
1302
IEICE TRANS. INF. & SYST., VOL.E84–D, NO.10 OCTOBER 2001

PAPER IEICE/IEEE Joint Special Issue on Autonomous Decentralized Systems and Systems’ Assurance

A Decentralized XML Database Approach to Electronic

Commerce

Hiroshi ISHIKAWA† and Manabu OHTA†, Regular Members

SUMMARY Decentralized XML databases are often used in
Electronic Commerce (EC) business models such as e-brokers
on the Web. To flexibly model such applications, we need a
modeling language for EC business processes. To this end, we
have adopted a query language approach and have designed a
query language, called XBML, for decentralized XML databases
used in EC businesses. In this paper, we explain and validate the
functionality of XBML by specifying e-broker business models
and describe the implementation of the XBML server, focusing
on the distributed query processing.
key words: decentralized database, query language, query pro-
cessing, electronic commerce, XML

1. Introduction

XML data are used in Web information systems and
Electronic Commerce (EC) applications [15]. In par-
ticular, e-broker [11] business models on the Internet
like Amazon.com, use a large number of XML data
such as product, customer, and order data. In order
both to flexibly model and agilely realize such applica-
tions, we need a modeling language for EC businesses,
in particular, business processes. First, as business
process specification, we must allow users to retrieve
only necessary portions of XML data in EC businesses.
Second, we must allow users to combine XML data
from different sources in the Web to produce new XML
data for EC services. To this end, we will adopt a
query language approach to modeling EC businesses
and will provide a query language for XML data cen-
tric in business models, tentatively called XBML (Xml-
based Business Modeling Language) [8]. As a query
language approach, we need to design a modeling lan-
guage continuous with nonprocedural standards such
as SQL.

We rationalize the necessity of a modeling language
for EC businesses. First, the modeling language must
be able to integrate the components by reducing their
complexity and to make the integrated system under-
standable enough to claim the novelty. Second, the
modeling language must be able to do more than model
EC businesses. Thus, it must be able to bridge the gap
between the constructed model and the realized system
to survive agile competition in EC businesses.

Manuscript received March 23, 2001.
Manuscript revised May 23, 2001.

†The authors are with the Department of Electronics
and Information Engineering, Tokyo Metropolitan Univer-
sity, Hachioji-shi, 192–0397 Japan.

Indeed, use of XML as interfaces of each compo-
nent makes integration easy. However, this approach
just models only the static aspects of the components.
Instead, we must be able to model the dynamic as-
pects of business models, that is, business processes.
For example, the author [3] takes an HTML/JavaScript
approach to modeling Web-based applications in the
context of extending UML. But this procedural ap-
proach would increase the complexity of modeling and
the overhead of the client-server interaction on the con-
trary. Instead, we need a nonprocedural language ap-
proach to modeling the bushiness processes. However,
just applying SQL to XML is inadequate because RDB
and XML data have different data models. So we take
a nonprocedural query language approach to model-
ing XML-based businesses. Further, we make an XML
query language efficiently executable on the server-side
to agilely implement the business models. In a word,
our query language can model and realize XML-based
EC businesses.

We will describe the functionality of XBML and
validate the usability of XBML by specifying the ex-
ample business model with XBML in Sect. 2. Next we
will describe the implementation of an XBML server
in Sect. 3. Finally, we will compare XBML with other
works.

2. Approach

2.1 Database Schema and Business Model

We use the following database schemas or DTD frag-
ments for illustrating the functionality of XBML:

<!ELEMENT bib (book*, article*)>

<!ELEMENT book (author+, title, publisher, price, keyword*)>

<!ATTLIST book year CDATA>

<!ELEMENT article (author+, title, publisher, keyword*)>

<!ATTLIST article year CDATA>

<!ELEMENT publisher (name, address)>

<!ELEMENT author (firstname?, lastname, office+)>

<!ELEMENT office (#PCDATA — (building, room))>

<!ELEMENT registration (register*)>

<!ELEMENT register (customer)>

<!ELEMENT customer (id, lastname, keyword*, purchased*)>

<!ELEMENT ordering (order*)>

<!ELEMENT order (id, item)>

<!ELEMENT shipping (ship*)>

ISHIKAWA and OHTA: A DECENTRALIZED XML DATABASE APPROACH
1303

<!ELEMENT ship (id, status)>

The following XML data conform to the above DTD:
<bib>
<book year=”1993”>

<author>
<firstname>Hiroshi</firstname>
<lastname>Ishikawa </lastname>
<office>

<building> L2 </building>
<room> S210 </room>

</office>
</author>
<title>Object-Oriented DatabaseSystem
</title>

<publisher> Springer Verlag </publisher>
<price> 69.00</price>

</book>
</bib>

We take an ordered directed graph as a logical
model for an XML query language XBML as a mod-
eling language of EC businesses. That is, the data
model of the XML query language can be represented
as data structures consisting of nodes (i.e., elements)
and directed edges (i.e., contain, or parent-child rela-
tionships), which are ordered.

