
Advanced search

 IBM home | Products & services | Support & downloads | My account

IBM developerWorks : XML zone : XML zone articles

Introduction to the Darwin Information Typing Architecture

Contents:
Background

Information interchange,
tools management, and
extensibility

The topic as the basic
architectural unit

DITA overview

DITA delivery contexts

DITA typed topic structures

DITA common structures

DITA shared structures

Specialization

Role of content
communities in the DITA

Resources

About the authors

Rate this article

Related content:
Specialization in the DITA

DITA FAQ

DITA forum

Also in the XML zone:
Tutorials

Tools and products

Code and components

Articles

Toward portable technical information

Don R. Day (dond@us.ibm.com), IBM Corporation
Michael Priestley (mpriestl@ca.ibm.com), IBM Corporation
David A. Schell (dschell@us.ibm.com), IBM Corporation

March 2001

Updated October 2001

The Darwin Information Typing Architecture (DITA) is an
XML-based architecture for authoring, producing, and delivering
technical information. This article introduces the architecture, which
sets forth a set of design principles for creating information-typed
modules at a topic level, and for using that content in delivery modes
such as online help and product support portals on the Web. This
article serves as a roadmap to the Darwin Information Typing
Architecture: what it is and how it applies to technical documentation.
The article links to representative source code.

The XML-based Darwin Information Typing Architecture (DITA) is an
end-to-end architecture for creating and delivering modular technical
information. The architecture consists of a set of design principles for
creating information-typed topic modules, and for using that content in
various ways, such as online help and product support portals on the Web.
At the heart, the DITA is an XML document type definition (DTD) that
expresses many of these design principles. The architecture, however, is the
defining part of this proposal for technical information; the DTD, or any
schema based on it, is just an instantiation of the design principles of the
architecture.

Background
This architecture and DTD were designed by a cross-company workgroup
representing user assistance teams from IBM, Lotus, and Tivoli. After an
initial investigation in late 1999, the workgroup developed the architecture
collaboratively during 2000 through postings to a database and weekly
teleconferences. We're offering the architecture on IBM's developerWorks
Web site as an alternative XML-based documentation system, designed to
exploit XML as its encoding format.

Information interchange, tools management, and extensibility
IBM, with millions of pages of documentation for its products, has its own very complex SGML DTD,
IBMIDDoc, which has supported this documentation since the early 1990s. The workgroup had to
consider from the outset, "Why not just convert IBMIDDoc, or use an existing XML DTD such as
DocBook, or TEI, or XHTML?" The answer requires some reflection about the nature of technical
information.

First, both SGML and XML are recognized as meta languages that allow communities of data owners to

developerWorks: XML zone : Introduction to the Darwin Information Typing Architecture

http://www-106.ibm.com/developerworks/library/x-dita1/ (1 of 6) [11/1/2001 10:47:52 AM]

http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/&origin=dwheader
http://www-109.ibm.com/redirectdWPS.htm
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/&origin=dwheader
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/products/&origin=dwheader
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/support/&origin=dwheader
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/account/&origin=dwheader
http://www-106.ibm.com/developerworks/
http://www-106.ibm.com/developerworks/xml/
http://www-105.ibm.com/developerworks/papers.nsf/dw/xml-papers-bynewest?OpenDocument&Count=500
http://www-106.ibm.com/developerworks/
ftp://www6.software.ibm.com/software/developer/library/x-dita1.pdf
javascript:void newWindow()
http://www-106.ibm.com/developerworks/xml/library/x-dita2/index.html
http://www-106.ibm.com/developerworks/xml/library/x-dita3/index.html
http://www-106.ibm.com/developerworks/xml/library/x-dita4/index.html
http://www-106.ibm.com/developerworks/xml/
http://www-105.ibm.com/developerworks/education.nsf/dw/xml-onlinecourse-bynewest?OpenDocument&Count=500
http://www-105.ibm.com/developerworks/tools.nsf/dw/xml-dtds-bysite?OpenDocument&Count=500
http://www-105.ibm.com/developerworks/tools.nsf/dw/xml-code-bytitle?OpenDocument&Count=500
http://www-105.ibm.com/developerworks/papers.nsf/dw/xml-papers-bytopic?OpenDocument&Count=500
mailto:dond@us.ibm.com
mailto:mpriestl@ca.ibm.com
mailto:dschell@us.ibm.com

describe their information assets in ways that reflect how they develop, store, and process that information.
Because knowledge representation is so strongly related to corporate cultures and community jargon, most
attempts to define a universal DTD have ended up either unused or unfinished. The ideal for information
interchange is to share the semantics and the transformational rules for this information with other
data-owning communities.

Second, most companies rely on many delivery systems; the ways that they process their information
differ widely from company to company. Therefore any attempt at a universal toolset also proves futile.
The ideal for tools management is to base a processing architecture on standards and to leverage the
contributed experience of many others, solving common problems in a broad community.

