
he
try

n to

isfy.

t

ies,

 of
ch.

O

the
e of a
IxRetail Infrastructure Study
Ron Kleinman

October 23, 2000

Introduction
This study will enumerate nine major infrastructure options available to t
IxRetail committee, based upon a study of similar existing vertical indus
XML standards.

Once we have established the range of the “possible”, we can then begi
pare things down by applying use cases generated in the other working
groups to determine the actual requirements our infrastructure must sat

Overarching Issues
There are two key issues that must be addressed up front, which are no
purely technical. The first impacts the effort to develop the IxRetail infra-
structure while the second determines what the value proposition of that
infrastructure will be after it is completed.

1. Infrastructure Levels: Make vs. Take
We have an advantage over earlier XML standard efforts in other industr
since several “horizontal” standards are under development, and we can
leverage off the functionality they provide.

A typical XML infrastructure for a standard such as IxRetail is composed
the following layers, and “make vs. take” decisions must be made for ea

A. Transport
This layer functions as the delivery mechanism for XML messages.

Possible choices are HTTP, HTTPS, SMTP, FTP, or a “tightly coupled” O
based protocol such as Corba’s IIOP or DCOM’s DCE.

There is clearly no need to “make” this layer. The challenge is to select
established transport that best fits our needs. In fact, our eventual choic
transport will likely be dictated by the decisions we make at the envelope
layer.

capa-

fine
pri-

es.

chal-
pid

ons

cific
sis.
.

 of
pro-
ail is
ion,
es.

ng
sing
B. Envelope
The envelope layer provides routing, packaging, encoding and security
bilities for XML messages.

Possible choices are SOAP, ebXML (TRP), XP (the W3C’s attempt to de
an envelope layer, based around an initial SOAP v1.1 submittal) or a pro
etary message oriented middleware product such as MSMQ or MQ/Seri

Given recent developments within the various horizontal XML standards
bodies, there is no longer any need for us to “make” this layer. The real
lenge is choosing the optimum one to “take”, especially considering the ra
evolution of the possible choices identified above.

Further analysis of the current functionality offered by each of these opti
is probably premature at this time.

C. Header
The Header must define a set of message “types” which support the spe
requirements of the IxRetail standard, as determined by use case analy
Many of the possible requirements will be examined in more detail below
They include, but are not limited to:

Session setup and maintenance of session state
Guaranteed message delivery
Matching Requests with asynchronous Responses
Support for an asynchronous Publish / Subscribe capability
Support for transactions and transaction choreographies

There is no widely supported vendor-neutral solution available for many
these requirements, although several are currently supplied by existing
prietary messaging products. It appears at the present time, that if IxRet
to adequately support this level of functionality in a non-proprietary fash
we unfortunately must “make” at least some of this Header level ourselv

2. Single “Reference” Infrastructure (Y/N)
This issue relates directly to the requirement for “interoperability”.

YES:
 If we chose to define a single “reference” IxRetail infrastructure (spanni
all three layers defined above) which an application must be capable of u

ce
per-

mean
 use
hat
or
nce

ed
ans-
a

e-
st-

oper-

ple
 ref-

ing

e of
er-
sign
if it is to be awarded the “IxRetail-compliant” label, then we greatly enhan
the chances that any two such IxRetail-compliant applications will intero
ate “out of the box”.

The existence of such a reference infrastructure does NOT necessarily
that two applications must use it whenever they communicate... they can
any mutually agreed upon substitute without affecting interoperability. W
it does mean is that if an alternative infrastructure cannot be negotiated
configured, both parties must be capable of supporting the IxRetail refere
infrastructure.

Note that any alternative infrastructure normally must supply at least the
same functionality as the reference. For example, if the reference suppli
data authentication and encryption by using HTTPS as the underlying tr
port, then any alternative infrastructure used at a site requiring such dat
security must supply them as well.

Many XML vertical standards (SIF, OTA, HitisX, UCCnet) already include
such a reference infrastructure.

No:
The alternative approach would leave at least part of the infrastructure
unspecified, thereby reducing the level of interoperability provided by IxR
tail, and greatly complicating (if not making impossible) full compliance te
ing. An analogy could be drawn with two EDI applications, which while
agreeing upon the exact format of a purchase order, were unable to inter
ate because they were deployed on two different VANs.

As I really can’t think of a good reason to chose this option other than sim
expediency, I leave it to others to make a better case for not specifying a
erence IxRetail infrastructure.

The remaining issues concern purely technical infrastructure trade-offs,
mostly within the Header layer. The first of these has the most far reach
effects.

3. Closely Coupled vs. Loosely Coupled XML
A given XML-based standard has many viable alternatives for the degre
“coupling” it will impose between any two applications which use it to int
operate. Each offers a different trade-off between two very important de

il
ho-

rise
,

 of

 a

pen

s,
ce
is a

c-

ent

h
re
y

considerations.