We also use e-broker business models based on
XML data for describing the XBML functionality. Here
we will provide the working definition to EC business
models in general. The EC business models consist
of business processes and revenue sources based on IT
such as Web and XML. We assume that explanatory e-
broker business models on behalf of customers consist
of at least the following business processes (see Fig. 1):

(1) The customer searches products by issuing var-
ious (i.e., either precisely- or approximately-
conditioned) queries against one or more suppliers
and /or navigating through the related links.

(2) The customer takes recommendations from suppli-
ers into account if any.

(3) The customer compares and selects products and
puts them into the shopping cart.

(4) The customer checks out by placing a purchase or-
der with registration.

(5) The customer tracks the order to check the status
for shipping.

E-broker models can be modified to make other mod-
els such as auctions, which is not discussed here due
to space limit. This means that the following discus-
sion will be somehow valid to e-business models in gen-
eral. The revenue source in e-broker models is sales. In
general, the revenue sources itself requires further pro-
cesses for valuation. However, we treat them as atomic
processes and focus on the business process part of the
model in the context of modeling languages.

Fig. 1 E-broker model.

2.2 Business Model Specification

The authors [10] discuss that seemingly diverse business
models can be represented by combining or modifying
a limited number of commonly used business processes.
The five processes described in the previous subsection
correspond to such common processes. Further, we
must take inter-enterprise (i.e., Business to Business)
processes into consideration in describing business pro-
cesses. In a word, the objective of XBML is to flex-
ibly describe business processes involving autonomous
distributed enterprise Web sites. Thus, we think that
the validity of XBML can be shown if the previous pro-
cesses are flexibly described by XBML. We describe the
functionality of XBML and its usefulness by specifying
the five processes of the e-broker models in succession.
As business process specification requires a query facil-
ity for XML databases, we also discuss the validity of
XBML from the viewpoint of XML query requirements
proposed by W3C [18] when necessary.

2.2.1 Searching Products

The whole processes usually begin with a process for
searching products. XBML provides the following func-
tions to flexibly describe this process:
− XBML allows product search by selecting products

based on their attributes, such as titles and authors,
and constructing search results based on them.

− XBML allows ambiguous search by allowing
partially-specified strings and path expressions.

− XBML supports data join used in related search to
promote cross-sell and up-sell.

− XBML configures search results by sorting and
grouping them based on product attributes.

− XBML supports “comparison model” of similar
products by allowing search multiply bound across
shopping sites.

− XBML provides localized views (e.g., prices) of
global products by introducing namespaces (i.e., con-
texts).

1304
IEICE TRANS. INF. & SYST., VOL.E84–D, NO.10 OCTOBER 2001

All the functions but multiple binding conform to the
core parts of W3C query requirements whose main pur-
pose is XML data search. Thus, they are sufficient
for describing search processes. Here multiple bind-
ing is prerequisite for business modeling although it is
not included by the W3C query requirements. We will
materialize the above in the rest of this subsection ex-
cept sorting, grouping, and namespaces due space limit.
Data selection and construction
As the design of XBML has continuity of SQL to favor
nonprocedural-ness, the syntax of XBML has the fol-
lowing basic structure although it is depicted in detail
in Appendix:

select tag expression, . . . , expression

from d-variable URI uri . . . uri, . . .

e-variable expression, . . .

where expression compare expression and

expression compare expression or . . .

Variables, called element variables, are declared in
a from-clause. They are classified into variables di-
rectly bound to XML documents (i.e., d-variable) and
variables bound to expressions (i.e., e-variable). Any
order of variable declaration will do. This can provide
XBML with nonprocedural-ness, which the W3C query
requirements lack. An expression, called path expres-
sion, is denoted as a path consisting of one variable
prefixed by “$” and followed by a series of tag names.
In general, elements can contain multiple elements with
the same tag name, which are basically ordered. The
(i + 1)-th element of tag is positioned by providing an
index number i such as tag[i]. Attributes are referenced
by prefixing “@” to them. The general syntax of path
expressions has the following form:

$variable.tag. . . tag[i]. . .@attribute. . .

This can address arbitrary positions in hierarchical
structures of XML data. Evaluation of an expression
produces a set of values of the tail tag of the expression.
In other words, a variable bound to an expression refers
to such an element of a set at a time. In a where-clause,
selection of XML data can be specified as logical com-
bination of compared expressions. Compare operators
include “=,” “!=,” “lt” for “<,” “le” for “<=,” “gt” for
“>,” and “ge” for “>=.” The logical operators “not,”
“and,” and “or” have precedence in decreasing order.
New XML elements are constructed by combining ex-
pressions in a select-clause. The following query pro-
duces new elements consisting of titles and authors of
books published by Prentice-Hall and firstly authored
by Ullman:

(Query1)

select result $book.title, $book.author

from bib URI “www.a.b.c/bib.xml”, book $bib.book

where $book.publisher.name = “Prentice-Hall”

and $book.author[0].lastname =“Ullman”

and $book.@year gt “1995”

In our current design, the resultant XML data have
no DTD, that is, they are well-formed XML data auto-
matically wrapped by a tag “XBML:result.”
Partially-specified path expressions
First, we define semi-structured XML data as follows:

(1) Elements with the same tag are repeated at more
than or equal to zero times, depending on parent
elements, such as authors of books.

