
Status and Direction of XML in Information Development in
IBM ®: DITA
Authors: Dave A. Schell, Ph.D.,

Michael Priestley,
John P. Hunt, Ph.D.
Don R. Day

© Copyright 2001, International Business Machines Corporation. All rights reserved.

Abstract

For the past two years, a workgroup inside IBM's User Technology community has been working on creating a
XML architecture for the next generation of technical documentation. In this paper we describe the current state of
that work, the status of the Darwin Information Typing Architecture, and our directions for XML. We also discuss
our guiding principles for our work on XML and our activities related to validation and proof-of-concept.

Introduction

One of the best indicators of XML's immense popularity as a markup language is the number of proposed XML
applications maintained at the XML Cover Pages Web site
(http://xml.coverpages.org/siteIndex.html#toc-applications). At last count, this list had 437 entries. Have things
gone too far? Why not just keep extending the scope of existing DTDs to do more things with fewer new
standards?

But when you consider that these proposed DTDs represent only the tip of the entire universe of ontology, perhaps
the more relevant question is whether we can find a better model to help us describe the complexity of human
knowledge and to do so with fewer tools? We believe there is such a model, at least for the range of issues
involving product support documentation.

In March of 2001, IBM released for public awareness and commentary a new architecture for authoring,
producing, and delivering technical information. The Darwin Information Typing Architecture (DITA) deals with
the complexity of information at two levels: it goes beyond book-oriented DTDs by addressing typed data at the
topic level, and it features specialization, which allows derivation of new topic types (and their specialized
vocabularies) from base types. Topics of any type can be assembled into books, webs, and helpsets without
rewriting, owing again to the specialization methodology, which allows new vocabularies to be processed reliably
by previous tools. DITA was developed by a team led by Don R. Day, Michael Priestley, and Dave A. Schell of
IBM.

The popular hype surrounding XML is that it promises greater reuse, semantic specificity, and interchangeability.
Out of the hundreds of XML applications currently proposed or deployed, very few deliver on all three promises,
because the promises are basically in conflict with each other. For example, in most XML applications the more
specific the vocabulary, the less interchangeable the documents (a <var> programming variable element is not
likely to be required in DTDs that support simple memos, therefore it would have to be transformed if the content
were reused in a memo).

DITA helps deliver on these promises of XML by having base semantics from which new vocabularies are
progressively defined, and this same base semantic continues to support the processing for the new vocabularies.
This architectural feature ensures that new element names can always be associated to existing processors to
produce contextually correct results. Likewise, new elements can always be transformed back to their base types in
situations where the specificity needs to be relaxed, or transformed to related vocabularies derived from the same

base semantics in cases where documents are interchanged between companies that use different names for similar
elements or attributes.

Semantic specificity based on derivation has other advantages. Derivation avoids the sort of semantic overloading
that may occur in other DTDs when an unrelated existing element is used as a base for a new semantic. With no
derivation architecture, such newly defined elements may be used in contexts that have nothing to do with the
semantics of that new element. Derivation ensures that an entire context for a new vocabulary is properly
represented, and that the content models are therefore reasonable. Moreover, one can limit the number of elements
in new content models so that fewer nonapplicable elements are visible. This is a tremendous authoring aid! In
effect, the choices available for writers within a particular specialized vocabulary need only be those that are
appropriate for that context.

The following sections not only provide a brief overview of DITA, but also how it was designed and validated.

Overview of DITA

The Darwin Information Typing Architecture (DITA) is an XML-based architecture for authoring, producing, and
delivering technical information. DITA is an end-to-end architecture. It consists of a set of design principles for
creating information-typed topic modules and for using that content in various ways, such as online help and
product-support portals on the Web. At its heart, DITA is an XML document type definition (DTD) that expresses
many of these design principles. The architecture, however, is the defining part of this proposal for technical
information; the DTD, or any schema based on it, is just an instantiation of the design principles of the
architecture.

y DITA allows for a more flexible presentation of information. Technical writing is moving away
from the book and towards smaller "chunks" of information organized around single topics. A focus
on topics lets writers build helpsets, webs, or even books for particular audiences, without rewriting.
By categorizing the topics by type of information (concept, task, or reference), writers can make sure
they are covering the information their customers need. DITA is designed to support these
information types.

