description
i Integer iterator over all files produced by this process. 0-based numbering.

r Integer iterator over all Runs in an input RunList.
ri Integer iterator over all files in an input Run of a RunList.
sep Separation as defined in the separation element of a partitioned resource.

surf Surface string, “Front” or “Back”

SheetName SheetName string of a partitioned resource.

SignatureName SignatureName string of a partitioned resource.

TileX X coordinate of a Tile

TileY Y coordinate of a Tile

PartVersion PartVesion string of a partitioned resource.

jobPartID JobPartID string

jobID Job ID string

Time current Time in ISO format.

Date current Date in ISO format.

CustomerID CustomerID

Example:
<FileSpec FileFormat = “file://here/next/%s/%4.i/m%4.i.pdf”
FileTemplate = “JobID,i/100,i%100”/>

with JobID = “j001” and a RunList defining 2023 created files will iterate all created files and place them
into:

“file://here/next/j001/0000/m0000.pdf”
…
“file://here/next/j001/0002/m0023.pdf”

250 Chapter 7 Resources

7.2.39 FoldingParams
This resource describes the folding parameters, including the sequence of folding steps. It is also possible
to execute the predefined steps of the folding catalog. The following six applications of a folding device
are possible:

• folding
• cutting
• creasing
• gluing
• perforating
• thread sealing

The cutting information contained in this section is intended only for the cutting procedures within the
folding equipment, not for cut blocks. Although additional cutting information can be defined using cut
blocks, this resource does not apply to cut-block specification.

At the beginning of a folding procedure definition it is necessary to specify the size of the input sheet in the
FoldSheetIn attribute. If the specified size does not match the size of the X and Y dimensions of the input
component, all coordinates of the folding procedure are scaled accordingly. This allows for the
specification of a folding procedure that can be used with different sizes.

After each folding or cutting step of a folding procedure, the origin of the coordinate system is moved to
the lower left corner of the intermediate folding product.

The specification of reference edges (Front, Rear, Left and Right) for the description of an operation (such
as the positioning of a tool) is done by means of determined names. These names are case-sensitive; they
must be written exactly as shown in figure7.9, below.

Sheet lay

 Front Rear

Right

Left

Figure 7.9 Names of the reference edges of a sheet in the FoldingParams resource

Resource Properties
Resource class: Parameter
Resource referenced by: -
Partition: -
Input of processes: Folding
Output of processes: Imposition

Resource Structure
Name Data Type Description
DescriptionType enumeration How the folding operations are described. Possible

al es are:

Chapter 7 Resources 251

values are:
FoldProc
FoldCatalog

FoldCatalog ? string Description of the type of fold according to the folding
catalog.

Required when DescriptionType = FoldCatalog.
FoldSheetIn ? XYPair Input sheet format.

Required when DescriptionType = FoldProc.

SheetLay enumeration Lay of input media. Possible values are:

Left
Right

FoldOperation* element Steps of folding operation in the sequence in which the
steps should be carried out.

Required when DescriptionType = FoldProc.

252 Chapter 7 Resources

#2/3 $1/3 +#1/2

12

3

F12-10 3x2

#1/3 +#1/2+ #1/3

1 3

2

F12-11 3x2

#1/2 +#2/3 $1/3

1

2

3

F12-12 2x3

#1/2 +#1/3 #1/3

1

2

3

F12-13 2x3

#1/2 +#1/3 $1/3

1

2

3

F12-14 2x3

#1/7 $1/7 #1/7
$1/7 #1/7 $1/7

1 2 3 4 5 6

F14-1 7x1

#1/2 $1/4 #1/8

1 2 3

F16-1 8x1

#1/2 $1/4 $1/8

1 2 3

F16-2 8x1

#1/2 #1/4 $1/8

1 2 3

F16-3 8x1

#1/2 #1/4 #1/8

1 2 3

F16-4 8x1

$1/8 #1/8 $1/8 #1/8
$1/8 #1/8 $1/8

1 2 3 4 5 6 7
F16-5 8x1

#1/2 +#1/2+ #1/4

2

1 3
F16-6 4x2

#1/2+ #1/2+ $1/4

1

2

3
F16-7 4x2

#1/2 +$1/2 +$1/4

1

2

3

F16-8 4x2

#1/2 $1/4 +#1/2

1 2

3

F16-9 4x2

#1/2 #1/4+ #1/2

1 2

3

F16-10 4x2

#1/4 $1/4 #1/4 +#1/2

1 2 3

4

F16-11 4x2

#1/4 #1/4 #1/4 +#1/2

1 2 3

4

F16-12 4x2

#1/2 +#1/2 $1/4

1

2
3

F16-13 2x4

#1/9 $1/9 #1/9 $1/9
#1/9 $1/9 #1/9 $1/9

1 2 3 4 5 6 7 8

F18-1 9x1

#1/2

F4-1 2x1

1

#1/3 $1/3

1 2

F6-1 3x1

$1/3 #1/3

1 2

F6-2 3x1

#1/4 #1/2

1 2

F6-3 3x1

2

#1/3 #1/3

1

F6-4 3x1

2

#1/2 #1/4

1 2

F8-1 4x1

#1/2 $1/4

1 2

F8-2 4x1

#1/4 $1/4 #1/4

1 2 3

F8-3 4x1

#1/4 #1/2 $1/4

1 23

F8-4 4x1

#1/4 #1/4 #1/4

1 2 3

F8-5 4x1

#3/4 $1/4 $1/4

132

F8-6 4x1

#1/5 $1/5 #1/5 $1/5

1 3 42

F10-1 5x1

#4/5 $1/5 $1/5 $1/5

13 42

F10-2 5x1

#2/5 $2/5 #1/5

1 23

F10-3 5x1

#1/3 $1/3 #1/6

1 32

F12-1 6x1

#1/3 #1/3 $1/6

1 2 3

F12-2 6x1

#1/2 $1/6 #1/6

F12-3 6x1
1 2 3

#1/2 $1/6 $1/6

1 2 3

F12-4 6x1

#1/2 $1/3 #1/6

1 23

F12-5 6x1

#1/6 $1/6 #1/6 $1/6 #1/6

1 2 3 4 5

F12-6 6x1

#1/3 $1/3 +#1/2

1 2

3

 F12-7 3x2

#2/3 #1/3 +#1/2

12

3

 F12-8 3x2

#1/3 #1/3 +#1/2

1 2

3

F12-9 3x2

#2/3 $1/3

12

F6-5 3x1

#1/2 +#1/2

1

2

F8-7 2x2

Figure 7.10 FoldCatalog part 1

Chapter 7 Resources 253

#1/2 +#1/2 +#1/4 +$1/4

1

2

3

4

F32-6 4x4

#1/4 $1/4 #1/4 +#1/2 $1/4

1 2 3

4
5

 F32-7 4x4

#1/2 $1/4 +#1/2 $1/4

1 2

3
4

 F32-8 4x4

#1/2 +#1/2 $1/4+ #1/4

1

2
3

4

F32-9 4x4

#1/3 $1/3 #1/9 $1/9
+ #1/2

1 2 3 4

5

F36-1 9x2

#1/3 $1/3+ #1/3 $1/3
+ #1/6

1 2

3
4

55

F36-2 6x3

#1/5 $1/5 #1/5 $1/5
+ #1/2 $1/4

1 2 3 4

5
6

F40-1 5x4

#1/3 $1/3+ #1/4 $1/4
#1/4 +#1/6

1 2

3
4
5

6

F48-1 6x4

#1/4 $1/4 #1/4
+ #1/3 $1/3 #1/6

1 2 3

4
5
6

F48-2 4x6

#1/2 +#1/4 $1/4 #1/4
+ #1/4 $1/8

1

3
4

5

2

6

F64-1 8x4

#1/4 #1/4 #1/4
+#1/4 #1/4 #1/4 +#1/8

4
5
6

1 2 3 7

F64-2 8x4

#2/3 $1/3 #1/9 $1/9

 F18-2 9x1
12 3 4

#1/3 $1/3 #2/9 $1/9

1 2 34
 F18-3 9x1

#1/3 $1/3 #1/9 $1/9

1 2 3 4
 F18-4 9x1

#1/3 $1/3 +#1/3 $1/3

1 2

3

4

 F18-5 3x3

#1/3 $1/3 +#2/3 $1/3

1 2

3
4

 F18-6 3x3

#1/3 #1/3+ $1/3

1 2

3
4

 F18-7 3x3

#1/3 #1/3+ #2/3 $1/3

1 2

3

4

 F18-8 3x3

#1/5 $1/5 #1/5 $1/5 +#1/2

1 2 3 4

5

 F20-2 5x2

#1/3 $1/3+ #1/2 +#1/6

1 2

3

4

 F24-1 6x2

#1/3 #1/3+ #1/2+ #1/6

1 2

3

4

 F24-2 6x2

#1/3 $1/3 #1/6 +#1/2

 F24-3 6x2
1 2 3

4

#1/3 $1/3 $1/6 +#1/2

1 2 3

4

 F24-4 6x2

#1/3 #1/3 $1/6 +#1/2

1 2 3

4

 F24-5 6x2

#1/6 $1/6 #1/6 $1/6 #1/6
+ #1/2

 F24-6 6x2
1 2 3 4 5

6

#1/3 +#1/2 +#1/3 $1/6

1

2

3 4

F24-7 6x2

#1/3 $1/3 +#1/2 $1/4

1 2

3
4

 F24-8 3x4

#2/3 #1/3 +#1/2 $1/4

12

3
4

 F24-9 3x4

#1/3 #1/3+ #1/2 $1/4

 F24-10 3x4

1 2

3
4

#1/7 $1/7 #1/7 $1/7
#1/7 $1/7+ #1/2

1 2 3 4 5 6

7

 F28-1 7x2

#1/2 $1/4 #1/8 $1/16

1 2 3 4

F32-1 16x1

#1/2 $1/4 +#1/2+ #1/8

1 2

3

4

 F32-2 8x2

#1/2 $1/4+ #1/2+ $1/8

1 2

3

4

F32-3 8x2

#1/2+ #1/2+ #1/4+ #1/4

1

2

3

4

F32-4 4x4

#1/2+ #1/2+ $1/4+ $1/4

1

2

3

4

F32-5 4x4

#2/5 $2/5 #1/5+ #1/2

 F20-1 5x2

1 23

4

Folds in numeric
order

Legend:

Fold down

1, 2, 3...

Fold up

Finished format
folded sheet

lay
green: open sheet length
red : open sheet width

Example: F32-3 8x2

- F32-3: Signature with 32 pages
- 8x2 : Split: 8 sheet parts lengthwise 2 sheet parts cross
- # 1/2: Fold up with 1/2 of the open sheet format length
- $ 1/4: Fold down with 1/4 of the open sheet format length
- + : Fold direction change: 90˚
- # 1/2: Fold up with 1/2 of the open sheet format
- + : Fold direction change: 90˚
- $ 1/8: Fold down with 1/8 of the open sheet format length

#1/3

Figure 7.11 FoldCatalog part 2

Structure of FoldingParams Elements

FoldOperation

254 Chapter 7 Resources

Resource class: Abstract element

FoldOperation describes the operations that can be executed by the various modules of a folding machine.
The sequence is relevant.

FoldOperation Description
Fold Make one straight fold of a component.

Cut Make one cut

Crease Make one crease

Glue Add a glue line

Perforate Perforating the Component
ThreadSeal Perform a thread sealing operation

Fold
Resource class: FoldOperation

Name Data Type Description
From enumeration Edge from which the page is folded. Possible values are:

Front
Left

To enumeration Direction in which it is folded. Possible values are:

Up – upwards

Down – downwards

Travel double Distance of the reference edge relative to From

Cut
Resource class: FoldOperation

Name Data Type Description
StartPosition XYPair Starting position of the tool.

WorkingPath XYPair Relative working path of the tool. Since the tools can
only work parallel to the edges, one coordinate must be
zero.

WorkingDirection enumeration Direction from which the tool is working. Possible
values are:

Top – from above

Bottom – from below

Crease
Resource class: FoldOperation

Name Data Type Description
StartPosition XYPair Starting position of the tool.

Chapter 7 Resources 255

WorkingPath XYPair Relative working path of the tool. Since the tools can
only work parallel to the edges, one coordinate must be
zero.

WorkingDirection enumeration Direction from which the tool is working. Possible
values are:

Top –from above

Bottom –from below

Glue
Resource class: FoldOperation

Name Data Type Description
WorkingDirection enumeration Direction from which the tool is working. Possible

values are:

Top –from above

Bottom –from below

GlueLine element Description of the glue line.

Perforate
Resource class: FoldOperation

Name Data Type Description
StartPosition XYPair Starting position of the tool.

WorkingPath XYPair Relative working path of the tool. Since the tools can
only work parallel to the edges, one coordinate must be
zero.

WorkingDirection enumeration Direction from which the tool is working. Possible
values are:

Top –from above

Bottom –from below

ThreadSeal
Resource class: FoldOperation

Name Data Type Description
ThreadMaterial ? enumeration Thread material. Possible values are:

Cotton
Nylon
Polyester

ThreadPositions NumberList Array containing the Y-coordinate of the center positions
of the thread.

ThreadLength double Length of one thread.

ThreadStitchWidth double Width of one stitch.

256 Chapter 7 Resources

SealingTemperature ? integer Temperature needed for sealing thread and sheets
together (in degree centigrade).

7.2.40 FontParams
This resource describes how fonts shall be handled when converting PostScript files to PDF.

Resource Properties
Resource class: Parameter
Resource referenced by: -
Partition: -
Input of processes: PSToPDFConversion
Output of processes: -

Resource Structure
Name Data Type Description
AlwaysEmbed ? NMTOKENS One or more names of fonts that are always to be

embedded in the PDF file. Each name must be the
PostScript language name of the font. An entry that
occurs in both the AlwaysEmbed and
NeverEmbed lists constitutes an error.

CannotEmbedFontPolicy ? enumeration Determines what occurs when a font cannot be
embedded. Possible values are:

Error – Log an error and abort the process if any font
can not be found or embedded.

Warning – Warn and continue if any font cannot be
found or embedded.

OK – Continue without warning or error if any font
can not be found or embedded.

EmbedAllFonts ? boolean If true, specifies that all fonts, except those in the
NeverEmbed list, are to be embedded in the PDF
file.

EmbedFontPolicy ? enumeration Determines what occurs when a font cannot be
embedded. Possible values are:

Error –Abort the process and record an error (in an
Audit record or via a message) if any font can not be
found or embedded.

Warning – Continue the process but record a
warning record an error (in an Audit record or via a
message) if any font cannot be found or embedded.

OK – Continue without warning or error if any font
can not be found or embedded.

MaxSubsetPct ? integer The maximum percentage of glyphs in a font that can
be used before the entire font is embedded instead of
a subset. This value is only used if SubsetFonts =
true.

Chapter 7 Resources 257

NeverEmbed ? NMTOKENS One or more names of fonts that are never to be
embedded in the PDF file. Each name must be the
PostScript language name of the font. An entry that
occurs in both the AlwaysEmbed and
NeverEmbed lists constitutes an error.

SubsetFonts? boolean If true, font subsetting is enabled. If false, it is not.
Font subsetting embeds only those glyphs that are
used, instead of the entire font. This reduces the size
of a PDF file that contains embedded fonts. If font
subsetting is enabled, the decision whether to embed
the entire font or a subset is determined by number
of glyphs in the font that are used, and the value of
MaxSubsetPct.
Note: Embedded instances of multiple master fonts
are always subsetted, regardless of the setting of
SubsetFonts. The AlwaysEmbed and
NeverEmbed fonts lists are restored to their default
values between each job.

7.2.41 FontPolicy
This resource defines the policies that devices must follow when font errors occur while PDL files are
being processed. When fonts are referenced by PDL files but are not provided, devices may provide one of
the following two fallback behaviors:

1. The device may provide a standard default font which is substituted whenever a font cannot be
found.

2. The device may provide an emulation of the missing font.

If neither fallback behavior is requested (i.e., both UseDefaultFont and UseFontEmulation are false),
then the job shall fail if a referenced font is not provided.

FontPolicy allows jobs to specify whether or not either of these fallback behaviors should be employed
when missing fonts occur.

Resource Properties
Resource class: Parameter
Resource referenced by: -
Partition: -
Input of processes: Interpreting, PDFToPSConversion
Output of processes: -

Resource Structure
Name Data Type Description
PreferredFont NMTOKEN The name of a font to be used as the default font for this

job. It is not an error if the device cannot use the specified
font as its default font.

UseDefaultFont boolean If true, the device shall resort to a default font if a font
cannot be found. This is the normal behavior of the
PostScript interpreter, which defaults to courier when a

258 Chapter 7 Resources

font cannot be found.

UseFontEmulation boolean If true, the device shall emulate a required font if a font
cannot be found.

7.2.42 GatheringParams
This resource contains the attributes of the Gathering process.

direction of travel

gathering channel

target or
operation
coordinate
system

source or
component
coordinate
system

x

y

x

y

Figure 7.12 Coordinate system used for gathering

Resource Properties
Resource class: Parameter
Resource referenced by: -
Input of processes: Gathering
Output of processes: -

Resource Structure
Name Data Type Description
Disjointing ? element Description of the separation properties between

individual components on a gathered pile.

7.2.43 GlueLine
This resource provides the information to determine where and how to apply glue.

Chapter 7 Resources 259

Resource Properties
Resource class: Element
Resource referenced by: AdhesiveBindingParams, EndSheetGluingParams, FoldingParams,

InsertingParams, ThreadSewingParams
Partition: -
Input of processes: -
Output of processes: -

Resource Structure
Name Data Type Description
StartPosition XYPair Start position of glue line. The start position is given in

the coordinate system of the mother sheet.

WorkingPath XYPair Relative working path of the gluing tool.

GlueType ? enumeration Glue type. Possible values are:

ColdGlue
Hotmelt
PUR – Polyurethane

GlueBrand ? string Glue brand.

GluingPattern ? XYPair Glue line pattern defined by the length of a glue line
segment (X element) and glue line gap (Y element). A
solid line is expressed by the pattern (1 0).

GlueLineWidth ? double Width of the glue line.

MeltingTemperature ? integer Required temperature for melting the glue (in degrees
centigrade).

Use only when GlueType = Hotmelt.

7.2.44 HoleMakingParams
This resource specifies where to make a hole of what shape in components. This information is used by the
HoleMaking process.

Resource Properties
Resource class: Parameter
Resource referenced by: -
Partition: -
Input of processes: HoleMaking
Output of processes: -

Resource Structure
Name Data Type Description
Hole * element Array of all Hole elements.

Structure of HoleMakingParams Elements

260 Chapter 7 Resources

Hole
Name Data Type Description
Shape enumeration Shape of the hole. Possible values are:

round

rectangular

Center XYPair Position of the center of the hole relative to the
Component coordinate system. For more information,
see section 6.5.2.

Extent XYPair Size of the hole in pt. If Shape is round, only the first
entry of Extent is evaluated and defines the hole
diameter.

7.2.45 IdentificationField
This resource contains information about a mark on a document, such as a bar code, used for OCR-based
verification purposes or document separation.

Resource Properties
Resource class: Element
Resource referenced by: Disjointing, Sheet, Surface
Partition: -
Input of processes: Verification, Inserting, Collecting, Gathering
Output of processes: Imposition

Resource Structure
Name Data Type Description
BoundingBox ? rectangle Box that provides the boundaries in the coordinate system

of the mark that indicates where the component is to be
placed. If no BoundingBox is defined, the complete
visible surface must be scanned for an appropriate bar
code.

Encoding enumeration Encoding of the information. Possible values are:

ASCII – Plain-text font.

BarCode1D – One-dimensional barcode.

BarCode2D – Two-dimensional barcode.

EncodingDetails NMTOKEN Details about the encoding type. An example is the
barcode scheme. Possible values are:

Code39
Interleave25
Plessey
EAN

Format ? string Regular expression4 that defines the format of the
expression, such as the number of digits, alphanumeric,

4 This is a regular expression as in UNIX grep.

Chapter 7 Resources 261

or numeric. Note that this field may also be used define
constant fields, such as the end of document markers.

Default is that any expression is valid (Format = “*”).

Orientation ? matrix Orientation of the contents within the field. The
coordinate system is defined in the system of the sheet or
component where the IdentificationField resides.

Default = unit matrix.

Position enumeration Position with respect to the instance document to which
the IdentificationField resource refers. Possible values
are:

header – Sheet before the document.

trailer – Sheet after the document.

page – A page of the document.

Page ? integer If Position = page, this refers to the page where the
IdentificationField can be found. Negative values
denote an offset relative to the last page in a stack of
pages.

Purpose enumeration Purpose defines the usage of the field. Possible values
are:

verification – used for verification of documents.

separation – used to separate documents.

7.2.46 IDPrintingParams
This resource contains the parameters needed to control the IDPrinting process.

Resource Properties
Resource class: Parameter
Resource referenced by: -
Partition: -
Input of processes: IDPrinting
Output of processes: -

Resource Structure

Name Data Type Description
AttributesNaturalLang language Language selected for communicating attributes.

CoverUsage ? enumeration Specifies whether covers are to be used for each copy of
the whole job or for each copy of an instance document.

Job – The covers are for the whole job.

Document – The covers are for each instance document
within the job.

Default = Job

IDPAttributeFidelity boolean Indicates whether or not the device must reject the job if
there are attribute values or elements that it does not
support.

262 Chapter 7 Resources

IDPVersion number A number indicating the version of the IDP protocol to use
when communicating to IDP devices.

OutputBin enumeration Specifies the bin to which the finished document should
be output. Possible values are:

Top – The bin that, when facing the device, can best be
identified as ‘top’.

Middle – The bin that, when facing the device, can best be
identified as ‘middle’.

Bottom – The bin that, when facing the device, can best be
identified as ‘bottom’.

Side – The bin that, when facing the device, can best be
identified as ‘side’.

Left – The bin that, when facing the device, can best be
identified as ‘left’.

Right – The bin that, when facing the device, can best be
identified as ‘right’.

Center – The bin that, when facing the device, can best be
identified as ‘center’.

Rear – The bin that, when facing the device, can best be
identified as ‘rear’.

FaceUp – The bin that can best be identified as ‘face up’
with respect to the device.

FaceDown –The bin that can best be identified as ‘face
down’ with respect to the device.

LargeCapacity – The bin that can best be identified as the
‘large capacity’ bin (in terms of the number of sheets)
with respect to the device.

FitMedia – Requests the device to select a bin based on
the size of the media.

PageDelivery enumeration Indicates how pages are to be delivered to the output bin
or finisher. Possible values are:

same-order-face-up – Order as defined by the RunList,
with the ‘front’ sides of the media up.

same-order-face-down – Order as defined by the RunList,
with the ‘front’ sides of the media up.

reverse-order-face-up – Order reversed, as defined by the
RunList, with the ‘front’ sides of the media up.

reverse-order-face-down – Order reversed, as defined by
the RunList, with the ‘front’ sides of the media down.

system-specified – Order and face-up/face-down as
defined by the system.

Default is system-specified.

PageDelivery enumeration Indicates how pages are to be delivered to the output bin
or finisher. Possible values are:

same-order-face-up

Chapter 7 Resources 263

same-order-face-down
reverse-order-face-up
reverse-order-face-down
system-specified

SheetCollate boolean Determines whether the sequencing of the pages in the
output of the job.

If true, pages for each copy of the document are
sequenced together, followed by the pages for the next
copy.

If false, all copies of the first page are sequenced,
followed by the second and subsequent pages.

SheetCollate describes the order of the final pages, but
does not prescribe the order in which they are produced.

Cover * element 0, 1 or 2 Cover elements.

IDPFinishing * element These elements provide the details of how media should
be finished.

IDPLayout ? element This element provides the details of how page contents
shall be imaged onto media.

IDPMediaIntent element An IDPMediaIntent element. This element describes the
media to be used for the job. This element is ignored if a
Media resource is present and can be honored for the
IDPrinting process.

Structure of the Cover Sub-element
This element describes the cover requested for the job. Covers may be applied to the whole job, or to each
instance document in the job. Note that front and back covers may be specified.

Name Data Type Description
CoverType ? enumeration Specifies whether this Cover element specifies the front

or back cover.

Front – The front cover.

Back – The back cover.

Default = Front.
MediaName ? NMTOKEN A name that identifies the media to the device. Ignored if

Media is present.

IDPMediaIntent element An IDPMediaIntent element. This element describes the
media to be used for the job. This element is ignored if a
Media resource is present and can be honored for the
IDPrinting process.

Media ? element A Media resource which identifies the media to be used
for the cover. If Media is specified, MediaName is
ignored.

Structure of abstract IDPFinishing Element

264 Chapter 7 Resources

IDPFinishing elements describe finishing operations that should be applied to sets of pages that are output
by the IDPrinting process. Operation-specific elements are derived from the abstract definition.

Additional derived elements are expected to be defined over time.

Also, more detail will be added to the currently defined elements.

Name Data Type Description
Pages ? IntegerRange-

List
Identifies a set of pages in the RunList for the process
that this finishing operation should be applied to.

If this attribute is absent, the operation shall be applied to
all pages

Structure of the IDPLayout Sub-element
This element provides details describing how page contents are to be imaged onto media.

Name Data Type Description
Border number A real number that indicates the width of a border which

will be drawn around the page images on the media.

Default = 0, meaning that no border will be drawn.

Duplex enumeration Indicates how pages should be imposed onto sides of the
medium. Possible values are:

OneSided – Page contents will only be imaged on one side
of the media.

LongEdge – Impose consecutive pages upon the front and
back sides of media sheets so that the orientation of the
pages on each side is appropriate for binding along the
long edge. Equivalent to ‘work-and-turn’.

ShortEdge – Impose consecutive pages upon the front and
back sides of media sheets so that the orientation of the
pages on each side is appropriate for binding along the
short edge. Equivalent to ‘work-and-tumble’.

ForceFrontSide NumberRange-
List

A set of numbers which identify a set of pages in the
RunList that should always be imaged on the front side
of a piece of media.

LeftToRight boolean Indicates whether page images should be imaged along the
major axis from left to right.

MajorAxis enumeration Indicates which axis shall be treated as the major axis for
Number-Up printing. Possible values are:

xFirst – Treat the edge of the media that matches the first
entry in the MediaSize pair as the major axis.

yFirst – Treat the edge of the media that matches the
second entry in the MediaSize pair as the major axis.

NumberUp XYPair The number of pages to impose onto a single side of
media. The first number specifies the number of page
images for each row along the major axis as defined by the
MajorAxis attribute. The second number specifies the
number of page images for each column across the major

Chapter 7 Resources 265

axis as defined by the MajorAxis attribute.

Orientation enmeration Describes the desired orientation ofr printed pages of the
job. Possible values are:

Portrait – The content will be imaged across the short
edge of the medium

Landscape – The content will be imaged across the long
edge of the medium. Landscape is defined to be a rotation
of the page contents to be imaged by +90 degrees (i.e.,
anti-clockwise) with respect to the medium.

ReverseLandscape – The content will be imaged across
the long edge of the medium. Landscape is defined to be a
rotation of the page contents to be imaged by -90 degrees
(i.e., clockwise) with respect to the medium.

ReversePortrait – The content will be imaged across the
short edge of the medium. Landscape is defined to be a
rotation of the page contents to be imaged by +180
degrees anti-clockwise with respect to the medium.

Rotate number A number of degrees which the page contents are to be
rotated prior to being imaged onto page contents. A
positive value is taken to mean an counter-clockwise
rotation.

TemplateName NMTOKEN The name of an imposition template that the device is
expected to recognize. If present, all other attributes in
this element are ignored.

TopToBottom boolean Indicates whether page images should be imaged across
the major axis from top to bottom.

Structure of the IDPMediaIntent Sub-element
This element provides describing the intended media for the job. This element is used as an alternative to
the Media resource which may be provided for the IDPrinting process or within IDPOverride sub-
elements. It is ignored if the Media resource is present and can be fulfilled.

Name Data Type Description
MediaHoles integer The number of pre-drilled holes the media should have.

MediaLabel NMTOKEN The label characteristics of the media. Possible values
include:

none – Not labeled stock.

standard – The site-defined standard labeled stock.

MediaTabs enumeration Indicates whether the media should have tabs. Possible
values are:

none – No tabs.

pre-cut – Extend only partially along the edge.

full-cut – Extend the entire length of the edge.

MediaIntent element A MediaIntent resource which specifies the general
characteristics of the media.

266 Chapter 7 Resources

Structure of the IDPOverride Sub-element
IDPOverride elements describe overrides to the controls specified for the whole process in the
IDPrintingParams resource.

Overrides may apply to a set of input pages or documents, or to a set of output surfaces, sheets of media, or
to instance doucments in a personalized printing job. Note that if more than one override refers to the same
content, the lowest level override takes precedence. That is, page overrides supercede document overrides,
and Surface overrides supercede Sheet overrides. If both input and output overrides are specified for the
same content, the output overrides take precedence.

Name Data Type Description
Copies ? integer This value indicates the number of documents (when

OverrideScope is either InputDocs or OutputDocs) or
pages (when OverrideScope is InputPages) to include in
each copy of the job.

Copies is ignored when OverrideScope is OuputSheets
or OutputSurfaces.

Docs ? IntegerRange-
List

Only meaningful if OverrideScope is InputDocs or
OutputDocs. Identifies a set of documents to which the
overrides apply.

IDPAttributeFidelity boolean Indicates whether or not the device must reject the job if
there are attribute values or elements that it does not
support for the scope of this override.

OverrideScope enumeration Indicates how the overrides shall be applied. Possible
values are:

InputDocs – The overrides are to be applied to a set of
input pages in the RunList.

InputPages – The overrides are to be applied to a set of
input pages in the RunList.

OutputSheets – The overrides are to be applied to a set of
sheets of physical media to be produced.

OutputSurfaces – The overrides are to be applied to a set
of surfaces of physical media to be produced.[BW39]

OutputDocs – The overrides are to be applied to the set of
pages which comprise the output documents to be
produced. Note that these are instance documents in a
personalized printing job.

PageDelivery enumeration Indicates how paages for the scope of this override are to
be delivered to the output bin or finisher. Possible values
are:

same-order-face-up – Order as defined by the RunList,
with the ‘front’ sides of the media up.

same-order-face-down – Order as defined by the RunList,
with the ‘front’ sides of the media up.

reverse-order-face-up – Order reversed, as defined by the
RunList, with the ‘front’ sides of the media up.

reverse-order-face-down – Order reversed, as defined by
the RunList, with the ‘front’ sides of the media down.

system-specified – Order and face-up/face-down as

Bill Wyman
Note that these values are provided to support the ability to specify a set of overrides for output media. Not used by IPP devices.

Chapter 7 Resources 267

defined by the system.

Default is system-specified.

Pages ? IntegerRange-
List

Only meaningful if OverrideScope is InputPages,
OutputSheets or OutputSurfaces. Identifies a set of pages
in the input RunList or a set of sheets or surfaces of
finished media to which the overrides apply.

SheetCollate boolean Determines whether the sequencing of the pages in the
output of the job.

If true, pages for each copy of the document are
sequenced together, followed by the pages for the next
copy.

If false, all copies of the first page are sequenced,
followed by the second and subsequent pages.

SheetCollate describes the order of the final pages, but
does not prescribe the order in which they are produced.

Cover * element 0, 1 or 2 Cover elements.

Note that these cover elements, by definition, are to be
used for instance documents. It is an error to provide
Cover elements in the DocumentOverrides element
when CoverUsage in the IDPrintingParams is Job.

IDPFinishing * element These elements provide the details of how media within
the scope of this override should be finished.

IDPLayout ? element This element provides the details of how page contents
within the scope of this override shall be imaged onto
media.

IDPMediaIntent element An IDPMediaIntent element. This element describes the
media to be used for the for the scope of this override.
This element is ignored if a Media resource is present and
can be honored for this IDPOverride element.

Media element A Media resource which specifies the media to be used
for the scope of this override.

Structure of Stitching Sub-element
This element describes the stitching requested for a set of pages in the document.

Name Data Type Description
StitchingLocations ? IntegerRange-

List
A list of absolute offsets along the Stitching Axis at which
a stitch MUST occur. MUST be in increasing values.
Units are millimeters.

StitchingOffset ? integer The perpendicular distance of the stitching axis from the
stitching reference edge, in units of one hundredth of a
millimeter (1/2540th of an inch).

StitchingPosition ? enumeration Specifies the location for stitching. All locations are
interpreted as if the document were a portrait document.
Ignored if StitchingOffset and StitchingPostions are
present. Possible values are:

None – The document is not to be stitched.

268 Chapter 7 Resources

TopLeft – Bind the document with one or more staples in
the top left corner.

BottomLeft – Bind the document with one or more staples
in the Bottom left corner.

TopRight – Bind the document with one or more staples in
the top right corner.

BottomRight – Bind the document with one or more
staples in the bottom right corner.

LeftEdge – Bind the document with one or more staples
across the left edge.

TopEdge – Bind the document with one or more staples
across the top edge.

RightEdge – Bind the document with one or more staples
across the right edge.

BottomEdge – Bind the document with one or more
staples across the bottom edge.

DualLeftEdge – Bind the document with two staples
across the left edge.

DualTopEdge – Bind the document with two staples
across the top edge.

DualRightEdge – Bind the document with two staples
across the right edge.

DualBottomEdge – Bind the document with two staples
across the bottom edge.

StitchingReference-
Edge ?

enumeration The edge of the output media relative to which the
stapling or stitching MUST be applied. Possible values
are:

bottom – The bottom edge coincides with the x-axis of the
coordinate system.

top – The top edge is opposite and parallel to the bottom
edge.

left – The left edge coincides with the y-axis of the
coordinate system.
right – The right edge is opposite and parallel to the left
edge.

7.2.47 ImageCompressionParams
This resource provides information describing how images are to be compressed in PDF files.

Resource Properties
Resource class: Parameter
Resource referenced by: Sheet
Partition: -
Input of processes: PSToPDFConversion
Output of processes: -

Chapter 7 Resources 269

Resource Structure
Name Data Type Description
ImageCompression * element Specifies how images are to be compressed.

Structure of ImageCompression Sub-element
Name Data Type Description
AntiAliasImages ? boolean If true, anti-aliasing is permitted on images. If false,

anti-aliasing is not permitted.

Anti-aliasing increases the number of bits per
component in downsampled images to preserve some
of the information that is otherwise lost by
downsampling. Anti-aliasing is only performed if the
image is actually downsampled and if ImageDepth
has a value greater than the number of bits per color
component in the input image.

Default = false

AutoFilterImages ? boolean Used only if EncodeColorImages is true. This
attribute is not used if ImageType = monochrome.

If true, the DCTEncode filter is applied to photos and
the FlateEncode filter is applied to screen shots. If
false, the ImageFilter compression method is applied
to all images. This parameter is ignored for
monochrome images.

Default = true

ConvertImagesToIndexed ? boolean If true, the application converts images that use fewer
than 257 colors to an indexed colorspace for
compactness. This attribute is used only when
ImageType = color.

DCTQuality ? number A value between 0 and 1 that indicates ‘how much’ the
process should compress images when using a
DCTEncode filter. 0.0 means ‘do as loss-less
compression as possible;’. 1.0 means do the maximum
compression possible.’ Default=0;

DownsampleImages ? boolean If true, sampled color images are downsampled using
the resolution specified by ColorImageResolution. If
false, downsampling is not carried out, and the image
resolution in the PDF file is the same as that in the
source file.

EncodeColorImages ? boolean If true, color images are encoded using the
compression filter specified by the value of the
ColorImageFilter key. If false, no compression filters
are applied to color sampled images.

ImageDepth ? integer Specifies the number of bits per component in the
downsampled image when DownsampleImages =
true. Allowed values are 1, 2, 4, and 8 (for 1, 2, 4, and
8 bits per color component) and -1 (which forces the
downsampled image to have the same number of bits
per sample as the original image.)

ImageDownsample- number Sets the image downsample threshold for images. This

270 Chapter 7 Resources

Threshold ? is the ratio of image resolution to output resolution
above which downsampling may be performed.
Allowable values must be between 1.0 through 10.0,
inclusive. If the threshold is set out of range, the value
reverts to a default of 2.0. The following short
examples provide a hypothetical configuration:

To use ImageDownsampleThreshold, set the
following attributes to the values indicated:

ImageResolution = 72

ImageDownsampleThreshold = 1.5

The input image would not be downsampled unless it
has a resolution greater than

trunc((72 * 1.5) + .5) = 108dpi

ImageDownsampleType ? enumeration Downsampling algorithm for images. Possible values
are:

Average – The program averages groups of samples to
get the new downsampled value.

Bicubic – The program uses bicubic interpolation on a
group of samples to get a new downsampled value.

Subsample – The program picks the middle sample
from a group of samples to get the new downsampled
value.

ImageFilter ? enumeration Specifies the compression filter to be used for images.
Ignored if AutoFilterImages = true or if
EncodeImages = false. Possible values are:

CCITTFaxEncode – Used to select CCITT Group 3 or
4 facsimile encoding. Used only if ImageType =
monochrome.

DCTEncode – Used to select JPEG compression.

FlateEncode – Used to select ZIP compression.

If DCTEncode is specified, it is only used if the output
image has 8 bits per color component (that is, if
ImageDepth is 8, or if it is –1 and the original image
has 8 bits per color component). Otherwise,
FlateEncode is used regardless of the value of
ImageFilter.

ImageResolution ? number Specifies the minimum resolution for downsampled
color images in dots per inch. This value is used only
when DownsampleImages is true. The application
downsamples to that actual resolution. The legal
values are from 9.0 to 2400.0, inclusive.

ImageType enumeration Specifies the kind of images that are to be manipulated.
Possible values are:

color
grayscale
monochrome

Chapter 7 Resources 271

7.2.48 ImageReplacementParams
This resource specifies parameters required to control image replacement within production workflows.

Resource Properties
Resource class: Parameter
Resource referenced by: -
Partition: -
Input of processes: ImageReplacement, Rendering
Output of processes: -

Resource Structure
Name Data Type Description
ImageReplacement-
Strategy

enumeration Identifies how externally referenced images will be
handled within the associated process. Possible values
are:

Omit – Complete process maintaining only references to
external data.

Proxy – Complete process using available proxy images.

Replace – Replace external references with image data
during processing.

AttemptReplacement – Attempt to replace external
references with image data during processing. If
replacement fails, complete the process using available
proxy images.

MaxResolution? double Reduces the resolution of images with a resolution higher
than MaxResolution
Default = 0, which means “do not downsample.”

MinResolution ? double Specifies the minimum resolution that an image must
have in order to be embedded.

Default = 0, which means “don’t care”

ResolutionReduction-
Strategy ?

enumeration Identifies the mechanism used for reducing the image
resolution. Possible values are:

Downsample – Default value.

Subsample
Bicubic

IgnoreExtensions NMTOKENS Identifies a set of filename extensions that will be
trimmed during searches for high-resolution images.
These extensions are what will be stripped from the end
of an image name to find a base name. Examples
include:

 .lay

.e

.samp

MaxSearchRecursion ? integer Identifies how many levels of recursion in the search path
will be traversed while trying to locate images. A value

272 Chapter 7 Resources

of 0 indicates that no recursion is desired.

SearchPath + telem String that identifies the paths to search when trying to
locate the referenced data.

7.2.49 ImageSetterParams
This resource specifies the settings for the imagesetter. A number of settings are OEM-specific, while
others are so widely used they may be supported between vendors.

Both filmsetter settings and platesetter settings are described with this resource.

Resource Properties
Resource class: Parameter
Resource referenced by: -
Partition: -
Input of processes: ImageSetting
Output of processes: -

Resource Structure
Name Data Type Description
AdvanceDistance ? double Additional media advancement beyond the media

dimensions on a roll-fed device.

CenterAcross ? enumeration This attribute specifies the axis around which a device
may center an image, if the device is capable of doing so.
Possible values are:

None – Default value.

FeedDirection – Image is centered around the feed-
direction axis.
MediaWidth – Image is centered around the media-width
axis.
Both – Image is centered around both axes.

CutMedia ? boolean Indicates whether or not to cut the media (roll-fed).
Default = device default.

MirrorAround ? enumeration This attribute specifies the axis around which a device
may mirror an image, if the device is capable of doing so.
Possible values are:

None – Default value. Used if the device is incapable of
mirroring an image.

FeedDirection – Image is mirrored around the feed-
direction axis.
MediaWidth – Image is mirrored around the media-width
axis.
Both – Image is mirrored around both possible axes.

Polarity ? enumeration Some devices can invert the image (in hardware).
Possible values are:

Positive – Default value.

Chapter 7 Resources 273

Negative
Punch? boolean If true, indicates that the device may create registration

punch holes.

PunchType ? string Name of the registration punch scheme, such as Bacher.

Resolution ? XYPair Resolution of the output

RollCut ? double Length of media to be cut off of a roll, in points.

TransferCurve ? Transfer-
Function

Area coverage correction of the device.

7.2.50 Ink
Resource describing what kind of ink or other colorant (such as toner or varnish) is to be used during
printing or varnishing.

Resource Properties
Resource class: Consumable
Resource referenced by: ConventionalPrintingParams
Partition: Separation, Side, SheetName, SignatureName
Input of processes: ConventionalPrinting, DigitalPrinting, IDPrinting
Output of processes: -

Resource Structure
Name Data Type Description
ColorName ? string Link to a definition of the color specifics. The value of

ColorName color should match the Name attribute of a
Color defined in a ColorPool resource that is linked to
the process using the Ink resource.

Family ? NMTOKEN Ink family. Possible values include:

HKS
Pantone
TOYO
ISO
EURO
InkJet
It is also possible to specify liquids that are similar to ink.
Possible values of this type include:

Varnish
Silicon
Toner

InkName string The name of ink is dependent on its Family. For
example, the InkName 138 CVC is a member of the
Pantone Family.

SpecialInk ? NMTOKEN Specific ink attributes. Possible values include:

274 Chapter 7 Resources

metallic
SpecificYield ? double Weight per area at total coverage in g/m2

.

7.2.51 InkZoneCalculationParams
This resource specifies the parameters for the InkZoneCalculation process.

Resource Properties
Resource class: Parameter
Resource referenced by: -
Partition: -
Input of processes: InkZoneCalculation
Output of processes: -

Resource Structure
Name Data Type Description
PrintableArea ? rectangle Position and size of the printable area of the print cylinder

in the coordinates of the Preview resource.

Default = the complete image.

ProfileOffset ? XYPair Offset of the lower left corner of the printable area of the
preview with respect to the press coordinate system.

Default = 0 0.

ZoneHeight ? double The width of one zone in the feed direction of the printing
machine being used. Typically, the height of a zone is the
height of an ink slide.

ZoneWidth double The width of one zone of the printing machine being used.
Typically, the width of a zone is the width of an ink slide.

Zones integer The number of ink zones of the press.

ZonesY ? integer Number of ink zones in feed direction of the press.

Default = 0, which means not required.

7.2.52 InkZoneProfile
This resource specifies ink zone settings that are specific to the geometry of the printing device being used.
InkZoneProfiles are independent of the device details.

Resource Properties
Resource class: Parameter
Resource referenced by: -
Partition: Separation, Side, SheetName, SignatureName
Input of processes: ConventionalPrinting
Output of processes: InkZoneCalculation

Resource Structure
Name Data Type Description

Chapter 7 Resources 275

PlatePosition ? XYPair Position of the plate. The ink-zone settings depend on the
plate mounting position. After remounting, the
PlatePosition may be used for a fine adjustment of the ink-
zone settings.

ZoneHeight ? double The width of one zone in the Y-Direction of the printing
machine being used.

ZoneSettingsX NumberList Each entry of the ZoneSettings attribute is the value of
one ink zone. The first entry is the first zone, and the
number of entries equals the number of zones of the
printing device being used.

ZoneSettingsY ? NumberList Each entry of the ZoneSettingsY attribute is the value of
one ink zone in Y-Direction. The first entry is the first zone
and the number of entries equals the number of zones of the
printing device being used.

ZoneWidth double The width of one zone of the printing machine being used.

7.2.53 InsertingParams
This resource specifies the parameters for the Inserting process. Figure 7.13 shows the various
components involved in an inserting process, and how they interact.

y

x

"mother" -
component

“child“-
Component

glue line segment

SheetOffset

StartPosition
of glue line

glue line gap

origin of
"mother"-

Component
coordinate

system

Figure 7.13 Parameters and coordinate system used for inserting

The process coordinate system is defined as follows:
The Y-axis is aligned with the binding edge, and increases from the registered edge to the edge opposite the
registered edge. The X-axis, meanwhile, is aligned with the registered edge. It increases from the binding
edge to the edge opposite the binding edge, which is the product front edge.

276 Chapter 7 Resources

Resource Properties
Resource class: Parameter
Resource referenced by: -
Partition: -
Input of processes: Inserting
Output of processes: -

Resource Structure
Name Data Type Description
SheetOffset XYPair Offset between the sheet to be inserted and the “mother”

sheet.

Location enumeration Where to place the “child” sheet. Possible values are:

Front
Back
OverfoldLeft
OverfoldRight

GlueLine * element Array of all GlueLine elements.

7.2.54 InsertSheet
In some cases, an Impostion process may encounter RunList elements that do not provide enough pages
to complete a Sheet resource. InsertSheet resources are used to provide a standard way of completing
such Sheet resources. InsertSheet resources may also be used to start new Sheet resources (for
example, to ensure that a new chapter starts on a right-hand page.) In addition, InsertSheet may specify
whether new media should be inserted, once the current Sheet is completed.

InsertSheets may be used at the beginning or end of RunLists (as NewSheet elements or as Trailer
elements).

Resource Properties
Resource class: Parameter, Element
Resource referenced by: Layout, Sheet
Partition: -
Input of processes: Imposition
Output of processes: -

Resource Structure
Name Data Type Description
BlankSheet boolean If true, the next Sheet will be blank.

Usage enumeration Indicates the way in which this InsertSheet will be used.
Possible values are:

header – the sheet contents are prepended in front of the
current signature or layout
trailer – the sheet contents are appended behind the
current signature or layout
filler – the sheet contents are filled into the current

Chapter 7 Resources 277

signature

RunList ? element A RunList that provides the content for the
InsertSheet.

Sheet ? element A Sheet that will be inserted after the current Sheet is
completed or before the current Sheet is begun. The
various Sheets are identified by the value of Usage.

7.2.55 InterpretedPDLData
Represents the results of the PDL Interpretation process. The details of this resource are not specified, as it
is assumed to be implementation dependent.

Resource Properties
Resource class: Parameter
Resource referenced by: -
Partition: -
Input of processes: Rendering
Output of processes: Interpreting

7.2.56 InterpretingParams
The InterpretingParams resource contains the parameters needed to interpret PDL pages. The resource
itself is an abstract resource that contains attributes that are relevant to all PDLs. PDL-specific instances of
InterpretingParams resources are then derived from this abstract resource.

This specification defines one PDL-specific resource instance: PDFInterpretingParams.

Resource Properties
Resource class: Parameter
Resource referenced by: -
Partition: -
Input of processes: Interpreting, IDPrinting
Output of processes: -

Structure of the abstract InterpretingParams Resource
Name Data Type Description
Center boolean Indicates whether or not the page image should be

centered within the imagable area of the media.

FitToPage ? boolean Specifies whether the page contents should be scaled to fit
the media.

Default = false.

Poster ? XYPair Specifies whether the page contents should be expanded
such that each page covers X by Y pieces of media.

Default = 1,1.

PosterOverlap XYPair This pair of real numbers identifies the amounts of
overlap, in points, that shall be calculated for the poster
tiles across the horizontal and vertical axes, respectively.

278 Chapter 7 Resources

Default = 0,0

Resolution ? XYPair Indicates the resolution at which the PDL contents will be
interpreted in DPI. This value must be a positive integer,
and may be different from the Resolution attribute
provided for the RenderingParams resource.

Scaling ? XYPair A pair of positive real values that indicates the scaling
factor for the page contents. Values between 0 and 1
specify that the contents are to be reduced, while values
greater than 1 specify that the contents are to be expanded.
This attribute is ignored if FitToPage = true or if Poster
is present and has a value other than 1,1.

Default = 1.

ScalingOrigin XYPair A pair of real values that identify the point in the unscaled
page that is to become the origin of the new, scaled page
image. This point is defined in the coordinate system of
the unscaled page.

Default = 0,0

Structure of PDFInterpretingParams resource
Name Data Type Description
EmitPDFBG boolean Indicates whether BlackGeneration functions should be

emitted.

EmitPDFHalftones boolean Indicates whether Halftones should be emitted.

EmitPDFTransfers boolean Indicates whether Transfer functions should be emitted

EmitPDFUCR boolean Indicates whether UnderColorRemoval functions should
be emitted.

HonorPDFOverprint boolean Indicates whether or not overprint settings in the file will
be honored. If true, the settting for overprint will be
honored. If false, it is expected that the device does not
directly support overprint, and that the PDF is pre-
processed to simulate the effect of the overprint settings.

ICCColorAsDeviceColor boolean Indicates whether colors specified by ICC colorspaces
should be treated as device colorants.

PrintPDFAnnotations boolean Indicates whether the contents of annotations on PDF
pages should be included in the output. This only refers to
annotations that are set to print in the PDF file.

TransparencyRendering-
Quality

number Possible values are 0 to 1. 0 represents the lowest
allowable quality. 1 represents the highest desired quality.

7.2.57 Layout
Represents the root of the layout structure. Layout is used both for fixed-layout and for automated
printing.

Resource Properties
Resource class: Parameter

Chapter 7 Resources 279

Resource referenced by: -
Partition: -
Input of processes: Imposition, Proofing, ConventionalPrinting, DigitalPrinting,

SoftProofing
Output of processes: -

Resource Structure
Name Data Type Description
Automated ? boolean If true, the Imposition process is expected to perform

automated page consumption. Automated page
consumption is equivalent to the PrintLayout functionality
provided in PJTF.

Default = false

MaxOrd ? integer Maximum number of placed objects that are consumed
from a RunList each time the Layout is executed,
assuming the Imposition process is automated.

InsertSheet * element Additional sheets that should be inserted before and/or
after a document.

Signature * element The signatures that are defined by the layout.

Structure of Signature Sub-element
This element groups individual Sheet resources into one Signature sub-element.

Name Data Type Description
Name ? NMTOKEN Unique name of the signature. Name is used for external

reference to a signature, as in a Part element.

InsertSheet * element Specifies how to complete a signature in an automated
printing environment.

Sheet * element Sheet resources that comprise the signature.

7.2.58 LayoutElement
This resource is needed for LayoutElementProduction. It describes some text, an image, one or more
pages, or anything else that is used in the production of the layout of a product.

Resource Properties
Resource class: Parameter or Element
Resource referenced by: RunList, Surface
Partition: -
Input of processes: DBDocTemplateLayout, DBTemplateMerging,

LayoutElementProduction
Output of processes: DBDocTemplateLayout, DBTemplateMerging,

LayoutElementProduction

Resource Structure
Name Data Type Description

280 Chapter 7 Resources

ClipPath ? path Path that describes the outline of the LayoutElement in the
coordinate space of the LayoutElement of ElementType
page that results from the LayoutElementProduction
process.

ElementType enumeration Describes the content type for this LayoutElement.
Possible values are:

text – Formatted or unformatted text.

image – Bitmap image.

graphic – Line art.

reservation – Empty element. Content for this area of the page
may be provided by a subsequent process.

composed – Combination of elements that define an element
that is not bound to a document page.

page – Representation of one document page.

document – An ordered set of pages.

surface – Representation of an imposed surface.

tile – Representation of the contents of one tile.

unknown – Unknown element type, any of the above[DH40].

IsPrintable ? boolean If true, the file can be printed. Possible files types include PDF
or PostScript files.

IsTrapped ? boolean If true, the file has been trapped.

SourceClipBox ? rectangle A rectangle that defines the region of the element to be
included. This rectangle is expressed in the default user space
of the source document page.

Template ? boolean Template is false when this layout element is self-contained.
This attribute is true if the LayoutElement represents a
template that must be completed with information from a
database.

Default = false

FileSpec element URL + meta-data about the physical characteristics of a file
representing the LayoutElement.

SeparationSpec * element List of used separation names.

7.2.59 LongitudinalRibbonOperationParams
This resource provides the parameters of the LongitudinalRibbonOperation process. It is defined as a
list of abstract LROperation elements.

Resource Properties
Resource class: Parameter
Resource referenced by: -
Partition: -
Input of processes: LongitudinalRibbonOperation
Output of processes: -

Deborah Harrison
Is this an “or”?

Chapter 7 Resources 281

Resource Structure
Name Data Type Description
LROperation + element Instance of an abstract LROperation element.

Structure of LongitudinalRibbonOperationParams Elements

LROperation
Resource class: Abstract element

LROperation is an abstract element that describes the LongitudinalRibbonOperation process. The
defined instances (sub-classes) of LROperation are Slit, FormerFold, Glue and Perforate. All instances
of LROperation have the following common contents.

Name Data Type Description
WorkingDistance ? double Length of the Operation to be performed in point.

XOffset number Position of the tool for longitudinal action along the cylinder
axis.

LongFold
Resource class: ABOperation
LongSlit describes a longitudinal cut operation and has no further contents in addition to those of
LROperation.

LongFold
Resource class: ABOperation
LongFold describes a longitudinal fold operation and has no further contents in addition to those of
LROperation.

LongGlue
Resource class: ABOperation
LongGlue describes a longitudinal gluing operation and has the following contents in addition to those of
LROperation.

Name Data Type Description
GlueBrand ? string Glue brand.

Use only when Operation = Glue

GlueType ? enumeration If Operation = Glue the following values can be used:

ColdGlue
Hotmelt
PUR – Polyurethane

LineWidth ? double Width of the Operation line.

MeltingTemperature ? integer Required temperature for melting the glue (in degrees
centigrade).

Use only when GlueType = Hotmelt and Operation =

282 Chapter 7 Resources

Glue

LongPerforate
Resource class: ABOperation
LongPerforate describes a longitudinal gluing operation and has the following contents in addition to
those of LROperation.

Name Data Type Description
TeethPer-
Dimension ?

integer If Operation = Perforate, the number of teeth in a given
perforation extent is defined in teeth/point.

7.2.60 Media
This resource describes a physical element that represents a raw, unexposed printable surface such as sheet,
film, or plate.

Resource Properties
Resource class: Consumable or Element
Resource referenced by: Color, ExposedMedia, IDPrintingParams, Sheet
Partition: SheetName, TileID
Input of processes: ConventionalPrinting, Cutting, DigitalPrinting, FilmToPlateCopying,

IDPrinting, ImageSetting, Proofing, Rendering
Output of processes: -

Resource Structure
Name Data Type Description
Dimension ? XYPair The X and Y dimensions of the chosen medium. Measured in

points [pt].

Grade ? string The quality of the chosen medium. Examples include
newsprint and glossy.

ImagableSide ? enumeration Side of the chosen medium that may be marked. Possible
values are:

Front
Back
Both – Default value.
Neither

Material ? NMTOKEN Material of the chosen medium. Possible values include:

Aluminum
DryFilm
Paper
Polyester
WetFilm

MediaType enumeration Describes the medium being employed. Possible values are:

Film

Chapter 7 Resources 283

Foil
Paper
Plate

MediaUnit ? enumeration Describes the format of the media as it is delivered to the
device. Possible values are:

Roll
Sheet – Default value.

Polarity ? enumeration Polarity of the chosen medium. Possible values are:

Positive – Default value.

Negative
Transparent ? boolean If true, the medium is transparent.

Default = false

Thickness ? double The thickness of the chosen medium. Measured in micro
meters [µm].

Weight ? double Weith of the chosen medium. Measured in grams per square
meter [g/m²].

Color ? element A Color resource that provides the color of the chosen
medium.

7.2.61 NumberingParams
This resource describes the parameters of the Numbering process. One NumberingParams element
must be defined per numbering machine.

Resource Properties
Resource class: Parameter
Resource referenced by: -
Partition: -
Input of processes: Numbering
Output of processes: -

Resource Structure
Name Data Type Description
NumberingParams * element Set of parameters for one numbering machine

Structure of NumberingParams Sub-element
Name Data Type Description
StartValue ? string First value of the numbering machine.

XPosition number Position of the numbering machine along the printer axis.

YPosition NumberList List of stamp positions, in points, starting from the leading
edge.

Orientation integer Rotation of the numbering machine. If Orientation = 0, the
top of the numbers is along the leading edge.

284 Chapter 7 Resources

Step ? integer Number that specifies the difference between two subsequent
numbers of the numbering machine.

Default = 1

7.2.62 OrderingParams
Attributes of the Ordering process, which results in an acquisition.

Resource Properties
Resource class: Parameter
Resource referenced by: -
Partition: -
Input of processes: Ordering
Output of processes: -

Resource Structure
Name Data Type Description
Amount double Amount of the ordered resource.

Unit string Unit of measurement for Amount.
Comment telem OrderingParams require a Comment element that contains

a human-readable description of what to order.

Company ? element The supplier company.

7.2.63 PDFToPSConversionParams
This resource specifies a set of configurable options that may be used by processes that generate PostScript
files from PDF files.

Font controls are applied in the following order:

1. IncludeBaseFonts

2. IncludeEmbeddedFonts

3. IncludeType1Fonts

4. IncludeType3Fonts

5. IncludeTrueTypeFonts

6. IncludeCIDFonts

For example, an embedded Type-1 font follows the rule for embedded fonts, not the rule for Type-1 fonts.
In other words, if IncludeEmbeddedFonts is true, and IncludeType1Fonts is false, embedded Type-1
fonts would be included in the PostScript stream.

Resource Properties
Resource class: Parameter
Resources referenced: -
Partition: -

Chapter 7 Resources 285

Input of processes: PDFToPSConversion
Output of processes: -

Resource Structure
Name Data Type Description
BinaryOK ? boolean If true, binary data are to be included in the PostScript

stream.

Default = true

BoundingBox ? rectangle If all zeroes, this attribute is ignored. Otherwise, it is
used for BoundingBox DSC comment, in
CenterCropBox calculations and for
SetPageDevice.

Default = [0 0 0 0]

CenterCropBox ? boolean If true, CropBox output is centered on the page when
the CropBox < MediaBox.

Default = true

IgnoreAnnotForms ? boolean If true, ignores annotations that contain an XObject
form.

Default = false

IgnoreColorSeps ? boolean If true, ignores images for Level-1 separations.

Default = false.

IgnoreDeviceExtGState ? boolean If true, ignores all extended graphic state parameters.
This overrides IgnoreHalftones.

Default = true

IgnoreDSC ? boolean If true, ignores DSC (Document Structuring
Conventions).

Default = true

IgnoreExternSreamRef ? boolean If an image resource uses an external stream and
IgnoreExternStreamRef = true, ignores code that
points to the external file.

Default = false

IgnoreHalftones ? boolean If true, ignores any halftone screening in the PDF file.

Default = false

IgnorePageRotation ? boolean If true, ignores a concat provided at the beginning of
each page that orients the page so that it is properly
rotated. Used when emitting EPS.

Default = false

IgnoreRawData ? boolean If true, no unnecessary filters should be added when
emitting image data.

Default = false

IgnoreSeparableImages-
Only ?

boolean If true, and if emitting EPS, ignores only CMYK and
gray images.

Default = false

IgnoreShowPage ? boolean If true, ignores save-and-restore showpage in

286 Chapter 7 Resources

PostScript files.

Default = false

IgnoreTTFontsFirst ? boolean If true, ignores TrueType fonts before any other fonts.

Default = false

GeneratePageStreams ? boolean If true, the process emits individual streams of data for
each page in the RunList.
Default = false

IncludeBaseFonts ? enumeration Determines when to embed the base fonts. Possible
values are:

IncludeNever – Default value

IncludeOncePerDoc

IncludeOncePerPage

IncludeCIDFonts ? enumeration Determines when to embed CID fonts. Possible values
are:

IncludeNever

IncludeOncePerDoc – Default value.

IncludeOncePerPage

IncludeEmbeddedFonts ? enumeration Determines when to embed fonts in the document that
are embedded in the PDF file. This attribute overrides
the IncludeType1Fonts, IncludeTrueTypeFonts,
and IncludeCIDFonts attributes. Possible values are:

IncludeNever

IncludeOncePerDoc – Default value.

IncludeOncePerPage

IncludeOtherResources ? enumeration Determines when to include all other types of resources
in the file. Possible values are:

IncludeNever

IncludeOncePerDoc – Default value.

IncludeOncePerPage

IncludeProcSets ? enumeration Determines when to include ProcSets in the file.
Possible values are:

IncludeNever
IncludeOncePerDoc – Default value.

IncludeOncePerPage
IncludeTrueTypeFonts ? enumeration Determines when to embed TrueType fonts. Possible

values are:

IncludeNever
IncludeOncePerDoc – Default value.

IncludeOncePerPage
IncludeType1Fonts ? enumeration Determines when to embed Type-1 fonts. Possible

values are:

IncludeNever

Chapter 7 Resources 287

IncludeOncePerDoc – Default value.