(2) Elements with the same tag have variant sub-
structures, depending on parent elements, such as
offices of authors.

These characteristics cannot be determined in ad-
vance. In XBML, a wildcard “%” can be included in
expressions to specify such semi-structured XML data.
In general, such an expression has the following struc-
ture:

$variable. . . tag1 .%.tag2 . . .

This can match with the following elements:

<tag1>

<tag>

<tag2>. . . </tag2 >

</tag>

</tag1 >

Through this functionality, XBML gains a merit to
flexibly query semi-structured XML data whose struc-
ture is unknown in advance. The following query re-
trieves authors of any material such as book and article
whose name is Ishikawa.

(Query2)

select result $anyauthor

from bib URI “www.a.b.c/bib.xml”,

anyauthor $bib.%.author

where $anyauthor.lastname =“Ishikawa”

Data join
In XBML, the query for data join has the following
syntax:

select tag expression1 , expression2

from variable1 . . . , variable2 . . . , . . .

where expression1 ’ = expression2 ’. . .

Here expressioni and expressioni’ have either di-
rectly or indirectly common variablei declared in a
from-clause. In a select-clause, new elements can be
constructed by combining different elements, which are
compared by the equality operator in a where-clause.
Through this, XBML can provide a functionality cor-
responding to relational joins.

Partially-matched texts must be specifiable in
comparison conditions to enable approximate search.
In XBML, using a wildcard “%” in compared texts can
specify the condition on expressions partially matching
with “string” as follows:

ISHIKAWA and OHTA: A DECENTRALIZED XML DATABASE APPROACH
1305

(1) expression=“%string%”
(2) expression=“%string”
(3) expression=“string%”
In particular, conditions (2) and (3) match with any
text ending by “string” and with any text beginning
with “string,” respectively. The following query joins
books and articles by authors as a join key within the
same XML data:

(Query3)

select result $article, $book

from bib URI “www.a.b.c/bib.xml”,

article $bib.article, book $bib.book

where $book.author.firstname = $article.author.firstname

and $book.author.lastname = $article.author.lastname

and $book.title = “%Electronic Commerce%”

This facilitates related links on other articles writ-
ten by authors of books about Electronic Commerce.
Articles are promoted first-class products in the digital
libraries. In e-broker business models, this helps in-
crease cross-sell and up-sell. The query result has the
following structure:

<XBML:result>
<result>

<article year=”. . .”>
<author>. . .</author>
<title>. . .</title>
<publisher>. . .</publisher>

</article>
<book year=”. . .”>

<author>. . .</author>
<title>. . . </title>
<publisher>. . .</publisher>
<price>. . .</price>

</book>
</result>
<result>. . .</result>
. . .

</XBML:result>
Multiple binding
In general, declaring a variable with multiple URIs in
a from-clause specifies multiple binding as follows:

variable URI uri1 , uri2 , . . . , urin

This binds the variable to multiple documents in-
dicated by urii. Thus, the declared variable refers to el-
ements of all the bound documents. As a result, XBML
enables homogeneous retrieval of multiple data sources.
This functionality is not included by the W3C query
requirements, but is prerequisite for specifying inter-
enterprise business processes. The following example
retrieves books authored by the same author from two
different online bookstores (bound to bib) by only a sin-
gle query at the same time:

(Query4)

select result $book.title, $book.author

from bib URI “www.a.b.c/bib.xml”“www.x.y.z/bib.xml”,

book $bib.book

where $book.author.lastname =“Ishikawa”

2.2.2 Recommendation

Recommendation processes compensate for searching
processes in product selection. Related search is impor-
tant in promoting cross-sell and up-sell, indeed. How-
ever, it is a technique pulled by the customer himself.
As a more active technique pushed by the e-broker, rec-
ommendation is one of key solutions to increasing up-
sell and cross-sell [14]. It is classified into three to the
extent to which the customer is involved.

(1) Non-personalized recommendation
The customer is not involved. The e-broker rec-
ommends some products as general trends, inde-
pendently of the customer. Or, the e-broker shows
the customer products highly rated by the other
customers.

(2) Personalized recommendation
The customer only is involved. The e-broker rec-
ommends some products based on the customer’s
psycho-graphic data, such as interests, or historical
data, such as purchase records.

(3) Collaboratively filtered recommendation [14]
Both the customer and the others are involved.
The e-broker recommends products purchased by
those customers who purchased the products se-
lected by the customer.