y With DITA you can better match your data to your customers' needs. The power of XML is
having "smart" content that lets users search on things that matter to them. A one-size-fits-all DTD is
undifferentiated and assumes that the same things matter equally to all users. DITA lets authors
refine information types to describe the things that matter to a particular customer set without
breaking the existing categories that matter to a general audience and without breaking existing
processes or tools.

y With DITA how your information is processed does not change if the amount or type of data
being processed changes. By creating a set of core information types for a company, you can ensure
that all your company's information follows the same guidelines and is processed the same way.
DITA allows specialization from an existing type to create new types. As long as the new types are
specialized from a company's core set, the new types won't break the existing processes and won't
break existing guidelines. Even if you change the processes or guidelines later, the new types pick up
the changes automatically.

__
History

Like many other companies, IBM has long been using and advocating information architectures for its product
information, and more recently for its Internet presence. With the arrival of the XML specification in February

1998, the time was right for a re-evaluation of our SGML strategy and an assessment of XML's future part in our
documentation strategy.

IBM's User Technology organization commissioned a workgroup to do this analysis. Composed of representatives
from Information Development sites throughout IBM and its subsidiary companies, the workgroup was given four
charges to work on:

y The first issue for the workgroup was the challenge to preserve the huge investment in legacy documents
of both IBM and our customers.

The workgroup focused on the preservation of legacy material to support millions of pages of legacy IBM
content in SGML and BookMaster documents, as well as the huge volume of content in non-SGML
formats, such as word-processing files, help authoring systems, and Notes .nsf databases. Prior to the start
of the workgroup, Don Day had demonstrated the conversion of BookMaster documents to well-formed
XML and then delivered that content to the Web through transcoding from XML to HTML. The
workgroup later applied those ideas to a DTD that represented even earlier IBM documents, this time to a
wider variety of browsers. A team at Lotus also successfully demonstrated migrating the entire
Notes/Domino help content from a non-SGML, word processor-based publishing system to well-formed
and valid XML. In this way, we've demonstrated use of XML as an intermediate representation of legacy
data, which allows the use of more current tools for migration, data mining, etc. The lesson learned is that
legacy documents can be represented as XML and that they can continue to provide valuable information
assets, the use of which are described in the third issue in this list.

y The second issue for the workgroup was to focus the XML activity on a topic-based information
architecture. This architecture moves us from authoring and delivery of large books and manuals to
smaller focused articles, or topics, targeted at specific types of content, based on the users' specific tasks
and environments. Such topics provide the core information inputs for help systems and other types of
online user assistance content, as well as other deliverables and outputs.

As a parallel effort, the XML work group is focused on providing an infrastructure for our Information
Centers. Information Centers are the framework support for that new generation of information. They are
based on articles - information that is chunked into smaller, more semantic content than the traditional
books. For us, this is a move to a next generation of tools and tool exploitation, including the ability to
intelligently use information presentation based on preference and task. It also includes other side
benefits such as better search all leveraged by using XML

y The third issue on which the workgroup focused was to emphasize the role of stylesheets for
transformation and rendering. We provided a number of core styles across a number of widely different
devices (workstations to cell phone displays). This also provides us another method to preserve our
long-term investment in our legacy markup.

This was one of the earlier proof-points -- we had working prototypes of this type of transcoding to
different form-factors with different style sheets from early on in our investigation phase. We were
transcoding to different form-factors by transforming our BookMaster and other legacy data into
well-formed XML, applying new style sheets, and rendering it on new form-factors, such as PDA Web
browsers and various levels of HTML/CSS, within the first few months of our work effort.

y The fourth issue that the workgroup focused on is an outreach concept -- working with other e-business
initiatives in IBM to coordinate our proposed DTD vocabularies with theirs and to promote mutual
education at the same time on issues related to XML and documentation.

Over time, we have reviewed many DTDs and we continue to do so. As a result, we've applied our
understanding of DITA to those DTDs and fed that information back to the other DTD owners for
increased coordination and education. In addition, we've learned more about what we need to support in
DITA, such as making metadata shareable and developing more author-friendly content models.

The workgroup initially spent some time getting up to speed about XML and W3C technologies and learning
about the various XML activities within IBM. Then we set out on a two-phase approach of discovery and
application.