A. Value of Compliance
This determines how meaningful the “IxRetail-compliant” brand on a reta
application will be for the end user. Here, the tighter the coupling option c
sen, the better.

B. Ease of Migration
This determines how easy it is to migrate from an existing legacy enterp
to one which is primarily composed of IxRetail based applications. Here
looser coupling is better.

There are four major alternatives which will be examined below, in order
decreasing “tightness”. They range from using XML to either:

1. Specify remote procedure calls,

2. Define the document exchanges (of varying rigidity) between
set of pre-specified application partners.

3. Define a set of data objects which may be shared among an o
set of cooperating applications.

 A. Communication via Function Calls (XML RPC)
Here applications exchange procedure calls using XML to cross firewall
basically extending Corba or DCOM to the Internet, only not as well (sin
RPC provides a procedural rather than an object-based interface). This
very tight XML coupling choice that seems wrong for IxRetail on several
counts.

1. IxRetail had its origins in the ARTS Data Model, not a UML spe
ification. It is UML that maps well to XML RPC. Data models are
normally mapped directly to a standard based upon XML docum
exchanges, rather than procedure calls.

2. We are assuming a retail Enterprise Intranet environment whic
shares a common security policy. Corba or DCOM would therefo
provide a better tightly-coupled solution than using XML to conve
RPCs.

 the
ons

.

es-

rop-

il
up-
lete.

y

The
LY
one

 one

 a

var-
ing
e-
B. Rigid Message Schemas, Rigid Partners
This option requires us to eventually produce the complete definition for
set of all documents exchanged between all IxRetail compliant applicati
within the retail enterprise.

Each application is assigned a schema for each message it will send or
receive, with all XML tags mandatory, and each partner clearly identified

Advantages
The IxRetail specification is “tight”. An application is deemed compliant
only if it sends and receives valid XML messages in a set of approved “m
sage exchange choreographies”.

Coupled with a selection of a 3-level reference infrastructure, this option
almost guarantees that a set of IxRetail compliant applications would inte
erate, offering significant value to the end user.

An IxRetail-compliant enterprise could therefore support “plug & play” reta
applications in the same way that a UnifiedPOS-compliant application s
ports plug & play POS peripherals. The retail application model is comp

“Write an IxRetail-compliant application once, and deploy it in an
enterprise which supports IxRetail.”

Disadvantages
You have to pay for paradise. The analogy with POS devices is revealing.
current UnifiedPOS specification supports about twenty-five COMPLETE
DEFINED device types. Any supported peripheral MUST be assigned to
of these types, or it cannot be supported.

Mapping this model to the set of applications in a retail enterprise poses
great problem.

Is it even possible to define the various applications comprising
retail enterprise to this level of detail?

The application boundaries in existing retail enterprises vary widely. Any
attempt to “exactly” define the format of the data exchanged between the
ious types of applications (Pricing / POS / Customer Loyalty / Merchandis
/ Order Fulfillment / Property Management / Customer Resource Manag
ment) is likely to:

do

ail
rd.

y the
plica-

k,
ir

ular
n

ms...
pon
isting

a-
n

ore

at

tely

er
1. Not match what the majority of deployed legacy applications
today

2. Not meet the specific needs of a significant fraction of the ret
enterprises which form the primary user base for this standa

Consider that the attempt to put business rules on the wire ran into exactl
same overspecification problem, even though it represented a looser ap
tion coupling than we are dealing with here.

As a result, migration to the IxRetail standard becomes a formidable tas
because ALL direct partners in an enterprise have to be replaced by the
IxRetail-compliant equivalents before ANY IxRetail-compliant application
can work as intended.

Conclusions
Only where there is strong consensus around exactly what data a partic
“type” of retail application supplies and needs to receive, can this tight a
approach be used.

Perhaps we can reach this level of specification for a few retail subsyste
but that is a matter for the individual Working Groups to decide, based u
how closely the boundaries of their assigned subsystems map across ex
(and diverse) retail enterprises.

C. Loose Schema, Rigid Partners
Enter the “optional” XML entities. Here we still define a set of retail applic
tion “types” and a corresponding set of messages which each applicatio
type exchanges, but not all data fields in these messages are required.

Advantages
IxRetail application boundaries become less rigid, so the standard can m
easily be supported by existing applications. In addition, an “extension”
XML element with a deliberately undefined internal format can be inserted
key points in the message schemas, to allow for future expansion.