Function definition
We must specify all the three types of recommenda-
tion. We show that function definition and invocation
of XBML can accomplish this. Here we focus on func-
tion definition and describe function invocation later.
In general, the function definition has the following
form:

functionname ‘(’ parameter-list ‘)’ as ‘(’ query ‘)’

The body of functions is an XBML query itself.
The result of function invocation is that of the speci-
fied query. The first type of recommendation can be
facilitated by packaging a query as a function with no
parameter, which corresponds to a relational view. The
following function recommends recent EC books to the
customers in e-broker business models as one of trends:

function Non-Personalized-Recommendation () as

(select result $book.title, $book.price

from bib URI “www.a.b.c/bib.xml”, book $bib.book

where $book.keyword =“Electronic Commerce” and

$book.@year gt “1998”)

Using join of two XML data and a parameter in
a function definition can facilitate the second type of
recommendation. The following function recommends

1306
IEICE TRANS. INF. & SYST., VOL.E84–D, NO.10 OCTOBER 2001

products based on the keywords which the customer
(specified by its identifier, customerid) have registered
in advance as his psycho-graphic data:

function personalized-Recommendation (customerid) as

(select result $book.title, $book.price

from bib URI “www.a.b.c/bib.xml”, book $bib.book,

r URI “www.a.b.c/registration.xml”,

customer $r.register.customer

where $book.keyword = $customer.keyword and

$customer.id = customerid)

Specifying join of two data, a parameter, and a
condition on multiple-valued elements in a function def-
inition can facilitate the third type of recommendation.
The condition in this case is interpreted as true if at
least one element satisfies the condition. The last ex-
ample recommends products based on similarity that
there are other customers who purchased the product
selected by the customer (i.e., indicated by selected).

function collaboratively-filtered-Recommendation (selected)

as

(select result $book.title, $book.price

from bib URI “www.a.b.c/bib.xml”, book $bib.book,

r URI “www.a.b.c/registration.xml”,

customer $r.register.customer

where $book = $customer.purchased and

$customer.purchased = selected)

Function definition and invocation is recommended by
the W3C query requirements [18].
Query transformation
Until now, we have treated recommendation and search
as separate processes. However, searching can be en-
hanced to do the same effect as recommendation. Thus,
when the customer specifies search keywords, the search
result can be expanded to include recommended prod-
ucts by transforming the original search query. Query
transformation for recommendation is classified into
two rules as follows:

(1) Keyword addition rule
This rule has the general form:

keyword1 ==> keyword1 | keyword2

Transforming the rule into disjunctive conditions
(i.e., “or”) of an XBML query can accomplish
this. For example, the originally specified key-
word “Electronic Commerce” adds a new keyword
“Internet Business” and the disjunctive condition
(i.e., “or”) is added to the end of the query as fol-
lows:

(Query5)

select result $book
from bib URI “www.a.b.c/bib.xml, book $bib.book
where $book.keyword = “Electronic Commerce” or

$book.keyword = “Internet Business”

This technique is similar to query expansion [2] used

in information retrieval. Note that this type of trans-

formation keeps data sources unchanged.

(2) Data source addition rule
This rule uses set operations on queries to modify
the original one. The rule has the following general
form:

query1 ==> query1 set-operator query2

Transforming the rule into a set-operator “union”
of XBML queries can facilitate this. For exam-
ple, when the customer searches books on EC,
he will automatically search articles on EC at the
same time by modifying the original query with a
disjunctive query to increase cross-sell in multiple
product categories as follows:

(Query6)

select result $book

from bib URI “www.a.b.c/bib.xml, book $bib.book

where $book.keyword = “Electronic Commerce”

union

select result $article

from bib URI “www.a.b.c/bib.xml, article $bib.article

where $article.keyword = “Electronic Commerce”

Indeed, the basic functionalities such as disjunc-
tive conditions and set-operators are recommended by
the W3C query requirements, but transformation itself
must be dynamically done.

Of course, the query transformation technique de-
pends on creation of good rules. The manual rule cre-
ation is important in that it directly depends on the
top-down marketing strategies themselves. Here, tech-
nically, we describe only the automatic rule creation
based on Web mining techniques. In general, Web min-
ing is categorized into Web content mining and Web
usage mining [4]. Web content mining automatically
structures information from Web contents. Web usage
mining is based on user access data collected through
the Web. So it is relevant to our context. Web usage
mining is further categorized into Web-server-based one
and application-based one. Most Web servers automat-
ically generate and store access logs of pages while EC
applications collect user access patterns such as a com-
bination of keywords specified in a single query, a com-
bination of product categories with keywords in a sin-
gle Web session, and categories of products purchased
in the past. So we analyze the application-based access
patterns by using association rules and sequential pat-
terns techniques [4] to create the transformation rules,
not discussed in the paper due to space limitation.

2.2.3 Moving to Cart

As the third process, products selected as candidates
for shopping are moved to shopping carts. To this end,
temporary XML data must be accessed as well as per-
manent data. In XBML, this can be done by directly

ISHIKAWA and OHTA: A DECENTRALIZED XML DATABASE APPROACH
1307

referencing just retrieved data as follows:

$XBML:result.tag. . .