Phase 1, completed in January 2000, was to explore the XML technologies in the context of the publishing models
that existed at IBM, Lotus, and Tivoli, particularly IBM's ID Workbench based on the SGML DTD, IBMIDDoc.
One team converted a simple legacy DTD, the GML Starter Set (or GDOC), into an XML equivalent for use in
prototyping activities. Another team developed a tool to port IBMIDDoc source into the XGDOC format. A third
team worked on XSL and CSS stylesheets to exercise a number of publishing ideas.

Phase 2 began immediately after that to apply the best practices to a proposed new XML publishing model. Most of
the activity occurred within a team that developed a small DTD that incorporated the best practices, from which we
derived a set of guiding principles.

Among the guiding principles applied in this phase were:

y rejection of porting existing SGML DTDs that were already in place and in use
y repudiation of developing “Yet-Another-Large” DTD (YAL DTD)
y rejection of a top-down analysis of current business practice (which we accepted was still solidly

instantiated in a book model)
y emphasis on information typing
y emphasis on topic orientation
y emphasis on extensibility and interchange
y reuse by reference

y content
y design
y stylesheets and transforms

y validation and testing of these principles by prototyping against actual product content

This activity concluded in December 2000 with a design that represented these goals of reuse and scalability.
During the next few months, workgroup members tested the materials and documented the activity in a set of
articles published on IBM's developerWorks XML Zone, see "Introduction to the Darwin Information Typing
Architecture" (http://www-106.ibm.com/developerworks/xml/library/x-dita1/index.html). The Notes/Domino user
assistance team at Lotus released "Notes Help 5.0.3 in DITAbase XML" on notes.net
(http://notes.net/notesua.nsf/find/notes503xml), as a proof-of-concept of the DITA architecture and DTDs.

Guiding principles of DITA

DITA simplifies the creation of audience-specific content, DTDs, and processes. It is based on principles of
modularity and reuse that allow not only the fast deployment of customer solutions but also the painless evolution
of those solutions as customer needs, and our understanding of them, evolves.

Principles
DITA’s basic principles are as follows:

y Topic orientation:

DITA focuses on the topic as the smallest independently maintainable unit of reuse. This allows authors to
focus on writing topics that efficiently and completely cover a particular subject, or answer a particular
question, without dwelling on the various places the topic might end up being read.

y Information typing:

DITA focuses on information types as a way to describe content independent of how that content is
delivered. Instead of creating chapters and appendixes, authors can focus on writing concepts, tasks, and
reference topics using structures and semantics that remain valid regardless of how the information
reaches the reader.

y Specialization:

DITA allows authors to create more specialized information types, so that the structures and semantics of
the information are as specific as they need to be for a particular audience

y Inheritable processes:

DITA-aware processes, such as publishing and translation, work automatically on more specialized types,
and can also be specialized themselves.

Embodied in architectures
Those principles are embodied in two architectures:

y Information architecture:

The information architecture describes what a topic is and what the three core information types are. This
provides a basic level of consistency across all DITA content, which allows for reuse of infrastructure and
interchange of content across the entire range of possible information types.

y Specialization architecture:

The specialization architecture describes how a specialized type of topic is derived from a more general
type of topic, and it describes how specialization-aware processes can access topics at whatever level of
specialization they require. For example, a generic print process may treat all types as just topics, and a
task indexing system may treat all task types as just tasks.

Based on reuse by reference
Both architectures are based around reuse by reference:

The information architecture, by dividing content into topics and freeing it of delivery-specific elements, allows
content to be reused in multiple contexts without being rewritten. This means that many contexts can reuse the
same topics without the reused topics being affected. By contrast, large documents that are conditionally processed
to produce multiple outputs quickly run into problems of scalability: with each new output, new conditions must be
added to the source, and ultimately the source becomes unmaintainable. Reuse by reference, on the other hand,
makes sure that the source stays maintainable, by moving control of the reuse into the reusing context, keeping the
source simple.