Third, most attempts to formalize a document description vocabulary (DTD, or schema) have been done as
information modeling exercises to capture the current business practices of data owners. This approach
tends to encode legacy practices into the resulting DTDs or vocabularies. The ideal for future extensibility
in DTDs for technical information (or any information that is continually exploited at the leading edge of
technology) is to build the fewest possible presumptions about the top-down processing system into the
design of the DTD.

In the beginning, the workgroup tried to understand XML's role in this leading edge of information
technology. As the work progressed, the team became aware that any DTD design effort would have to
account for a plurality of vocabularies, a tools-agnostic processing paradigm, and a legacy-free view of
information structures. Many current DTDs incorporate ways to deal with some of these issues, but the
breadth of the issues leads to more than just a DTD. To support many products, brands, companies, styles,
and delivery methods, we had to consider the entire authoring-to-delivery process. We ended up with a
range of recommendations that required us to represent our design as an information architecture, not just
as a DTD.

The topic as the basic architectural unit
A topic is a unit of information that describes a single task or concept or reference item. The information's
category (concept, task, reference) is its information type. Typed topics are easily managed within content
management systems as reusable, stand-alone units of information. For example, selected topics can be
gathered, arranged, and processed within a delivery context to provide a variety of deliverables, such as
groups of recently updated topics for review, helpsets for building into a user-assistance application -- or
even chapters or sections in a booklet, printed from user-selected search results or "shopping lists."

Authors can introduce new information type by specialization from the structures in the base topic DTD
(explained in detail in the companion article, Specialization in the Darwin Information Typing
Architecture).

DITA overview
The Darwin Information Typing Architecture defines a set of relationships between the document parts,
processors, and communities of users of the information.

As shown in Figure 1, the Darwin Information Typing Architecture has four layers that relate to specific
design points expressed in the reference DTD, ditabase.

Figure 1. Layers in the Darwin Information Typing Architecture

developerWorks: XML zone : Introduction to the Darwin Information Typing Architecture

http://www-106.ibm.com/developerworks/library/x-dita1/ (2 of 6) [11/1/2001 10:47:52 AM]

http://www-106.ibm.com/developerworks/xml/library/x-dita2/index.html
http://www-106.ibm.com/developerworks/xml/library/x-dita2/index.html

A typed topic -- whether concept, task, or reference -- is a stand-alone unit of publishable information.
Above the typed-topic layer are any processing applications that may be driven by a superset DTD; below
it are the two types of content models that form the basis of all specialized DTDs within the architecture.
Next, we'll look at each of these layers in more detail.

DITA delivery contexts
The delivery-contexts domain represents the processing layer for topical information. Topics can be
processed singly or within a delivery context that relates multiple topics to a defined deliverable. Delivery
contexts also include document management systems, authoring units, packages for translation, and more.

Figure 2. The delivery-contexts layer

DITA typed topic structures
The typed topics represent the fundamental structuring layer for DITA topic-oriented content. The basis of
the architecture is the topic structure, from which the concept, task, and reference structures are
specialized. Extensibility to other typed topics is possible by specialization.

Figure 3. The typed-topic-structures layer

The four information types (topic, concept, task, and reference, which we call reftopic) represent the
primary content categories used in the product documentation community. Moreover, specialized
information types, based on the original four, can be defined as required.

As a notable feature of this architecture, other communities can extend or define additional information
types that represent their own data by using the common and shared structures. Examples of such content

developerWorks: XML zone : Introduction to the Darwin Information Typing Architecture

http://www-106.ibm.com/developerworks/library/x-dita1/ (3 of 6) [11/1/2001 10:47:52 AM]

include product support information, programming message descriptions, and GUI definitions.

DITA common structures
The metadata and table structures are unchanging structures that can be used within any topic, even in
other XML vocabularies.

Figure 4. The common-structures layer

The metadata structure defines document control information for individual topics, higher level processing
DTDs, or even for HTML documents that are associated to the metadata as sidefiles or as database
records.

The table structure provides presentational semantics for body-level content. The CALS display model is
supported in many popular XML editors.

DITA shared structures
The shared structures provide elements and content models that can be used in many types of technical
documentation. These include basic document structures (word processor equivalence for emphasis and
layout), a copy-and-paste compatible subset of XHTML 1.0, and semantically significant phrases and
structures for content.

Figure 5. The shared-structures layer

The workgroup made an effort to select element names that are popular or common with HTML. And
some semantic names have been borrowed from industry DTDs that support large SGML libraries, such as
IBMIDDoc and DocBook.

Specialization
A company that has specific information needs can define specialized topic types. For example, a product
group might identify three main types of reference topic: messages, utilities, and APIs. By creating a
specialized topic type for each type of content, the product architect can ensure that each type of topic has
the appropriate content. In addition, the specialized topics make XML-aware search more useful, because
users can make fine-grained distinctions. For example, a user could limit a search for xyz to messages only
or to APIs only. A user could also search for xyz across reference topics in general.