It is prerequisite for describing business models as com-
bined processes, which is not included by the W3C
query requirements. It enables sharing temporary data
among successive processes. The following XBML
query moves only the customer-checked items in the
search result to the shopping cart:

(Query7)

select cart item $result.book

from XBML:result URI “www.a.b.c/XBML:result.xml,”

result $XBML:result.result

where $result.checked =“yes”

2.2.4 Placing Orders

This is the fourth process, which can be facilitated
by assigning the result of a function invocation to an
XML attribute and inserting it to permanent data. In
XBML, attribute assignment with actual parameters
given to a function can be specified as follows:

@attribute = function(parameter, . . . , parameter)

Further, the following syntax is used for inserting values
to existing data in XBML:

insertinto target query

This is not recommended by W3C query requirements,
but is prerequisite for describing practical business pro-
cesses. The following query places a purchase order
in e-broker business models by consulting the current
shopping cart and customer data and invoking a func-
tion:

(Query8)

insert into order

select order @id = OrderID($customer.id, date()),

item $cart.item

from r URI “www.a.b.c/registration.xml”,

customer $r.register.customer,

XBML:result URI “www.a.b.c/XBML:result.xml”,

cart $XBML:result.cart

where $customer.lastname = “Kanemasa”

Here, in a select-clause, function calls “OrderID ($cus-
tomer.id, date())” generate unique order numbers. Or-
dering initiates internal processes, such as payment and
shipment, hidden from the customers.

2.2.5 Tracking Orders

This completes business processes. It requires the fa-
cility for joining data distributed over multiple Web
sites. XBML can accomplish this by the following gen-
eral syntax:

select tag expression1 , expression2

from variable1 URI uri1 , variable2 URI uri2 ,. . .

where expression1 ’ = expression2 ’. . .

Here expressioni and expressioni’ have either directly
or indirectly common variablei bound to separate XML
documents. Therefore, this is different from data join
within the same document described previously. This
is not recommended by the W3C query requirements,
but is prerequisite for describing inter-enterprise busi-
ness processes. The following query produces a set of
ordered items and shipping status by joining order iden-
tifiers of order entry data and order shipping data at
different sites indicated by separate variables such as o
and s:

(Query9)

select result $order.item, $ship.status

from o URI “www.a.b.c/ordering.xml,” order $o.order,

s URI “www.d.e.f/shipping.xml,” ship $s.ship

where $order.id=$ship.id

3. Implementation

XBML is intended for use in not only modeling EC
business models, but also realizing them agilely. Thus,
XBML itself must be efficiently implemented and exe-
cuted. We conclude this paper by describing the imple-
mentation and some feedback from the experiences.

XBML containing URIs intrinsically requires dis-
tributed query processing. So we construct the XBML
server as follows:

(1) We construct local XBML servers as a basis.
(2) We construct global XBML servers by extending

the local servers with server-side scripting tech-
niques [17].

We describe the local and global servers in the following
subsection in detail.

3.1 Local Server

We describe the basic architecture and implementation
of a local XBML server. First, we describe storage
schema for XML data. We have explored approaches
to mapping DTD to databases (RDB, i.e., Oracle and
ODB, i.e., Jasmine [7]) and to implement an XBML
processing system [9]. If any DTD or schema informa-
tion is available, we basically map elements to tables
and tags to fields, respectively. We call this approach
DTD-dependent mapping, where the user must spec-
ify mapping rules individually. Otherwise, we take a
DTD-independent mapping or universal mapping ap-
proach (see Fig. 2), which divides XML data into nodes
and edges of an ordered directed graph and stores them
into separate tables for nodes and edges with neigh-
boring data physically clustered. We provide separate
tables for nonleaf and leaf nodes. The order fields of
Leaf Node and Edge tables are necessary for providing

1308
IEICE TRANS. INF. & SYST., VOL.E84–D, NO.10 OCTOBER 2001

Fig. 2 DTD-independent mapping.

access to ordered elements by index numbers. Identi-
fiers, such as ID and IDREF, realizing internal links
between elements are declared as attributes and are
stored as Value of the separate Attribute Node table.
So references are efficiently resolved by searching node
identifiers in Attribute Node.

We cluster data in node and edge tables on a
breadth-first tree search basis to reduce I/O cost. Fur-
ther, we have known from our preliminary experiments
that the DTD-dependent mapping approach is mostly
two times more efficient than the universal mapping.
However, we prefer to the universal mapping for the
following reasons:

(1) The approach can free the burden of defining id-
iosyncratic mappings from the users.

(2) The approach can store XML data whose DTD are
unknown in advance.

(3) The approach can store heterogeneous XML data,
i.e., semi-structured XML data in the same
database.

Next, we describe the system architecture for a
local XBML server or an XBML processing system
(see Fig. 3). We make indices on tag values, element-
subelement relationships, and tag paths in advance. We
have found from our empirical study that the multi-key
indices such as (identifier, path identifier) for nonleaf
nodes are better than alternative single-key indices such
as (identifier) in our current system because of higher

selectivity.
We describe how the XBML processing system

works. The XBML language processor parses an
XBML query and the XBML query processor gener-
ates and optimizes a sequence of access methods for
efficient execution. For example, query4 is parsed into
a logical query plan represented as an ordered-graph,
corresponding to the query semantics:

(Proj (Sel $book (Op EQ $book.author.lastname

“Ishikawa”)) $book.title, $book.author)

Here, Sel, Proj, and Join (not in the above example)
denote selection, projection, and join of XML data, re-
spectively. Op EQ denotes “=.” In our current im-
plementation of the universal mapping, the primitive
access methods are basic operations on node sets, exe-
cuted by the XBML execution engine. We have known
that both RDB and ODB are usable as the underlying
database systems of the XBML execution engine with
the upper layers unchanged only if the same set of the
primitive access methods is dedicated to XBML execu-
tion engine by using the underlying database systems.
We have implemented Oracle and Jasmine versions of
XBML processing systems to confirm this fact.