Subsequent IxRetail versions could then add new functionality by comple
defining such an extension in an updated schema, while still keeping the
altered messages “valid” from the point of view of applications running old
versions of IxRetail.

eded

As),
al
etail

pos-
S)
lue

ts
cific
ht

e-

ed

-
ons
 the

e-
n the

e

Disadvantages
There are several disadvantages to this approach.

Any optional field poses the problem that it cannot be counted on to be
present. How can an application adjust if its partners do not supply a ne
(but optional) field?

One answer involves using a variant of Trading Partner Agreements (TP
namely “Application Partner Agreements” (APAs) to specify which option
fields are and are not supported. These can be exchanged within the IxR
Message set or can be externally matched by a local system integrator.

But whichever matching technique is used, optional fields eliminate the
sibility of plug & play components (similar to those of JavaPOS and OPO
without some level of application-specific negotiation. This reduces the va
of the IxRetail-compliant brand, as “out of the box” interoperability is no
longer likely.

Finally, even with optional fields to “loosen” the schema, the requiremen
placed upon an IxRetail-compliant application to send and receive a spe
set of XML messages with a set of specified partners, may still be too tig
for widespread adoption.

Conclusions
Allowing optional XML entities, except within a predefined “extension” el
ment, does not seem an attractive alternative for the IxRetail standard.

D. Looser Schema, Undefined Partners
This option completely replaces the document exchange models describ
above, with one based upon data exchange.

The previous requirement to carve a retail enterprise up into a set of pre
defined application “types” is removed. The boundary between applicati
is blurred to the point where an application need no longer depend upon
presence of a specific type of partner to permit the exchange a set of pr
defined messages. Rather each application interface is based totally upo
data elements it provides and the data elements it needs.

We have been calling this the “Alice Model”, and it is quite different from th
previous options discussed above. A rather lengthy evaluation follows.

s
ther
stric-

ain
s are
e

as an

exist-
h the

he

ail

IxRe-

lines
il
Advantages
We are starting the IxRetail effort with a data model already in hand. Thi
approach leverages that model to further define a set of retail objects ra
than a set of retail applications, which is both a more natural and less re
tive thing to do.

Here each IxRetail-compliant application signs a “contract” to supply cert
of these objects and require certain others. The actual messages it send
generic (object Create/Read/Update/Delete), so in a sense, except for th
actual data objects involved, ALL IXRETAIL APPLICATIONS SHARE
THE SAME INTERFACE.

Mapping such a model to legacy systems becomes significantly easier,
existing application (typically front-ended by an “IxRetail Agent”) can be
transformed to support an object-based contract, which reflects its own
ing data usage needs. It no longer need first be revamped to exactly matc
multi-document interface of one of the IxRetail application “types”.

Conversion of a legacy application to IxRetail-compliance now involves t
following steps:

1. Determine the contract (IxRetail objects needed & supplied).

2. Create an “Agent” which connects the application to the IxRet
standard. Such an agent might interface with the application
directly, or it might restrict itself to providing / updating infor-
mation in the applications private database.

3. Supply the contracted objects supplied via the Agent

4. Arrange to get all needed retail objects via the same Agent.

In cases where a needed object supplier within the enterprise is not yet
tail compliant, continue to use the preexisting method for obtaining such
object data, until such time as it becomes available via the Agent.

This option draws its strength from the assumption that the above guide
are straightforward enough to ensure widespread adoption of the IxReta
standard.

il-

data,
mu-

plica-

en-

nated
dard

gs
tent
crib-

era-
t
all

and
on

at a
for
Disadvantages
A. Reduced Functionality
This model reduces the functionality of the IxRetail standard. Instead of
defining the complete document level interface for all applications in the
retail enterprise, it “only” provides a “Retail Enterprise Data Sharing Fac
ity” based upon the ARTS data model.

B. More Extensive Infrastructure
Application “types” are eliminated so that applications view the outside
world as a single IxRetail Persistent Data Store. Since an application no
longer knows the specific partners it needs to contact to exchange retail
this model requires a centralized architecture, with each application com
nicating only with the central process which supports the data store.

It is this central process which maps each object request to the retail ap
tion that has contracted to provide it, and maps the response back to the
requesting application.

The major disadvantage of this model is the requirement to deploy this c
tral process, which is independent of all retail applications and yet must
somehow be supplied (either by separate vendors or by open source do
to the IxRetail committee) as part of the infrastructure to enable the stan
to be successfully deployed.

At its simplest, this process is a store & forward router for IxRetail XML
messages. If we require a publish and subscribe facility (see below) thin
become more complex, as the central process must also support persis
event queues which guarantee later delivery of published events to subs
ing applications, even if these events occurred while the application was
offline.

Note that this model is very similar to the one used for the School Interop
bility Framework (SIF), which unites all data within a school district in jus
this fashion. The required SIF central process is currently supplied free to
members for both the Java and Windows platforms by Sun Microsystems
a major NT ISV respectively. We might realistically expect a similar situati
to occur for IxRetail.