Rules govern how to specialize safely: each new information type must map to an existing one, and must
be more restrictive in the content that it allows. With such specialization, new information types can use
generic processing streams for translation, print, and Web publishing. Although a product group can
override or extend these processes, they get the full range of existing processes by default, without any
extra work or maintenance.

A corporation can have a series of DTDs that represent a consistent set of information descriptions, each
of which emphasizes the value of specialization for those new information types.

Role of content communities in the DITA
The technical documentation community that designed this architecture defined the basic architecture and
shared resources. The content owned by specified communities (within or outside of the defining
community) can reuse processors, styles, and other features already defined, but those communities are
responsible for defining their unique business processes based on the data that they manage. They can do
so by creating a further specialization off of one of the base types.

developerWorks: XML zone : Introduction to the Darwin Information Typing Architecture

http://www-106.ibm.com/developerworks/library/x-dita1/ (4 of 6) [11/1/2001 10:47:52 AM]

Figure 6 represents how communities, as content owners at the topic level, can specialize their content
based on the core architecture.

Figure 6. Relationship of specialized communities to the base architecture

In Figure 6, the overlap represents the common architecture and tools shared between content-owning
communities that use this information architecture. New communities that define typed documents
according to the architecture can then use the same tools at the outset, and refine their content-specific
tools as needed.

Resources

Find out more about DITA in a companion article, Specialization in the Darwin Information Typing
Architecture, which outlines how to implement DITA.

●

Find out how to join the discussion in the DITA forum, moderated by Don Day and Michael
Priestley.

●

Go directly to the DITA forum, moderated by Don Day and Michael Priestley.●

Download the latest DITA DTDs, style sheets, and sample documents, or download the original
version.

●

Refer to the DITA FAQ set.●

Get some background on the topic of information architecture at the Argus Center for Information
Architecture or the 10 Questions about Information Architecture site.

●

About the authors
Besides his main work as husband, father, and cat lover, Don designs and supports publishing tools for
IBM's Information Development community and has represented IBM on the W3C XSL and CSS
Working Groups. He has B.A.s in English and Journalism and an M.A. in Technical and Professional
Communication from New Mexico State University. You can contact Don at dond@us.ibm.com.

Michael Priestley is an information developer for the IBM Toronto Software Development Laboratory. He
has written numerous papers on subjects such as hypertext navigation, singlesourcing, and interfaces to
dynamic documents. He is currently working on XML and XSL for help and documentation management.
You can reach Michael at mpriestl@ca.ibm.com.

developerWorks: XML zone : Introduction to the Darwin Information Typing Architecture

http://www-106.ibm.com/developerworks/library/x-dita1/ (5 of 6) [11/1/2001 10:47:52 AM]

http://www-106.ibm.com/developerworks/xml/library/x-dita2/index.html
http://www-106.ibm.com/developerworks/xml/library/x-dita2/index.html
http://www-106.ibm.com/developerworks/xml/library/x-dita4/index.html
news://news.software.ibm.com/ibm.software.developerworks.xml.dita
http://www-106.ibm.com/developerworks/xml/library/x-dita1/dita01.zip
http://www-106.ibm.com/developerworks/xml/library/x-dita1/dita00.zip
http://www-106.ibm.com/developerworks/xml/library/x-dita1/dita00.zip
http://www-106.ibm.com/developerworks/xml/library/x-dita3/index.html
http://argus-acia.com/site_index/index.html
http://argus-acia.com/site_index/index.html
http://www.builder.com/Authoring/AllAboutIA/index.html
mailto:dond@us.ibm.com
mailto:mpriestl@ca.ibm.com

Dave Schell is IBM's chief strategist and tools lead in support of its technical writing (User Technology)
community. You can reach Dave at dschell@us.ibm.com.

What do you think of this article?

Killer! (5) Good stuff (4) So-so; not bad (3) Needs work (2) Lame! (1)

Comments?

 About IBM | Privacy | Legal | Contact

developerWorks: XML zone : Introduction to the Darwin Information Typing Architecture

http://www-106.ibm.com/developerworks/library/x-dita1/ (6 of 6) [11/1/2001 10:47:52 AM]

mailto:dschell@us.ibm.com
ftp://www6.software.ibm.com/software/developer/library/x-dita1.pdf
javascript:void newWindow()
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/ibm/?origin=dwheader
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/privacy/?origin=dwheader
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/legal/?origin=dwheader
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/contact/?origin=dwheader

	ibm.com
	developerWorks: XML zone : Introduction to the Darwin Information Typing Architecture

	PAPFFDEOFMDAMCOELJMPBJOCNEHGOKFILI:
	form1:
	x:
	f1: [dW]
	f2:

	f3:

	form2:
	x:
	f1: Introduction to the Darwin Information Typing Architecture xA;
	f2: XML
	f3: http://www-106.ibm.com/developerworks/thankyou/feedback-thankyou.html
	f4: Off
	f5:

	f6:

