E] HEWLETT
P8 pACKARD
Conversations + Interfaces = Business Logic

Harumi Kuno, Mike Lemon, Alan Karp, Dorothea Beringer
Software Technology Laboratory

HP Laboratories Palo Alto

HPL-2001-127

May 23rd |, 2001*

E-mail: {harumi_kuno, mike_lemon, alan_karp, dorothea_beringer} @ hp.com

E-Service In the traditional application model, services are tightly
composition, coupled with the processes they support. For example,
agent systems whenever a server's process changes, existing clients that use
for e-commerce, that process must also be wupdated. However, electronic
web-services, commerce is moving towards e-service based interactions,
WSDL, UDDI, where corporate enterprises use e-services to interact with each
WSCL, agent other dynamically, and a service in one enterprise could
conversation spontaneously decide to engage a service fronted by another
policies enterprise. In this paper, we clarify the relationship between

currently developing standards such as the Universal
Description Discovery and Integration (UDDI), the Web
Services Description Language (WSDL), and the Web Services
Conversation Language (WSCL), and propose a conversation
controller mechanism that leverages such standards to direct
services in their conversations. Using such a mechanism means
that services can be written as pools of methods independent of
the conversations they will participate in. Even the specific
method names can be decided on independently of the
conversations. The services can spontaneously discover each
other and then engage in complicated interactions without the
services themselves having to explicitly support conversational
logic. The dynamism and flexibility enabled by this decoupling
is the essential difference between applications offered over the
web and e-services.

* Internal Accession Date Only Approved for External Publication
O Copyright Hewlett-Packard Company 2001

1 Introduction

Electronic commerce is moving towards a model of eservice based interactions, where corporate
enterprises use eservices to interact with each other dynamically[11]. For example, a procurement
service in one enterprise could spontaneously decide to engage a storefront service fronted by another
enterprise. These services can communicate by exchanging messages using some common transport
(e.g., HTTP) and message format (e.g., SOAP).

However, suppose that the storefront service expects the message exchanges to follow a specific
pattern (conversation), such as the conversation depicted in Figure 1 (shown from the perspective of the
storefront service). Service developers must now address several issues. How does the client service
know what conversations the storefront service supports? Does the storefront service developer have to
code the conversation-controlling logic directly into the service? If so, do developers have to re-
implement the client and storefront services each time a new message exchange is added to the
supported conversation?

A modd of dynamic service interactions thus imposes the following requirements:
1. Services must be able to describe themselves, and clients must be able to discover them.

2. A service must be able to describe its abstract interfaces and protocol bindings so that clients
can figure out how to invoke it.

3. A service must be able to describe the kinds of interactions (conversations) that it supports
(e.g., that it expects clients to login before they can request a catalog) so that clients can engage
in complex exchanges with the service.

The Universal Description Discovery and Integration (UDDI)[2/4,5] specifications address the first
problem by defining a way to publish and discover information about Web services. The Web Services
Description Language (WSDL)[8] addresses the second problem, defining a generd purpose XML
language for describing the interface and protocol bindings of network services. The Web Services
Conversation Language (WSCL)'[3,13] addresses the last problem, providing a standard way to model
the public processes of a service, thus enabling network services to participate in rich interactions.
Together, UDDI, WSDL, and WSCL enable developers to implement web services capable of
spontaneously engaging in dynamic and complex inter-enterprise interactions.

In this paper, we describe how these standards enable us to separate interface logic from
conversation logic. We begin by discussing our perspective of e-services as pools of functiona
endpoints that can be composed using conversations (Section 2). In Section 3 we provide a brief
overview of UDDI, WSDL, and WSCL, and describe how they enable the creation of specifications

L WSCL was originally named the Conver sation Definition Language (CDL).

Page 1

describing service endpoints and conversations. We have implemented a prototype conversation
controller that leverages service interface descriptions and conversation specifications expressed using
WSCL and WSDL, which we describe in Section 4. We present related work in Section 5, and
summarize our conclusions and discuss future directions in Section 6.