IncludeOncePerPage

IncludeType3Fonts ? enumeration Determines when to embed Type-3 fonts. Must always
be set to IncludeOncePerPage. It is included here to
complete the precedence hierarchy.

OutputType enumeration Describes the kind of output to be generated. Possible
values are:

PostScript – Default value
EPS

PSLevel ? integer Number that indicates the PostScript level.

Default = 2

Scale ? Number Number that indicates the wide-scale factor of
documents. Full-size = 100.

Default = 100

SetPageSize ? boolean (PostScript level 2 only) If true, sets page size on each
page automatically. Use media box for outputting
PostScript files and crop box for EPS.

Default = false.

SetupProcsets ? boolean If true, indicates that if procsets are included, the
init/term code is also included.

Default = true

ShrinkToFit ? boolean If true, the page is scaled to fit the printer page size.
This field overrides scale.

Default = false

SuppressCenter ? boolean If true, suppresses automatic centering of page contents
whose crop box is smaller than the page size.

SuppressRotate ? boolean If true, suppresses automatic rotation of pages when
their dimensions are better suited to landscape
orientation. More specifically, the application that
generates the PostScript compares the dimensions of
the page. If the width is greater than the height, then
pages are not rotated if SupressRotate is true. On the
other hand, if SupressRotate is false, the value of the
PDF Rotate key for each page is honored, regardless of
the dimensions of the pages (as defined by the
MediaBox attribute).

Default = false

TTasT42 ? boolean If including TrueType fonts, converts to Type-42
instead of Type-1 fonts when TTasT42 = true.

Default = false

UseFontAliasNames ? boolean If true, font alias names are used when printing with
system fonts.

Default = false

288 Chapter 7 Resources

7.2.64 PDLResourceAlias
This resource provides a mechanism for referencing resources that occur in files, or that are expected to be
provided by devices.

Prepress and printing processes have traditionally used the word ‘resource’ to refer to reusable data
structures that are needed to perform processes. Examples of such resources include fonts, halftones and
functions. The formats of these resources are defined within PDLs, and instances of these resources may
occur within PDL files, or may be provided by devices.

JDF does not provide a syntax for defining such resources directly within a job. Instead, resources continue
to occur within PDL files, and continue to be provided by devices. However, since it is necessary to be
able to refer to these resources from JDF jobs, the PDLResourceAlias resource is provided to fulfill this
need.

Resource Properties
Resource class: Parameter
Resource referenced by: ColorantControl
Partition: -
Input of processes: Interpreting
Output of processes: -

Resource Structure
Name Data Type Description
ResourceType string The type of PDL resource that is referenced. The semantic

of this attribute is defined by the PDL.

SourceName ? string The name of the resource in the file referenced by the
FileSpec attributeor by the device.

FileSpec ? element Location of the file containing the PDL resource. If
FileSpec is absent, the device is expected to provide the
resource defined by this PDLResourceAlias resource.

7.2.65 Person
This resource provides detailed information about a person. It also has the ability to specify different
communication channels to this person. The structure of the resource is derived from the vCard format—it
contains all of the same name sub-types (N:) of the identification and the title of the organizational
properties. The corresponding XML types of the vCard are quoted in the description field of the table
below.

Resource Properties
Resource class: Element
Resource referenced by: Contact, Employee
Partition: -
Input of processes: -
Output of processes: -

Resource Structure
Name Data Type Description

Chapter 7 Resources 289

AdditionalNames ? string Additional names of the contact person (vCard: N:other).

FamilyName ? string The family name of the contact person (vCard: N:family).

FirstName ? string The first name of the contact person (vCard: N:given).

JobTitle ? string Job function of the person in the company or organization
(vCard: title).

NamePrefix ? string Prefix of the name, may include title (vCard: N:prefix).

NameSuffix ? string Suffix of the name (vCard: N:suffix).

ComChannel * element Communication channels to the person.

7.2.66 PlaceHolderResource
This resource is used to link ProcessGroup nodes when the exact nature of interchange resources is still
unknown. In this way, a skeleton of process networks can be constructed, with the
PlaceHolderResource resources serving as place holders in lieu of the appropriate resources.

This resource needs no structure besides that provided in an abstract Resource element, as it has no
inherent value except as a stand-in for other resources.

Resource Properties
Resource class: PlaceHolder
Resource referenced by: -
Partition: -
Input of processes: any ProcessGroup nodes
Output of processes: any ProcessGroup nodes

Resource Structure
The resource has no additional structure.

7.2.67 PlasticCombBindingParams
This resource describes the details of the PlasticCombBinding process.

Resource Properties
Resource class: Parameter
Resource referenced by: -
Partition: -
Input of processes: PlasticCombBinding
Output of processes: -

Resource Structure
Name Data Type Description
Brand ? string The name of the comb manufacturer and the name of the

specific item.

Color ? colorant Determines the color of the plastic comb.

Diameter ? double The comb diameter is determined by the height of the block of
sheets to be bound.

290 Chapter 7 Resources

Thickness ? double The material thickness of the comb.

Type ? enumeration The distance between the “teeth” and the distance between the
holes of the pre-punched sheets must be the same. The
following standards exist:

Euro (Distance = 12 mm; Holes = 7 mm x 3 mm)

USA1 (Distance = 14.28 mm; Holes = 8 mm x 3 mm)

7.2.68 PlateCopyParams
This resource specifies the parameters of the FilmToPlateCopying process.

Resource Properties
Resource class: Parameter
Resource referenced by: -
Partition: -
Input of processes: FilmToPlateCopying
Output of processes: -

Resource Structure
Name Data Type Description
Cycle ? integer Number of exposure light units to be used. The amount

depends on the subject to be exposed.

Diffusion ? enumeration The diffusion foil setting. Possible values are:

on
off.

Vacuum ? double Amount of vacuum pressure to be used. Measured in bar.

7.2.69 PreflightAnalysis
PreflightAnalysis resources record the results of a Preflight process. The semantics for results are
specific to the FileType of the file. The elements in this resource, detailed in the table below, place the
results in specific categories. The value for each of these elements is an array of PreflightResultsDetail
and PreflightInstance sub-elements. Within the PreflightInstance sub-elements, results are further
broken down into PreflightInstanceDetails.

Each PreflightResultsDetail and PreflightInstance sub-element in the PreflightAnalysis hierarchy
describes the results of a comparison of the properties of the file against one PreflightConstraint in the
PreflightProfile.

Resource Properties
Resource class: Parameter
Resource referenced by: -
Partition: -
Input of processes: -
Output of processes: Preflight

Name Data Type Description

Chapter 7 Resources 291

ColorsResultsPool ? element A pool of PreflightDetail and PreflightInstance sub-
elements that provides analysis about color.

DocumentResultsPool ? element A pool of PreflightDetail and PreflightInstance sub-
elements that provides analysis about documents.

FontsResultsPool ? element A pool of PreflightDetail and PreflightInstance sub-
elements that provides analysis about fonts.

FileTypeResultsPool ? element A pool of PreflightDetail and PreflightInstance sub-
elements that provides analysis about file types.

ImagesResultsPool ? element A pool of PreflightDetail and PreflightInstance sub-
elements that provides analysis about images.

PagesResultsPool ? element A pool of PreflightDetail and PreflightInstance sub-
elements that provides analysis about pages.

Structure of PreflightDetail Sub-element
PreflightDetail sub-elements are used to describe one property within the PreflightAnalysis category in
which they occur.

This sub-element is also used by PreflightInventory resource.

Name Data Type Description
PageRefs rangelist Identifies the set of pages in a RunList resource that

exhibit the characteristic identified by the combination
of the Property attribute and the Value element.

Property ? string Identifies the property described by this element.

Status ? enumeration Possible values are:

Error – Value violates the ConstraintValue specified
in the associated PreflightConstraint element. The
constraint was flagged as an Error in the profile.

Warning – Value violates the ConstraintValue
specified in the associated PreflightConstraint
element. The constraint was flagged as a Warning in
the profile.

Ignore – The constraint is ignored, and no
PreflightDetail or PreflightInstanceDetail elements
are created for this constraint.

IgnoreValue – No comparison was made against a
ConstraintValue. In other words, either the Status
for the PreflightConstraint was Ignore or
IgnoreValue, or this PreflightDetail is part of a
PreflightInventory hierarchy.

Value ? element Identifies the value of the property. The semantics are
PDL-specific.

Structure of PreflightInstance Sub-element
PreflightInstance sub-elements are used to collect PreflightInstanceDetail elements for one instance of
some object which occurs in the PDL files referenced by a run list. For example, there might be one
PreflightInstance element for each font that occurs in the pages of a run list.

292 Chapter 7 Resources

This sub-element is also used by PreflightInventory resources.

Name Data Type Description
Identifier ? string Identifies the instance this element collects

PreflightInstanceDetail elements.

PageRefs rangelist Identifies the set of pages in a RunList on which the
instance occurs.

Properties * element A pool of PreflightInstanceDetail elements that
describe the properties for this instance

Structure of PreflightInstanceDetail Sub-element
PreflightInstanceDetail sub-elements describe one property of one instance of some object type that
occurs in a PDL file. For example, several PreflightInstanceDetail elements might describe the properties
of a single font.

This sub-element is also used by PreflightInventory resources.

Name Data Type Description
Property ? string Identifies the property described by this element.

Status ? enumeration Specifies the results of the comparison between the
value of the property for this instance with the
ConstraintValue for the associated
PreflightConstraint element.

Possible values are:

Error – Value violates the ConstraintValue specified.
The constraint was flagged as an Error in the profile.

Warning – Value violates the ConstraintValue
specified. The constraint was flagged as a Warning in
the profile.

IgnoreValue – No comparison was made against a
ConstraintValue. In other words, either the Status for
the Constraint was Ignore or IgnoreValue, or this
PreflightInstanceDetail is part of a
PreflightInventory hierarchy.

Value ? element Identifies the value of the property. The semantics are
PDL-specific.

7.2.70 PreflightInventory
PreflightInventory resources, like PreflightAnalysis resources, record the results of a Preflight
process. The semantics for results are specific to the FileType of the for the file. The elements in this
resource, detailed in the table below, place the results in specific categories. The value of each of these
elements is an array of PreflightResultsDetail and PreflightInstance sub-elements. Within the
PreflightInstance sub-elements, results are further broken down into PreflightInstanceDetails.

Each PreflightResultsDetail or PreflightInstance sub-element in the PreflightInventory hierarchy
describes the results of a comparison of the properties of the file against one PreflightConstraint in the
PreflightProfile.

Chapter 7 Resources 293

Resource Properties
Resource class: Parameter
Resource referenced by: -
Partition: -
Input of processes: Preflight
Output of processes: Preflight

Name Data Type Description
ColorsResultsPool ? element A pool of PreflightDetail and PreflightInstance sub-

elements that provides a color inventory.

DocumentResultsPool ? element A pool of PreflightDetail and PreflightInstance sub-
elements that provides a document inventory.

FontsResultsPool ? element A pool of PreflightDetail and PreflightInstance sub-
elements that provides a font inventory.

FileTypeResultsPool ? element A PreflightDetail and PreflightInstance sub-
element that provides a file-type inventory.

ImagesResultsPool ? element A pool of PreflightDetail and PreflightInstance sub-
elements that provides an image inventory.

PagesResultsPool ? element A pool of PreflightDetail and PreflightInstance sub-
elements that provides a page inventory.

7.2.71 PreflightProfile
PreflightProfile resources specify a set of constraints against which a file may be tested. The semantics
for constraints are specific to the FileType of the for the file. The elements in this resource, detailed in the
table below, place the results in specific categories. The value for each of these elements is an array of
PreflightConstraint sub-elements. Within the PreflightConstraint resources, the ConstraintValue
element indicates allowable values and the Status attribute indicates the error level (if any) to be flagged
when exceptions to the constraints are identified.

Resource Properties
Resource class: Parameter
Resource referenced by: -
Partition: -
Input of processes: Preflight
Output of processes: -

Name Data Type Description
ColorsContraintsPool ? element A pool of PreflightConstraint sub-elements. Each

element in this pool identifies a specific constraint
concerning colors against which to test the file

DocumentConstraintsPool ? element A pool of PreflightConstraint sub-elements. Each
element in this pool identifies a specific constraint
concerning documents against which to test the file

FontsConstraintsPool ? element A pool of PreflightConstraint sub-elements. Each
element in this pool identifies a specific constraint
concerning fonts against which to test the file

FileTypeConstraintsPool ? element A Preflight constraint. The Type attribute must have
a value of array and must contain string objects that

294 Chapter 7 Resources

identify the allowable types of data in the file. The
strings in the Value array must be MIME-file types as
recorded by the Internet Assigned Numbers Authority
(IANA). IANA has procedures for registering new
file types if needed.

ImagesConstraintsPool ? element A pool of PreflightConstraint sub-elements. Each
element in this pool identifies a specific constraint
concerning images against which to test the file

PagesConstraintsPool ? element A pool of PreflightConstraint sub-elements. Each
element in this pool identifies a specific constraint
concerning pages against which to test the file

Structure of PreflightConstraint Sub-element
Name Data Type Description
AttemptFixupErrrors ? boolean If true, the device performing preflight should attempt

to fix errors that are identified during preflight.

Errors that are corrected are not given a Status
attribute.

AttemptFixupWarnings ? boolean If true, the device performing preflight should attempt
to fix warnings that are identified during preflight.

Warnings that are corrected are not given a Status
attribute.

Constraint ? string Describes the specific file characteristic to be checked.

Status enumeration Possible values are:

Error – Values that violate the ConstraintValue
specifiedare flagged as Errors in PreflightDetail and
PreflightInstanceDetail elements.

Warning – Values that violate the ConstraintValue
specified are flagged as Warnings in PreflightDetail
and PreflightInstanceDetail elements.

Ignore – The constraint is ignored, and no
PreflightDetail or PreflightInstanceDetail elements
are created for this constraint.

IgnoreValue – No comparison is made against the
ConstraintValue.

ConstraintValue ? element Provides a value against which to test occurrences of
the charactersitic in the file.

Note that the semantics of the ConstraintValue
element depend on the PDL characteristic in question.

7.2.72 Preview
The preview of the content of a surface. It can be used for the calculation of the ink coverage
(PreviewType = Separation) or as a preview of what is currently processed in a device (PreviewType =
Viewable). When the preview is of Type = Separation, a gray value of 0 represents full ink, while a value

Chapter 7 Resources 295

of 255 represents no ink (for more information, see DeviceGray color model chapter 4.8.2. of the
PostScript Language Reference Manual).

Resource Properties
Resource class: Parameter
Resource referenced by: Surface
Partition: Separation, Side, SheetName
Input of processes: InkZoneCalculation
Output of processes: PreviewGeneration

Resource Structure
Name Data Type Description
PreviewType enumeration Type of the preview. Possible values are:

Separation
Viewable

URL URL URL identifying the image file. This is a normally a URL
to a MIME sub-part (see section A.4.1). Note that a
preview will generally be partitioned by separation.

Compensation ? enumeration Compensation of the image to reflect the application of
transfer curves to the image. Possible values are:

unknown – Default value.

none – No compensation.

film – Compensated until film exposure.

plate – Compensated until plate exposure.

press – Compensated until press.

7.2.73 PreviewGenerationParams
Parameters specifying the size and the type of the preview.

Resource Properties
Resource class: Parameter
Resource referenced by: -
Partition: -
Input of processes: PreviewGeneration
Output of processes: -

Resource Structure
Name Data Type Description
PreviewType enumeration The kind of preview to be generated. Possible values are:

Separation
Viewable

Resolution ? XYPair Resolution of the preview, in dpi.

296 Chapter 7 Resources

Default = “50.8 50.8” dpi.

Size ? XYPair Size of the preview, in pixels. If this attribute is present,
the Resolution attribute is ignored.

If Size is not specified, it may be calculated using the
Resolution attribute and the input image size.

7.2.74 ProofingParams
This resource specifies the settings needed for all proofing operations, including both ‘hard’ or ‘soft’
proofing, of color and imposition proofs.

Resource Properties
Resource class: Parameter
Resource referenced by: -
Partition: -
Input of processes: Proofing, SoftProofing
Output of processes: -

Resource Structure
Name Data Type Description
DisplayTraps ? boolean If true, the trap networks are shown in the proof.

ImageViewingStrategy ? string Identifies which images will be displayed during the
SoftProofing process. Possible values are:

NoImages – Default value.

OmitReference – Displays only images actually
embedded in the file.

UseProxies – Displays images embedded in the file and
proxy versions of referenced data.

UseReplacements – Displays embedded images plus the
full resolution version of referenced images.

ProoferProfile ? URL ICC profile of the proofer device.

ProofType ? enumeration This string identifies the type of proof requested. When
absent, the type of proof desired may be inferred from the
other attributes and elements within this resource.

Possible values are:

colorconceptual
contone
halftone
imposition

Resolution ? XYPair Resolution of the output.

7.2.75 PSToPDFConversionParams
This resource contains the parameters that control the conversion of PostScript streams to PDF pages.

Chapter 7 Resources 297

Resource Properties
Resource class: Parameter
Resource referenced by: -
Partition: -
Input of processes: PSToPDFConversion
Output of processes: -

Resource Structure
Name Data Type Description
ASCII85EncodePages ? boolean If true, binary streams such as page contents streams,

sampled images, and embedded fonts are ASCII85-
encoded, resulting in a PDF file that is almost pure
ASCII. If false, they are not, resulting in a PDF file that
may contain substantial amounts of binary data.

AutoRotatePages ? name Allows the device to try to orient pages based on the
predominant text orientation. Only used if the file does
not contain %%ViewingOrientation,
%%PageOrientation, or %%Orientation DSC comments.
If the file does contain such DSC comments, it honors
them. %%ViewingOrientation takes precedence over
others, then %%PageOrientation, then %%Orientation.
Possible values are:

None – Turns AutoRotatePages off.

All – Takes the predominant text orientation across all
pages and rotates all pages the same way.

PageByPage – Does the rotation on a page-by-page basis,
rotating each page individually. Useful for documents
that use both portrait and landscape orientations.

AutoRotatePages ? name Allows the device to try to orient pages based on the
predominant text orientation. Only used if the file does
not contain ViewingOrientation, PageOrientation, or
Orientation DSC comments. If the file does contain such
DSC comments, it honors them. ViewingOrientation
takes precedence over others, then PageOrientation, then
Orientation. Possible values are:

None – Turns AutoRotatePages off.

All – Takes the predominant text orientation across all
pages and rotates all pages the same way.

PageByPage – Does the rotation on a page-by-page basis,
rotating each page individually. Useful for documents
that use both portrait and landscape orientations.

Binding ? name Determines how the printed pages would be bound.
Specify Left for left binding or Right for right binding.

CompressPages ? boolean Enables compression of pages and other content streams
like forms, patterns and Type 3 fonts. If true, use Flate
compression.

DefaultRenderingIntent ? name Selects the rendering intent for the current job. Possible
values are:

298 Chapter 7 Resources

Default
Perceptual
Saturation
RelativeColorimetric
AbsoluteColorimetric
See the Portable Document Format Reference Manual
for more information on rendering intent.

DetectBlend ? boolean Enables or disables blend detection. If true, and if
PDFVersion is 1.3 or higher, then blends will be
converted to smooth shadings.

DoThumbnails ? boolean If true, thumbnails are created.

EndPage ? integer Number that indicates the last page that is displayed
when the PDF file is viewed. EndPage must equal be to
anything less than StartPage or be greater than or equal
to 1. If not, then it must be greater than or equal to
StartPage. When combined with StartPage, EndPage
selects a range of pages to be displayed. The entire file
may or may not be distilled, but only StartPage to
EndPage pages, inclusive, are opened and viewed in
Acrobat.

ImageMemory ? integer Number of bytes in the buffer used in sample processing
for color, grayscale, and monochrome images. Its
contents are written to disk when the buffer fills up.

This is a read-only attribute.

OverPrintMode ? integer Controls the overprint mode strategy of the job. Set to 0
for full overprint or 1 for non-zero overprint.

For more information, see
http://partners.adobe.com/asn/developer/PDFS/TN/5044.
ColorSep_Conv.pdf

Optimize ? boolean If true, the PS-to-PDF converter optimizes the PDF file.
See the Portable Document Format Reference Manual
for more information on optimization.

PDFVersion ? real Specifies the version number of the PDF file produced.
Possible values include all legal version designators (e.g.,
1.2, 1.3, 1.4).

StartPage ? integer Sets the first page that is be displayed when the PDF file
is opened with Acrobat. StartPage must be greater than
or equal to 1. If EndPage is not -1, then it must be
greater than or equal to StartPage.

AdvancedParams ? element Advanced parameters which control how certain features
of PostScript are handled.

ThinPDFParams ? element Parameters that control the optional content or form of
PDF files that will be created.

Structure of AdvancedParams Sub-element
Name Data Type Description
AutoPostitionEPSInfo ? boolean If true, the process automatically resizes and centers EPS

Chapter 7 Resources 299

information on the page.

EmitDSCWarnings ? boolean If true, warning messages about questionable or incorrect
DSC comments appear during the distilling of the PS file.

LockDistillerParams ? boolean If true, the incoming PS content that specifies any of the
PSToPDFConversionParams settings is used. If
false, any PSToPDFConversionParams settings
configured by the PS content are ignored.

ParseDSCComments ? boolean If true, the process parses the DSC comments for any
information that might be helpful for converting the file
or for information that must be stored in the PDF file. If
false, the process treats the DSC comments as pure PS
comments and ignores them.

ParseDSCCommentsFor-
DocInfo ?

boolean If true, the process parses the DSC comments in the PS
file and extracts the document information. This
information is recorded in the Info dictionary of the PDF
file.

PreserveCopyPage ? boolean If true, the copypage operator of PostScript Level 2 is
maintained. If false, the PostScript Level 3 definition of
copypage operator is used.

In PostScript Levels 1 and 2, the copypage operator
transmits the page contents to the current output device
(similar to showpage). However, copypage does not
perform many of the reinitializations that showpage does.

Many PostScript Level-1 and -2 programs used the
copypage operator to perform such operations as printing
multiple copies and implementing forms. These
programs produce incorrect results when interpreted
using the Level-3 copypage semantics.

This attribute provides a mechanism to retain Level-2
compatibility for this operator.

PreserveEPSInfo ? boolean If true, preserves the EPS information in the PS file and
stores it in the resulting PDF file.

PreserveOPIComments ? boolean If true, encapsulates OPI low-resolution images as a form
and preserves information for locating the high-resolution
images.

OPI stands for Open Prepress Interface.

UsePrologue ? boolean If true, the process shall prepend a PostScript prologue
file to the job and append a PostScript epilog file to the
job. Such files are used to control the PostScript
environment for the conversion process. The expected
location and allowable contents for these files is defined
by the process implementation.

Structure of ThinPDFParams Sub-element
Name Data Type Description
FilePerPage ? boolean If true, the process generates 1 PDF file per page.

Default = false

SidelineFonts ? boolean If true, font data are stored in external files during PDF

300 Chapter 7 Resources

generation.

Default = false

SidelineImages ? boolean If true, image data are stored in an external stream during
the PDF Generation phase. This prevents large amounts of
image data from having to be passed through all phases of
the code generation process.

Default = false

7.2.76 RegisterMark
Defines a register mark, which can be used for setting up and monitoring a printing process. The position
and rotation of each register mark can be specified with the help of the following attributes. It is important
that the register marks are defined in such a way that their centers are on the point of origin of the
coordinate system, as otherwise they are not positioned properly.

Resource Properties
Resource class: Element
Resource referenced by: Surface
Partition: -
Input of processes: Any printing process
Output of processes: Imposition

Resource Structure
Name Data Type Description
Center XYPair Position of the center of the register mark in the

coordinates of the SurfaceContentsBox.

MarkType ? NMTOKEN Type of register mark. Possible value include:

arc
circle
cross

Rotation ? double Rotation in degrees. Positive graduation figures indicate
counter-clockwise rotation; negative figures indicate
clockwise rotation.

SeparationSpec * element Set of separations to which the register mark is bound.

7.2.77 RenderingParams
This set of parameters identifies how the Rendering process should operate. Specifically, these
parameters define the expected output of the Bytemap resource that the Rendering process creates.

Resource Properties
Resource class: Parameters
Resource referenced by: -
Partition: -
Input of processes: IDPrinting, Rendering
Output of processes: -

Chapter 7 Resources 301

Resource Structure
Name Data Type Description
BandHeight integer Height of output bands expressed in lines. For a frame

device, the band height is simply the full height of the
frame.

BandOrdering ? enumeration Indicates whether output buffers are generated in band-
major or color-major order. Possible values are:

band-major – Default value.

color-major – Only an option when dealing with non-
interleaved data.

BandWidth integer Width of output bands expressed in pixels.

ColorantDepth integer Number of bits per colorant. Determines whether the
output is bitmaps or bytemaps. A value of 1 implies that
a bitmap is used and that halftone screening is performed
by the interpretation process.

Interleaved boolean If true, the resulting colorant values are interleaved and
BandOrdering is ignored.

RenderingResolution + element Elements which define the resolutions to render the
contents at. More than one element may be used to
specify different resolutions for different SourceObject
types.

RenderingResolution Structure
Name Data Type Description
Resolution XYPair Horizontal and vertical output resolution in DPI.

SourceObjects ? enumeration Identifies the class(es) of incoming graphical objects to
render at the specified resolution. Possible values are:

All – Default value.

ImagePhotographic – Contone images.

ImageScreenShot – Images largely comprised of
rasterized vector art.

LineArt
SmoothShades – Gradients and blends.

Text

7.2.78 RingBindingParams
This resource describes the details of the RingBinding process.

Resource Properties
Resource class: Parameter
Resource referenced by: -
Partition: -
Input of processes: RingBinding
Output of processes: -

302 Chapter 7 Resources

Resource Structure
Name Data Type Description
BinderColor ? colorant Color of the ring binder.

BinderName ? string The name of the binder manufacturer and the name of the
specific item.

RingDiameter ? double The diameter of the ring determines the diameter of the sheet’s
holes.

RingMechanic ? boolean If true, a hand lever is available for opening.

Default = false

RingSystem ? enumeration The following ring binding systems are used:

2Hole – in Europe

3Hole – in North America

4Hole – in Europe

SpineColor ? colorant Color of the binders spine.

SpineWidth ? double The spine width is determined by the final height of the block
of sheets to be bound.

7.2.79 RunList
RunList resources describe an ordered set of LayoutElement or ByteMap elements. RunList resources
are an ordered list of Run elements.

RunList resources are used whenever an ordered set of page descriptions elements are required.
Depending on the process usage of a RunList, only certain Types of LayoutElement may be valid. For
example, a pre-rip imposition process requires LayoutElement elements of Type page or document,
whereas a post-rip imposition process requires ByteMap elements. The usage is detailed in the
descriptions of the processes that use the RunList resource.

Resource Properties
Resource class: Parameter
Resource referenced by: -
Partition: -
Input of processes: RunLists are used as input resources by most processes that act on content data
Output of processes: RunLists are used as output resources by most processes that act on content data

Resource Structure
Name Data Type Description
NPage ? integer Total number of pages (placed object slots) that are

defined by the RunList. If NPage is not specified, it
defaults to all pages in the Run elements that make up
the RunList.

Run * element Describes a range of LayoutElement or ByteMap
elements.

Structure of Run Sub-element

Chapter 7 Resources 303

Run elements describe the separations a range of pages.

Name Data Type Description
EndOfDocument ? boolean If true, the last page in the Run is the last page of an

instance document. The precise handling of
instance-document changes is defined in the
InsertSheet resource.

Default = false

NPage ? integer Total number of pages (placed object slots) that are
defined by the Run element. If NPage is not
specified, the number of pages defaults to all pages
in the files that make up the run.

DynamicInput * element Replacement text for a DynamicField element.
This information defines the contents of a dynamic
mark on the Layout for automated page layout. The
mark must be filled using information from the
document runlist, such as the barcode of the
recipient. This information varies with the document
content.

DynamicInput elements have one optional Name
attribute that, when linked to the ReplaceField
attribute of the DynamicField element, defines the
string that should be replaced.

RunSeparation ? element Describes a range of LayoutElement or ByteMap
elements for one or more separations.

Structure of RunSeparation Sub-element
RunSeparation elements describe either a separation or an unseparatedrange of pages, and must contain
either a LayoutElement or ByteMap element that describes the data stream.

Name Data Type Description
DocNames ? NameRangeList A list of named documents in a multi-document file

that supports named access to individual documents.

DocNames defaults to all documents. If
DocNames occurs in the RunList, Docs is ignored
if it is also present.

Docs ? IntegerRange-
List

0-based list of document indices in a multi-document
file specified by the LayoutElement element.

EndOfDocument ? boolean If true, the last page in the Run is the last page of an
instance document. The precise handling of
instance-document changes is defined in the
InsertSheet resource.

Default = false

FirstPage ? integer First page in the document that is described by this
run. This attribute is generally used to describe pre-
separated files.

Default = 0

304 Chapter 7 Resources

NPage ? integer Total number of pages (placed object slots) that are
defined by the Run element. If NPage is not
specified, the number of pages defaults to all pages
in the files that make up the run.

Pages ? IntegerRange-
List

0-based list of indices in the documents specified by
the LayoutElement element and the Docs attribute.
If Pages is present, FirstPage, and SkipPage are
ignored.

PageNames ? NameRangeList A list of named pages in a multi-page file that
supports named access to individual pages.

PageNames defaults to all pages.

If PageNames occurs in the RunList, FirstPage,
Npage, SkipPage and Pages are ignored if any of
them is also present.

Separation ? string The name of the separation. The default separation
name “All” has a special meaning. In that case, this
RunSeparation element should be applied to all
separations.

SkipPage ? integer Used when the run comprises every Nth page of the
file. SkipPage indicates the number of pages to be
skipped between each of the pages that comprise the
run. This is generally used to describe pre-separated
files, or to select only even or odd pages.

Default = 0

ByteMap ? element Describes the page or stream of pages. Only one of
ByteMap or LayoutElement may be specified in
one run.

DynamicInput * element Replacement text for a DynamicField element.
This information defines the contents of a dynamic
mark on the Layout for automated page layout. The
mark must be filled using information from the
document runlist, such as the barcode of the
recipient. This information varies with the document
content.

DynamicInput elements have one optional Name
attribute that, when linked to the ReplaceField
attribute of the DynamicField element, defines the
string that should be replaced.

LayoutElement ? element Describes the document, page or image. Only one of
ByteMap or LayoutElement may be specified in
one run.