Conclusions
The Alice model allows easy mapping of legacy applications to IxRetail
cost of requiring deployment of an additional piece of “central” software

-
on-

ility

ot

on
ow.

her.
ed.

rtup
ise-

nis-
tual
ound,

 hav-
rt-

ing

gu-
e

these applications to connect to.

In addition, while a given application will specify its object contract, a sys
tem administrator must still be involved to match producer and supplier c
tracts, and possibly do some level of integration work, before interoperab
of IxRetail applications within a given retail enterprise can be achieved.

Thus while compliance requirements are greatly simplified, plug & play
interoperability only remains possible between “allied suppliers”, but is n
guaranteed in the general case.

Note that the decision of whether or not to base the IxRetail infrastructure
the Alice model will have great impact on many of the choices we face bel
THIS IS A KEY DECISION.

4. Partner Discovery
Before two applications can communicate, they must first locate each ot
There are several common techniques by which this may be accomplish

A. Dynamic
Under this model, partner discovery is made dynamically at process sta
or only when needed. This requires the accessibility of either an enterpr
wide Naming Service or Process Registry.

Normally the contents of such a registry are preset by the network admi
trator. Given the URI for the registry and a “tag” for each process, the ac
partner process address (URL, email address, node / port #,...) can be f
and interprocess communication can begin.
.
B. Very Dynamic
In the extreme case, the registry may itself be dynamically populated by
ing the individual applications publish their personal APAs (Application Pa
ner Agreements). If this option is selected, the new UDDI standard for
dynamic partner registration and discovery might be quite useful in provid
the necessary functionality.

C. Static
The location of each partner is hard-wired into the application (or its confi
ration data). There is no partner discovery, and neither an enterprise-wid
Naming Service or Process Registry is required.

c-
s to
ard

oca-

a-
e
-
o
PA

hen
pli-

lled,
 it
lved.

”.
 the
D. Very Static
In the extreme case, the static option maps directly to the “Alice” archite
ture, in which an application has no way to identify the processes it need
interoperate with. Instead it uses the central process as a store and forw
router, to:

1. Convert the destination object name in the message into the l
tion of the process which services that object.

2. Route the message to that process

Conclusions
Option A
This uses a standard naming service to locate the various IxRetail applic
tions. It would require us to define the “generic names” under which thes
applications could be found in the typical retail enterprise (ex: “GiftRegis
try”). If any additional partner information was required, we would need t
incorporate some sort of “process registry” into IxRetail, and define the A
information in detail as part of the IxRetail standard.

Examples of such data might include:
Application “type” and/or Objects supported
IxRetail version number
Optional XML fields supported
Push or Pull mode (see below)
Alternative transports supported (see below)

Option B:
It is hard to imagine a retail enterprise that would allow a newly installed
application to dynamically register itself, discover its own partners, and t
begin exchanging data. Aside from possible catastrophic effects from ap
cation incompatibilities, this scenario raises serious security concerns.

Option C
This also seems unacceptable, since every time a new application is insta
the configuration data for all other applications which communicate with
have to be altered, and any associated incompatibilities have to be reso

Option D
The other viable choice, and the only one that supports the “Alice Model
As there is NO partner configuration data (only the names of the objects

ccur
ct
.

ail
ers

ed. If

rtner,

ion to
es
r-

 of a
This
-

uni-
he
iated
uld
e

g:

not
 at a
application wishes to receive or supply), any configuration changes that o
will be within the central process (i.e. the infrastructure), and will not impa
the existing applications when new applications are removed or installed

5. One-Shot Messages vs. Sessions
This issue addresses the question of whether two communicating IxRet
processes can or must establish a “session” to support stateful paramet
which simplify the messages they exchange.

One-Shot Message:
Here each message exchanged between two applications is self-contain
security information is required, it must be fully verifiable. For example, a
process might have to send an X.509 certificate in each message to its pa
which would then have to be revalidated each time.

Transaction support is impossible because there is no inter-process sess
hold the necessary state information. Additional administrative procedur
would be required to ensure interoperability (w.r.t. compatible IxRetail ve
sions, quality of service, security, etc.).

On the other hand, since there is no interprocess state, the sudden loss
partner can be easily handled, and the resulting system is more robust.
option is therefore particularly well suited for applications which are con
nected across the Internet, or which communicate rather infrequently.

Long Term Session:
This approach requires the creation of a session between any two comm
cating applications (or in the Alice model, between any application and t
central process). The session state variables may be dynamically negot
during a “session creation” message exchange. Alternatively, IxRetail wo
have to allow the static definition of all session state information, via som
administratively controlled Application Partner Agreement.

Typical “session state” information consists of some or all of the followin

A. Security Cookie

The following scenario assumes that the transport in use (ex: HTTP) does
support partner authentication, and that it therefore has to be supported
higher layer of the infrastructure.

ge it
o-
 it

e. The
mpar-
 part-

rtifi-
ne

rs at
rtner
 the
ved
cess-

r
y.

om

nly
ally

side
n be
 one
-

ull
Here a session requester attaches an X.509 certificate to the first messa
sends to its partner. The partner validates it (a rather time consuming pr
cess), which authenticates the requester. It then creates a cookie which
stores as part of its session state, and returns a copy to the requester.

Whenever the requester sends another messages, it includes this cooki
partner can therefore authenticate all subsequent message by simply co
ing the cookie each contains with the cookie saved in session state. For
ners which exchange multiple messages in a secure environment, this
represents a significant performance optimization over re-performing ce
cate verification for each arriving message, as would be required in the “O
Shot” case.

B. Push/Pull Flag
This option determines the subsequent flow of data between two partne
the time the session is established. “Push” mode is standard... if one pa
has a message for another, it sends it. As this arrives asynchronously at
receiver, it usually requires the receiver to support a multi-threaded “arri
message queue”, with one thread popping messages off the front for pro
ing, and another inserting newly arrived messages at the back.

Assuming the underlying transport was HTTP, supporting PUSH mode
means supporting incoming HTTP connections, which means the partne
cannot be based on a browser, and firewall considerations come into pla

Pull mode, limited to one partner (A) in a session, blocks its partner (B) fr
sending a message until it receives an IxRetail “GetNextMessage”. As a
result, partner (A) receives all incoming messages synchronously (i.e. o
when specifically asked for). This is true even for events, which are norm
asynchronous by nature.

As a result, (A) requires no special queueing for incoming messages. A
benefit, again assuming the underlying transport was HTTP, is that (A) ca
running on a browser, since an application operating in Pull mode is the
that always initiates all HTTP connections (by sending the “GetNextMes
sage”).

Note that in the Alice model, ALL the retail applications can operate in P
mode since they communicate directly only with the central process.

 the

 cre-
tible
ed is

the
stra-
t be

an a
ally
s

w”
nsac-

ot”

two
 to
r

ner
re are

tire
C. IxRetail Version
Once established or negotiated at session creation, each partner knows
version of IxRetail it must conform to whenever it communicates with its
partner. The only assumption is that subsequent versions of the session
ation message (which establish the session) must be backwards compa
(so that say a version 2 partner can at least identify that what it has receiv
a version 1 session request message).

D. Alternative Infrastructure
Assuming mutual agreement among BOTH partners (dynamically during
initial exchange of the session creation message or statically via admini
tive procedures), an infrastructure other than the IxRetail reference migh
used for the duration of the session (ex: MQ/Series).

E. Transaction State
This component is different than the others, since it is a variable rather th
constant. During the lifetime of the session, the Transaction State continu
cycles through a set of values which reflect the “choreography” of variou
transactions the session partners are supporting.

There are several efforts now underway to standardize on XML “workflo
schemas that we could look to adopt if the IxRetail use cases require tra
tion support.

Conclusions
We may find as other standards have (HitisX, OTA) that both the “one-sh
and session options need to be supported.

6. Immediate vs. Delayed Responses
The choice made here will control how data will be exchanged between
IxRetail applications. For purposes of illustration, HTTP will be assumed
be the infrastructure transport layer in the analysis below, although othe
transports would raise similar issues.

Assume an application requests information from a partner and the part
responds with the data, thereby completing the message exchange. The
two ways in which this can take place.

A. Immediate Response
If HTTP is the transport, a single HTTP connection could support the en
Request / Response data interchange.

on-
an

 the

st-

hro-
he

pti-

and
er

ing
actu-
red.

-
ed
up-
 pro-

 an
for-

he
ST)
A. The “RequestData” function is issued. This opens an HTTP c
nection by sending the Request message to the partner via
HTTP POST.

B. The partner receives the Request, processes it, and issues a
Response message. This is conveyed via an HTTP POST in
opposite direction, which closes the session.

C. The returned data is passed back to the issuer of the “Reque
Data” function, as part of the function return.

Advantages
The entire request/response sequence is supported within a single sync
nous RequestData function call. This presents a straightforward API to t
requested application.

Also, by using only a single HTTP connection, system performance is o
mized.

Disadvantages
Depending upon the complexity of the actual request, and the bandwidth
latency of the connection between the two applications, the remote partn
may not be able to respond within a reasonable timeframe. The request
partner is then faced with the dilemma of whether the remote partner is
ally working on the request, or whether some sort of network error occur

This option can therefore result in many open but inactive HTTP connec
tions, and significant blockage to the requesting application. A fairly involv
“timeout” analysis is often required, and the infrastructure may have to s
port an asynchronous “CancelRequest” message to allow the requesting
cess to unblock.