3.2 Global Server

Now we construct the global XBML server by extending
the above local XBML servers with server-side scripting

ISHIKAWA and OHTA: A DECENTRALIZED XML DATABASE APPROACH
1309

Fig. 3 XBML processing system.

techniques.
We provide preliminary definitions to queries.

First, we categorize queries as follows:

(A) Single-URI query
This type of query contains only one XML data
source specified by a single URL in the query, such
as Query1 (selection) and Query3 (join).

(B) Multiple-URI query
This type of query contains multiple XML data
sources specified by multiple URIs in the query.
This type is further categorized into two as follows:

(B1) Decomposable query
This type of query can be decomposed into
a combination of single-URI queries with set
operators, such as Query4 (multiple binding)
and Query6 (set operators).

(B2) Non-decomposable query
This type of query cannot be decomposed into
a combination of single queries alone. This
type of query contains join queries over mul-
tiple URIs, such as Query9 (join of multiple
data sources).

Second, we categorize queries in another way:

(a) Local query
XML data sources specified by URI are inside the
relevant XBML server.

(b) Global query
XML data sources specified by URI are outside the
relevant XBML server.

Now we show that non-decomposable (i.e., intrin-
sically global) query can be transformed into a series
of single URL local or global queries and local queries
(join). We assume that the original query contains n
URIs. We translate a non-decomposable query by two
steps:

(1) create a single-URI (local or global) query for each
of n URIs with the insertion of the query result
into the local server.

(2) create single-URI queries performing join of the
results stored in the local server, which are local
queries, by reducing all URIs to a single-URI.

Queries generated by the step (1) localize single-
URI global queries. Of course, single-URI local queries
remain local. We call them localized single-URI queries.
After that, queries generated by the step (2) simu-
late join of multiple data sources by join of local data
sources. We call them localized join queries.

Now we describe the global query processing, as-
suming that a query Q with a uri URI is specified as
the input:

if Q is a single-URI query then

process-or-dispatch (Q);

else /*i.e., Q is a multiple-URI query; */

if Q is a decomposable query then

for each sub-query Qsub in Q

process-or-dispatch (Qsub);

merge the result by the local server;

else /*i.e., Q is not a decomposable query;*/

decompose Q into localized single-URI queries

Qloc-s and localized join queries Qloc-j;

for each sub-query Qsub in Qloc-s

process-or-dispatch (Qsub);

process Qloc-j by the local server;

process-or-dispatch (Q) /* for single-URI query*/

if URI is local to the server then

process Q by the local server;

else /*i.e., Q is not local to the server; */

dispatch Q to the relevant remote server;

store the result into the local server;

The above query processing has some room for
improvement in performance. Thus, if the non-
decomposable query has no selection conditions, the
whole remote data sources specified by the generated
single-URI queries must be copied to the local server.
So we refine the process-or-dispatch scheme to sort the
result of the query and return the value range with re-
spect to the join key (i.e., MIN and MAX values) by
adding “order-by” to the query. The value ranges are
kept as follows:

<result MIN=min-value MAX=max-value>. . . </result>

Then, the conditions “join-key ge min-value and join-

1310
IEICE TRANS. INF. & SYST., VOL.E84–D, NO.10 OCTOBER 2001

key le max-value” are dynamically added to the subse-
quent generated single-URI query. In turn, the query is
evaluated to produce a new value range of the join-key
(i.e., min-value’ and max-value’). The following im-
portant characteristic holds between new and old value
ranges:

min-value’ > = min-value & max-value’ < = max-value

From this, we can conclude that the expected selectivity
is better than that of the original algorithm.

XBML works as server-side scripting with
database access such as CFML [1], JSP [16], and pro-
vides universal access to distributed XML data. If
XBML queries are embedded in XML-based scripts,
the global XBML server can provide more direct and
universal interfaces to representing and accessing dis-
tributed XML data than the other approaches. That is,
XML pages containing the element <XBML> XBML-
query </XBML> are interpreted as scripts. For ex-
ample, an embedded query can be formulated to re-
fresh up-to-date prices of products on demand access by
joining product catalogues and pricing data distributed
over the Internet.

4. Conclusion

We have analyzed the requirements for modeling EC
businesses and have proposed and validated XBML as
an XML query language approach to specifying EC
business models. We conclude this paper by summa-
rizing our contribution through comparison with other
work.

There is no previous work on analyzing the require-
ments of modeling the business logic of E-businesses
from the viewpoint of query languages to our knowl-
edge. There are no high-level language approaches to
modeling EC business processes. In particular, there
is no other work on validating the modeling language
by applying it to EC business models. An approach
of extending UML [3] is incapable of describing the
business logic non-procedurally. XBML can provide a
more direct and universal tool for modeling distributed
XML data-intensive EC applications than server-side
scripting tools with SQL-based database access, such
as CFML [1], and JSP [16]. Further, there is no other
work on recommendation based on parameterized views
(i.e., functions) and query transformation rules.