The specialization architecture, by creating a hierarchy of information types, allows reuse by reference both of
design and of process.

y When authors create a specialized type, they can reuse the design of a more general type by reference.
This means that the new type can be created faster and requires less maintenance than it would if it were
created from scratch. And since the new types can be processed just as if they were the more general type,
content in the new types can be deployed immediately, giving customers immediate access to the more
specific content categories and structures. For example, when a new API description topic type is created

as a specialization of reftopic (reference topic type), the new markup can be displayed using existing
reftopic processes, but searched using API-specific terms.

y When programmers create a specialized process, they can reuse the code from a more general process by
reference. This means that the new process can be created faster than if there were no model and requires
less maintenance than if it were created from scratch. And since the new process reuses the more general
process, it can even handle less specialized information, as well as more specialized information. For
example, if a programmer wants to add keyword linking to API declaration sections, they can override the
behavior for those sections with a new XSLT template, but continue to reuse the rest of the reftopic
display logic for other sections and elements.

Reuse by reference lets DITA solutions be deployed quickly, maintained centrally, and improved cheaply.

Gives us the results our customers need
As a result, we can afford to provide customer-specific solutions (delivering the content our customers need, sorted
and categorized according to their priorities) without compromising portability or flexibility: meeting the needs of
users today, but not at the cost of meeting their needs tomorrow.

Validation

So, how does this work in practice? What happens when we use the DITA architecture and XML DTD against
actual content? A small team at Lotus has done just that, examining 7,500 topics in the Lotus Notes and Domino
help to see how they might fit into DITA information types. The initial focus is on the help provided with the
Lotus Notes client. Notes client help is task-oriented and directed at end users. The content is currently authored
and stored in a word processing system. This Notes help content uses consistent styles and adheres to strict
editorial standards. However, it was not created with a validating SGML or XML editor, which presents some
challenges in moving it to DITA topic types and the DITA XML DTDs.

A basic assumption in converting this Notes help content to DITA information types is that all topics were
authored as either tasks or concepts. This assumption stems from the rules followed by the trained technical writers
and editors who originally created these topics. Based on this set of assumptions, the breakdown of the material
follows a pretty simple rule: if a source topic contains a numbered list that's not in a table, it's a task topic; all other
topics are concepts. This leaves a few loose ends, such as the question-and-answer troubleshooting topics and the
A-Z glossary, but it accommodates the vast bulk of other topics quite nicely.

We've completed a DITAbase XML version of all 768 topics in the Notes 5.0.3 end-user help system, and it's
available for download in the Domino/Notes Documentation library on notes.net --
http://notes.net/notesua.nsf/find/notes503xml.

Starting point: DITA generic topics
The actual process of applying DITA markup to this Notes help content takes place in several stages. The first
stage involves building XML that validates against the "generic" DITA topic types. These generic topics act as a
starting point for all topics.

For example, here's the DITAbase markup for a simple generic topic:

<?xml version="1.0" encoding="UTF-8"?>
<topic id="H_CHOOSE_LOCATION">
 <title>To choose a location</title>
 <prolog>
 <relgroup role="friend" dupes="nodupes">
 <link url="H_CREATE.xml">Creating locations </link>
 <link url="H_SPECIFY.xml">To switch a User ID</link>

 </relgroup>
 </prolog>
 <body>

 Choose File - Mobile - Choose Current Location.
 Select a location.
 If necessary, click OK.

 </body>
</topic>

The structure here is pretty straightforward. A <topic> element encloses the topic, there's a title, a prolog, which
contains information about metadata and topic relationships, and a body. For the body content, DITA supports
most standard HTML tags, which not only makes the writer’s task easier but also facilitates moving existing
HTML-tagged content into DITA body sections.

Finally, a topic can also contain other topics, or subtopics. A topic does not contain any heading tags. The <topic>
tag itself sets the boundaries for headings, and the <title> provides the heading text.

Specialization: Morphing a generic topic to a DITA task topic
Even though a DITA generic topic can hold this content, the above topic is really a task. That is, the ordered list in
the body provides a numbered series of steps for completing a specific task -- in this case, choosing a mobile
location. A DITA task topic provides a more specialized information structure, with a more specific markup.