B. Delayed Response
Here the original Request message is “Ack’d” by the remote partner (via
HTTP POST) which closes the first connection, without any response in
mation being sent.

Later, when the actual response information does become available, the
remote partner opens up a new HTTP connection and sends this data. T
requestor receives it, and issues an “Ack” message (via a final HTTP PO
which closes the second HTTP connection.

t,
ting

con-

syn-
ter
ead is

 the

e for

cify-
low,
00.
This requires the infrastructure to support a “RequestID” in each reques
which is then returned in the response message. This allows the reques
process to correlate request/response pairs.

Advantages
Long delays between Request and Response do not leave open HTTP
nections and do not block the requester.

Disadvantages
The programming model is more complex. Arrival of a response occurs a
chronously, similar to the arrival of an event. Additional code in the reques
must place the response in an incoming message queue, a separate thr
required for each simultaneously active request and additional request /
response matching logic must be present.

Conclusions
No real surprise here. Immediate response should be the choice, unless
use cases demand support for delayed response.

7. Generic vs. Specific Request Schema
The choice here is between defining a separate, specific Request Doctyp
each type of response required, as:

<RequestItem> *** </RequestItem>

<RequestCustomer> *** </RequestCustomer>

<RequestGiftList> *** <RequestGiftList>

as opposed to defining a single GenericRequest Doctype capable of spe
ing the format of all possible responses. An example of this is shown be
which requests the description and price of all items costing less than $2

<GenericRequest ObjectType = ITEM>
 <Fields>
 <Field> Description </Field>
 <Field> Price </Field>
 </Fields>

 <Conditions>

utes
ation
the
ic

xed

 it

es

s is
e

h a
r
ate
nds

bject
on
s

 <Condition>
 <Field> Price </Field>
 <Comparitor type = LessThan />
 <Value> 200.00 </Value>
 </Condition>
 </Conditions>
</GenericRequest>

A. Generic Request: Advantages
This option is required for the Alice Model, where the central process ro
the request (based only on ObjectType desired) to the appropriate applic
for servicing. So in effect the requester’s view (of the central process and
responding application together) is of a central database, with the gener
Request message corresponding to an SQL query on that database.

As a result, the requesting application is not restricted to asking one of a fi
set of partners to supply a fixed set of data structures. Rather it issues a
generic Request message to the “shared database” to get only the data
needs.

However a Generic Request capability is also quite useful for alternative
models as well, as it provides increased flexibility and significantly reduc
the total number of XML Schemas required to define the standard.

B. Specific Requests: Advantages
The main advantage of having multiple “data specific” request message
that this approach allows the XML parser to do much more w.r.t. messag
validation.

The analogy here is to the OO option, which provides a single object wit
“type” member, vs. subclassing that object into a separate subobject pe
“type”. The subobject approach allows the compiler to automatically valid
that the collection of additional functions and data used, actually correspo
to the subclass declared.

The GenericRequest schema, with its element values for such things as o
field name and field value, leaves much more of the subsequent validati
(does this field name even exist for this object?, is this value legal for thi
field?, etc.) to the receiving application.

8. Publish and Subscribe Capability (Y/N)

itor”
hen
de.

he
ich
the
the

pon

ng:

to
t to

ure
t.

k
ran-

e-
up-

ect Y.
Use cases may demand that one application possess the ability to “mon
the data structures controlled by another, being asynchronously alerted w
changes (new occurrence created, existing occurrence modified) are ma

The way this is usually achieved is via a Publish / Subscribe capability. T
“monitor” process subscribes to the “data structure changed” events wh
the data owner promises to publish. An example is the “PriceChanged” or
more general “ItemChanged” event. Supporting such a capability imposes
following requirements on the IxRetail infrastructure.

1. Identification of a fixed set of data structures (or data objects) u
which events can be reported.

2. Definition of additional IxRetail message headers for the followi

Subscribe and Unsubscribe
If the subscriber only knows the object name for the data it wants
subscribe to, the infrastructure must map the subscribe reques
the application which will publish the event.

Publish and Unpublish
If the publisher doesn’t keep track of subscribers, the infrastruct
must multiplex each published event to the entire subscriber lis

Event
If the subscriber expects guaranteed event delivery (i.e. events
occurring when it was offline are reported when it connects bac
online) and this is not supported by the publisher, it must be gua
teed by the IxRetail infrastructure.

Note: In the Alice Model, it is the central process (i.e. part of the IxR
tail infrastructure) rather than the individual retail applications, that s
plies all the above services.

A typical sequence utilizing a publish / subscribe capability might look
something like the following:

X1 announces it publishes “change data” events for object Y.

X2 and X3 announce they each subscribe to “change data” events for obj

X1 creates a new object Y1. It publishes a change event to report this.

ete

fier”
d in

an-

ject
se

king

ter-
ly

s we
me

e
ality

er-
 IxRe-
X2 and X3 receive this event. X2 ignores it.

X3 issues a request for the object which has changed.

X1 receives this request and issues a response which contains the compl
data for this object.

X3 receives this response.

Note that this assumes the existence of a publisher-unique “object identi
(or UID) which must be included in the event message and which, returne
the request, allows the publisher to identify the object being requested.

We would therefore need to define such a UID element in the IxRetail st
dard for all objects on which events were reported, or the infrastructure
would have to require that the publisher include an entire copy of the ob
being changed (as opposed to just the UID) within the event message. U
cases, object sizes and bandwidth considerations will all be factors in ma
this design decision.

Finally, depending on security constraints, Access Control Lists (ACLs)
might have to be employed to determine which applications within an en
prise were allowed to publish and/or subscribe to which objects. Typical
such ACLs would be set up administratively, with only a “RoleId” field
required in the Header layer to support it.

9. Manifests (Y/N)
Manifest functionality is typically supplied by the Envelope layer of the
infrastructure rather than the Header, as it deals with packaging issues. A
are planing to “take” rather than “make” the Envelope layer, we can assu
that the rather involved infrastructure needed to support manifests will b
provided, and we need only concentrate on how to leverage the function
they provide.

Basically a Manifest forms the basis of a “compound document” that sup
sedes a single XML message as the unit of data exchange between two
tail processes. This compound document consists of the following
INDEPENDENT components:

One Compound Envelope Header (XML)

ch

ly
d

ep-
ocu-

ents
 ANY

com-

-
ted

d
a sec-
pro-

e).
One Manifest, containing the description, name and version of ea
subsequent payload (XML)

 Zero to N Payload documents (some of which may be XML)

A typical vertical XML standard such as IxRetail would normally define on
the payloads, whereupon the Envelope layer generates the Manifest an
Header, and wraps the whole thing into a single compound document.

The major advantage offered by the Manifest is the ability to completely s
arate the Header layer of the infrastructure from the rest of an IxRetail d
ment.

The Problem
Assume we have defined a Response message, supported by XML elem
in the Header layer. The problem is that the Response data can contain
collection of retail objects defined by ANY working subcommittee, all
wrapped in the Response Header data defined by the Infrastructure sub
mittee.

What we really need is the ability to strip off and process the “Response
Header” in one routine (via say a SAX parser) to ensure that the associa
object data is meaningful, by checking if:

It is well formed XML.
It is a valid XML ResponseHeader.
Its source ID matches an outstanding request.
It arrived before its timeout expired.

Only after the ResponseHeader is validated is the context for the include
Response data revealed. At that point we want to pass the remainder to
ond, context-specific routine to validate (perhaps via a DOM parser) and
cess the rest of the Response message. The problem is that, due to the
“magic” of XML, we can’t do this!

Consider a typical Response message (excluding transport and envelop

<ResponseMessage> // Doctype
 Header Stuff
 <PriceData> *** </PriceData>
</ResponseMessage>

ture

 pric-
ly be

The
he
e

 a
hema
y/all
the

ice-

ince
ter-

d by

es.
ma
by all

 true
 was
s get

a sin-
bject
Note again that due to the trailing “/ResponseMessage” tag, the infrastruc
SURROUNDS the Price data rather than simply preceding it. Thus the
Header cannot be separately validated, since it is joined at the hip to the
ing data elements (as well as to any other elements which might possib
returned) within the ResponseMessage schema.

Some Potential Solutions
Four solutions exist which attempt to resolve the conflicts introduced by
packing Header layer and retail object data into the same XML message.
first three approaches limit themselves to changes in the Header level. T
fourth (Manifests) attacks the problem from underneath, by enhancing th
Envelope layer.

A. A Single Humongous Response Schema:
Here the schemas for all possible retail objects that could be returned in
Response message are “OR’d” together inside the ResponseHeader sc
to create one massive schema which completely defines the format of an
IxRetail Response messages. The on-the-wire XML looks something like
above, where any other type of data element could be substituted for Pr
Data.

The advantage is that only one schema exists for ResponseMessage. S
this need not contain any optional elements, or elements for which the in
nals are unspecified, the level of automatic validation that can be provide
the XML parser is high.

The big problem is the instability such a huge schema definition introduc
Basically ANY change to ANY piece of data in ANY object causes a sche
change for ResponseMessage, immediately outdating the schemas used
IxRetail applications which send or receive ResponseMessages. This is
even for applications that are otherwise independent of the object which
changed. Version compatibility matching and schema maintenance issue
very ugly very quickly.

B. A Single Generic Response Schema:
In a manner closely paralleling the generic Request, this option creates
gle generic ResponseMessage which, as it does not define the actual o
data, is the same for all Responses.

<ResponseMessage> // Doctype

ls!

n
 is

d list
the
rify
data

ach
te the

s

the

r of
 a

ist of
 Header Stuff
 <ResponseData type = PRICE>
 // Undefined Response data interna
 </ResponseData>
</ResponseMessage>

The problem is identical to that of the generic Request option, namely a
inability to automatically verify the contents of the message. Only here it
MUCH worse.

Consider that while the ResponseData element may have an enumerate
of types (one per data object) its internal contents must be undefined in
schema. Thus every IxRetail application would have to include code to ve
that each and every XML element it expected was actually present in the
of each and every ResponseMessage it received. Ugh.

C. Multiple “Narrow-Focused” Response Schemas:
This option requires us to define a completely separate XML schema for e
type of data that could possibly be returned in a Response message. No
large number of new document types that result:

<PriceResponse> // Doctype
 <ResponseHeader>
 Header Stuff // IDENTICAL for all Response
 </ResponseHeader>

 <Price>

 </Price>
</PriceResponse>

This is close to being an acceptable solution, although it still suffers from
following drawbacks:

A. Additional Schemas
The large number of additional Doctypes require the same numbe
additional XML schemas to be added to the standard. This causes
growth in standard “size” and perceived complexity.

B. Contested Ownership
There is no clear ownership for these new schemas, as they cons

ork-

d be

n num-

-
e

to
component elements supplied by both the individual subsystem w
groups and the infrastructure committee. Who owns maintenance?

C. Versioning Conflicts
Whenever the work products of two disjoint groups get lumped
together in a single message, versioning conflicts result.

If the Price data changes, the version of the PriceResponse shoul
updated. If the ResponseHeader data changes, the version of ALL
Response messages should be updated. So what does the versio
ber of the PriceResponse really reflect?

D. Manifests:
None of the above solutions would permit the IxRetail developer to sepa
rately validate the message Header and Data components, which was th
original problem. If we use the Manifest capability of the Envelope layer
define separate payloads for the Header layer and the object data in the
Response message, the compound document looks like the following:

Manifest
<Manifest>
 <Payload Name = ResponseHeader Version = 2.0 />
 <Payload Name = ItemResponse Version = 3.2 />
</Manifest>

Payload 1
<ResponseHeadert>
 <SourceID> aaa </SourceID>
 <DestinationD> bbb </DestinationID>
 <RequestID> ccc </RequestID>
 <DateTime> ddd </DateTime>
</ResponseHeader>

Payload 2
<ItemResponse>
 xxx // Pricing Data
</ItemResponse>

de-

der
of
ing

ts
.

y-
o
le.

ing
ing

rly
cata-

ign
Advantages
Modularity
Each Payload can be separately (and completely) verified via DOM by in
pendent software modules.

Such modularity also allows us the possibility of replacing the entire Hea
layer of the infrastructure by an alternative choice, without affecting any
the existing XML schemas generated by the other workgroups (or affect
the retail logic of existing IxRetail-conformant applications).

Versioning
Each Payload has its own version number specified in the Manifest, so i
schema can be modified and published by independent working groups

Additionally, since the Payload version # is now external to the actual pa
load data itself, an application does not have to parse an XML Payload t
determine if it is conforms to a version of IxRetail beyond what it can hand

Manifests therefore have the potential for greatly simplifying the version
problems we otherwise would face in the future. (Note that ANY version
scheme we might chose would probably work perfectly for version 1)!

Binary Attachments
Some of the Payloads can contain non-XML data. This might be particula
useful if an application needed to return say a JPEG file to represent the
logue image as part of the response to an item lookup.

Conclusions
This document identified a fairly wide set of possible options for the des
of the IxRetail infrastructure. We first need to review and extend this list.

After that ...Bring on the use cases!!

	IxRetail Infrastructure Study
	Ron Kleinman
	October 23, 2000
	Introduction
	Overarching Issues
	3. Closely Coupled vs. Loosely Coupled XML

	Advantages
	Disadvantages
	Conclusions
	Advantages
	Disadvantages
	Conclusions
	Advantages
	Disadvantages
	Conclusions
	4. Partner Discovery

	Conclusions
	5. One-Shot Messages vs. Sessions

	Conclusions
	Advantages
	Disadvantages
	Advantages
	Disadvantages
	Conclusions
	The Problem
	Some Potential Solutions
	Advantages