Now we will compare our XBML with other query
language proposals although they are not principally in-
tended for modeling Web-based EC businesses. Some
features, such as multiple binding, function definition
and use, set operators, and insertion, are crucially im-
portant in constructing EC business models. XML-
QL [5] has functionality in common with our XBML.
Unlike XBML, XML-QL lacks insertion and set opera-
tions. Condition specification with XML-QL is rather
verbose. That would make query formation rather

complex and decrease much efficiency in business pro-
cess description. XQL[12] has common functionality
with XBML. Unlike our XBML, however, XQL lacks
construction, join, string regular expressions, orderby,
groupby, multiple data source join, multiple binding,
and insertion although it focuses more on filtering a
single XML document by flexible pattern match con-
ditions similar to XSL. XQL would require applica-
tion logic in addition to query formation and decrease
much efficiency in business logic description involving
multiple sites. Lore [6] provides a powerful query lan-
guage for retrieving and updating semi-structured data
based on its specific data model OEM. However, it lacks
functionality such as multiple binding unlike XBML.
XQuery [19] is being designed as a standard query lan-
guage for XML satisfying the W3C query requirements
strictly. XQuery borrows features from its predecessors
such as XQL, XML-QL, and Lore. XBML has an objec-
tive to flexibly specify business processes while XQuery
has another objective to provide a facility for querying
XML data. However, XBML includes a query facil-
ity as a part of specification functionality for business
processes. Both of them have selection and construc-
tion, partially-specified path expressions, data join, and
function definition and invocation in common. How-
ever, XQuery currently lacks temporary data access
and permanent data insert as functions necessary for
description of practical business processes. Further,
XQuery lacks multiple binding and data join across
multiple Web sites as functions necessary for specifying
inter-enterprise processes. This difference is brought
about the fact that XBML is mainly intended for spec-
ification of processes involving autonomous distributed
data sources while XQuery is intended for “single-site”
querying. Further, XBML can be used in the context
of three-tier Web computing, which consists of Web
clients, Web servers, and database servers. That is,
an XBML query is used as a part of server-side script-
ing; The script embedding XBML queries requested by
the client is evaluated to generate HTML/XML pages
containing the query results at server-side and the gen-
erated pages are returned to the client. On the other
hand, XQuery doesn’t consider such usage currently.

Lastly, we describe our basic architecture about
the security of XBML although it is not fully imple-
mented. First, we utilize a public key infrastructure
(e.g., Netscape’s SSL [13]) for authentication of users
and secured transmission of data (e.g., query and re-
sult) although the approach is not novel. More impor-
tantly, we must provide a scheme for authorization of
access to data by users. Thus, we must provide individ-
ual users with different access rights for different parts
of data. We provide read (select), write (insert), and
execute (function invocation) as access rights. That is,
we allow users to read/write data and to execute func-
tions. Further, XML data being accessed have a hier-
archical structure and accessed parts range from whole

ISHIKAWA and OHTA: A DECENTRALIZED XML DATABASE APPROACH
1311

documents to individual element values. We must take
this into consideration when we design security manage-
ment. So we propose a hierarchical access right control
scheme as follows.

In general, access rights for elements with regard
to users are specified as a UEA tuple:

user element access-right

This grants an access right for an element to a user.
Any sub-element contained by the specified element is
assigned the same access-right with respect to the speci-
fied user. This scheme is called access right inheritance.
For example, if a whole document is specified as an ele-
ment, any element within the document is assigned the
same access right. If we intend to grant different access
rights for different elements, we have only to specify
different UEA tuples individually.

However, there are some cases where we want to
provide some elements with an access right different
from that provided to their super-elements. In such a
case, we have only to add a new UEA tuple. This gives
a new access right applicable only to a newly speci-
fied element with regard to the user. Of course, the
other parts remain to have the old access rights with
regard to the user. This partially modifies inheritance
of access rights. For example, if write is granted for a
particular element when read is already granted for its
super-element, then this particular element is assigned
read and write as a result. If we want to replace exist-
ing access rights by new ones, we have only to prefix
access rights by “*” as follows:

user element *access-right

Further, in some cases, we must address parts of el-
ements more flexibly. They include the following cases :

(1) Elements with the same tag are assigned separate
access rights depending on values.

(2) Elements with the same tag are assigned separate
access rights depending on positions in an ordered
set.

(3) Combined elements are assigned the same access
rights.

Using the function definition facility of XBML can flex-
ibly do this. First, we define a function specifying ac-
cessed elements by a query. Then we provide UEA
tuples with regard to the function as follows:

user function execute

Complete implementation of the security framework is
our future work.

References

[1] Allaire Corporation, CFML, http://www.allaire.com/
documents/cf4/CFML Language Reference/contents.htm,
2000.

[2] C.H. Chang and C.C. Hsu, “Enabling concept-based rel-
evance feedback for information retrieval on the WWW,”
IEEE Trans. Knowledge & Data Eng., vol.11, no.4, pp.595–
609, 1999.