Here's what the above generic topic looks like when authored as a DITA task topic:

<?xml version="1.0" encoding="UTF-8"?>
<task id="H_CHOOSE_LOCATION">
 <title>To choose a location</title>
 <prolog>
 <relgroup role="friend" dupes="nodupes">
 <link url="H_CREATE.xml">Creating locations </link>
 <link url="H_SPECIFY.xml">To switch to a User ID</link>
 </relgroup>
 </prolog>
 <taskbody>
 <steps>
 <step><cmd>Choose File - Mobile - Choose Current Location.</cmd></step>
 <step><cmd>Select a location.</cmd></step>
 <step><cmd>If necessary, click OK.</cmd></step>
 </steps>
 </taskbody>
</task>

As you can see, most of the specialization in the task topic takes place in the body section. Based on our
information analysis, task topics present the step-by-step procedure for completing a task. They answer "How do
I?" questions about a specific task. Task topics always contain at least one sequence of steps and commands, and
may also contain additional supporting information, including an introductory paragraph, notes, tips, pictures, and
bulleted lists. DITA provides for this task content in a taskbody, using the following element names: prereq,
context, steps, result, taskxmp, and postreq. The steps element, of course, is probably most important -- it provides
the numbered procedure for the task. A steps section contains individual step elements, which include the cmd and
optional additional information about that step.

General patterns
Several general patterns emerge from the process of creating this DITAbase version of Notes task help. First,
there's lots of indented content -- the additional paragraphs, notes, or tables that might appear between steps,

which in the DITAbase version appears inside an XML <info> element. Second, all subheadings in the original
source start a new subtopic in the DITA version. Third, in a subtopic, any content preceding the steps becomes a
<context> section. And, finally, all content following the steps becomes a <result> section.

Technical documentation uses many tables, and the Notes help topics are no exception. A table, by definition, lays
out information according to a certain structure. The Notes client help contains many two-column tables, with
headings like "Option/Description", "Click/To", and even "Name/Mood Stamp", which depicts the graphical mood
stamps you can add to an e-mail address. In the DITA markup, we decided to represent these kinds of two-column
tables as a definition list. This makes the content more accessible through XML processing. The decision to use
definition lists doesn't preclude presenting a table to the user, but it allows us to extract and present the
information in other ways, as well.

Proof-of-concept

The DITA team has run several activities to demonstrate the viability of DITA's design.

The team did an analysis of existing practice within IBM on the structure and use of FAQs -- frequently asked
questions. The exercise revealed that some presumed information types actually represent the sharing of
information and publishing responsibilities between more than one community, as FAQs typically represent the
gathering of input from customer service centers and the republishing of that data through product support sites
maintained by information development teams. As a result, DITA was provided with a structure for question and
answer pairs that can be associated with standalone topics and be part of a larger collaborative design between the
two communities.

A separate workgroup evaluated and documented the essential information model underlying the most current use
of messages within IBM, Tivoli, and Lotus. Michael Priestley demonstrated the use of DITA to represent the data
model of messages as a specialization of a reference topic.

John Hunt of Lotus demonstrated moving a large volume of Notes and Domino help content to DITA format. A
key goal of the exercise was to preserve the huge investment in that content, including the topic text itself, the
index keywords, and the ability to produce multiple outputs to HTML, printed books, Notes .nsf help, PDF, and
other formats. In a further exercise to identify additional content and combine it with the core Notes help content,
John carried out a conversion of an IBM Redbook about Domino XML into DITA format and combined this with
an XML version of the Domino XML Toolkit reference help. By pulling together disparate information in this way
and tying it together with DITAbase XML as the common denominator, he demonstrated the ability of DITA to
handle multiple types of information.

These activities have demonstrated the viability of DITA's design and led to improvements throughout the process.

The value of analysis
In doing his migrations of Lotus content, John Hunt provided an analysis of the cues in the legacy markup that he
used to guide his transformations. For example, he observed that:

y Any topic or subtopic that contains an tag is probably a task topic.

y If a main topic contains several subtopics that are tasks, then the topic is either a Collection or Super steps
topic.

y If no tags other than appear inside the , then it's a Basic task topic.

y <p>, , <note>, and <note caption="Tip"> tags that appear in an (these are what we sometimes
call "indented" paragraphs in the original source files) can fit as part of the DITA task content in an <info>
section.