Structure of a DynamicInput Sub-element
DynamicInput defines the contents of a dynamic mark on a Surface resource for automated page layout.
The mark must be filled using information from the document runlist, such as the barcode of the recipient.
This information varies with the document content. For details on dynamic marks, see the DynamicField
element description in section 7.2.88 Surface.

Chapter 7 Resources 305

Name Data Type Description
Name? string Label that must match the ReplaceField attribute of

the appropriate DynamicField element

- text Defines the text string that should be inserted as a
replacement for the text defined in ReplaceField of
a DynamicField element.

7.2.80 SaddleStitchingParams
This resource provides the parameters of the SaddleStitching process

Resource Properties
Resource class: Parameter
Resource referenced by: -
Partition: -
Input of processes: SaddleStitching
Output of processes: -

Resource Structure
Name Data Type Description
NumberOfStitches integer The number of stitches that will be made.

StitchPositions ? NumberList Array containing the stitch positions along the saddle.
The center of the stitch must be specified, and the number
of entries must match the number given in the
NumberOfStitches attribute.

StapleShape ? enumeration Shape of staples. Possible values are:

Crown
Overlap
Butted
ClinchOut
Eyelet
These values are displayed in Figure 7.14, below.

StitchWidth ? double Width of each stitch.

WireGauge ? double Width of the wire being used.

WireBrand ? string Brand of wire being used.

306 Chapter 7 Resources

Eyelet

Crown

Overlap

ClinchOut

Butted

Figure 7.14 Staple shapes

stitch position

binding edge (spine)

y

x

staple

stitch width

Figure 7.15 Parameters and coordinate system used for saddle stitching

The process coordinate system is defined as follows:
The Y-axis is aligned with the binding edge, and increases from the registered edge to the edge opposite the
registered edge. The X-axis, meanwhile, is aligned with the registered edge. It increases from the binding
edge to the edge opposite the binding edge, which is the product front edge.

7.2.81 ScanParams
This resource provides the parameters for the Scanning process.

Resource Properties
Resource class: Parameter
Resource referenced by: -
Partition: -
Input of processes: Scanning
Output of processes: -

Resource Structure
Name Data Type Description
BitDepth integer Bit depth of a one-color separation.

CompressionFilter ? enumeration Specifies the compression filter to be used. Possible

Chapter 7 Resources 307

values include:

CCITTFaxEncode – Used to select CCITT Group 3 or
4 facsimile encoding.

DCTEncode – Used to select JPEG compression.

FlateEncode – Used to select ZIP compression.

DCTEncode – Used to select JPEG compression.

DCTQuality ? number A value between 0 and 1 that indicates ‘how much’ the
process should compress images. 0.0 means ‘do as
loss-less compression as possible;’. 1.0 means do the
maximum compression possible.’

CorrectionProfile ? URL ICC Profile with color corrections.

InputBox ? rectangle Rectangle that describes the image section to be
scanned, in points. The origin of the coordinate system
is the lower left corner of the physical item to be
scanned.

TargetProfile ? URL ICC Profile that defines the target output device for a
device specific scan, such as the profile of a CMYK
press.

Magnification ? XYPair Size of the output/size of the input for each dimension.
Default = 1.0.

MountID ? string ID of the drum or other mounting device upon which
the media should be mounted.

Mounting ? enumeration Specifies how to mount originals. Possible values are:

unfixed – Original lies unfixed on the scanner tray/drum.

fixed – Original is fixed on the scanner tray/drum with
transparent tape.

wet – Original is put in gel or oil and fixed on the
scanner tray/drum.

registered – Original is fixed with registration holes.
This value is used for copix.

OutputColorSpace enumeration Color space of the output images. Possible values are:

LAB
RGB
CMYK
GreyScale.

OutputResolution XYPair X and Y resolution of the output bitmap (in DPI).

OutputSize ? XYPair X-,Y-dimension of the intended output image (in pt).

ScanProfile ? URL ICC Profile of the scanner.

SplitDocuments ? integer A number representing how many images are scanned
before a new file is created.

DecompressionDictionary ? element Details of the image data compression algorithm.

FileSpec ? element Name of output image file or files.

308 Chapter 7 Resources

7.2.82 ScreeningParams
This resource specifies the parameter of the screening process. Since screening is, in most cases, very
OEM specific, the following parameters are generic enough that they can be mapped onto a number of
OEM controls.

Resource Properties
Resource class: Parameter
Resource referenced by: ExposedMedia
Partition: Side, SheetName, SignatureName
Input of processes: Screening, IDPrinting
Output of processes: -

Resource Structure
Name Data Type Description
IgnoreSourceFile ? boolean Specifies whether to ignore the screen settings (such as

setscreen, setcolorscreen, and sethalftone) specified in
the source files.

Default = true
Note: In some cases, Halftones are used to create
patterns. In these cases, the halftone in the source PDL
file will not be overridden.

AbortJobWhenScreen-
MatchingFails ?

boolean Specifies what happens when the device can not fulfill
the screening requests. If true, it flushes the job. If
false, it ignores matching errors using the default
screening.

Default = false

ScreenSelector + element List of screen selectors. A screen selector is included for
each separation, including a default specification.

Structure of ScreenSelector Sub-elements
Description of screening for a selection of source object types and separations.

Name Data Type Description
Angle ? real Specifies the angle of the screen when AM screening is

used.

Frequency ? real Specifies the line frequency of the screen when AM
screening is used.

ScreeningFamily ? string Vendor specific screening family name. Possible values
include:

Rational Tangent
Adobe Accurate
Agfa Balanced
Soft-IS
ErrorDiffusion

Chapter 7 Resources 309

Separation ? string The name of the separation. The default separation
name “All” has a special meaning. In that case, this
ScreenSelector should be applied to all
separations.[DH41]

SpotFunction ? NMTOKEN Specifies the spot function of the screen when AM
screening is used. These names are the same as the spot
function names defined in PDF:

Round
Diamond
Ellipse
EllipseA
InvertedEllipseA
EllipseB
EllipseC
InvertedEllipseC
Line
LineX
LineY
Square
Cross
Rhomboid
DoubleDot
InvertedDoubleDot
SimpleDot
InvertedSimpleDot
CosineDot
Double
InvertedDouble

SourceObjects ? enumerations Identifies the class(es) of incoming graphical objects on
which to use the selected screen. Possible values are:

All – Default value.

ImagePhotographic – Contone images.

ImageScreenShot – Images largely comprised of
rasterized vector art.

Text
LineArt
SmoothShades – Gradients and blends.

7.2.83 SeparationControlParams
This resource provides the controls needed to separate composite color files.

Deborah Harrison
How about: “If ScreenSelector = all, the attribute should be applied to all separations. Default = all.”

310 Chapter 7 Resources

Resource Properties
Resource class: Parameter
Resource referenced by: -
Partition: -
Input of processes: Separation
Output of processes: -

Resource Structure
Name Data Type Description
AutomatedOverprint-
Params ?

element Optional controls for overprint substitutions.

Defaults to no automated overprint generation.

TransferFunctionControl ? element Controls whether the device performs transfer functions
and what values are used when doing so.

Structure of SeparationControlParams Sub-elements

AutomatedOverprintParams
Name Data Type Description
OverPrintBlackText ? boolean Indicates whether OverPrint should be set to true for

black text. If false, TextSizeThreshold and
TextBlackLevel are ignored.

TextSizeThreshold ? integer Indicates the point size for text below which black text
will be set to overprint.

TextBlackLeve ?l number A value between 0.0 and 1.0 which indicates the
minimum black level for the text stroke or fill colors
that cause the text to be set to overprint.

OverPrintBlackLineArt ? boolean Indicates whether overprint should be set to true for
black line art. If false, LineArtBlackLevel is ignored.

LineArtBlackLevel ? number A value between 0.0 and 1.0 which indicates the
minimum black level for the stroke or fill colors that
cause the line art to be set to overprint.

TransferFunctionControl
Name Data Type Description
TransferFunctionSource enumeration Identifies the source of transfer curves which should be

applied during separation.

Document – Use the transfer curves provided in the
document.

Device – Use transfer functions provided by the output
device. (When Separation is being performed pre-
RIP, this may mean that no transfer curves will be
applied.)

Custom – Use the transfer curves provided in the
TransferCurvePool element of this element.

TransferCurvePool ? element Provides a set of transfer curves to be used by the

Chapter 7 Resources 311

Separation process.

7.2.84 SeparationSpec
This resource specifies a specific separation, and is usually used to define a list or sequence of separations.

Resource Properties
Resource class: Element
Resource referenced by: ColorantControl, LayoutElement, RegisterMark, TrappingDetails
Partition: -
Input of processes: -
Output of processes: -

Resource Structure

MarkSeparation
Name Data Type Description
SeparationName string Name of one specific separation.

7.2.85 Sheet
This resource provides a description of a sheet, as well as the marks on that sheet.

Resource Properties
Resource class: Parameter
Resource referenced by: InsertSheet, Layout
Partition: -
Input of processes: InkZoneCalculation
Output of processes: -

Resource Structure
Name Data Type Description
LockOrigins ? boolean Determines the relationship of the coordinate systems

for front and back surfaces.

When false, all contents for all surfaces are transformed
into the first quadrant, in which the origin is at the lower
left corner of the surface.

When true, contents for the front surface are imaged
into the first quadrant (as above), but contents for the
back surface are imaged into the second quadrant, in
which the origin is at the lower right.

Name NMTOKEN Unique name of the sheet. Name is used for external
reference to a sheet in, for example, a Part element.

SurfaceContentsBox ? rectangle This box, specified in surface-coordinate space, defines
the area into which contents and marks will occur for all

312 Chapter 7 Resources

Surfaces in the Sheet.
CTMs for MarkObjects or ContentObjects transform
page contents or marks into this rectangle.

InsertSheet * element Specifes how to complete a sheet in an automated
printing environment.

Surface * element Describes the surface to be used. Two surfaces may be
attached: one front surface and one back surface.

7.2.86 SideSewingParams
This resource provides the parameters for the SideSewing process.

The process coordinate system is defined in the following way: the Y-axis is aligned with the binding edge.
It then increases from the registered edge to the edge opposite to the registered edge. The X-axis is aligned
with the registered edge, which then increases from the binding edge to the edge opposite to the binding
edge, i.e. the product front edge.

binding edge (spine)

y

x

stitch

offset

Figure 7.16 Parameters and coordinate system used for side sewing

Resource Properties
Resource class: Parameter
Resource referenced by: -
Partition: -
Input of processes: SideSewing
Output of processes: -

Resource Structure
Name Data Type Description
NumberOfNeedles integer Specifies the number of needles to be used.

NeedlePositions ? NumberList Array containing the Y-coordinates of the needle
positions. The number of entries must match the
number given in NumberOfNeedles.

Chapter 7 Resources 313

Offset double Specifies the distance between the stitch and the
binding edge.

SewingPattern ? enumeration Specifies the sewing pattern to be used. Possible
values are:

Normal
Staggered
CombinedStaggered

ThreadMaterial ? enumeration Specifies the thread material to be used. Possible
values are:

Cotton
Nylon
Polyester

ThreadThickness ? double The thickness of the thread to be used.

ThreadBrand ? string The brand of thread to be used.

7.2.87 StitchingParams
This resource provides the parameters for the Stitching process.

The process coordinate system is defined as follows:
If there is a binding edge, the y-axis is aligned with this edge. Otherwise the y-axis is aligned with one of
the registered edges. The y-axis increases from the (first) registered edge to the edge opposite to the
registered edge. The x-axis is aligned with the (second) registered edge. It increases from the binding edge
(or first registered edge) to the edge opposite to the binding edge (or first registered edge).

314 Chapter 7 Resources

stitch position

y

xoffset

stitch width

reference edge 1

stitch position

y

x
offset

stitch width

binding edge

set of folded
sheets collected
on a saddle

set of sheets or
partial products
gathered on a pile
that will be folded
later

reference edge 2

Figure 7.17 Parameters and coordinate system used for stitching

Resource Properties
Resource class: Parameter
Resource referenced by: -
Partition: -
Input of processes: Stitching
Output of processes: -

Resource Structure
Name Data Type Description
Angle ? double Angle of stitch in degree. The angle increases in a

counterclockwise direction. 0 = horizontal, which means that
it is parallel to the X-axis of the operation coordinate system.

NumberOfStitches integer Number of stitches.

Offset double Distance between stitch and binding edge.

StapleShape ? enumeration Specifies the shape of the staples to be used. Possible values
are:

Crown

Chapter 7 Resources 315

Overlap
Butted
ClinchOut
Eyelet
Representations of these values are displayed in Figure 7.14.

StitchFromFront boolean If true, Stitching is done from front to back. Otherwise it is
done from back to front.

StitchPositions ? NumberList Array containing the stitch positions. The center of the stitch
must be specified, and the number of entries must match the
number given in NumberOfStitches.

StitchWidth ? double Width of the stitch to be used.

WireGauge? double Width of the wire to be used.

WireBrand? string Brand of the wire to be used.

7.2.88 Surface
This resource describes the marks on a sheet surface. Up to two Surface resources may exist on a Sheet.

Resource Properties
Resource class: Parameter
Resource referenced by: Sheet
Partition: -
Input of processes: -
Output of processes: -

Resource Structure
Name Data Type Description
Side enumeration The side of the Sheet that the Surface describes.

Possible values are:

Front
Back

SurfaceContentsBox ? rectangle? This rectangle provides the region of the surface into
which the contents of ContentObjects and MarkObjects
are to be imaged.

PlacedObject * element Provides a list of the ContentObject and MarkObject
elements to be placed on to the surface. Contains the
marks on the surface in rendering order. See the
description that follows. Note that PlacedObject is not
a container but an abstract type.

Structure of the abstract PlacedObject Sub-element
The marks that may be placed on the designated Surface come in two varieties: ContentObject or
MarkObject elements. Both inherit characteristics from the abstract PlacedObject element type, and both
are described below.

316 Chapter 7 Resources

Name Data Type Description
ClipBox ? rectangle Clip path in the coordinates of the

SurfaceContentsBox.
CTM matrix Transformation matrix of the object in the

SurfaceContentsBox.
SourceClipPath ? path Clip path for the PlacedObject in the coordinates of the

source page.
Type enumeration Describes the kind of PlacedObject. Possible values

are:

Content
Mark

Structure of ContentObject Sub-elements
ContentObject elements describe containers for page content on a surface. They are filled from the
Content RunList of the Imposition process.

Using Expressions in the OrdExpression Attribute
Expressions can use the operators +, – , *, /,%and parentheses, operating on integers and two variables: s
for signature number (starting at 0) and n for number of pages to be imposed in one document. The
operators have the same meaning as in the C programming language. Expressions are evaluated with
normal “C” operator precedence. Multiplication must be expressed by explicitly including the * operator –
that is, use “2*s”, not “2 s”. Remainders are discarded.

For print applications where page count varies from Instance Document to Instance Document, imposition
templates can automatically assign pages to the correct Surface and PlacedObject position.

Name Data Type Description
HalfTonePhaseOrigin XYPair Location of the origin for screening of this

ContentObject. Specified in the coordinate systems of
SurfaceContentBox.

Ord ? integer Reference to an index in the content RunList.
OrdExpression ? string Function to calculate an Ord value dynamically, using a

value of s for signature number and n for total number
of pages in the instance document. Ord and
OrdExpression are mutually exclusive in one
PlacedObject.

Structure of MarkObject Elements
MarkObject elements describe containers for page marks on a surface. They are filled from the Marks
RunList of the Imposition process.

Of the last six element described in the following table (RegisterMark, CIELABMeasuringField,
DensityMeasuringField, ColorControlStrip, CutMark, and IdentificationField), only one can be valid at
any given time.

Name Data Type Description
Ord ? integer Reference to an index in the marks RunList

Chapter 7 Resources 317

CIELABMeasuringField ? element Specific information about this kind of mark object.

ColorControlStrip ? element Specific information about this kind of mark object.

CutMark ? element Specific information about this kind of mark object.

DensityMeasuringField ? element Specific information about this kind of mark object.

DynamicField * element Definition of text replacement for a MarkObject.
IdentificationField ? element Specific information about this kind of mark object.

LayoutElement ? element PDL description of the mark. LayoutElement and Ord
are mutually exclusive within one MarkObject.

RegisterMark ? element Specific information about this kind of mark object.

Only one of these last six elements may be valid at any
given time.

DynamicField Sub-element Properties
DynamicField provides a description of dynamic text replacements for MarkObjects. This element
should be used for production purposes, such as defining bar codes for variable data printing.

DynamicField elements are not intended as a placeholders for actual content such as addresses. Rather,
they are marks with dynamic data such as time stamps and database information.

Dynamic objects are MarkObjects with optional additional DynamicField elements that define text
replacement.

Example usage of a DynamicField Element:
<!—The RunList entry: -->
<Run … >

<LayoutElement Type="graphics">
<LayoutFile URL="Variable.pdf"/>
<DynamicInput Name="i1">Joe</DynamicInput>
<DynamicInput Name="i2">John</DynamicInput>

</LayoutElement>
</Run>

…

<!—The MarkObject in the Layout hierarchy: -->
<MarkObject Ord="0" CTM=… (…)>

<LayoutElement Type="graphics">
<LayoutFile URL="MyReplace.pdf"/>

</LayoutElement >
<DynamicField ReplaceField="___xxx___"

Format="Replacement Text for %s and %s go in here at %s on %s"
Template="i1,i2,Time,Date" Ord="0"/>

</MarkObject>

In the example above, the text “___xxx___” in the file MyReplace.pdf would be replaced by the sentence
“Replacement Text for Joe and John go in here at 14:00 on Mar-31-2000”.

MyReplace.pdf is placed at the position defined by the CTM of the MarkedObject and Variable.pdf is
placed at the position defined by the CTM of the PlacedObject.

318 Chapter 7 Resources

Structure of DynamicField Sub-element
Name Data Type Description
Format string Format string in C printf format that defines the

replacement.

InputField ? string String that must be replaced by the DynamicInput
attribute in the Contents RunList referenced by Ord
or OrdExpression.

Ord ? integer Reference to an index in the Contents RunList that
contains DynamicInput elements.

OrdExpression ? string Reference to an index in the Contents RunList that
contains DynamicInput fields. For details, see the
definition of OrdExpression in the description of the
PlacedObject element.

ReplaceField string String that must be replaced by the instantiated text
expression as defined by the Format and Template
attributes in the file referenced by Run.

Template string Template to define a sequence of variables consumed
by Format. A list of pre-defined values is found in the
description of the FileSpec resource. In addition,
DynamicInput elements of a RunList define further
variables.

7.2.89 ThreadSewingParams
This resource provides the parameters for the ThreadSewing process. It may also specify a gluing
application, which would be used principally between the first and the second or the last and the last sheet
but one. A gluing application might also be necessary if different types of paper are used.

The process coordinate system is defined as follows:
The Y-axis is aligned with the binding edge. It increases from the registered edge to the edge opposite to
the registered edge. The X-axis is aligned with the registered edge. It increases from the binding edge to
the edge opposite to the binding edge, i.e. the product front edge.

stitch

start
position lime line

working length

binding edge
(spine)

y

x

Figure 7.18 Parameters and coordinate system used for thread sewing

Chapter 7 Resources 319

Resource Properties
Resource class: Parameter
Resource referenced by: -
Partition: -
Input of processes: TheadSewing
Output of processes: -

Resource Structure
Name Data Type Description
BlindStitch boolean If true, a blind stitch after last stitch is required.

CastingMaterial ? enumeration Casting material of the thread being used. Possible values
are:

Cotton
Nylon
Polyester

CoreMaterial ? enumeration Core material of the thread being used. This attribute must
be used to define the thread material if there is no casting.
Possible values are:

Cotton
Nylon
Polyester

GlueLineRefSheets IntegerList This dictionary entry is only required if GlueLine is
defined. It contains the indices of the loose parts of the
input component after which liming should be applied. The
index starts with 0.

NumberOfNeedles integer Specifies the number of needles to be used.

NeedlePositions ? NumberList Array containing the Y-coordinate of the needle positions.
The number of entries must match the number given in
NumberOfNeedles.

Sealing boolean If true, thermo-sealing is required.

SewingPattern ? enumeration Sewing pattern. Possible values are:

Normal
Staggered
CombinedStaggered

ThreadThickness ? double Thread thickness.

ThreadBrand ? string Thread brand.

GlueLine * element Gluing parameters.

7.2.90 Tile
Each Tile resource defines how content from a Surface resource will be imaged onto a piece of media that
is smaller than the designated surface.

320 Chapter 7 Resources

Tiling occurs in some production environments when pages are imaged on to an intermediate medium and
the resulting image of the surface is larger than the media. In this case, instructions are needed to
determine how the intermediate media (tiles) will be assembled to achieve the desired output (such as a
single plate for the surface). For example, a device might require that four pieces of film be assembled to
create the image for the plate.

In general, a Tile resource will be partitioned (see section 3.8.2 Description of Partitionable Resources) by
TileID. Individual tiles are selected and matched by specifying the appropriate TileID attribute, which is
described in Table 3.18 Contents of the Part element.

Resource Properties
Resource class: Parameter
Resource referenced by: -
Partition: TileID
Input of processes: Tiling
Output of processes: -

Resource Structure
Name Data Type Description
ClipBox rectangle A rectangle that defines the bounding box of the

Surface contents which will be imaged on this Tile.
The ClipBox is defined in the coordinate system of the
Surface.

CTM matrix A coordinate transformation matrix mapping the
ClipBox for this Tile to the rectangle [0 0 X Y], where
X and Y are the extents of the media that the Tile will
be imaged onto.

7.2.91 TransferCurvePool
A transfer curve pool is a collection of TransferCurveSet elements that each contains information about a
TransferCurve. Multiple TransferCurvesSets may exist at one time. For example, one may exist for
the laser calibration of the imagesetter, one for the FilmToPlateCopy process and one for the printing
process. Each TransferCurveSet consists of one or more TransferCurve elements. A TransferCurve
element should be applied to the appropriate correlative Separation, or to all Separations when
Separation = All. All TransferCurveSets should be concatenated in the order they appear in the
TransferCurvePool.

Resource Properties
Resource class: Parameter
Resource referenced by: - SeparationControlParams
Partition: -
Input of processes: InkZoneCalculation
Output of processes: -

Resource Structure
Name Data Type Description

Chapter 7 Resources 321

TransferCurveSet * element The set of transfer curves.

Structure of TransferCurvePool Sub-element

TransferCurveSet
Name Data Type Description
Name NMTOKENS The name of the TransferCurveSet. Possible values

include:

Laser

Film2Plate

Press
TransferCurve * element List of TransferCurve entries.

Structure of TransferCurveSet Sub-element5

TransferCurve
Name Data Type Description
Curve TransferFunction The transfer function.

Separation ? string The name of the separation. The default separation
name “All” has a special meaning. In that case, this
curve should be applied to all separations.

7.2.92 TrappingDetails
This resource identifies the root of the hierarchy of resources. This hierarchy controls the Trapping
process.

Resource Properties
Resource class: Parameter
Resource referenced by: Any process that uses RunList resources
Partition: -
Input of processes: Trapping
Output of processes: -

Resource Structure
Name Data Type Description
ColorantSetName ? string A string used to identify the named colorant parameter

set.[RP42]

DefaultTrapping ? boolean If true, pages that have no defined TrapRegions are
trapped using the DefaultParams set of
TrappingParameters. The BleedBox is used for the

5 Note that this is identical to the TransferCurve element in a Color resource

Dr. Rainer Prosi
TBD-WW I don’t understand this.

322 Chapter 7 Resources

TrapZone.

If false, only pages that have TrapRegions are trapped.

Default = false

IgnoreFileParams ? boolean If true, any trapping controls provided within any source
files used by this process are ignored.

If false, trapping controls embedded in the source files
are honored.

Default = true

Trapping ? boolean If true, trapping is enabled. If omitted, the default
setting for the device is used.[RP43]

TrappingOrder ? element Trapping processes will trap colorants as if they are laid
down on the media in the order specified in
TrappingOrder. The colorant order may affect which
colors to spread, especially when opaque inks are used.

TrappingType ? integer Identifies the trapping method to be used by the trapping
process. The number identifies the minor (last three
digits) and major (any digits prior to the last three)
version of the trapping type requested.[RP44]

DefaultParams ? element A TrappingParams resource that is used when
DefaultTrapping = true.

Structure of theTrappingOrder Sub-element

Name Data Type Description
SeparationSpec* element An array of colorant names.

7.2.93 TrappingParams
This resource provides a set of controls that are used to generate traps. The values of the parameters are
chosen based on the customer’s trapping strategy, and depend largely on the content of the pages to be
trapped and the characteristics of the output device (press).

The attributes of this resource that are optional are optional in the sense that each implementation decides a
default value for them.

Resource Properties
Resource class: Parameter
Resource referenced by: TrapRegion
Partition: -
Input of processes: Trapping
Output of processes: -

Resource Structure
Name Data Type Description
BlackColorLimit number A number between 0 and 1 that specifies the lowest

color value required for trapping a colorant according to

Dr. Rainer Prosi
TBD-WW shouldn’t this then be an enumeration of true, false, default=devdefault.

Dr. Rainer Prosi
TBD-WW this is VERY adobe specific…

Chapter 7 Resources 323

the black trapping rule. This entry uses the subtractive
notion of color, where 0 is white, or no colorant, and 1
is full colorant.

BlackDensityLimit number A positive number that specifies the lowest neutral
density of a colorant for trapping according to the black
trapping rule.

BlackWidth ? number A positive number that specifies the trap width for
trapping according to the black trapping rule.
BlackWidth is specified in TrapWidth units; a value of
1 means that the black trap width is one TrapWidth
wide. The resulting black trap width is subject to the
same device limits as TrapWidth.

Enabled boolean If true, trapping is enabled for zones that are defined
with this parameter set.

HalftoneName string A name that identifies a halftone object to be used when
marking traps.

The name is the value of the ResourceName attribute
of some PDLResourceAlias resource.
If absent, the halftone in effect just before traps are
marked will be used, which may cause unexpected
results.

ImageInternalTrapping ? boolean If true, the planes of color images are trapped against
each other.

If false, the planes of color images are not trapped
against each other.

ImageResolution ? integer A positive integer indicating the minimum resolution, in
dots per inch, for downsampled images. Images can be
downsampled by a power of 2 before traps are
calculated. The downsampled image is used only for
calculating traps, while the original image is used when
printing the image.

ImageMaskTrapping ? boolean Controls trapping when the TrapZone contains a stencil
mask.

A stencil mask is a monochrome image in which each
sample is represented by a single bit. The stencil mask
is used to paint in the current color: image samples with
a value of 1 are marked; samples with a value of 0 are
not marked.

When false, none of the objects covered by the clipped
bounding box of the stencil mask are trapped. No traps
are generated between the stencil mask and objects that
the stencil mask overlays. No traps are generated
between objects that overlay the stencil mask and the
stencil mask. For all other objects, normal trapping
rules are followed. Two objects on top of the stencil
mask that overlap each other, may generate a trap,
regardless of the value of this parameter.

When true, objects are trapped to the stencil mask, and
to each other.

324 Chapter 7 Resources

ImageToImageTrapping ? boolean If true, traps are generated along a boundary between
images. If false, this kind of trapping is not
implemented.

ImageToObjectTrapping ? boolean If true, images are trapped to other objects. If false, this
kind of trapping is not implemented.

ImageTrapPlacement ? string Controls the placement of traps for images. Possible
values are:

Center – Trap is centered on the edge between the
image and the adjacent object.

Choke – Trap is placed in the image.

Normal – Trap is placed in the adjacent object.

Spread – Trap is based on the colors of the areas.

MinimumBlackWidth ? number Specifies the minimum width, in points, of a trap that
uses black ink. Allowable values are those greater than
or equal to zero.

Default = 0

SlidingTrapLimit ? number A number between 0 and 1. Specifies when to slide
traps towards a center position. If the neutral density of
the lighter area is greater than the neutral density of the
darker area multiplied by the SlidingTrapLimit, then the
trap slides. This applies to vignettes and non-vignettes.
No slide occurs at 1.

StepLimit ? number A number between 0 and 1. Specifies the smallest step
required in the color value of a colorant to trigger
trapping at a given boundary.

If the higher color value at the boundary exceeds the
lower value by an amount that is equal or greater than
the larger of 0.05 or StepLimit times the lower value
(low + max (StepLimit * low, 0.05)), then the edge is a
candidate for trapping. The value 0.05 is set to avoid
trapping light areas in vignettes.

This entry is used when not specified explicitly by a
ColorantZoneDetails sub-element for a colorant.

TrapColorScaling ? number A number between 0 and 1. Specifies a scaling of the
amount of color applied in traps towards the neutral
density of the dark area. 1 means the trap has the
combined color values of the darker and the lighter area.
0 means the trap colors are reduced so that the trap has
the neutral density of the darker area.

This entry is used when not specified explicitly by a
ColorantZoneDetails sub-element for a colorant.

TrapEndStyle ? enumeration Instructs the trap engine how to form the end of a trap
that touches another object. Possible values include:

Miter
Overlap
Other values may be added later as a result of customer
requests.

Chapter 7 Resources 325

Default = Miter

TrapJoinStyle ? enumeration Specifies the style of the connection between the ends of
two traps created by consecutive segments along a path.
Possible values are:

Bevel
Miter
Round
Default = Miter

TrapWidth ? number A positive number. Specifies the trap width in points.
Also defines the unit used in trap width specifications
for certain types or objects, such as BlackWidth.

The valid range is usually at least 1 - 40 pixels.

ColorantZoneDetails element A ColorantZoneDetails sub-element. As with the
entries in the TrappingDetails::ColorantDetails
dictionary, entries in this dictionary reflect the results of
any named colorant aliasing specified.

Each entry defines parameters specific for one named
colorant. If omitted for a specific colorant, the relevant
parameters in the TrappingDetails::ColorantDetails
dictionary are used.

If the colorant named is neither listed in the
ColorantParams array, nor implied by the
ProcessColorModel, for the ColorantControl object
in effect when these TrappingParameters are applied,
the entry is not used for trapping.

Structure of ColorantZoneDetails Sub-element
Name Data Type Description
Colorant string The colorant name that occurs in the ColorantParams

array of the ColorantControl object used by the
process.

StepLimit number A number between 0 and 1. Specifies the smallest step
required in the color value of a colorant to trigger
trapping at a given boundary.

If the higher color value at the boundary exceeds the
lower value by an amount that is equal or greater than
the larger of 0.05 or StepLimit times the lower value
(low + max (StepLimit * low, 0.05)), then the edge is a
candidate for trapping. The value 0.05 is set to avoid
trapping light areas in vignettes.

If omitted, the StepLimit attribute in the
TrappingParams resource is used.

326 Chapter 7 Resources

TrapColorScaling number A number between 0 and 1. Specifies a scaling of the
amount of color applied in traps towards the neutral
density of the dark area. 1 means the trap has the
combined color values of the darker and the lighter
area. 0 means the trap colors are reduced so that the
trap has the neutral density of the darker area.

If omitted, the TrapColorScaling attribute in the
TrappingParameters resource is used.

7.2.94 TrapRegion
This resource identifies a set of pages to be trapped, an area of the pages to trap, and the parameters to use.

Resource Properties
Resource class: Parameter
Resource referenced by: -
Partition: -
Input of processes: Trapping
Output of processes: -

Resource Structure
Name Data Type Description
TrapZone ? path Each element within TrapZone is one sub-path of a

complex path. The TrapZone is the area that results
when the paths are filled using the non-zero winding
rule.

When absent, the MediaBox array for the RunList
defines the TrapZone.

Pages IntegerRange-
List

Identifies a set of pages from the RunList to trap using
the specified geometry and trapping style.

TrappingParams element The set of TrappingParams which will be used when
trapping in this region.

7.2.95 TrimmingParams
This resource provides the parameters for the Trimming process.

The process coordinate system is defined as follows:
The y-axis is aligned with the binding edge. It increases from the registered edge to the edge opposite to
the registered edge. The x-axis is aligned with the registered edge. It increases from the binding edge to
the edge opposite to the binding edge, i.e. the product front edge.

Chapter 7 Resources 327

y

x

block before
trimming

binding edge

trimmed block

origin of
operation

coordinate
system

width

height

trimming offset

Figure 7.19 Parameters and coordinate system used for trimming

Resource Properties
Resource class: Parameter
Resource referenced by: -
Partition: -
Input of processes: Trimming
Output of processes: -

Resource Structure
Name Data Type Description
Height ? double Height of the trimmed product.

TrimmingOffset ? double Amount to be cut at bottom side.

Width ? double Width of the trimmed product.

7.2.96 VeloBindingParams
This resource describes the details of the VeloBinding process.

Resource Properties
Resource class: Parameter
Resource referenced by: -
Partition: -
Input of processes: VeloBinding
Output of processes: -

328 Chapter 7 Resources

Resource Structure
Name Data Type Description
Brand ? string The name of the comb manufacturer and the name of the

specific item.

Distance ? double The distance between the pins and the distance between the
holes of the pre-punched sheets must be the same.

Length ? double The length of the pin is determined by the height of the pile of
sheets to be bound.

StipColor ? colorant Determines the color of the strip.

7.2.97 VerificationParams
This resource provides the parameters of a Verification process.

Resource Properties
Resource class: Parameter
Resource referenced by: -
Partition: -
Input of processes: Verification
Output of processes: -

Resource Structure
Name Data Type Description
FieldRange ? IntegerRange

List
Range list of integers that determines which characters of the
data in IdentificationField should be applied to the field
formatting strings. Defaults = “0~-1”, which means first-to-
last.

InsertError ? string Database insertion statement in C printf format defining how
information read from the IdentificationField resource of
the Verification process should be stored in case of
verification errors. The database is defined by the
DBSelection resource of the Verification process. This
field must be specified if a database is selected.

InsertOK ? string Database insertion statement in C printf format defining how
information extracted from the IdentificationField should be
stored in case of verification success. The database is defined
by the DBSelection resource of the verification node. This
field must be specified if a database is selected.

Tolerance ? double Ratio of tolerated verification failures to the total number of
tests.

0 = none allowed, 1.0 = all.

Usage of FieldRange and Format Strings.
A database field name can be calculated from the characters of the IdentificationField using standard C
printf notation and the FieldRange attribute. Each range that is defined in FieldRange is passed to printf
as one string that is applied to the format. The order is maintained. Note that SQL was chosen for
illustrative purposes only. The mechanism is defined for any database interface.

Chapter 7 Resources 329

Example:
IdentificationField string : “1234:John Doe”
FieldRange : “6~-1 1~4”
FieldOK : “Insert true into Va where Name = ’%s’ and ID = %s”
Resulting string: : “Insert true into Va where Name = ’John Doe’ and ID = 1234”

7.2.98 WireCombBindingParams
This resource describes the details of the WireCombBinding process.

Resource Properties
Resource class: Parameter
Resource referenced by: -
Partition: -
Input of processes: WireCombBinding
Output of processes: -

Resource Structure
Name Data Type Description
Brand ? string The name of the comb manufacturer (e.g. Wire-O®) and the

name of the specific item.

Color ? colorant Determines the color of the comb.

Diameter ? double The comb diameter is determined by the height of the block of
sheets to be bound.

Distance ? double The distance between the “teeth” and the distance between the
holes of the pre-punched sheets must be the same.

Material ? enumeration The material used for forming the wire comb binding.
Possible values are:

LaqueredSteel
TinnedSteel
ZincsSteel

Shape ? enumeration The shape of the wire comb binding. Possible values are:

single – Each “tooth” is made with one wire
twin – The shape of each “tooth” is made with a double wire

Thickness ? double The thickness of the comb material.

330 Chapter 8 Building a System Around JDF

Chapter 8 Building a System Around JDF

8.1 Implementation Considerations and Guidelines
JDF parsing –JDF devices must implement JDF parsing. At a minimum, a device must be able to search
the JDF to find a node whose process type it is able to execute. In addition, a device must be able to
consume the inputs and produce the outputs for each process type it is able to execute.

Test run – To reduce failures during processing, it is recommended that either individual devices or their
controller support the testrun functionality. This prevents the case where a device begins processing a node
that is incomplete or mal-formed.

8.2 JDF and JMF Interchange Protocol
A system of vendor independent elements must define a protocol that allows them to interchange
information based on JDF and JMF.

8.2.1 File-Based Protocol (JDF only)
The file-based protocol is only a solution for JDF job tickets, not JMF messages. A JMF-compliant
controller must implement the HTTP protocol. A file-based protocol is based on hot-folders. Every
processor must define an input hot-folder and an output folder for JDF. In addition the
“SubmitQueueEntry” message contains a URL attribute that allows specification of arbitrary JDF locators.

Implementation of JDF file-based protocol is simple, but it is important to note that the protocol does not
support acknowledgement receipts for protocol error handling. It requires that the receiver polls the output
folder of the processor. Finally, granting read/write access to your hot-folder negates the security
functions.

8.2.2 HTTP-Based Protocol (JDF + JMF)
HTTP is a stable, vendor-independent protocol, and it supports a variety of advantageous features. For
example, it offers a wide availability of tools, it is already a common technology among vendors who use
HTTP, and it has a well-defined query-response mechanism (HTTP POST message). It also offers
widespread firewall support and secure connections via SSL when using HTTPS.

8.2.3 Protocol Implementation Details
JDF Messaging will not specify a standard port. We recommend that you use the standard HTTP port 80 in
order to avoid firewall problems.

Implementation of Messages
Only HTTP servers may be targeted by queries. This is done with a standard HTTP Post request. The JMF
is the body of the HTTP post message. The response is the body of the initiated HTTP post response.

HTTP Push Mechanisms

Chapter 8 Building a System Around JDF 331

Since HTTP is a stateless protocol, push mechanisms, such as regular status bar updates, are non-trivial
when communicating with a client. Work-arounds can, however, be implemented. For example, a Java
applet that polls the server in regular intervals can be used.

8.2.4 Mime Types and File Extensions
JDF and JMF documents have a MIME type of Application/JDF and Application/JMF respectively. It is
recommended that the controller use a file extension of .jdf when using file based jdf in an environment
that supports file name extensions.

8.3 MIS Requirements
MIS systems may:

• ignore Audit elements when they receive complete information about a process execution via
JMF.

• decompose JDF into an internal format such as database tables.

332 Appendix A Encoding

Appendix A Encoding
This appendix lists a number of commonly used JDF data types and structures and their XML encoding.
Data types are simple data entities such as strings, numbers and dates. They have a very straightforward
string representation and are used as XML attribute values. Data structures, on the other hand, describe
more complex structures that are built from the defined data types, such as colors

A.1 XML Schema Data Types
JDF is based on the XML Schema specification. The JDF data types used in this specification are
summarized in the table below and comply with the lexical representation of (primitive) data types defined
by [XML Schema Part 2: Datatypes]. For a complete definition of each of these data types, please refer to
the final specification of XML Schema Datatypes.

XML Data Type Description Example
boolean Has the value space required to

support the mathematical concept of
binary-valued logic: {true, false}.

<Example Enable="true"/>

date Represents a time period that starts at
midnight on a specified day and lasts
for 24 hours.

<Example StartDate="1999-05-
31"/>

double Corresponds to IEEE double-
precision 64-bit floating point type

<Example Pi="3.14"/>

ID Represents the ID attribute from
[XML Specification Version 1.0]. It
basically represents a name or string
that contains no space characters.

<Example ID="R-16"/>

IDREF Represents the IDREF attribute from
[XML Specification Version 1.0].
For a valid XML-document an
element with the ID value specified
in IDREF must be present in the
scope of the document.

<Example IDREF="R-16"/>

IDREFS Represents the IDREFS attribute
from [XML Specification Version
1.0]. More specifically, this is a
whitespace-separated list of IDREFs.

<Example IDREFS="R-12 R-16"/>

integer Represents numerical integer values. <Example Copies="36"/>

language Represents a natural language
defined in IETF rfc 1766.
http://www.ietf.org/rfc/rfc1766.txt

<Example Language=”de”/>

NMTOKEN Represents the NMTOKEN attribute
type from [XML Specification
Version 1.0]. It basically represents
a name or string that contains no
space characters.

<Example Alias="ABC_6"/>

NMTOKENS Represents the NMTOKENS
attribute type from [XML
Specification Version 1.0]. More
specifically, this is a whitespace-

<Example AliasList="ABC_6
ABCD_3 DEGF"/>

http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/REC-xml#NT-TokenizedType
http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/REC-xml#NT-TokenizedType
http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/REC-xml#NT-TokenizedType
http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/REC-xml
http://www.ietf.org/rfc/rfc1766.txt
http://www.w3.org/TR/REC-xml#NT-TokenizedType
http://www.w3.org/TR/REC-xml#NT-TokenizedType
http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/REC-xml#NT-TokenizedType
http://www.w3.org/TR/REC-xml#NT-TokenizedType

Appendix A Encoding 333

separated list of NMTOKENs.
string Represents character strings in XML. <Example Name="Test"/>

time Represents an instant of time that
recurs every day.

<Example StartAt="13:20:00-
05:00"/>

timeInstant Represents a combination of date and
time values representing a specific
instant of time.

<Example Start="1999-05-
31T13:20:00-05:00"/>

timeDuration Represents a duration of time. <Example
Duration="P1Y2M3DT10H30M"/>

URI Short for URI-reference. Represents
a Uniform Resource Identifier (URI)
Reference as defined in Section 4 of
[RFC 2396].

<Example
URI="file://hubble/test.txt"/>

URL Short for URL-reference.
Represents a Uniform Resource
Locator (URL) Reference as defined
in Section 4 of [RFC 2396].

<Example
URL="file://hubble/test.txt"/>

A.2 JDF Data Types
The data types listed and described in this section are defined by JDF. They are also found in PJTF and
CIP3.

A.2.1 CMYKColor
XML attributes of type CMYKColor are used to specify CMYK colors.

Encoding
CMYKColor attributes are primitive data types and are encoded as a string of four numbers in the range of
[0…1.0] separated by spaces. A value of 0 specifies no ink and a value of 1 specifies full ink.

Example
<Color cmyk = "0.3 0.6 0.8 0.1"> (brick red)

A.2.2 IntegerList
XML attributes of type IntegerList are used to describe a variable length list of integer values.

Encoding
An IntegerList is encoded as a string of integers separated by spaces.

Example
<XXX list="0 1 2 3 4 1 3 0"/>

A.2.3 IntegerRange
XML attributes of type IntegerRange are used to describe a range of integers. In some cases, ranges are
defined for an unknown number of objects. In these cases, a negative value denotes a number counted

334 Appendix A Encoding

from the end. For example, -1 is the last object, -2 the second to last, and so on. IntegerRanges that follow
this convention are marked in the respective attribute descriptions.

If the first element of an IntegerRange specifies an element that is behind the second element, the Range
specifies a list of integers in reverse order, counting backwards. For example “6~4” = ”6 5 4” and
“-1~0” = “last… 2 1 0”.

Encoding
An IntegerRange is represented by two integers, separated by a “~” (tilde) character.

Example
<XXX range="-3~-5"/>

A.2.4 IntegerRangeList
XML attributes of type IntegerRangeList are used to describe a list of IntegerRanges and/or enumerated
integers.

Encoding
A IntegerRangeList is represented by a sequence of IntegerRanges and integers, separated by spaces.

Example
<XXX list="-1~-6 3~5 7 9~128 131"/>

A.2.5 LabColor
XML attributes of type LabColor are used to specify absolute Lab colors.

The Lab values are normalized to a Light of D50 and an angle of 2 degrees as specified in CIE Publication
15.2 - 1986 "Colorimetry, Second Edition" and ISO 13655:1996 "Graphic technology - Spectral
measurement and colorimetric computation for graphic arts images"

This corresponds to a white point of X = 0.9642, Y = 1.0000, and Z = 0.8249 in CIEXYZ color space.
L is restricted to a range of [0..100]; a and b are unbounded.

Encoding
LabColors are primitive data types and are encoded as a string of three numbers separated by spaces:
“L a b”

Example
<Color … Lab="51.9 12.6 -18.9">

A.2.6 Matrix
Coordinate transformation matrices are widely used throughout the whole printing process, especially in
layout resources. They represent 2D transformations as defined by the PostScript and PDF Reference
manuals. For more information, refer to the respective Reference Manuals, and look for “Coordinate
Systems and Transformations.”

Appendix A Encoding 335

Encoding
Coordinate transformation matrices are primitive data types and are encoded as a string attribute of six
numbers, separated by spaces:
"a b c d Tx Ty"

Tx and Ty describe distances and are defined in points.

Example
<ContentObject CTM="1 0 0 1 3.14 21631.3" … />

A.2.7 NamedColor
XML attributes of type NamedColor are not sufficient for process color definition, but rather serve to
define the colors of preprocessed products such as wire-o binders and cover leaflets.

Table A.1 Mapping of named colors to sRGB colors

sRGBColor value Color name
1 1 1 white

0.8 0.8 0.8 grey

0.5 0.5 0.5 grey

1 0 0 red

1 1 0 yellow

0 1 0 bright green

0 1 1 turquoise

0 0 1 blue

1 0 1 pink

0.5 0 0.5 violet

0 0 0.5 dark blue

0 0.5 0.5 teal

0 0.5 0 green

0.5 0.5 0 dark yellow

0.5 0 0 dark red

A.2.8 NameRange
XML attributes of type NameRange are used to describe a range of NMTOKEN data that are acquired from
a list of named elements, such as named pages in a PDL file. It depends on the ordering of the targeted list,
which names are assumed to be included in the NameRange. The following two possibilities exist:

1. There is no explicit ordering. In this case, alphabetical ordering is implied.

2. There is explicit ordering, such as in a list of named pages in a RunList. In this case, the ordering of

the Runlist defines the order and all pages between the end pages are included in the NameRange.

Encoding

336 Appendix A Encoding

A NameRange attribute is represented by two NMTOKEN-{~}, separated by a “~” (tilde) character.

Example
<XXX NameRange="Jack~Jill"/>

A.2.9 NameRangeList
XML attributes of type NameRangeList are used to describe a list of NameRanges.

Encoding
A NameRangeList is represented by a sequence of NameRanges and NMTOKEN, separated by spaces.

Example
<XXX list="A b~f x z"/>

A.2.10 NumberList
XML attributes of type NumberList are used to describe a variable length list of numbers (double or
integer).

Encoding
A NumberList is encoded as a string of space-separated numbers.

Example
<XXX list="3.14 1 .6"/>

A.2.11 NumberRange
XML attributes of type NumberRange are used to describe a range of numbers. Mathematical spoken, the
two numbers define a closed interval.

Encoding
A NumberRange is represented by two numbers, separated by a “~” (tilde) character.

Example
<XXX range="-3.14~5.13"/>

A.2.12 NumberRangeList
XML attributes of type NumberRangeList are used to describe a list of NumberRanges and/or enumerated
numbers.

Encoding
A NumberRangeList is a sequence of NumberRanges and numbers separated by spaces.

Example

Appendix A Encoding 337

<XXX list="-1~-6 3.14~5.13 7 9~128 131"/>

A.2.13 Path
XML attributes of type Path are used in JDF for describing parameters such as Trapzones and Clippaths. In
PJTF, paths are encoded as a series of moveto-lineto operations. JDF has a different encoding, which is
able to describe more complex paths, such as beziers.

Encoding
Paths are encoded as an XML string attribute formatted with PDF path operators. This allows for easy
adoption in PS and PDF workflows.

PDF operators are limited to those described in section 8.6.1 “Path segment operators” in "Portable
Document Format Reference Manual", Version 1.3.

Example
<ElementWithPath path="0 0 m 10 10 l 20 20 l"/>

A.2.14 Rectangle
XML attributes of type Rectangle are used to describe rectangular locations on the page, sheet, or other
printable surface. A rectangle is represented as an array of four numbers—llx lly urx ury—specifying the
lower-left x, lower-left y, upper-right x, and upper-right y coordinates of the rectangle, in that order.

All numbers are defined in points.

Encoding
To maintain compatibility with PJTF, rectangles are primitive data types and are encoded as a string of four
numbers, separated by spaces:
"llx lly urx ury"

Example
<ContentObject ClipBox="0 0 3.14 21631.3" … >

Implementation Remark
Since all numbers are real numbers, any comparison of boxes should take into account certain rounding
errors. For example, different boxes may be considered equal when all numbers are the same within a
range of 1 point.

A.2.15 sRGBColor
XML attributes of type sRGBColors are used to specify sRGB colors.

Encoding
sRGBColors are primitive data types and are encoded as a string of three numbers in the range of [0…1.0]
separated by spaces A value of 0 specifies no intensity (black) and a value of 1 specifies full intensity:
:
“r g b”

338 Appendix A Encoding

Example
<Color sRGB="0.3 0.6 0.8" … >

A.2.16 TimeRange
XML attributes of type TimeRange are used to describe a range of time. More specifically, it describes a
time span that has a specific start and end. Mathematically, two timeInstant values define a closed time
interval.

Encoding
A TimeRange is represented by two timeInstants, separated by a “~” (tilde) character.

Example
<XXX range="1999-05-31T13:20:00-05:00~2000-08-03T23:50:00-05:00"/>

A.2.17 TransferFunctions
XML attributes of type TransferFunctions are functions that have a one-dimensional input and output. In
JDF, they are encoded as a simple kind of sampled functions and used to describe transfer curves of
processes such as Film-to-Plate-copy, LaserCalibration and Press Calibration. They may also be used in
Color specifications, for example when converting a spot tint value to a CMYK value.

A transfer curve consists of a series of XY pairs where each pair consist of the stimuli(X) and the resulting
value(Y). To calculate the result of a certain stimuli, the following algorithms must be applied:

1. If x < = first stimuli, then the result is the y value of the first xy pair.
2. If x > = the last stimuli, then the result is the y value of the last xy pair.
3. Search the interval in which x is located.
4. Return the linear interpolated value of x within that interval.

Encoding
A TransferCurve is encoded as a string of space-separated numbers. The numbers are the XY pairs that
build up the transfer curve.

Example
<someElementWithTransferCurve someCurve="0 0 .1 .2 .5 .6 .8 .9 1 1"/>

A.2.18 XYPair
XML attributes of typ XYPair are used to describe sizes like MediaSize and PageSize. They can also be
used to describe positions on a page.

All numbers that describe lengths are defined in points.

Encoding
XYPair attributes are primitive data types and are encoded as a string of two numbers, separated by spaces:
“x y”

Example

Appendix A Encoding 339

<CutBlock BlockSize="612 792">

Implementation Remark
Since all numbers are real numbers, comparison of XYpairs should take into account certain rounding
errors. For example, different XYpairs may be considered equal when all numbers are the same within a
range of 1 point.

A.3 JDF Data Structures
The following data structures are unique to JDF, although they may be comprised of existing XML
structures.

A.3.1 Links
Links are defined by a combination of XML attributes of type ID and XML attributes of type IDREF. The
referenced element or target of the link contains the actual information and an ID attribute, whereas the
reference or link itself contains an IDREF attribute. The value of an ID attribute must be unique within an
XML file. In order to keep the implementation burden on JDF compliant processors low, linking between
distributed JDF files is not supported. The ID attribute of the target is always named ID. This is not
required by XML, but it makes implementation simpler. The IDREF attribute in a link, however, can have
varying names depending on the link type. The names of the IDREF attributes are defined in this
document.

The following example specifies a trivial link and target pair1:

<Target ID="id1" (lots of attributes)><Subelement/></Target>
…
<Link rRef="id1"/>

A.4 JDF File Formats
This section describes the specific file formats used by JDF. JDF uses MIME files to package different
files in a single file for transmission, and when representing preview images, JDF uses the PNG image file
format. The following sections explain in what ways MIME and PNG are used in JDF.

A.4.1 MIME File Packaging
JDF files are XML files but may contain references (URLs) to external data files. The following external
data file types are identified, although any valid MIME file type may be referenced:
• Preview images.

They are encoded using the PNG format.
• ICC Profiles.
• Preflight Profiles.
• PDL files (PageDescription files).
• …

One of the requirements for JDF is to support the ability to make a single, selfcontained job package that
contains the JDF with all of its related files, maintaining the external data references. That package will be
send to a remote location where it is used for further processing. This section describes how JDF uses
MIME to achieve this requirement.

1 Note that the element names were chosen for simplicity and do not imply any naming conventions for
targets and links.

340 Appendix A Encoding

MIME (Multipurpose Internet Mail Extensions) is an internet standard that defines mechanisms for
specifying and describing the format of internet message bodies. One of its applications is the MIME
Multipart/related type and is used by JDF.

The MIME Multipart/Related Content-type specification can be found at
http://rfc.roxen.com/rfc/rfc2112.html “The MIME Multipart/Related Content-type”

A.4.1.1 MIME Basics
MIME is comprised of headers and bodies. In case of Multipart messages, the body consists of multiple
messages, each identified by the individual MIME header and separated by an unique boundary string.
Normally a MIME-user agent uses the boundary string to separate different message parts, and JDF MIME
files are compliant with that mechanism. Furthermore, JDF defines a Content-Length mechanism that
enables fast scanning of MIME files for their body parts.

A.4.1.2 MIME Fields

Content Type
This field is always required.

Content Type identifies the MIME type of the message (part). The Multipart header uses this to identify
itself as a multipart message and the sub parts also have MIME types to identify their content.

Content ID
This field is required for every part that is referenced by other parts.

Content ID identifies each different part within a multipart MIME message. Its value can be anything as
long as it is defined using USASCII. It is good practice to limit yourself to using only alphanumeric
characters or only the first 127 characters of the USASCII character set in order to avoid confusing less
intelligent MIME agents.

Content Transfer Encoding
This field is optional, and its default = none.

MIME prescribes three different encodings: None, Base64 and QuotedPrintable. When no encoding is
used, the data are only encapsulated by MIME headers. Base64 and QuotedPrintable encodings are
commonly used algorithms for converting 8-bit and binary data into 7-bit data and vice versa. Although
these encodings are not imposed, JDF agents that support MIME must be able to handle them.

A.4.1.3 CID URL scheme
One of the benefits of the MIME multipart/related mediatype is the ability to refer from one bodypart to
another bodypart. This is done by using the cid: URL addressing scheme, specified in
http://rfc.roxen.com/rfc/rfc2111.html “Content-ID and Message-ID Uniform Resource Locators”.
Please look at the example to see how it is used.

Example

http://rfc.roxen.com/rfc/rfc2112.html
http://rfc.roxen.com/rfc/rfc2111.html

Appendix A Encoding 341

MIME-Version: 1.0
Content-Type: multipart/related; boundary=abcdefg0123456789

--abcdefg0123456789
Content-Type: text/xml

<JDF … >
<PreviewImage separation = "Pantone 128" URL="cid:123456.png" />
</JDF>

--abcdefg0123456789
Content-Type: image/png
Content-Transfer-Encoding: base64
Content-ID: 123456.png
Content-Length: 12345

BASE64DATA
BASE64DATA

--abcdefg0123456789--

A.4.1.4 JDF Agent Requirements
All JDF agents must be prepared to receive JDF files that are MIME encoded. They may choose not to
support it, but they should be able to handle these JDF files gracefully. Agents that do support MIME must
support base64 and QuotedPrintable encodings.

A.4.2 HTTP 1.0 Field

Content Length
Although this field is optional, it is recommended that it be included.

Content Length is used to optimize the performance of scanning multipart messages. Each multipart
bodypart may have an optional Content-Length header field. Its syntax is identical to the syntax defined by
RFC1945 “HTTP1.0”.

When present, the Content Length identifies the number of octets of the encoded bodypart. When no
encoding as is the case with 7bit, 8bit, binary, it represents the size of the bodypart. Otherwise it depends
on what encoding method is used encoding (base64, QuotedPrintable) and what the relationship is between
the encoded size and the bodypart size. If an agent composing a MIME message can not derive a Content
Length for its encoded bodyparts, it must omit the Content-Length field.

An agent parsing such a message can use the Content-Length field to seek to the end of the body. This
position is calculated by using the position of the first byte of the bodypart and adding the Content Length.
At that position (one byte after the bodypart contents), the agent must check if the following characters are
one of either “\r\n—boundary” or “—boundary.” If not, the agent must ignore the Content-Length field
and resume the normal MIME Multipart behaviour and restart scanning for the boundary from the
beginning of the bodypart.

A.4.3 PNG Image Format
JDF uses the PNG images for representing preview images. CIP3 defined two formats: composite CMYK
and separated. With PNG, only the separated format is supported, the composite CMYK must be

342 Appendix A Encoding

represented as separated CMYK. Thus, preview images are stored as separate PNG images and JDF links
them together.

JDF Specification
Appendix B

Appendix B Schema

This appendix lists the schemas or URLs of those which are required for the creation and parsing of JDF-
documents.

B.1 Schema of the JDF-node
The following shows the schema of a JDF node.
TBD…

344 Appendix C Converting PJTF to JDF

Appendix C Converting PJTF to JDF
This appendix is provided as a guide to developers writing applications that will consume PJTF version 1.1
jobs and produce JDF.

C.1 PJTF Object Conversion
Many PJTF objects are directly translatable to JDF processes or resources. Others, especially those
containing multiple keys, correspond to multiple processes and resources. For example, the
JobTicketContents object corresponds to four JDF processes and three JDF resources. And still others,
such as AuditObject, cannot be translated to JDF at all.

Listed below are the prominent PJTF objects and the JDF components to which they correspond. Each
section heading contains the title of the object in question, and each section contains a descriptive table.
The first column in the tables, entitled JDFKey or Object, contains a list of the keys or objects contained
within the object being described. For example, the Accounting object contains an Address object, while
the Address object contains an Address key. If no sub-object or key is contained within the object, then
the first column is left blank and the process or resource listed is assumed to correspond directly to that
object.

C.1.1 Accounting
PJTF Key or Object JDF Process JDF Resource Description
Address - Address -

C.1.2 Address
PJTF Key or Object JDF Process JDF Resource Description
Address - Address Used whenever people or

organizations need to be identified.

C.1.3 Analysis
PJTF Key or Object JDF Process JDF Resource Description
All keys - Analysis -

C.1.4 AuditObject
Audit objects may not be translated. PJTF Audit objects describe the results of operations on files, while
JDF Audit elements describe the results of processes, so there is a basic incompatibility between the two.
In addition, PJTF Audit objects will not be needed to direct further processing of the job after it is
converted to JDF.

C.1.5 ColorantAlias
PJTF Key or Object JDF Process JDF Resource Description
All keys - - Maps to a sub-element of the

ColorantControl resource.

Appendix C Converting PJTF to JDF 345

C.1.6 ColorantControl
PJTF Key or Object JDF Process JDF Resource Description
All keys - ColorantControl -

C.1.7 ColorantDetails
PJTF Key or Object JDF Process JDF Resource Description
All keys - - Keys in the PJTF ColorantDetails

dictionary are a set of colorant
names. The values are
DeviceColorant objects.

C.1.8 ColorantZoneDetails
PJTF Key or Object JDF Process JDF Resource Description
All keys - TrappingParams DeviceColorant map to the

ColorantZoneDetails sub-element
of the TrappingParams. resource.

C.1.9 ColorSpaceSubstitute
PJTF Key or Object JDF Process JDF Resource Description
All keys - - Maps to a sub-element of the

ColorantControl resource.

C.1.10 Delivery
PJTF Key or Object JDF Process JDF Resource Description
All keys Delivery Address Specifies a quantity of a product to

be delivered to an address.

C.1.11 DeviceColorant
PJTF Key or Object JDF Process JDF Resource Description
All keys - - Maps to a Color sub-element of the

ColorPool resource. The name is
entered in the SeparationSpec of a
TrappingDetails resource.

C.1.12 Document
JobTicketContents, Document and PageRange objects are decomposed into a number of different JDF
objects. Most of the key/value pairs translate into various resources.

PJTF Key or Object JDF Process JDF Resource Description
bleed media trim - RunList Maps to attributes of the

RunList resource or to
processes in which they are

346 Appendix C Converting PJTF to JDF

used.

ColorantControl - ColorantControl -

Files - RunList
FileSpec

Maps to FileSpec
resources contained within
Run elements.

Finishing AdhesiveBinding
EndSheetGluing
SaddleStitching
SideSewing
Stitching
ThreadSewing

AdhesiveBinding-
Params
EndSheetGluing-
Params
SaddleStitching-
Params
SideSewingParams
StitchingParams
ThreadSewingParams

-

FontPolicy - FontPolicy The resource is attached to
the applicable processes.

IgnoreHalftone - - Maps to the
IgnoreHalftone attribute of
the PDFToPS-
ConversionParams
resource.

InsertPage Imposition RunList
Sheet

Occurs as an attribute either
of RunList resources or of
Sheet resources referenced
by Imposition processes.

InsertPage Imposition RunList
Sheet

Appears as an attribute of
the listed resources and is
referenced by the listed
process.

NewSheet Imposition InsertSheet See Bill (RunList, Run)

Media - Media Maps to a sub-element of
the ExposedMedia
resource.

MediaSource - - Maps to a sub-element of
the DigitalPrinting-
Params resource.

MediaUsage Dividing DividingParams Specifies controls for roll-
fed media.

Rendering Rendering - -

Trailer Imposition InsertSheet See Bill (RunList, Run)

Trapping Trapping - -

C.1.13 Finishing
Finishing operations are derived from CIP3 PPF. Conversion of PJTF Finishing objects is vendor-
dependent, since the PJTF specification does not describe any detail for Finishing objects.

Appendix C Converting PJTF to JDF 347

PJTF Key or Object JDF Process JDF Resource Description
All keys AdhesiveBinding

EndSheetGluing
SaddleStitching
SideSewing
Stitching
ThreadSewing

AdhesiveBinding-
Params
EndSheetGluing-
Params
SaddleStitching-
Params
SideSewing-
Params
StitchingParams
ThreadSewing-
Params

-

C.1.14 FontPolicy
PJTF Key or Object JDF Process JDF Resource Description
All keys Interpreting Interpreting-

Params
See Bill

C.1.15 InsertPage
PJTF Key or Object JDF Process JDF Resource Description
All keys - - See Bill

C.1.16 InsertSheet
PJTF Key or Object JDF Process JDF Resource Description
All keys - InsertSheet -

C.1.17 Inventory
PJTF Key or Object JDF Process JDF Resource Description

C.1.18 JobTicket
PJTF Key or Object JDF Process JDF Resource Description
All keys except Audit,
Scheduling,
PreflightResults

Any process Any resource Keys may be represented at various
levels of the JDF tree. Contents are
represented as processes, resources,
and versions.

C.1.19 JobTicketContents

348 Appendix C Converting PJTF to JDF

JobTicketContents, Document and PageRange objects are decomposed into a number of different JDF
objects. Most of the key/value pairs translate into various resources.

PJTF Key or Object JDF Process JDF Resource Description
Accounting - - Maps to the CustomerInfo

element.

Administrator - - Maps to the CustomerInfo
element.

ColorantControl - ColorantControl -

Delivery Delivery DeliveryParams -

Documents - RunList May require more than one
RunList resource.

EndMessage - - Maps to the End attribute of the
NodeInfo element.

Finishing AdhesiveBinding
EndSheetGluing
SaddleStitching
SideSewing
Stitching
ThreadSewing

AdhesiveBinding-
Params
EndSheetGluing-
Params
SaddleStitching-
Params
SideSewing-
Params
StitchingParams
ThreadSewing-
Params

-

FontPolicy Interpreting
PDFToPS-
Conversion

FontPolicy The FontPolicy resource is
attached to any process that uses
it.

IgnoreHalftone - - Maps to the IgnoreHalftone
attribute of the PDFToPS-
ConversionParams resource.

InsertPage Imposition RunList
Sheet

Occurs as an attribute either of
RunList resources or of Sheet
resources referenced by
Imposition processes.

JobName CustomerJobName in the
CustomerInfo element of the
JobInfo node.

Layout Imposition Layout -

MarkDocuments Imposition RunList Requires one of two RunList
resources, each of which is a
resource of the Imposition
process.

MediaSource - - Maps to a sub-element of the
DigitalPrintingParams
resource.

MediaUsage Dividing DividingParams Specifies controls for roll-fed
media

Appendix C Converting PJTF to JDF 349

media.

NewSheet Imposition InsertSheet See Bill (RunList, Run)

PrintLayout Imposition - Maps to a sub-element of the
Layout resource.

Rendering Rendering - Maps to the attribute of the
Rendering process.

Scheduling - - The Scheduling object is not
translated.

StartMessage - - Maps to the Start attribute of the
NodeInfo element.

Submitter - - Maps to the CustomerInfo
element.

Trailer Imposition InsertSheet See Bill (RunList, Run)

Trapping Trapping - -

C.1.20 JTFile
PJTF Key or Object JDF Process JDF Resource Description
All keys - - See Bill

C.1.21 Layout
PJTF Key or Object JDF Process JDF Resource Description
All keys Imposition Layout -

C.1.22 Media
PJTF Key or Object JDF Process JDF Resource Description
All keys - Media Maps to a sub-element of the

ExposedMedia resource.

C.1.23 MediaSource
PJTF Key or Object JDF Process JDF Resource Description
All keys - - Maps to a sub-element of the

DigitalPrintingParams resource.

C.1.24 MediaUsage
PJTF Key or Object JDF Process JDF Resource Description
All keys Dividing DividingParams Specifies controls for roll-fed

media.

C.1.25 PageRange

350 Appendix C Converting PJTF to JDF

JobTicketContents, Document and PageRange objects are decomposed into a number of different JDF
objects. Most of the key/value pairs translate into various resources.

PJTF Key or Object JDF Process JDF Resource Description
bleed media trim - RunList Maps to attributes of the

RunList resource or to
processes in which they are
used.

ColorantControl - ColorantControl -

Delivery Delivery DeliveryParams -

Files - RunList
FileSpec

Maps to FileSpec resources
contained within Run elements.

Finishing AdhesiveBinding
EndSheetGluing
SaddleStitching
SideSewing
Stitching
ThreadSewing

AdhesiveBinding-
Params
EndSheetGluing-
Params
SaddleStitching-
Params
SideSewing-
Params
StitchingParams
ThreadSewing-
Params

-

FontPolicy Interpreting
PDFToPS-
Conversion

FontPolicy The FontPolicy resource is
attached to any process that uses
it.

IgnoreHalftone - - Maps to the IgnoreHalftone
attribute of the PDFToPS-
ConversionParams resource.

InsertPage Imposition RunList
Sheet

Occurs as an attribute either of
RunList resources or of Sheet
resources referenced by
Imposition processes.

Media - Media Maps to a sub-element of the
ExposedMedia resource.

MediaSource - -- Maps to a sub-element of the
DigitalPrintingParams
resource.

MediaUsage Dividing DividingParams Specifies controls for roll-fed
media.

NewSheet Imposition InsertSheet See Bill (RunList, Run)

Rendering Rendering - -

Trailer Imposition InsertSheet See Bill (RunList, Run)

Trailer

Trapping Trapping - -

Appendix C Converting PJTF to JDF 351

Which - RunList See Bill

C.1.26 PlacedObject
PJTF Key or Object JDF Process JDF Resource Description
All keys - - Maps to a sub-element of the

Surface resource.

C.1.27 PlaneOrder
PJTF Key or Object JDF Process JDF Resource Description
All keys - RunList See section ## (Translating the

Contents Hierarchy) for more
details.

C.1.28 Preflight
PJTF Key or Object JDF Process JDF Resource Description
All keys Preflight - -

C.1.29 PreflightConstraint
PJTF Key or Object JDF Process JDF Resource Description
All keys - - Maps to a sub-element of the

PreflightProfile resource.

C.1.30 PreflightDetail
PJTF Key or Object JDF Process JDF Resource Description
All keys - - Maps to a sub-element of the

PreflightAnalysis resource.

C.1.31 PreflightInstance
PJTF Key or Object JDF Process JDF Resource Description
All keys - - Sub-element of the

PreflightAnalysis resource

C.1.32 PreflightInstanceDetail
PJTF Key or Object JDF Process JDF Resource Description
All keys Sub-element of the

PreflightAnalysis resource

C.1.33 PreflightResults

352 Appendix C Converting PJTF to JDF

PJTF Key or Object JDF Process JDF Resource Description
All keys - - This object is not translated.

C.1.34 PrintLayout
PJTF Key or Object JDF Process JDF Resource Description
All keys Imposition - Maps to a sub-element of the

Layout resource.

C.1.35 Profile
PJTF Key or Object JDF Process JDF Resource Description
All keys See Bill

C.1.36 Rendering
PJTF Key or Object JDF Process JDF Resource Description
All keys Rendering RenderingParams -

C.1.37 ResourceAlias
PJTF Key or Object JDF Process JDF Resource Description
Location Location is Device

File File is supported via the SourceFile
fileref.

This This is supported via the
SourceFile fileref.

ResourceName This key is not used. References to
the aliased resource run via the
ResourceLink element.

SourceFile [DH45] Source file maps to an attribute of
this resource.

PJTF ResourceAlias objects provide a unified namespace that allows each PJTF object to refer to the
resources it needs to execute the job of which it is a part. More specifically, PJTF version 1.1 supports the
use of ResourceAlias objects to allow references to halftones and colorspaces.

For the ResourceAlias::Location key, the File and This keys are supported by a SourceFile attribute
whose value is a fileref.[DH46] The translator must provide a reference to the original PJTF file (for this) or
a copy that contains the referenced resources.

C.1.38 Scheduling
Scheduling objects are not translated. It is presumed that translation of PJTF jobs into JDF is performed to
allow the reuse of PJTF jobs that have been archived. Thus, the original scheduling information embedded
in the PJTF is irrelevant.

Deborah Harrison
This all used to be ResourceAlis, which no longer exists. Should it be PDLResourceAlias?

Deborah Harrison
I don’t see how this sentence relates to the last one.

Appendix C Converting PJTF to JDF 353

C.1.39 Signature
PJTF Key or Object JDF Process JDF Resource Description
All keys - - Maps to a sub-element of the

Layout resource.

C.1.40 Sheet
PJTF Key or Object JDF Process JDF Resource Description
All keys - Sheet -

C.1.41 SlipSheet
PJTF Key or Object JDF Process JDF Resource Description
All keys - - See Bill

C.1.42 Surface
PJTF Key or Object JDF Process JDF Resource Description
All keys - Surface -

C.1.43 Tile
PJTF Key or Object JDF Process JDF Resource Description
All keys Tiling Tile -

C.1.44 Trapping
PJTF Key or Object JDF Process JDF Resource Description
All keys Trapping TrappingParams -

C.1.45 TrappingDetails
PJTF Key or Object JDF Process JDF Resource Description
All keys - TrappingDetails See the PJTF DeviceColorant object

entry for details on how it is
translated.

C.1.46 TrappingParameters
PJTF Key or Object JDF Process JDF Resource Description
All keys - TrappingParams -

C.1.47 TrapRegion
PJTF Key or Object JDF Process JDF Resource Description

354 Appendix C Converting PJTF to JDF

All keys - TrapRegion -

C.2 Translating Values
The PJTF version 1.1 specification lists twelve data types that may occur for the values of keys in PJTF
objects. The following table describes how each of these datatypes shall be represented in JDF.

PJTF Data Type JDF

Representation
Comment

Boolean boolean -

Number number -

Name name -

Dictionary element All PJTF objects are dictionaries. These dictionaries
generally become resources or processes as specified
above.

In addition, some PJTF objects contain embedded
dictionaries whose keys are not specified (examples
include TrappingParameters and ColorantDetails). These
dictionaries are converted to arrays of elements, with the
key name from the PJFT dictionary becoming an attribute
of the sub-element.

Stream URI PJTF supports PDF streams by reference to an object in a
PDF file. The same mechanism is supported in JDF, with
the JDF URI data type being used to identify the PDF
file.

Rectangle rectangle -

Filespec URI -

Text string -

String string -

Date date -

Phone number Phone number The standard for the representation of phone numbers in
PJTF is used here as well.

C.3 Translating the Contents Hierarchy
The contents of a PJTF job are represented in the ‘contents hierarchy’. The hierarchy is headed by the
JobTicketContents object, with Document, PageRange and JTFile objects occurring below. The hierarchy
implicitly specifies the sequence of source pages for the job.

The contents sequence comprises all the pages specified by the first, then second, then … last PageRange
for the first Document, followed by the pages specified by the first, then … last PageRange for the second
Document, followed by … the pages for the first, then … last PageRange for the last Document.
This sequence of source pages is consumed when the job is printed via PrintLayout (discussed below).

The contents hierarchy must be translated into a JDF RunList resource,. which contains multiple Run
sub-elements. Each Run can reference a file via the URL attribute and a set of pages in the file via the
Pages element.

There are several additional issues related to this translation which are discussed below.

Appendix C Converting PJTF to JDF 355

C.4 Representing Pages

In PJTF, source pages are represented as a hierarchy of Document and PageRange objects. Pages are
referenced by page number out of files; files are represented in JTFile objects. PageRange objects can
reference a single page, or a set of contiguous pages.

In JDF, source pages are represented as a set of Run sub-elements, of the RunList, which reference files
via URL, and pages from the files via an IntegerRangeList (such as ‘1,3~5,7~ -1‘).

As a consequence of this difference, pages from more than one PJTF PageRange object can be represented
in a single RunList resource, assuming that all the other keys for the multiple PageRanges have the same
values.

C.5 Representing Pre-separated Documents
In pre-separated workflows, all plane of each page may occur in the same file, or there may be a separate
file for each plane. When all the planes occur in a single file, PJTF JTFile objects use a PlaneOrder object
to specify which pages in the file represent each colorant plane for each source page. When each plane
occurs in a separate file, the JTFile objects use a FilesDictionary to associate files with each colorant.

In JDF, both of these cases are handled through the RunList resource. In the case where the planes occur
in separate files, the Runs are partitioned; and each partition contains the name of the colorant and the URL
for the file for that colorant. In the case where the colorant planes are intermingled via PlaneOrder objects,
the Runs are partitioned, but only a single URL is used for each Run. Each PlaneOrder object will become
one Run.

C.6 Representing Inherited Characteristics
In PJTF, many of the characteristics of source pages—including MediaBox, ColorantControl, and
InsertPage—may occur at all levels of the contents hierarchy.

This inheritance scheme is not provided in JDF. Therefore, the correct values for each of the attributes
must be translated to the appropriate element for each RunList element.

C.7 Translating Layout
PJTF provides two mechanisms for image a set of source pages onto a larger surface for printing: Layout
and PrintLayout. Layout is a mechanism for explicitly associating specific source pages with specific
locations on the surface. PrintLayout is a method for automatically positioning a sequence of source pages
onto a series of surfaces.

Layout is represented as a hierarchy of PJTF objects: Signatures, Sheets, Surfaces and PlaceObjects. The
Layout hierarchy may have one or more Signature objects. Each Signature must have one or more Sheets.
Each Sheet must have 1 or 2 Surfaces. Each Surface may have 0 or more PlacedObjects.

PlacedObjects directly reference source pages by referring to a Document object via its Doc key, and a
specific page within the sequence of pages specified by all the PageRanges in Pages arrays for that
Document.

JDF defines resources which are direct translations of Signature, Sheet and Surface. PlacedObjects and
MarkObjects are sub-elements of the Surface resource.

Note that PlacedObjects identify specific source pages via a combination of Ord and either Doc or
MarkDoc. Ord identifies one page out of the sequence of pages specified by all the PageRange objects for
the document identified by either Doc or MarkDoc.

356 Appendix C Converting PJTF to JDF

In the JDF PlacedObject sub-element, the Ord attribute is an index into the entire sequence of pages
specified by all the Runs in the RunList. So there is a translation required between the PJTF Ord value
and the JDF Ord attribute.

Similarly, in the JDF MarkObject sub-element, the Ord attribute is an index into the entire sequence of
pages specified by all the Runs in the RunList for marks. So there is a translation required between the
PJTF Ord value and the JDF Ord attribute.

C.8 Translating PrintLayout
PrintLayout uses the same hierarchy of objects as Layout, but with the restriction that there can be only a
single Signature. The Signature is used as a template that is repeated to consume all the source pages
specified by the contents hierarchy for the job.

In addition, the PlacedObjects that occur in a PrintLayout hierarchy are not references to specific source
pages. Instead, they represent the intent that a page from the sequence of source pages specified by the
contents hierarchy be consumed and placed onto the Surface each time the Signature is executed.

In JDF, PrintLayout is represented via the same set of resources as Layout, except that the top of the
hierarchy is an AutomatedLayout resource instead of Layout. This resource is constrained to have only one
Signature resource.

Note that when translating PJTF PlacedObjects to PlacedObject sub-elements of a Surface resource in the
AutomatedLayout hierarchy, the Ord values from the PJTF PlacedObjects need not be modified.

However, as in the creation of Layout, the Ord attribute for JDF MarkObject sub-elements are indices into
the entire sequence of pages specified by all the Runs in the RunList for marks. So there is a translation
required between the PJTF Ord value and the JDF Ord attribute.

C.9 Translating Trapping
Trapping controls are represented in PJTF as several objects: Trapping, TrappingDetails, ColorantDetails
and DeviceColorants; TrappingParameters and ColorantZoneDetails; and TrapRegions. These objects can
occur in multiple places in the PJTF job, and they work together to determine, for each page in the job,
whether it will be trapped and how. There is also a key in the JobTicketContents object,
TrappingSourceSelector, which determines which set of trapping controls will be honored.

The trapping controls in PJTF are the same, whether the trapping will be done pre-rip or in-rip.

In translating PJTF trapping controls to JDF, there are several tasks to perform:

• Create the required Trapping node
• Add the resources to represent the TrappingParameters which will be used
• Create the resources which represent the TrapRegions which will be used
• Determine the pages to be trapped
• Determine which controls to use for each page
• Add references to the pages in the RunList in the TrapRegion resource

Note that the contents hierarchy for the PJFT job must be translated into RunLists before trapping objects
can be translated.

Note as well, that paths in JDF are specified as a set of path operators. PJTF TrapZone paths are a
sequence of coordinates with an implied moveto at the beginning, and an implied closepath the end.

Appendix D Converting PPF to JDF 357

Appendix D Converting PPF to JDF
This appendix gives advice on how to convert CIP3 PPF 3.0 files to JDF encoded files. Since JDF was
designed with the intention of providing the highest possible level of compatibility with PPF, many of these
conversions are relatively straightforward. From the point of view of JDF, CIP3’s PPF is mainly resource
based. Most of the PPF structures were therefore translated to JDF resources of a corresponding process.
Meahwhile, the PPF product definition operations are easily translated to JDF processes of the same name,
as quoted in CIP3ProductOperation. This kind of conversion is possible because the component structure
of PPF is adopted by JDF,with some enhancements. Parameters of PPF product definition operations
(CIP3ProductParams) are given the abbreviated name “Params,” and this name is appended to the
CIP3ProductOperation name. Thus SideSewing becomes SideSewingParams.

In many cases, PPF key names became JDF attribute or element names with the “CIP3” prefix removed.
An example of this kind of translation is provided below, and the CIP3 product structure shown in the
example is expressed as a JDF process in Figure D.1, following the example.

Example: A CIP3 PPF product definition operation

/CIP3Products [
<<

/CIP3ProductName (sewed book block)
/CIP3ProductOperation /ThreadSewing
/CIP3ProductParams <<

/NumberOfNeedles 4
/GlueLineRefSheets [0]
/GlueLine <<

...
>>
/BlindStitch false
/Sealing false

>>
/CIP3ProductComponents
[

<<
/SourceType /PartialProduct
/SourceProduct (book block)
...

>>
]

>>

<<
/CIP3ProductName (book block)
% ... the definition of the book block operation would go here

...
>>
] def

358 Appendix D Converting PPF to JDF

Component
Component

ThreadSewing
ThreadSewingParams

Figure D.1 JDF node of a CIP3 product structure

In Figure D.1, the input Component represents the “book block,” the output Component represents the
“sewed book block,” and ThreadSewingParams covers all information of the CIP3ProductParams
structure.

Whenever possible, the formal conversion and translation conventions described above were followed, but
because extensions and operations new to PPF are included in JDF, some exceptions were made. These
exceptions are explained in detail for each PPF structure in the sections that follow. Before they are
explained, however, a translation of PPF data types is provided.

D.1 Converting PPF Data Types
The following table shows all PPF data types, and how they are transformed. All measuring units of CIP3
must be converted to the JDF native unit point (1/72 inch). Comments are only provided when there is
something unusual or noteworthy about the translation; thus, not all translations require comment.

Table D.2 Conversion of PPF Data Types

PPF Data Type JDF Data Type Comments
Boolean boolean -

Integer integer -

Real double The exponent symbol must be a capital ‘E’ in XML.

Number double The exponent symbol must be a capital ‘E’ in XML.

Name enumeration or
NMTOKEN

When PPF Names are used as a closed set of predefined
values, they are converted to an enumeration. Otherwise, they
are converted to an NMTOKEN.

String string Some PostScript string characters cannot be used in XML.

Array Sequence of
elements or
IntegerList or
DoubleList

If the array consists of homogeneous integers or doubles, it is
converted to an IntegerList or DoubleList, otherwise to a
sequence of corresponding elements.

Dictionary element In most cases, the structure of a Dictionary is directly
converted to a XML element. Exceptions to this rule are
described in the following sections.

D.2 PPF Product Definitions
The information stored in CIP3Products and CIP3FinalProducts is implicitly expressed by the structure
of the JDF tree. Each product definition step is converted to a JDF node, and a product node is created for
every final product of a PPF file. This is also the case for each partial product that is used in two or more
final products. The following table provides information that explains how to accomplish these
transformations and make these conversions. The content of the entities CIP3ProductJobName,
CIP3ProductJobCode, CIP3ProductCopyright and CIP3ProductCustomer shall also be copied to the
parent product node.

Appendix D Converting PPF to JDF 359

The sections that follow contain information about the conversion requirements of prominent postpress
processes.

Table D.8.3 JDF Representation of a product definition step

PPF Key JDF Representation Comments
CIP3ProductName This is expressed by an

output resource link.
-

CIP3ProductOperation JDF node See section 3.1 JDF nodes.

CIP3ProductParams Resource identified by the
name of the JDF node +
“Params”

For example, during a
CIP3ProductOperation of the type
“SaddleStitching”, the JDF
representation of the
CIP3ProductParams is
SaddleStitchingParams

CIP3ProductComponent Component See section D.2.1, below

CIP3ProductJobName Comment element of the
JDF node

-

CIP3ProductJobCode JobID or JobPartID
attribute of the JDF node

If the output of this step is a final
product and it is only final product, it
should be converted into JobID of
the root node. Otherwise, it is
converted into a JobPartID of the
corresponding process node.

CIP3ProductCopyright Comment element of the
JDF node

-

CIP3ProductCustomer CustomerInfo element of
the JDF node

Note that the CustomerInfo element
is structured, while the
CIP3ProductCustomer is not.

CIP3ProductVolume Amount attribute of the
output Component
resource link

-

D.2.1 Comparison of the PPF Component to the JDF Component
The structure of the PPF Component is very similar to the structure of the JDF Component, so it is easy
to convert one to the other. The following table gives advice on how to do this. Some information stored
in the PPF Component must be used for linking the correct resources to a process. Other implicit
information, such as the bounding box of the component or an overfold, must be calculated and explicitly
specified in the sub-elements of the Component. Furthermore, the appropriate algorithms can be very
complex for some operations,such as folding.

For further information about the Component resource, see section 7.2.19 Component.

Table D.8.4 Converting a PPF Component

PPF Key JDF Representation Comments
SourceType ComponentType

attribute of Component
-

SourceSheet SourceSheet attribute of
Component

-

360 Appendix D Converting PPF to JDF

- SheetPart attribute of
Component

Calculable out of the cut block
structure.

SourceBlock Expressed by an input
resource link to an output
Component of a
previous Cutting
process.

see section D.3.6 Cutting Data

SourceProduct Expressed by an input
resource link to a
Component.

-

Params Transformation attribute
of Component

In most CIP3 operations, there is
only one component parameter called
Orientation. This matrix is renamed
to Transformation. The only
exception is the EndSheetGluing
process. See 6.5.3.1
EndSheetGluing for more
information.

D.2.2 Collecting
To convert a Collection operation, follow the previous descriptions. This process contains no special
considerations to take into account.

D.2.3 Gathering
To convert a Gathering operation, follow the previous descriptions. This process contains no special
considerations to take into account.

D.2.4 ThreadSewing
Convert the entries of CIP3ProductParams structure directly to the ThreadSewingParams resource.
Add this resource as an input resource link to the originated ThreadSewing process. See section 0
Template string Template to define a sequence of variables consumed

by Format. A list of pre-defined values is found in the
description of the FileSpec resource. In addition,
DynamicInput elements of a RunList define further
variables.

ThreadSewingParams for more information.

D.2.5 SaddleStitching
Convert the entries of CIP3ProductParams structure directly to the SaddleStitchingParams resource.
Add this resource as an input resource link to the originated SaddleStitching process. See section
6.5.4.2.2 SaddleStitching for more information.

D.2.6 Stiching
Convert the entries of CIP3ProductParams structure directly to the StitchingParams resource. Add
this resource as an input resource link to the originated Stitching process. Seesection 7.2.87
StitchingParams for more information.

D.2.7 SideSewing

Appendix D Converting PPF to JDF 361

Convert the entries of CIP3ProductParams structure directly to the SideSewingParams resource. Add
this resource as an input resource link to the originated SideSewing process. See section 6.5.4.2.3
SideSewing for more information.

D.2.8 EndSheetGluing
The EndSheetGluing CIP3 operation is the only operation that requires more information than
Orientation in the PPF Component Params. This additional information of the front and the back end
sheet components is transferred to the EndSheetGluingParams resource, as described in the following
table. See section 7.2.36 for more information.

Table D.8.5 Converting the PPF EndSheetGluing operation to JDF

PPF Key JDF Representation Comments
Offset Offset attribute of the

EndSheet element of
EndSheetGluing-
Params

-

GlueLine GlueLine element of the
EndSheet element of
EndSheetGluing-
Params

See section 7.2.36 for information on
how to convert the GlueLine
structure.

D.2.9 AdhesiveBinding
The PPF main adhesive binding operation dictionary is translated to the AdhesiveBindingParams
resource. All single sub-operations that were resident in the PPF Processes array are converted to special
elements inside the AdhesiveBindingParams (see section 7.2.3 AdhesiveBindingParams). For each
type of adhesive binding sub-operation there exists one extra element. The sub-operations
BackPreparation and GlueApplication can simply be translated by removing the ProcessType entry and
converting all other entries directly to the appropriate element.

The following tables show how to convert the main operation and its other sub-operations. Because new
features were added, the CIP3 Lining operation was renamed to SpineTaping.

Table D.8.6 Converting the PPF AdhesiveBinding operation to JDF

PPF Key JDF Representation Comments
Processes Several elements inside

the AdhesiveBinding-
Params

See description above.

PullOutValue PullOutValue attribute of
AdhesiveBinding-
Params

-

PullOutMake - Not needed.

FlexValue FlexValue attribute of
AdhesiveBinding-
Params

-

FlexMake - Not needed.

Table D.8.7 Converting the PPF AdhesiveBinding sub-operation Lining

PPF Key JDF Representation Comments
ProcessType - There is an extra element for each

t pe of Adhesi eBinding s b

362 Appendix D Converting PPF to JDF

type of AdhesiveBinding sub-
operation

TopLiningExcess TopExcess attribute of
SpineTaping

-

LiningExcess HorizontalExcess
attribute of SpineTaping

-

LiningLength StripLength attribute of
SpineTaping

-

LiningMaterial StripMaterial attribute of
SpineTaping

-

LiningBrand StripBrand attribute of
SpineTaping

-

Table D.8.8 Converting the PPF AdhesiveBinding sub-operation CoverApplication

PPF Key JDF Representation Comments
ProcessType - There is an extra element for each

type of AdhesiveBinding sub-
operation.

CoverOffset CoverOffset attribute of
CoverApplication

-

ScoringOffsets and ScoringSide Several Score elements
inside of CoverAppli-
cation

The Score element is much more
structured than these two single
entries.

D.2.10 Trimming
Convert the entries of CIP3ProductParams structure directly to the TrimmingParams resource. Add
this resource as an input resource link to the originated Trimming process. See section 6.5.7 Trimming
for more information.

D.2.11 GluingIn
Because extended features have been added, the PPF GluingIn operation was renamed to the Inserting
process. Consequently, the parameters of this CIP3 operation are transformed into the InsertingParams
resource. For more information see section 7.2.53 InsertingParams.

Table D.8.9 Converting the PPF GluingIn operation to JDF

PPF Key JDF Representation Comments
SheetOffset SheetOffset attribute of

InsertingParams
-

- Location attribute of
InsertingParams

Shall be Front

GlueLines Several GlueLine
elements in
InsertingParams

See ection 7.2.53 InsertingParams
for information on how to convert the
GlueLine structure.

Sample Comment of the
corresponding
Component

Converted to an input Component
of Type PartialProduct

Appendix D Converting PPF to JDF 363

Most of the entries of the PPF GlueLine structure can be directly mapped to the GlueLine element. Note
that the GluingPattern attribute cannot have an empty array to describe a solid glue line. For this purpose,
use an array of “1 0”.

D.2.12 Folding
Like all formats, JDF follows a structured approach in the description of the folding process. That is why
every sub-operation has its own element type and has no need of the function entry. Normally, the names
of the CIP3 fold functions was taken for the name of the respective corresponding elements. The fold sub-
operation elements are simply placed inside the FoldingParams resource (see section 7.2.39
FoldingParams). Because of inherent naming obscurities, the CIP3 functions Groove and Lime were
renamed to Crease and Gluing in JDF. The following tables give advice on how to convert the PPF
structures to JDF elements.

Table D.8.10 Converting the PPF Folding operation to JDF

PPF Key JDF Representation Comments
CIP3FoldDescription - If required, it can be expressed by the

FoldCatalog attribute or by the fold
operations.

CIP3FoldSheetIn FoldSheetIn attribute of
FoldingParams

-

CIP3FoldProc Several elements inside
the FoldingParams

See previous description

Table D.8.11 Converting the PPF Folding sub-operation of type Fold

PPF Key JDF Representation Comments
travel Travel attribute of Fold -

from From attribute of Fold -

to To attribute of Fold -

function - There is an extra element for each
type of a Folding sub-operation. In
this case it is the Fold element.

Table D.8.12 Converting the PPF Folding sub-operation of type Lime

PPF Key JDF Representation Comments
start-position StartPosition attribute of

the GlueLine element of
the Gluing element

JDF uses the GlueLine element
because of the advantage of more
optional attributes of this type of
element..

working-path WorkingPath attribute of
the GlueLine element of
the Gluing element

JDF uses the GlueLine element
because of the advantage of more
optional attributes of this type of
element..

working-direction WorkingDirection
attribute of the Gluing
element

-

function - There is an extra element for each
type of a Folding sub-operation. In
this case it is the Gluing element.

364 Appendix D Converting PPF to JDF

Table D.8.13 Converting the PPF Folding sub-operation of all other types

PPF Key JDF Representation Comments
start-position StartPosition attribute of

the respective Fold-
Operation element

-

working-path WorkingPath attribute of
the respective Fold-
Operation element

-

working-direction WorkingDirection
attribute of the respective
FoldOperation element

-

function - There is an extra element for each
type of a Folding sub-operation. The
extra elements are: Cut, Crease and
Perforate

D.3 PPF Sheet Structure
The conversion of the PPF sheet structures is much more complex than the conversion of the product
operations. A JDF layout structure, which is not directly specified in PPF, must be built up in order to
place the mark objects such as register mark or density measuring field. All other sheet information is
stored in specialized resources. These resources are often partitionable to specify the sheet, surface and
separation to which they belong (see section Description of Partitionable Resources). The result is an
inheritance of attributes comperable to the inheritance process in CIP3.

To build the layout structure, create a Layout resource that includes one Signature element with a unique
Name. For each PPF Sheet, add one Sheet resource to the Signature. Set the Name of the
corresponding Sheet to the value of CIP3AdmSheetName. For each surface (front or back) initiate a
Surface resource with one PlacedObjects element. In order to define a mark object (that is CutMark,
CIELABMeasuringField, DensityMeasuringField, ColorControlStrip or RegisterMark), build a
MarkObject element inside PlacedObjects. In that element, define CTM and an appropriate
LayoutElement. The CIP3 information is added to the MarkObject by including the mark-specific
element (such as RegisterMark for a register mark). Note that the coordinate system of the JDF Sheet is
specified by the SurfaceContentsBox, which defaults to the page coordinates and the coordinate system
of the CIP3 Sheet is the PSExtent coordinates.

Appendix D Converting PPF to JDF 365

One for each
PPF Sheet

One for each
PPF Surface

One for each
PPF Mark

Layout

Signature

Sheet

PlacedObjects

MarkObject

Sheet Sheet

SurfaceSurface

MarkObject MarkObject

...

...

Figure D.8.2 JDF representation of sheets

If there are no product definitions in the PPF file, create JDF product nodes which are the results of all
cutting and folding information in the sheet structure.

D.3.1 Administration Data
The following table defines how to convert the administration data of CIP3. In some situations, it may not
be clear whether or not conversion is necessary. Processes such as CIP3AdmFilmType, for example,
contain limited information, making it difficult to tell.

Table D.8.14 Converting administration data

PPF Key JDF Representation Comments
CIP3AdmSheetName Name attribute of the

corresponding Sheet
If there is no CIP3AdmSheetName,
define a unique new one.

CIP3AdmJobName Comment of the
corresponding product
node

-

CIP3AdmJobCode JobPart of the
corresponding product
node

May conflict with
CIP3ProductJobCode.

CIP3AdmMake - Not supported.

CIP3AdmModel - Not supported.

CIP3AdmSoftware - Not supported.

CIP3AdmCreationTime - Not supported.

366 Appendix D Converting PPF to JDF

CIP3AdmArtist Comment of the
corresponding product
node

-

CIP3AdmCopyright Comment of the
corresponding product
node

-

CIP3AdmCustomer CustomerInfo element of
the corresponding product
node

May conflict with
CIP3ProductCustomer. Note that
the CustomerInfo element is
structured while the
CIP3AdmCustomer is not.

CIP3AdmPSExtent indirect -

CIP3AdmTypeOfScreen see description Not possible to convert appropriate

CIP3AdmFilmType Brand attribute of the
corresponding Media
resource

MediaType of the Media is Film.

CIP3AdmFilmExtent Dimension attribute of
the corresponding Media
resource

-

CIP3AdmFilmTrf indirect -

CIP3AdmPlateType Brand attribute of the
corresponding Media
resource

MediaType of the Media is Plate.

CIP3AdmPlateExtent Dimension attribute of
the corresponding Media
resource

-

CIP3AdmPlateTrf indirect -

CIP3AdmPaperGrade Grade attribute of the
corresponding Media
resource

MediaType of the Media is Paper

CIP3AdmPaperGrammage Weight attribute of the
corresponding Media
resource

See CIP3AdmPaperGrade.

CIP3AdmPaperThickness Thickness attribute of
the corresponding Media
resource

See CIP3AdmPaperGrade.

CIP3AdmPaperColor LabColor attribute of the
Color element of the
corresponding Media
resource

See CIP3AdmPaperGrade.

CIP3AdmPaperExtent Dimension attribute of
the corresponding Media
resource

-

CIP3AdmPaperTrf indirect -

CIP3AdmSeparationNames see description Create a ConventionalPrinting
process (see section 6.4.1) and a
corresponding
ConventionalPrintingParams

Appendix D Converting PPF to JDF 367

resource of PrintingType =
SheetFed. For each separation name
create one PrintUnitProcessing
operation in the same sequence. Set
the Separation and Side attribute.
Add the Media resources as input.

CIP3AdmSheetLay SheetLay attribute of the
corresponding
ConventionalPrinting-
Params resource

see CIP3AdmSeparationNames

CIP3AdmPrintVolume Amount attribute of the
output Component
resource link of the
printing process

-

CIP3AdmPressTrf indirect -

CIP3AdmPressExtent indirect -

CIP3AdmInkInfo Name attribute of the
Color element of the
corresponding Ink
resource

Create a partitioned Ink matching the
side and separation. Add the Ink to
the ConventionalPrinting process
of CIP3AdmSeparationNames

CIP3AdmInkColors LabColor attribute of the
Color element of the
corresponding Ink
resource

see CIP3AdmInkInfo

D.3.2 Preview Images
In PPF, preview images are coded as an inline image. This is not possible in version 1.0 of XML, so JDF
uses the URL attribute within the Preview resource (see section 7.2.72 Preview), which points to an
external PNG file. The following table shows how to translate the PPF preview structure to the PNG
header. Use the partition feature to assign a preview image to a specific separation and surface.

Table D.8.15 PPF preview representation as PNG

PPF Key JDF Representation Comments
CIP3PreviewImageWidth “Width” of the “IHDR”

chunk of the PNG file
-

CIP3PreviewImageHeight “Height” of the “IHDR”
chunk of the PNG file

-

CIP3PreviewImageBitsPerComp “Bit depth” of the
“IHDR” chunk of the
PNG file

-

CIP3PreviewImageComponents - Because of a lack of CMYK
composite support by PNG, PPF
previews of this typemust be
separated.

CIP3PreviewImageImageMatrix - Not needed. Convert image data to
the PNG native sequence.

CIP3PreviewImageResolution “pHYs” chunk of the
PNG file

Use the meter unit and convert dpi to
dpm.

368 Appendix D Converting PPF to JDF

CIP3PreviewImageEncoding - Not needed.

CIP3PreviewImageCompression - Not needed. Use PNG’s own
compression.

CIP3PreviewImageFilterDict - Not needed.

CIP3PreviewImageByteAlign - Not needed.

CIP3PreviewImageDataSize - Not needed.

To calculate ink zones, JDF uses a process chain of PreviewGeneration and InkZoneCalculation
processes. Add the converted CIP3 previews as an input resource to InkZoneCalculation. The
ProfileOffset attribute of InkZoneCalculationParams can be calculated out of the different CIP3
coordinate systems.

D.3.3 Transfer Curves
Simply convert all CIP3 transfer curves to elements of a partitioned TransferCurvePool (see section
7.2.90 Tile). Add this TransferCurvePool as an input resource to a corresponding
InkZoneCalculation process.

D.3.4 Register Marks
The table provides information about how to create a JDF RegisterMark and place this element inside the
respective MarkObject.

Table D.8.16 Converting the parameter of the CIP3PlaceRegisterMark command

PPF Key JDF Representation Comments
translate-x and translate-y Center attribute of

RegisterMark
Apply all transformations of the
CIP3 coordinate systems to get from
the PS system to the paper system.

rotation Rotation attribute of
RegisterMark

-

type MarkType attribute of
RegisterMark

-

Current CIP3SetRegisterMark-
Separations context

Several SeparationSpec
elements inside the
RegisterMark

-

D.3.5 Color and Ink Control
In CIP3, the two types of measuring fields are specified by an entry of the data dictionary in the
CIP3PlaceMeasuringField command. In JDF, this approach is replaced by two different types of JDF
elements: CIELABMeasuringField and DensityMeasuringField. All parameters of the
CIP3PlaceMeasuringField command are merged into these elements. See the following tables as well as
section 7.2.8 CIELABMeasuringField and section 7.2.30 DensityMeasuringField for further information.
All PPF entries that are not explicitly listed in the following tables can be directly converted. Place the
originated element inside the appropriate MarkObject.

Table D.8.17 Converting PPF color-measuring data

PPF Key JDF Representation Comments
position-x and position-y of the
respective CIP3-
PlaceMeasuringField command

Center attribute of
CIELABMeasuring-
Field

Apply all transformations of the
CIP3 coordinate systems to get from
the PS system to the paper system.

Appendix D Converting PPF to JDF 369

Type - There is an extra resource for each
type of CIP3 measuring field.

CIE-L*, CIE-a* and CIE-b* CIE-Lab attribute of
CIELABMeasuring-
Field

-

Table D.8.18 Converting PPF density-measuring data

PPF Key JDF Representation Comments
position-x and position-y of the
respective CIP3-
PlaceMeasuringField command

Center attribute of
DensityMeasuring-
Field

Apply all transformations of the
CIP3 coordinate systems to get from
the PS system to the paper system.

Type - There is an extra resource for each
type of CIP3 measuring field.

DensityCyan, DensityMagenta,
DensityYellow and DensityBlack

Density attribute of
DensityMeasuring-
Field

-

Like the measuring fields, the CIP3PlaceColorControlStrip command is translated to a structured
element. All parameters of this command can be converted to the ColorControlStrip element (see section
7.2.13 ColorControlStrip) by following the instructions in table D.18, below.

Table D.8.19 Converting the parameter of the CIP3PlaceColorControlStrip command

PPF Key JDF Representation Comments
position-x and position-y Center attribute of

ColorControlStrip
Apply all transformations of the
CIP3 coordinate systems to get from
the PS system to the paper system.

rotation Rotation attribute of
ColorControlStrip

-

width and height Size attribute of
ColorControlStrip

-

data Sequence of
DensityMeasuring-
Field elements within the
ColorControlStrip

The entries of the data parameter
have to be converted to
DensityMeasuringField elements.

name StripType attribute of
ColorControlStrip

-

D.3.6 Cutting Data
CIP3s cut block structure is translated to JDF by defining Cutting processes. Since CIP3 has the ability to
create nested cut blocks, one separate Cutting process is needed for each nested block set. Simply follow
the instructions in the following table and add all originated CutBlock resources as input the
corresponding Cutting process. The CIP3CutModel entry is not used in JDF.

Table D.8.20 Converting the Cutting Data structure

PPF Key JDF Representation Comments
CIP3BlockTrf BlockTrf attribute of

CutBlock
If the CutBlock is at the uppermost
level, apply all transformations of the
CIP3 coordinate systems to get from

370 Appendix D Converting PPF to JDF

the PS system to the paper system.

CIP3BlockSize BlockSize attribute of
CutBlock

-

CIP3BlockElementSize BlockElementSize
attribute of CutBlock

-

CIP3BlockSubdivision BlockSubdivision
attribute of CutBlock

Determines how many
Components are produced.

CIP3BlockType BlockType attribute of
CutBlock

-

CIP3BlockElementType BlockElementType
attribute of CutBlock

-

CIP3BlockName This is expressed by
resource links

Not needed in JDF.

CIP3BlockFoldingProcedure A Folding process See section 6.5.6.2 Folding.

For cut marks, follow the instructions in the table below. Place the originated element inside the
appropriate MarkObject.

Table D.8.21 Converting the parameter of the CIP3PlaceCutMark command

PPF Key JDF Representation Comments
position-x and position-y Center attribute of

CutMark
Apply all transformations of the
CIP3 coordinate systems to get from
the PS system to the paper system.

mark-type MarkType attribute of
CutMark

-

D.3.7 Folding Data
When a CIP3 cut block has a folding operation defined (CIP3BlockFoldingProcedure), append a JDF
Folding process which uses the respective output Component of the respective Cutting process as an
input Component. See section 6.5.6.2 Folding for more information on how to translate the CIP3
folding procedure, which is used to fold the cut block.

D.3.8 Comments and Annotations
PPF comments can either be converted to an XML comment or to a human-readable form by transforming
them into a Comment telem of the next element. In most cases, PPF comments can simply be ignored.
Annotations are not supported by JDF.

D.3.9 Private Data and Content
For your private data, you should first examine if one of the new JDF elements or attributes fit your
requirements. If not, please use the extension capabilities of JDF to express your needs. They are
described in section 0
JDF Extensibility.

Appendix E Modelling IFRATrack in JDF 371

Appendix E Modelling IFRAtrack in JDF

Introduction
Job tracking and production control are integral parts of a workflow system. IFRA, describe in this section,
has defined a job tracking system called IFRAtrack that fulfills a large number of the job-tracking
requirements of a production scenario, and is especially effective in newspaper production. The JDF
messaging system generalizes the IFRAtrack approach, expanding its focus from a newspaper workflow to
one that encompasses the entire graphic arts industry. This appendix provides further detail about the way
in which JDF expands upon the existing IFRAtrack technology.

E.1 IFRA Objects and JDF Nodes
IFRAtrack traces the status of objects, and these objects are modified by processes that are only generic.
JDF, on the other hand, precisely defines process nodes that create output resources. These JDF output
resources are equivalent to IFRAtrack objects, so tracking the state of a JDF node conveys a superset of the
information communicated by tracking the state of an IFRAtrack. The sections that follow define the
mapping of IFRA concepts to JDF concepts in greater detail.

E.1.1 Object Identification
IFRAtrack defines objects with with an object path. The object path, in turn, may be a unique identifier, or
uid. JDF also supports uids for internal linking of objects, although these uid’s should not be exported
beyond the scope of a JDF document. External references to JDF nodes should be made the
JobID/JobPartID pair. These values may be defined by an external system, such as MIS, and can be used
to uniquely track JDF nodes.

E.1.2 IFRA Object Hierarchy
IFRAtrack defines an explicit hierarchy to define a newspaper,: from Issue through Edition,
EditionVersion, and so on. JDF, on the other hand, defines a generic hierarchy of products containing a
description attribute that allows the products to be named. An IFRAtrack-conforming JDF job
consequently includes a product hierarchy with product nodes that contain the appropriate description
fields. Furthermore, the abstract IFRA Element type is mapped to the JDF LayoutElement type.

E.1.3 Object States
IFRA defines object states that define the status of a resource, although they also define the status of the
process that defines a resource. JDF defines explicit states for both processes and resources. In addition,
JDF defines a descriptive string to denote the details of each status. The mapping is defined in the
following table.

IFRA Object
Status

JDF Node
Status

JDF Resource
Status

Description

waiting unavailable Status prior to in_progress. Not Started

ready unavailable JDF defines a test-run mode that allows
generalized pre-flighting. ready is the
status after testrun.

setup unavailable A process is in_progress but not yet
producing any output.

In Progress

in_progress unavailable A process is in_progress.

372 Appendix E Modelling IFRATrack in JDF

 cleanup available A process is running after all output has
been produced.

On Hold stopped unavailable A process is active but not currently
producing, as when maintenance is run
during a job.

Completed completed available heureka

Aborted aborted unavailable1 Fatal Error

E.1.4 Deadlines and Scheduling
In IFRAtrack, activities may be linked to deadlines. JDF defines deadlines in the NodeInfo element of
every node. The definition of deadline values is identical.

IFRA defines an integer value for deadline level. JDF defines four explicit enumerations for DueLevel in
order to assure that devices in a heterogeneous system have the same concept of deadline level.

E.2 JMF Messages that Translate IFRAtrack Messages
The messages explained in this section can be used to emulate IFRAtrack functionality.

E.2.1 JMF Phase Message
The phase message describes the phase or status of a given process.

Name Data Type Description
Status enumeration One of the JDF status values defined in Table 3.3 Contents of a JDF

node.

StatusDetails string String that defines the job state more specifically.

JDF? element Complete JDF node that is currently being processed. Optional and
supplied only on request.

Part ? element Describes which part of a job is currently being processed. Parts of a
resource are resources that are created in a very similar way and
therefore only defined once, as is the case with separations of plates.

Device * element Device resources that are currently in use by the process.

Employee * element Employee resources that are currently working on the job.

ModuleStatus * element Status of individual modules. For details on using ModuleStatus
elements, see section 5.5.2.3 Status.

Table E.8.22 Contents of the Phase message

E.2.2 JMF Progress Message
The progress message describes the numerical progress of a given process.

Name Data Type Description
Amount number Progress amount in units, as requested.

Unit? string Unit of quantity, as defined in the JDF output resource of the node
being queried.
Defaults to % completed.

1 Unless aborted during cleanup

Appendix E Modelling IFRATrack in JDF 373

DeadLine? NMTOKEN Scheduling state of the job. Possible values are:
InTime -- Default value.

Warning
Late
For more details on scheduling, see section 3.5 Process and Node
Information.

Part? element Describes which part of a job is currently being processed.

374 Appendix E Modelling IFRATrack in JDF

Appendix F StatusDetails Supported Strings
The StatusDetails attribute refines the concept of a job status to be job specific or a device status to be
device specific. The following tables define individual StatusDetail values and map them to the
appropriate job specific state Status or device specific state DeviceStatus.

Table F.1 StatusDetails and Status mapping for generic devices

StatusDetails Status DeviceStatus Description
ControllDeferred - stopped The device is controlled by a master device

and cannot be accessed.

Table F.2 StatusDetails and Status mapping for conventional printing devices

StatusDetails Status DeviceStatus Description
Good in_progress running Production of sheets in progress, good copy

counter is on.

Waste in_progress running Production of sheets in progress, good copy
counter is off.

FormChange setup setup In conventional printing. changing of plates
or in digital printing changing of images.

SizeChange setup setup Changing setup for media size.

WashUp cleanup cleanup Machine is washed before, during or after
production. WashUp is a super-term for
BlanketWash, CylinderWash,
CleaningInkingUnit, or
CleaningInkFountain.
WashUp is the default which is assumed if
StatusDetails is not specified.

InkingRollerWash cleanup cleanup Washing of the inking roller; sub-term of
WashUp.

PlateWash cleanup cleanup Washing of the plate; sub-term of WashUp.
DampeningRoller-
Wash

cleanup cleanup Washing of the dampening roller; sub-term of
WashUp.

BlanketWash cleanup cleanup Washing of the blanket; sub-term of WashUp.
CylinderWash cleanup cleanup Washing of impression cylinders; sub-term of

WashUp.

CleaningInkFountain cleanup cleanup Cleaning of the ink fountain; sub-term of
WashUp.

Pause stopped stopped Machine paused, restart is possible.
MissResources stopped stopped Production has been stopped because

resources are missed. For example, if the
machine has consumed paper, ink, plates,
etc., and waits for new resources; sub-term of
Pause.

WaitForApproval stopped stopped Production has been stopped because a
required approval is still missing; sub-term of
Pause.

Appendix F Supported Strings of StatusDetails 375

ShutDown stopped down Machine stopped (may be switched off),
restart requires a run up.

BreakDown stopped down Breakdown of the device, repair required.

Repair stopped down After a breakdown the device is being
repaired.

Failure stopped stopped Failure of the device; requires some
maintenance in order to restart the device.

PaperJam stopped stopped Paper jam in the device; sub-term of Failure.

Maintenance stopped stopped Maintenance of the device.

BlanketChange stopped stopped Changing of blankets; sub-term for
Maintenance.

SleeveChange stopped stopped Changing of sleeves; sub-term for
Maintenance.

376 Appendix G Supported Strings of ModuleType

Appendix G ModuleType Supported Strings
Both the ModuleStatus element (see Table 5.38 Contents of the ModuleStatus element) and the
ModulePhase element (see Table 3.25 Contents of the ModulePhase element) contain a ModuleType
attribute that defines individual modules within a machine. The following table defines individual
ModuleType values.

Table G.1 ModuleType definition for conventional printing devices

ModuleType Description
Feeder Feeder module, feeds the device with paper.

PrintModule Unit for printing a color.

CoatingModule Unit for coatings, for example, full coating of varnish.

Drier Module for drying the previously pinted color or varnish.

PerfectingModule Unit for perfecting, reversing device.

ExtensionModule Unit for extending the distance between modules, for example to increase
the distance between the last prining module and the delivery module.

Delivery Delivery module, unit for gathering the printed sheets.

Imaging Imaging Module in a direct to plate machine.

Numbering Numbering unit.

Appendix H Supported Error Codes in JMF 377

Appendix H Supported Error Codes in JMF
The following list defines the standard ReturnCode for messaging. The ID numbers are decimal. Error
messages below 100 are reserved for protocol errors. Error messages above 100 are used for device and
controller errors and error messages above 200 for job and pipe specific errors.

Table H.1 Return codes for JMF

ReturnCode Description
0 Success

1 - 99 Protocol errors

1 General error

2 Internal error
3 XML parser error (. for instance, if a MIME file is sent to an XML controller)

4 XML validation error
5 Query/command not implemented

6 Invalid parameters
7 Insufficient parameters

8 Device not available (controller exists but not the device or queue)

100 – 199 Device and controller errors

100 Device not running

101 Device incapable of fulfilling request for example, a RIP that has been asked to cut a
sheet)

102 No executable node exists in the JDF

103 Job ID not known by controller
104 JobPartID not known by controller

105 Queue entry not in queue
106 Queue request failed because queue entry is already executing

107 Queue entry is already executing, late change is not accepted
108 Selection or applied filter results in an empty list

109 Selection or applied filter results in an incomplete list. A buffer cannot provide the
complete list queried for.

200 - … Job and pipe specific errors

200 Invalid resource parameters

201 Insufficient resource parameters
202 PipeID unknown

203 Unlinked resource link

378 Appendix G ModuleType Supported Strings

Appendix I Event Types and Values
The Notification element is used for messaging and logging of events. It is defined in section 3.9.1.2
Notification. Notifications are grouped into five classes: event, information, warning, error, and fatal.
Beyond this classification, the attributes Type and Value of the Notification element provide a container
for detailed information about the event.

The attribute Value of the Notification element is of data type string which represents a void data type. In
connection with a certain event type, other data types may be more appropriate. Then the content of the
Value may be casted to that data type. Supported event types (table heading: Type), the associated data
type of the attribute Value (table heading: Value Data Type) and their descriptions (table heading:
Description) are listed in the following tables.

Table I.1 Event types and associated values of notification class: event (pure events)

Type Value Data Type Description
Barcode string A barcode has been scanned.

Value: contains the scanned barcode.

FCN-Key integer A function key has been activated at a console.

Value: contains the number of that function key.

SystemTimeSet timeInstant The system time of a device/controller/agent has been set
(for example: readjusted, changed to daylight saving
time, etc.).

Value: contains the new time.

CounterReset - The production counter of a device has been reset.

Table I.2 Event types and associated values of notification classes: warning…fatal

Type Class Value Data Type Description
Error error string Internal Error ID of the application that declares

the error.
Fatal-Error fatal string Internal ID of the fatal error of the application that

declares the fatal error.

Warning warning string Internal Warning ID of the application that
declares the warning.

Appendix J Examples 379

Appendix J Examples
Note that these examples are still heavily under construction and should be used for general overview only.
The emphasis is not on the individual bytes, e.g. capitalization or exact keywords.

Brief Example

J.1.1 Before Processing
This is a simple example of a JDF that describes color conversion for one file.

<?xml version='1.0' encoding='utf-8' ?>
<JDF ID="HDM20000821152850" Type="ColorSpaceConversion" JobID="HDM20000821152850"
Status="waiting" Version="0.9">
<!--(c) Heidelberger Druckmaschinen AG 1999-2000-->
<!--Warning: preliminary format; use at your own risk-->
<NodeInfo/>
<ResourcePool>
<RunList ID="Link0011" Class="Parameter" Status="available">
<Run Pages="0~-1">
<LayoutElement>
<FileSpec FileName="colortest.pdf"/>

</LayoutElement>
</Run>

</RunList>
<ColorSpaceConversionParams ID="Link0012" Class="Parameter" Status="available"

FinalTargetDevice="File::SMProcessCMYK.icc">
<ColorSpaceConversion SourceCS="RGB" Operation="Convert"

SourceObjects="ImagePhotographic ImageScreenShot SmoothShades"
SourceProfile="File::image.icc" RenderingIntent="Perceptual"/>

<ColorSpaceConversion SourceCS="RGB" Operation="Convert" SourceObjects="Text
LineArt" SourceProfile="File::text.icc" RenderingIntent="Perceptual"/>

</ColorSpaceConversionParams>
<RunList ID="Link0013" Class="Parameter" Status="unavailable">
<Run Pages="0~-1">
<LayoutElement>
<FileSpec FileName="colortest.pdf"/>

</LayoutElement>
</Run>

</RunList>
</ResourcePool>
<ResourceLinkPool>
<RunListLink rRef="Link0011" Usage="input"/>
<ColorSpaceConversionParamsLink rRef="Link0012" Usage="input"/>
<RunListLink rRef="Link0013" Usage="output"/>

</ResourceLinkPool>
<AuditPool>
<Created Author="Rainer's GATWriter 0.2000" TimeStamp="2000-08-21T15:28:50+02:00"/>

</AuditPool>
</JDF>

J.1.2 After Processing
This is a simple example of a JDF that describes color conversion for one file after the color conversion
process has been executed.

<?xml version='1.0' encoding='utf-8' ?>
<JDF ID="HDM20000821152850" Type="ColorSpaceConversion" JobID="HDM20000821152850"
Status="completed" Version="0.9">
<!--(c) Heidelberger Druckmaschinen AG 1999-2000-->
<!--Warning: preliminary format; use at your own risk-->
<ResourcePool>

380 Appendix I Examples

<RunList ID="Link0011" Class="Parameter" Status="available">
<Run Pages="0~-1">
<LayoutElement>
<FileSpec FileName="colortest.pdf"/>

</LayoutElement>
</Run>

</RunList>
<ColorSpaceConversionParams ID="Link0012" Class="Parameter" Status="available"

FinalTargetDevice="File::SMProcessCMYK.icc">
<ColorSpaceConversion SourceCS="RGB" Operation="Convert"

SourceObjects="ImagePhotographic ImageScreenShot SmoothShades"
SourceProfile="File::image.icc" RenderingIntent="Perceptual"/>

<ColorSpaceConversion SourceCS="RGB" Operation="Convert" SourceObjects="Text
LineArt" SourceProfile="File::text.icc" RenderingIntent="Perceptual"/>

</ColorSpaceConversionParams>
<RunList ID="Link0013" Class="Parameter" Status="available">
<Run Pages="0~-1">
<LayoutElement>
<FileSpec FileName="colortest.pdf"/>

</LayoutElement>
</Run>

</RunList>
</ResourcePool>
<ResourceLinkPool>
<RunListLink rRef="Link0011" Usage="input"/>
<ColorSpaceConversionParamsLink rRef="Link0012" Usage="input"/>
<RunListLink rRef="Link0013" Usage="output"/>

</ResourceLinkPool>
<AuditPool>
<Created Author="Rainer's GATWriter 0.2000" TimeStamp="2000-08-21T15:28:50+02:00"/>
<Modified Author="EatJDF Complete: task=*" TimeStamp="2000-08-21T16:58:58+02:00"/>
<RunListAudit rRef="Link0011" Usage="input"/>
<ColorSpaceConversionParamsAudit rRef="Link0012" Usage="input"/>
<RunListAudit rRef="Link0013" Usage="output"/>
<PhaseTime End="2000-08-21T16:58:58+02:00" Start="2000-08-21T16:58:58+02:00"

Status="setup" TimeStamp="2000-08-21T16:58:58+02:00"/>
<PhaseTime End="2000-08-21T16:58:58+02:00" Start="2000-08-21T16:58:58+02:00"

Status="running" TimeStamp="2000-08-21T16:58:58+02:00"/>
<PhaseTime End="2000-08-21T16:58:58+02:00" Start="2000-08-21T16:58:58+02:00"

Status="cleanup" TimeStamp="2000-08-21T16:58:58+02:00"/>
</AuditPool>

</JDF>

J.2 Product JDF to Process
The following Example describe a pair of college textbooks, one teachers edition and one students edition
as product intent. Most intent resources are intentionally left empty.

<?xml version='1.0' encoding='utf-8' ?>
<JDF ID="HDM20000821155440" Type="Product" JobID="HDM20000821155440" Status="waiting"
Version="0.9">
<!--(c) Heidelberger Druckmaschinen AG 1999-2000-->
<!--Warning: preliminary format; use at your own risk-->
<ResourcePool>
<Component ID="Link0003" Class="Quantity" Amount="100" Status="unavailable"

DescriptiveName="Book"/>
<Component ID="Link0005" Class="Quantity" Amount="2000" Status="unavailable"

DescriptiveName="Cover">
<!--This cover is reused by both-->

</Component>
<SizeIntent ID="Link0006" Class="Parameter" Status="available">
<NumberSpan Name="Height" Range="756~828" Preferred="792"/>
<NumberSpan Name="Width" Range="540~612" Preferred="576"/>

</SizeIntent>
<SizeIntent ID="Link0008" Class="Parameter" Status="available">
<NumberSpan Name="Height" Range="756~828" Preferred="792"/>
<NumberSpan Name="Width" Range="540~612" Preferred="576"/>

Appendix J Examples 381

<IntegerSpan Name="Pages" Preferred="240"/>
</SizeIntent>
<Component ID="Link0011" Class="Quantity" Amount="1000" Status="unavailable"

DescriptiveName="Book">
<!--Students Book Intent-->

</Component>
<SizeIntent ID="Link0014" Class="Parameter" Status="available">
<NumberSpan Name="Height" Range="756~828" Preferred="792"/>
<NumberSpan Name="Width" Range="540~612" Preferred="576"/>
<IntegerSpan Name="Pages" Preferred="198"/>

</SizeIntent>
</ResourcePool>
<AuditPool>
<Created Author="Rainer's GATWriter 0.2000" TimeStamp="2000-08-21T15:54:40+02:00"/>

</AuditPool>
<JDF ID="Link0002" Type="Product" Status="waiting" JobPartID="0"

DescriptiveName="Teacher's Edition">
<ResourcePool>
<Component ID="Link0009" Class="Quantity" Amount="100" Status="unavailable"

DescriptiveName="Insert"/>
</ResourcePool>
<ResourceLinkPool>
<ComponentLink rRef="Link0003" Usage="output" Amount="100"/>
<ComponentLink rRef="Link0009" Usage="input" Amount="100"/>
<ComponentLink rRef="Link0005" Usage="input" Amount="100"/>

</ResourceLinkPool>
<JDF ID="Link0007" Type="Product" Status="waiting" JobPartID="2"

DescriptiveName="Teacher's Insert">
<ResourceLinkPool>
<SizeIntentLink rRef="Link0008" Usage="input"/>
<ComponentLink rRef="Link0009" Usage="output" Amount="100"/>

</ResourceLinkPool>
</JDF>

</JDF>
<JDF ID="Link0004" Type="Product" Status="waiting" JobPartID="1"

DescriptiveName="Cover">
<ResourceLinkPool>
<ComponentLink rRef="Link0005" Usage="output" Amount="2000"/>
<SizeIntentLink rRef="Link0006" Usage="input"/>

</ResourceLinkPool>
</JDF>
<JDF ID="Link0010" Type="Product" Status="waiting" JobPartID="3"

DescriptiveName="Student's Edition">
<ResourcePool>
<Component ID="Link0013" Class="Quantity" Amount="1000" Status="unavailable"

DescriptiveName="Insert"/>
</ResourcePool>
<ResourceLinkPool>
<ComponentLink rRef="Link0011" Usage="output" Amount="1000"/>
<ComponentLink rRef="Link0013" Usage="input" Amount="1000"/>
<ComponentLink rRef="Link0005" Usage="input" Amount="1000"/>

</ResourceLinkPool>
<JDF ID="Link0012" Type="Product" Status="waiting" JobPartID="4"

DescriptiveName="Student's Insert">
<ResourceLinkPool>
<ComponentLink rRef="Link0013" Usage="output" Amount="1000"/>
<SizeIntentLink rRef="Link0014" Usage="input"/>

</ResourceLinkPool>
</JDF>

</JDF>
</JDF>

J.3 16-Page 4-up Brochure—Layout, RunList, Cut, Fold

J.4 Spawning and Merging

382 Appendix I Examples

The following set of examples show a JDF job in the relevant stages of spawning and merging. One
example defines a simple brochure with a cover and an insert. The red node, which defines the cover, is
spawned, modified and subsequenty merged. Blue elements represent meta-data that apply to spawning
and merging.

J.4.1 Example 2 Component JDF before Spawning
The following JDF file describes a two-component brochure. The resources are not fleshed out.

<?xml version='1.0' encoding='utf-8' ?>
<JDF ID="HDM20000912181238" Type="Product" JobID="HDM20000912181238"
Status="waiting" Version="0.9" JobPartID="Part1">

<NodeInfo/>
<ResourcePool>

<Component ID="Link0002" Class="Quantity" Amount="10000"
Status="unavailable" DescriptiveName="complete 16-page Brochure"/>

<BindingIntent ID="Link0003" Class="Intent" Status="available"/>
<Component ID="Link0005" Class="Quantity" Status="unavailable"

DescriptiveName="Cover Component"/>
<Component ID="Link0009" Class="Quantity" Status="unavailable"

DescriptiveName="Insert Component"/>
</ResourcePool>
<ResourceLinkPool>

<ComponentLink rRef="Link0002" Usage="output"/>
<BindingIntentLink rRef="Link0003" Usage="input"/>
<ComponentLink rRef="Link0005" Usage="input"/>
<ComponentLink rRef="Link0009" Usage="input"/>

</ResourceLinkPool>
<JDF ID="Link0004" Type="Product" Status="waiting" JobPartID="Part2"

DescriptiveName="Cover">
<NodeInfo/>
<ResourcePool>

<SizeIntent ID="Link0006" Class="Intent" Status="available"/>
<ColorIntent ID="Link0007" Class="Intent" Status="available"/>

</ResourcePool>
<ResourceLinkPool>

<ComponentLink rRef="Link0005" Usage="output"/>
<SizeIntentLink rRef="Link0006" Usage="input"/>
<ColorIntentLink rRef="Link0007" Usage="input"/>

</ResourceLinkPool>
<AuditPool/>

</JDF>
<JDF ID="Link0008" Type="Product" Status="waiting" JobPartID="Part3"

DescriptiveName="Insert">
<NodeInfo/>
<ResourcePool>

<SizeIntent ID="Link0010" Class="Intent" Status="available"/>
<ColorIntent ID="Link0011" Class="Intent" Status="available"/>

</ResourcePool>
<ResourceLinkPool>

<ComponentLink rRef="Link0009" Usage="output"/>
<SizeIntentLink rRef="Link0010" Usage="input"/>
<ColorIntentLink rRef="Link0011" Usage="input"/>

</ResourceLinkPool>
<AuditPool/>

</JDF>
</JDF>

Appendix J Examples 383

J.4.2 Example 2 Component JDF Parent after spawning the cover node
The following JDF is the parent JDF after spawning. The Component that describes the cover is marked
as spawned_RW, since it was copied into the spawned node and may be modified. A Spawned audit was
inserted into the Cover nodes parent’s AuditPool, and the Spawned node itself has a Status of spawned.

<?xml version='1.0' encoding='utf-8' ?>
<JDF ID="HDM20000912181238" Type="Product" JobID="HDM20000912181238"
Status="waiting" Version="0.9" JobPartID="Part1">

<ResourcePool>
<Component ID="Link0002" Class="Quantity" Amount="10000"

Status="unavailable" DescriptiveName="complete 16-page Brochure"/>
<BindingIntent ID="Link0003" Class="Intent" Status="available"/>
<Component ID="Link0005" Class="Quantity" SpawnStatus="spawned_RW"

Status="unavailable" DescriptiveName="Cover Component"/>
<Component ID="Link0009" Class="Quantity" Status="unavailable"

DescriptiveName="Insert Component"/>
</ResourcePool>
<ResourceLinkPool>

<ComponentLink rRef="Link0002" Usage="output"/>
<BindingIntentLink rRef="Link0003" Usage="input"/>
<ComponentLink rRef="Link0005" Usage="input"/>
<ComponentLink rRef="Link0009" Usage="input"/>

</ResourceLinkPool>
<AuditPool>

<Spawned URL="File::./spawn.jdf" jRef="Link0004" TimeStamp="2000-
09-12T18:12:39+02:00" rRefsRWCopied="Link0005"/>

</AuditPool>
<JDF ID="Link0004" Type="Product" Status="spawned" JobPartID="Part2"

DescriptiveName="Cover">
<ResourcePool>

<SizeIntent ID="Link0006" Class="Intent" Status="available"/>
<ColorIntent ID="Link0007" Class="Intent" Status="available"/>

</ResourcePool>
<ResourceLinkPool>

<ComponentLink rRef="Link0005" Usage="output"/>
<SizeIntentLink rRef="Link0006" Usage="input"/>
<ColorIntentLink rRef="Link0007" Usage="input"/>

</ResourceLinkPool>
</JDF>
<JDF ID="Link0008" Type="Product" Status="waiting" JobPartID="Part3"

DescriptiveName="Insert">
<ResourcePool>

<SizeIntent ID="Link0010" Class="Intent" Status="available"/>
<ColorIntent ID="Link0011" Class="Intent" Status="available"/>

</ResourcePool>
<ResourceLinkPool>

<ComponentLink rRef="Link0009" Usage="output"/>
<SizeIntentLink rRef="Link0010" Usage="input"/>
<ColorIntentLink rRef="Link0011" Usage="input"/>

</ResourceLinkPool>
</JDF>
<AncestorPool/>

</JDF>

384 Appendix I Examples

J.4.3 Example 2 Component JDF spawned node
The Component that represents the cover was copied into the spawned node, since it is the output resource.
It is not locked, since it was spawned in RW mode. The existance of an AncestorPool denotes the node as
spawned and defines the parent node.

<?xml version='1.0' encoding='utf-8' ?>
<JDF ID="Link0004" Type="Product" JobID="HDM20000912181238"
Status="waiting" Version="0.9" JobPartID="Part2"
DescriptiveName="Cover">
<NodeInfo/>

<ResourcePool>
<SizeIntent ID="Link0006" Class="Intent" Status="available"/>
<ColorIntent ID="Link0007" Class="Intent" Status="available"/>
<Component ID="Link0005" Class="Quantity" Status="unavailable"

DescriptiveName="Cover Component"/>
</ResourcePool>
<ResourceLinkPool>

<ComponentLink rRef="Link0005" Usage="output"/>
<SizeIntentLink rRef="Link0006" Usage="input"/>
<ColorIntentLink rRef="Link0007" Usage="input"/>

</ResourceLinkPool>
<AncestorPool>

<Ancestor ID="HDM20000912181238"/>
</AncestorPool>

</JDF>

J.4.4 Example 2 Component JDF after merging
In this example, it is assumed that the cover output component was created by some processor that
processed the spawned node. This resulted in the Component becoming available. The Component was
also removed from the copy of the spawned node, since it would otherwise exist twice.

<?xml version='1.0' encoding='utf-8' ?>
<JDF ID="HDM20000912181238" Type="Product" JobID="HDM20000912181238"
Status="waiting" Version="0.9" JobPartID="Part1">

<ResourcePool>
<Component ID="Link0002" Class="Quantity" Amount="10000"

Status="unavailable" DescriptiveName="complete 16-page Brochure"/>
<BindingIntent ID="Link0003" Class="Intent" Status="available"/>
<Component ID="Link0005" Class="Quantity" Status="available"

DescriptiveName="Cover Component"/>
<Component ID="Link0009" Class="Quantity" Status="unavailable"

DescriptiveName="Insert Component"/>
</ResourcePool>
<ResourceLinkPool>

<ComponentLink rRef="Link0002" Usage="output"/>
<BindingIntentLink rRef="Link0003" Usage="input"/>
<ComponentLink rRef="Link0005" Usage="input"/>
<ComponentLink rRef="Link0009" Usage="input"/>

</ResourceLinkPool>
<AuditPool>

<Spawned URL="File::./spawn.jdf" jRef="Link0004" TimeStamp="2000-
09-12T18:12:39+02:00" rRefsRWCopied="Link0005"/>

<Merged URL="File::./spawn.jdf" jRef="Link0004" TimeStamp="2000-09-
12T18:12:39+02:00" rRefsOverwritten="Link0005"/>

</AuditPool>

Appendix J Examples 385

<JDF ID="Link0004" Type="Product" Status="waiting" Version="0.9"
JobPartID="Part2" DescriptiveName="Cover">

<ResourcePool>
<SizeIntent ID="Link0006" Class="Intent" Status="available"/>
<ColorIntent ID="Link0007" Class="Intent" Status="available"/>

</ResourcePool>
<ResourceLinkPool>

<ComponentLink rRef="Link0005" Usage="output"/>
<SizeIntentLink rRef="Link0006" Usage="input"/>
<ColorIntentLink rRef="Link0007" Usage="input"/>

</ResourceLinkPool>
</JDF>
<JDF ID="Link0008" Type="Product" Status="waiting" JobPartID="Part3"

DescriptiveName="Insert">
<ResourcePool>

<SizeIntent ID="Link0010" Class="Intent" Status="available"/>
<ColorIntent ID="Link0011" Class="Intent" Status="available"/>

</ResourcePool>
<ResourceLinkPool>

<ComponentLink rRef="Link0009" Usage="output"/>
<SizeIntentLink rRef="Link0010" Usage="input"/>
<ColorIntentLink rRef="Link0011" Usage="input"/>

</ResourceLinkPool>
</JDF>

</JDF>

J.5 Conversion of PJTF to JDF

J.5.1 PJTF input
The following code defines 4-up duplex impositioning of a 17 page pdf document in Adobe PJTF format:

%JTF-1.2
1 0 obj
<<
/A [3 0 R]
/V 1.1
/Cn [2 0 R]
>>
endobj
2 0 obj
<<
/Type /JobTicketContents
/D [6 0 R]
/PL 8 0 R
>>
endobj
3 0 obj
<<
/D (D:19991111173640)
/JTM (Default JT Creator)
/C (JT created)
>>
endobj
4 0 obj
<<
/Type /Catalog
/JT 1 0 R
>>
endobj
5 0 obj

386 Appendix I Examples

<<
/Producer (HD PDFWrite vs. 0.1)
>>
endobj
6 0 obj
<<
/Fi [7 0 R]
>>
endobj
7 0 obj
<<
/Fi (panrt17a.pdf)
>>
endobj
8 0 obj
<<
/Si 9 0 R
>>
endobj
9 0 obj
<<
/S 10 0 R
>>
endobj
10 0 obj
[11 0 R]
endobj
11 0 obj
<<
/MS
<<
/Cl (sheet of paper)
/Me 12 0 R
>>
/Fr 13 0 R
/B 18 0 R
>>
endobj
12 0 obj
<<
/Dm [842 1191 842 1191]
>>
endobj
13 0 obj
<<
/PO [14 0 R 15 0 R 16 0 R 17 0 R]
>>
endobj
14 0 obj
<<
/CTM [0.45 0 0 0.45 21 624]
/O 0
/Cl [21 624 399 1159]
>>
endobj
15 0 obj
<<
/CTM [0.45 0 0 0.45 442 624]
/O 1
/Cl [442 624 820 1159]
>>
endobj
16 0 obj
<<
/CTM [0.45 0 0 0.45 21 29]
/O 2
/Cl [21 29 399 564]
>>
endobj
17 0 obj
<<

Appendix J Examples 387

/CTM [0.45 0 0 0.45 442 29]
/O 3
/Cl [442 29 820 564]
>>
endobj
18 0 obj
<<
/PO [19 0 R 20 0 R 21 0 R 22 0 R]
>>
endobj
19 0 obj
<<
/CTM [0.45 0 0 0.45 21 624]
/O 4
/Cl [21 624 399 1159]
>>
endobj
20 0 obj
<<
/CTM [0.45 0 0 0.45 442 624]
/O 5
/Cl [442 624 820 1159]
>>
endobj
21 0 obj
<<
/CTM [0.45 0 0 0.45 21 29]
/O 6
/Cl [21 29 399 564]
>>
endobj
22 0 obj
<<
/CTM [0.45 0 0 0.45 442 29]
/O 7
/Cl [442 29 820 564]
>>
endobj
xref
0 23
0000000000 65535 f
0000000009 00000 n
0000000071 00000 n
0000000146 00000 n
0000000233 00000 n
0000000283 00000 n
0000000338 00000 n
0000000377 00000 n
0000000419 00000 n
0000000453 00000 n
0000000487 00000 n
0000000516 00000 n
0000000608 00000 n
0000000660 00000 n
0000000722 00000 n
0000000810 00000 n
0000000900 00000 n
0000000985 00000 n
0000001072 00000 n
0000001134 00000 n
0000001222 00000 n
0000001312 00000 n
0000001397 00000 n
trailer
<<
/Root 4 0 R
/Info 5 0 R
/Size 23
>>
startxref
1484

388 Appendix I Examples

%%EOF

J.5.2 JDF output
This JDF file describes the Imposition process defined by the PJTF file.

<?xml version='1.0' encoding='utf-8' ?>
<JDF ID="HDM20000821165026" Type="Imposition" JobID="HDM20000821165026" Status="waiting"
Version="0.9">
<!--(c) Heidelberger Druckmaschinen AG 1999-2000-->
<!--Warning: preliminary format; use at your own risk-->
<NodeInfo/>
<ResourcePool>
<Layout ID="Link0002" Class="Parameter" rRefs="Cos13 Cos18 Cos11" Status="available">
<Signature ID="Cos9">
<Sheet rRef="Cos11"/>

</Signature>
</Layout>
<Surface ID="Cos13" Side="Front">
<PlacedObjects>
<ContentObject CTM="0.45 0 0 0.45 21 624" Ord="0" ClipBox="21 624 399 1159"/>
<ContentObject CTM="0.45 0 0 0.45 442 624" Ord="1" ClipBox="442 624 820 1159"/>
<ContentObject CTM="0.45 0 0 0.45 21 29" Ord="2" ClipBox="21 29 399 564"/>
<ContentObject CTM="0.45 0 0 0.45 442 29" Ord="3" ClipBox="442 29 820 564"/>

</PlacedObjects>
</Surface>
<Surface ID="Cos18" Side="Back">
<PlacedObjects>
<ContentObject CTM="0.45 0 0 0.45 21 624" Ord="4" ClipBox="21 624 399 1159"/>
<ContentObject CTM="0.45 0 0 0.45 442 624" Ord="5" ClipBox="442 624 820 1159"/>
<ContentObject CTM="0.45 0 0 0.45 21 29" Ord="6" ClipBox="21 29 399 564"/>
<ContentObject CTM="0.45 0 0 0.45 442 29" Ord="7" ClipBox="442 29 820 564"/>

</PlacedObjects>
</Surface>
<Sheet ID="Cos11" rRefs="Cos18 Cos13">
<Surface rRef="Cos18"/>
<Surface rRef="Cos13"/>
<MediaSource Class="sheet of paper">
<Media ID="Cos12" Dimensions="842 1191 842 1191"/>

</MediaSource>
</Sheet>
<RunList ID="Link0003" Class="Parameter" Status="unavailable">
<Run Pages="0~17">
<LayoutElement>
<FileSpec FileName="panrt17a.pdf"/>

</LayoutElement>
</Run>

</RunList>
<RunList ID="Link0004" Class="Parameter" Status="unavailable">
<Run Pages="0~4">
<LayoutElement>
<FileSpec FileName="Layout.pdf"/>

</LayoutElement>
</Run>

</RunList>
</ResourcePool>
<ResourceLinkPool>
<RunListLink rRef="Link0003" Usage="input"/>
<LayoutLink rRef="Link0002" Usage="input"/>
<RunListLink rRef="Link0004" Usage="output"/>

</ResourceLinkPool>
<AuditPool>
<Created Author="Rainer's GATWriter 0.2000" TimeStamp="2000-08-21T16:50:26+02:00"/>
<Created Author="PJTF2JDF" TimeStamp="2000-08-21T16:50:26+02:00"/>

</AuditPool>
</JDF>

Appendix J Examples 389

J.6 Conversion of PPF to JDF

J.7 Messages

	Introduction
	Document References
	Conventions Used in This Specification
	Text Styles
	Specification of Cardinality

	Terminology
	Data Structures
	Units

	O
	Overview of JDF
	System Components
	Job Components
	2.1.1.1 Jobs and Nodes
	2.1.1.2 Elements
	2.1.1.3 Attributes
	2.1.1.4 Relationships
	2.1.1.5 Links

	Workflow Component Roles
	2.1.2.1 Machines
	2.1.2.2 Devices
	2.1.2.3 Agents
	2.1.2.4 Controllers
	2.1.2.5 Management Information Systems—MIS
	2.1.2.6 System Interaction

	JDF Workflow
	Job Structure

	Hierarchical Tree Structure and Networks in JDF
	Role of Messaging in JDF

	Structure of JDF Nodes and Jobs
	JDF nodes
	Generic Contents of JDF Elements
	Fundamental JDF Attributes and Elements

	Common Node Types
	Product Intent Nodes
	Process Group Nodes
	Combined Process Nodes
	Process Nodes

	AncestorPool
	Customer Information
	Process and Node Information
	Resources
	Resource Classes
	3.6.1.1 Parameter Resources
	Intent Resources
	3.6.1.3 Implementation Resources
	3.6.1.4 Physical Resources (Consumable, Quantity, Handling)
	3.6.1.5 PlaceHolder Resources
	3.6.1.6 Selector Resources

	Position of Resources within JDF Nodes
	Pipe Resources

	Resource Links
	Links to Parameter Resources
	Links to Implementation Resources
	Links to Physical Resources
	Links to PlaceHolder Resources
	Links to Selector Resources
	Links to Intent Resources
	Inter-Resource Linking

	Subsets of Resources
	Resource Amount
	Description of Partitionable Resources
	Locations of Physical Resources
	RunIndex
	Linking to Subsets of Resources
	Splitting and Combining Resources

	AuditPool
	Audit Elements
	3.9.1.1 ProcessRun
	3.9.1.2 Notification
	3.9.1.3 PhaseTime
	3.9.1.4 ResourceAudit
	3.9.1.5 Logging Machine Data by Using the ResourceAudit.
	3.9.1.6 Created
	3.9.1.7 Modified
	3.9.1.8 Spawned
	3.9.1.9 Merged

	JDF Extensibility
	Namespaces in XML
	Extending Process Types
	Extending existing Resources
	Creating New Resources
	Future JDF Extensions
	Maintaining Extensions
	Processing Unknown Extensions
	Derivation of Types in XML Schema

	L
	Life Cycle of JDF
	Creation and Modification
	Product Intent Constructs
	4.1.1.1 Representation of Product Intent
	4.1.1.2 Representation of Product Binding

	Quote Generation �Using Intent Resources
	Specification of Delivery of End Products

	Process Routing
	Determining Executable Nodes
	Distributing Processing to Work Centers or Devices
	Device / Controller Selection

	Execution Model
	Serial Processing
	Overlapping Processing Using Pipes
	4.3.2.1 Pipes of Partionable Resources
	4.3.2.2 Dynamic Pipes
	4.3.2.3 Comparison of Non-Dynamic and Dynamic Pipes

	Parallel Processing
	Iterative Processing
	4.3.4.1 Informal Iterative Processing
	4.3.4.2 Formal Iterative Processing

	Proofing and Verification

	Spawning and Merging
	Case 1: Standard Spawning and Merging
	Case 2: Spawning and Merging with resource copying
	Case 3: Parallel Spawning and Merging of Partitioned Resources
	Case 4: Nested Spawning and Merging in Reverse Sequence
	Case 5: Spawning and Merging of Independent Jobs
	Simultaneous Spawning and Merging of Multiple nodes

	Node and Resource IDs
	Error Handling
	Classification of Notifications
	Event Description
	Error Logging in the JDF file
	Error Handling via Messaging (JMF)

	Test Running
	Resource Status During Testrun
	J

	JDF Messaging with the Job Messaging Format (JMF)
	JMF Root
	JMF Semantics
	Message Families
	5.2.1.1 Query
	5.2.1.2 Response
	5.2.1.3 Signal
	5.2.1.4 Command
	5.2.1.5 Acknowledge

	JMF Handshaking
	5.2.2.1 Single Query/Command Response Communication
	5.2.2.2 Signal
	5.2.2.3 Persistent Channels

	JMF Messaging Levels
	Error and Event Messages
	Standard Messages
	Controller Registration and Communication Messages
	5.5.1.1 Events
	5.5.1.2 KnownControllers
	5.5.1.3 KnownDevices
	5.5.1.4 KnownJDFServices
	5.5.1.5 KnownMessages
	5.5.1.6 RepeatMessages
	5.5.1.7 StopPersistentChannel

	Device/Operator Status and Job Progress Messages
	5.5.2.1 Occupation
	5.5.2.2 Resource
	5.5.2.3 Status
	5.5.2.4 Track

	Pipe Control
	5.5.3.1 PipeClose
	5.5.3.2 PipePull
	5.5.3.3 PipePush
	5.5.3.4 PipePause

	Queue Support
	Queue Entry ID Generation
	Queue Entry Handling Commands
	5.6.2.1 AbortQueueEntry
	5.6.2.2 HoldQueueEntry
	5.6.2.3 RemoveQueueEntry
	5.6.2.4 ResubmitQueueEntry
	5.6.2.5 ResumeQueueEntry
	5.6.2.6 SetQueueEntryPosition
	5.6.2.7 SetQueueEntryPriority
	5.6.2.8 SubmitQueueEntry

	Global Queue Handling
	5.6.3.1 CloseQueue
	5.6.3.2 FlushQueue
	5.6.3.3 HoldQueue
	5.6.3.4 OpenQueue
	5.6.3.5 QueueEntryStatus
	5.6.3.6 QueueStatus
	5.6.3.7 ResumeQueue
	5.6.3.8 SubmissionMethods

	Queue-Handling Elements

	Extending Messages
	IFRATrack Support

	Processes
	Process Template
	General Processes
	Approval
	Combine
	Delivery
	Ordering
	ResourceDefinition
	Split
	Verification

	Prepress Processes
	Scanning
	LayoutElementProduction
	DBDocTemplateLayout
	DBTemplateMerging
	ColorSpaceConversion
	ColorCorrection
	Preflight
	ImageReplacement
	Separation
	Trapping
	Imposition
	PDFToPSConversion
	PSToPDFConversion
	RIPping
	Interpreting
	Rendering
	ContoneCalibration
	Screening
	SoftProofing
	Proofing
	PreviewGeneration
	InkZoneCalculation
	Tiling
	ImageSetting
	FilmToPlateCopying

	Press Processes
	ConventionalPrinting
	DigitalPrinting
	IDPrinting

	Postpress Processes
	Web Processes
	6.5.1.1 Dividing
	6.5.1.2 LongitudinalRibbonOperations

	HoleMaking
	Tip-on/in
	6.5.3.1 EndSheetGluing
	6.5.3.2 Inserting

	Block Production
	6.5.4.1 Block Compiling
	6.5.4.1.1 Collecting
	6.5.4.1.2 Gathering

	6.5.4.2 Block Joining
	6.5.4.2.1 AdhesiveBinding
	6.5.4.2.2 SaddleStitching
	6.5.4.2.3 SideSewing
	6.5.4.2.4 Stitching
	6.5.4.2.5 ThreadSewing
	6.5.4.2.6 Single Leaf Binding Methods
	6.5.4.2.6.1 Loose Leaf Binding Method
	6.5.4.2.6.2 Mechanical Binding Methods

	Numbering
	Sheet Processes
	6.5.6.1 Cutting
	6.5.6.2 Folding

	Trimming

	R
	Resources
	Intent Resources
	Span Resource Sub-elements
	7.1.1.1 Structure of Abstract Span Elements
	7.1.1.2 Structure of the Span-Element Type IntegerSpan
	7.1.1.3 Structure of the Span-Element Type NameSpan
	7.1.1.6 Structure of the Span-Element Type StringSpan
	7.1.1.7 Structure of the TimeSpan Sub-element

	Named Span resources
	ArtDeliveryIntent
	BindingIntent
	ColorIntent
	DeliveryIntent
	FoldingIntent
	HoleMakingIntent
	InsertingIntent
	LaminatingIntent
	MediaIntent
	Numbering Intent
	PackingIntent
	PocketingIntent
	ProofingIntent
	ScanningIntent
	ScreeningIntent
	ShapeIntent
	SizeIntent
	StampingIntent

	Process Resources
	Process Resource Template
	Address
	AdhesiveBindingParams
	ApprovalParams
	ApprovalSuccess
	ByteMap
	ChannelBindingParams
	CIELABMeasuringField
	CoilBindingParams
	CollectingParams
	Color
	ColorantControl
	ColorControlStrip
	ColorCorrectionParams
	ColorPool
	ColorSpaceConversionParams
	ComChannel
	Company
	Component
	Contact
	ConventionalPrintingParams
	CostCenter
	CutBlock
	CutMark
	DBMergeParams
	DBRules
	DBSchema
	DBSelection
	DeliveryParams
	DensityMeasuringField
	Device
	DigitalPrintingParams
	Disjointing
	DividingParams
	Employee
	EndSheetGluingParams
	ExposedMedia
	FileSpec
	FoldingParams
	FontParams
	FontPolicy
	GatheringParams
	GlueLine
	HoleMakingParams
	IdentificationField
	IDPrintingParams
	ImageCompressionParams
	ImageReplacementParams
	ImageSetterParams
	Ink
	InkZoneCalculationParams
	InkZoneProfile
	InsertingParams
	InsertSheet
	InterpretedPDLData
	InterpretingParams
	Layout
	LayoutElement
	LongitudinalRibbonOperationParams
	Media
	NumberingParams
	OrderingParams
	PDFToPSConversionParams
	PDLResourceAlias
	Person
	PlaceHolderResource
	PlasticCombBindingParams
	PlateCopyParams
	PreflightAnalysis
	PreflightInventory
	PreflightProfile
	Preview
	PreviewGenerationParams
	ProofingParams
	PSToPDFConversionParams
	RegisterMark
	RenderingParams
	RingBindingParams
	RunList
	SaddleStitchingParams
	ScanParams
	ScreeningParams
	SeparationControlParams
	SeparationSpec
	Sheet
	SideSewingParams
	StitchingParams
	Surface
	ThreadSewingParams
	Tile
	TransferCurvePool
	TrappingDetails
	TrappingParams
	TrapRegion
	TrimmingParams
	VeloBindingParams
	VerificationParams
	WireCombBindingParams

	B
	Building a System Around JDF
	Implementation Considerations and Guidelines
	JDF and JMF Interchange Protocol
	File-Based Protocol (JDF only)
	HTTP-Based Protocol (JDF + JMF)
	Protocol Implementation Details
	Mime Types and File Extensions

	MIS Requirements

	Encoding
	XML Schema Data Types
	JDF Data Types
	CMYKColor
	IntegerList
	IntegerRange
	IntegerRangeList
	LabColor
	Matrix
	NamedColor
	NameRange
	NameRangeList
	NumberList
	NumberRange
	NumberRangeList
	Path
	Rectangle
	sRGBColor
	TimeRange
	TransferFunctions
	XYPair
	JDF Data Structures
	Links
	JDF File Formats
	MIME File Packaging
	
	
	A.4.1.1 MIME Basics
	A.4.1.2 MIME Fields
	A.4.1.3 CID URL scheme
	A.4.1.4 JDF Agent Requirements

	HTTP 1.0 Field
	PNG Image Format
	Schema
	Schema of the JDF-node
	Converting PJTF to JDF
	PJTF Object Conversion
	Accounting
	Translating Values
	Translating the Contents Hierarchy
	Representing Pages
	Representing Pre-separated Documents
	Representing Inherited Characteristics
	Translating Layout
	Translating PrintLayout
	Translating Trapping
	Converting PPF to JDF
	Converting PPF Data Types
	PPF Product Definitions
	Comparison of the PPF Component to the JDF Component
	Collecting
	Gathering
	ThreadSewing
	SaddleStitching
	Stiching
	SideSewing
	EndSheetGluing
	AdhesiveBinding
	Trimming
	GluingIn
	Folding
	PPF Sheet Structure
	Administration Data
	Preview Images
	Transfer Curves
	Register Marks
	Color and Ink Control
	Cutting Data
	Folding Data
	Comments and Annotations
	Private Data and Content
	Modelling IFRAtrack in JDF
	IFRA Objects and JDF Nodes
	Object Identification
	IFRA Object Hierarchy
	Object States
	Deadlines and Scheduling
	JMF Messages that Translate IFRAtrack Messages
	JMF Phase Message
	JMF Progress Message
	StatusDetails Supported Strings
	ModuleType Supported Strings
	Supported Error Codes in JMF
	Event Types and Values
	Examples
	Brief Example
	Before Processing
	After Processing
	Product JDF to Process
	16-Page 4-up Brochure—Layout, RunList, Cut, Fold
	Spawning and Merging
	Example 2 Component JDF before Spawning
	Example 2 Component JDF Parent after spawning the cover node
	Example 2 Component JDF spawned node
	Example 2 Component JDF after merging
	Conversion of PJTF to JDF
	PJTF input
	JDF output
	Conversion of PPF to JDF
	Messages