[3] J. Conallen, “Modeling Web application architectures with
UML,” Commun. ACM, vol.42, no.10, pp.63–70, 1999.

[4] R. Cooley, B. Mobasher, and J. Srivasta, “Web mining: In-
formation and pattern discovery on the World Wide Web,”
Proc. 9th IEEE International Conference on Tools with Ar-
tificial Intelligence (ICTAI’97), 1997.

[5] A. Deutsch, M. Fernandez, D. Florescu, A. Levy, and D.
Suciu, XML-QL: A Query Language for XML, http://
www.w3.org/TR/1998/NOTE-xml-ql-19980819, 1998.

[6] R. Goldman, J. McHugh, and J. Widom, “From semistruc-
tured data to XML: Migrating the lore data model and
query language,” Proc. 2nd Intl. Workshop on the Web and
Databases (WebDB ’99), 1999.

[7] H. Ishikawa, Y. Yamane, Y. Izumida, and N. Kawato, “An
object-oriented database system jasmine: Implementation,
application, and extension,” IEEE Trans. Knowledge &
Data Eng., vol.8, no.2, pp.285–304, 1996.

[8] H. Ishikawa, K. Kubota, and Y. Kanemasa,
http://www.w3.org/TandS/QL/QL98/pp/flab.doc, 1998.

[9] H. Ishikawa, K. Kubota, Y. Noguchi, K. Kato, M. Ono,
N. Yoshizawa, and Y. Kanemasa, “Document warehousing
based on a multimedia database system,” Proc. IEEE 15th
Intl. Conference on Data Engineering, pp.168–173, 1999.

[10] S. Jones, M. Wilikens, P. Morris, and M. Masera, “Trust
requirements in e-business,” CACM, vol.43, no.12, pp.80–
87, 2000.

[11] D. Jutla, P. Bodorik, C. Hajnal, and C. Davis, “Making
business sense of electronic commerce,” IEEE Comput.,
vol.32, no.3, pp.67–75, March 1999.

[12] J. Robie, J. Lapp, and D. Schach, XML Query Language
(XQL), http://www.w3.org/TandS/QL/QL98/pp/xql.html,
1998.

[13] A. Rubin and D. Geer, Jr., “A survey of Web security,”
IEEE Comput., vol.31, no.9, pp.34–41, 1998.

[14] Special Section, Recommender Systems, Commun. ACM,
vol.40, no.3, pp.56–89, 1997.

[15] Special Section, Web Information Systems, Commun.
ACM, vol.41, no.7, pp.78–118, 1998.

[16] Sun Microsystems, JSP, http://java.sun.com/products/jsp/
index.html, 2000.

[17] R. Vetter, “Web-based enterprise computing,” IEEE Com-
put., vol.32, no.5, pp.112–116, 1999.

[18] W3C, XML Query Requirements, W3C Working Draft,
2000.

[19] W3C, XQuery: A Query Language for XML, W3C Working
Draft, 2001.

Appendix: The Syntax of XBML

query = select target from context-list [where-clause]

[orderby-clause] [groupby-clause]

target=expression | tag ‘{’expression-list ‘}’
expression-list = expression ‘,’expression-list | expression

expression = [tag] ‘$’ variable | [tag] ‘$’ variable ‘.’ path

path = ‘%’ | tag | ‘@’ attribute| path ‘.’ path | ‘(’ path ‘|’
path ‘)’ | text

context-list = context ‘,’ context-list | context

context = variable URI uri-list | variable expression

uri-list = uri uri-list | uri

where-clause = where condition

1312
IEICE TRANS. INF. & SYST., VOL.E84–D, NO.10 OCTOBER 2001

condition = term | condition or term

term = factor | term and factor

factor = predicate | not predicate

predicate = expression compare expression

orderby-clause = orderby expression-list

groupby-clause = groupby expression-list

insertion = insert into target query

function-definition = function name ‘(’ parameter-list ‘)’

as ‘(’ query ‘)’

parameter-list = parameter ‘,’ parameter-list | parameter

Hiroshi Ishikawa received the B.S.
and Dr.Sc. degrees in Computer Science
from the University of Tokyo in 1979 and
1992, respectively. He worked for Fujitsu
Laboratories Ltd., from 1979 to 2000. He
is now a professor of the Department of
Electronics and Information Engineering
at Tokyo Metropolitan University. His
research interests include databases sys-
tems, Web information systems, and e-
commerce. He has published actively in

international, refereed journals and conferences, such as ACM
TODS, IEEE TKDE, VLDB, IEEE ICDE. He authored a book
entitled Object-Oriented Database System (Springer-Verlag). He
received the Sakai Memorial Distinguished Award from IPSJ in
1994 and the Director General Award from Science and Tech-
nology Agency in 1997. He is a member of IEEE, ACM, and
IPSJ.

Manabu Ohta received the B.E.,
M.E. and Dr. Eng. In Electrical Engi-
neering from the University of Tokyo in
1994, 1996 and 1999, respectively. He is
a research associate of Tokyo Metropoli-
tan University. His research interests are
information retrieval and its Web applica-
tion systems. He is a member of IPSJ.