This analysis forced us to rethink the information we had written. We can use the nuances implied by our
authoring conventions to interpret the intent of what we had actually written. This analysis exposed more ideas for
the design of our content models, it showed that we needed greater specificity to avoid making these mistakes in
the future, and it highlights a need for greater consistency within more specific infotypes - more rigorous content
writing equates to better semantic specificity. The exercise compelled us as designers (and as current or former
technical authors) to relate past guidelines and practices to the intent in the eventual DITA design. Now, we can
tell writers, "If you did so and so in the past, we've prepared a DITA structure for which you would now do this."
This is still doing task analysis as we've requested writers to do all along, but with explicit content models now for
the actual writing. This replaces a common earlier practice of providing "cookbook" examples of markup that
tended to represent the desired visual structure of various writing styles.

We now have Concept, Task, and Reference at the high level, and specialization allows the creation of more
specific vocabularies within those categories of information types. Determining the information type for a topic
begins at the point of selecting an appropriate topic container for the content at hand. We take away a set of
choices by not allowing a task within a concept, for example, but this provides better enforcement and consistency
within the information, and reduces the opportunities for mistakes. We will have to continue the process of
educating people to avoid certain practices; for example, if you see you can use an ordered list within a concept,
that doesn't mean you can develop a task there. Once we associate an ordered list with a task, an ordered list within
a concept topic has ambiguous meaning.

We wouldn't have understood this as well if we had not done the various analyses to see how even well-skilled
authors use different styles and multiple markups to represent the same thing. By mapping our understanding of
topic types into the DITA structure, we can improve how authors create appropriate information. And in
explaining how to use the DITA structures, we will be able to leverage both the technical writer's understanding of
information types and to reinforce its use through the structures in DITA.

There's more than one way to present a task, concept, or reference topic. While DITA doesn't straight-jacket all
content into a single model for these topics, it does reduce the choices and provide for a higher level of consistency
of format within these topic types. In addition, the DITA specialization architecture provides a consistent method
for identifying more constrained information models and for applying those models to more specific DITA topic
types. For example, differences among reference topics illuminate the differences in writing an API for C++ versus
an API for Java, and DITA provides a way to accommodate those differences within a consistent overall
information architecture.

__
Status

We are in the phase where we are using a more experience-based approach in validating our assumptions.

We recognize that the DITA design is a prototype; its design -- including DTDs and style sheets -- will continue to
evolve through feedback from the interested user community -- you!

Use the DITA newsgroup (ibm.software.developerworks.xml.dita) to discuss the use of the DITA DTDs and style
sheets. We will use the discussion in the DITA newsgroup to gather ideas, and we will apply those , as appropriate,
to subsequent refreshes of the package. The forum will be actively monitored by the DITA project's architects.

DITA has already generated some active interest among other information specialists. Evidence from several
newsgroups suggests that people are already testing DITA principles at their own companies. The feedback and the
interchange with the public community has been valuable for everyone involved. If you believe that DITA
principles may be of value to your company, we encourage you to investigate it and apply it as appropriate.

Future Directions

As DITA stands now, we have:

y A core set of DTD modules to allow authoring in the core topic types and to provide a base for creating
more specialized topic types

y A set of guidelines and samples for creating content, transforms, stylesheets, and new topic types in the
DITA architecture

There is plenty of work left to be done:

y Navigation maps, for defining how topics should be collected or how they relate to each other for
particular delivery contexts

y Common specializations, to allow for interchange at more specific levels in common content areas such as
contextual help and API documentation

y Content management, to provide for centralized tracking and versioning of topics in source repositories
y Additional tooling support, to allow custom authoring environments to be reused with specialized content

in the same way that stylesheets and transforms can be reused
y Personalization processes, to give the user more direct control over the use of specialized markup and

content

Over the next year, we hope to see the discussion and experimentation that DITA needs to continue growing and
evolving. Our existing architecture provides a base; we are looking to a wider community to help find out what
happens next.
__
Summary Conclusions

y XML DITA provides a solid base for topic-oriented support.

y DITA enables rigorous semantic specification of topic types based on audience and author
requirements.

y DITA goes beyond the current accepted DTDs by allowing information to be organized and delivered
through multiple means, (onscreen help, manuals, etc.).

y IBM's development of DITA demonstrates our commitment to improving technologies and keeping
the improvements open to the public.

IBM, developerWorks and Transarc are trademarks of of International Business Machines Corporation in the
United States, other countries, or both.

Lotus, Notes and Domino are trademarks of Lotus Development Corporation in the United States, other countries,
or both.

Tivoli is a trademark of Tivoli Systems Inc. in the United States, other countries, or both.