2 Approach

E-services are much more loosely coupled than traditional distributed applications. This difference
impacts both the requirements and usage models for e-services. E-services are deployed on the behalf
of diverse enterprises, and the programmers who implement them are unlikely to collaborate with each
other during development. However, the primary function of e-services is to enable business-to-
business interactions. Therefore, eservices must support very flexible, dynamic bindings. E-services
should be able to discover new services and interact with them dynamically without requiring
programming changes to either service. This distinction is what separates e-services from applications
delivered over the web.

In our model, E-Services

<<ReceiveSend >>
Quote

In: QuoteRQ

Out: QuoteRS

interact by exchanging eRecaesend
in: Coameg
Out: LoginRS

out: InvalidLoginR

[InvalidPaymentRS]

<<ReceiveSend>>
Purchase
In: PurchaseRQ
Out: PurchaseAcceptedRS
Out: InvalidPaymentRS
Out: OutOfStockRS

[PurchaseAcceptedRS]

[ValidLoginRS]

messages. Each message can
be expressed as a structured

h

<<ReceiveSend>>
cataloginquiry

In: CatalogRQ
out: CatalogRS

[sywbopieaur]

document (e.g., usng XML)

that is an instance of some)

<<Send>>
Shipping
Out: ShippingInformation

document type (e.g.

expressed using XML

Schema). A message may be Figure 1: An example conversation depicted as a UML activity diagram. Interactions are
represented by action states

wrapped (nested) in an
encompassing document, which can serve as an envelope that adds contextua (delivery or conversation
specific) information (e.g., using SOAP).

We define a conversation to be a sequence of message exchanges (interactions) between two or
more services. We define a conver sation specification (aso known as a conversation policy) to bea
formal description of “lega” message type-based conversations that a service supports. Our god isto
enable E-Services developed by different enterprises to engage in flexible and autonomous, yet
potentially quite complex, business interactions (conversations).

We advocate a service-centric perspective that separates service interfaces from conversation
specifications. This approach alows us to treat services as pools of interfaces that can be specified by
individua participants and then later composed using separate conversation specifications. We can

Page 2

then create conversation controller services that can use conversation and interface gecifications to
direct services in their interactions, thus freeing service developers from having to explicitly program
conversationa logic. Such a single third-party conversation controller could leverage “reflected”
XML-based specifications to direct the message exchanges of EServices according to protocols
without the service developers having to implement protocol-based flow logic themselves. The
conversation controller can assume responsibility for the conversation logic, leaving service developers
free to focus on service-specific logic. For example, the controller would handle exceptions due to
message type errors, while the service would be responsible for handling exceptions related to message
content.

The advantage of this approach is that it enables services to be easily and flexibly composed with a
minimum of programming effort. In order to participate in a given conversation type, a service need
only to be able to accept and produce messages of the appropriate types. This dlows services and
clients to discover each other and interact dynamicaly using published specifications.

That is to say, because the conversation policies are not service-specific, services and clients can
interact even if they were not built to use precisaly matching conversation policies, as long as both
parties are capable of sending and receiving appropriate messages. Furthermore, because the service
interfaces and the conversation policies are decoupled, different instances of a service could name their
methods independently, e.g., a client could use the same conversation specification to talk to two
different book-salling services, despite the fact that one service supports a Login method while the other
uses a corresponding Sign-on method.

Findly, this approach gives us a scalable mechanism for handling the versoning (evolution) of
conversation policies. Services would not necessarily have to be updated in order to support new or
modified conversation policies. For example, suppose that the conversation in Figure 1 were updated to
allow the client to send a quote request before it has requested a catalog. We could effect this change
by smply updating the conversation specification; we would not have to modify either the storefront or
the procurement services code.

3 Currently Developing Standards for Service Communication Specifications

The prevalent model for e-service communication is that e-services will publish information about the
specifications that they support. UDDI fecilitates the publication and discovery of e-service
information. The current version of WSDL (1.0) is an XML-based format that describes the interfaces
and protocol bindings of web service functional endpoints. WSDL aso defines the payload that is
exchanged using a specific messaging protocol; SOAP is one such possible messaging protocal.
However, neither UDDI nor WSDL currently addresses the problem of how a service can specify the

Page 3

sequences of legal message exchanges (interactions) that it supports. (We use the term “ conversation”
to refer to alegal sequence of message exchanges.)

The Web Services Conversation Language (WSCL) addresses this issue, providing an XML schema
for defining legal sequences of documents that e-services can exchange. WSCL and WSDL are highly
complimentary — WSDL specifies how to send messages to a service and WSCL specifies the order in
which such messages can be sent. The advantage of keeping the two distinct is that doing so alows us
to decouple conversationa interfaces (represented by WSCL) from service-specific interfaces
(represented by WSDL). This means that a single conversation specification can be implemented by

any number of services, independent of the protocols supported by the various implementations.

3.1 UDDI Registries
A UDDI business registration is an XML document that describes a business entity and its web

services. The UDDI XML schemadefines four core types of serviceinformation: businessinformation
(such as business name and contact information), business service information (genera technical and
business descriptions of web services), binding information (specific information needed to invoke a
sarvice), and service specification information (associating a service's binding information with the
business service information it implements).

Programmers and programs can use the UDDI Business Registry to locate technical information
about services, such as the protocols and specifications that they implement. More importantly, the
UDDI Business Registry aso serves as a registry for abstract (service-independent) specifications.
Services can refer indirectly to the UDDI registrations for specifications they implement, which makes
it straightforward to identify the business service information that represents a given service.

The UDDI tModel is a meta-data construct that uniquely identifies reusable service-related technical
specifications for reference purposes. A service publishes tMode InstanceDetails, which is a list of
tModelInfo elements that refer to the tModels that the service supports. A UDDI tModel data structure
includes a unique key (tModelKey attribute), a name element, an optiona description, and an
overviewDoc element in which we can store a URL for the actua specification document.

For example, suppose we wanted to register a WSCL specification of the “storefront” conversation
depicted in Figure 1 in aUDDI registry. We would create atMode entry within the UDDI registry that
referred to the actual WSCL specification document in its overviewDoc element. Figure 2 shows a

<t Model aut hori zedNanme="XXXX" oper at or =" YYYY" t Model Key="272727">
<name>st or ef r ont Conver sat i on</ nane>
<description xn :|ang="en”>
WBCL description of a sinple storefront conversation
</ descri pti on>
<over vi ewboc>
<descri ption xni : | ang="eng” >WBCL source docunent. </ descri pti on>
<overvi ewdRL>ht t p: // f 00. or g/ specs/ st or ef r ont WSCL. xm </ over vi ewURL>
</ over vi ewbDoc>

</t Model >

Figure 2: A UDDI tModel referencing a WSCL specification.

UDDI tMode reference for a WSCL specification for a service conversation. This “storefront
conversation” tModel can now be referenced by the tModelInstancel nfo of any service that implements
that conversation type (Figure 3).

<busi nessServi ce>
. . .)
<bi ndi ngTenpl at es>
<bi ndi ngTenpl at e>
. ..)
<accessPoi nt url Type="http”>http://ww. f 0o. conl </ accessPoi nt >
<t Model | nst anceDet ai | s>
<t Model I nst ancel nf o t Mbdel Key="272227">
. . .)
</t Model | nst ancel nf 0>
</t Model | nst anceDet ai | s>
(. .)
<bi ndi ngTenpl at e>
(. ..)
<bi ndi ngTenpl at es>
</businessService>

Figure 3: A tModellnstancelnfo referencing a conversation tModel.

3.2 Web Service Conversation Language
WSCL addresses the problem of how to enable services (often called web services or e-servicesin

this context) from different enterprises to engage in flexible and autonomous, yet potentidly quite
complex, business interactions. It adopts an approach from the domain of software agents, modeling
protocols for business interaction as conversation policies, but extends this approach to exploit the fact
that Service messages are XML -based business documents and can thus be mapped to XML document
types. Each WSCL specification describes a single type of conversation from the perspective of a
single participant. A service can participate in multiple types of conversations. Furthermore, a service
can engage in multiple smultaneous instances of a given type of conversation or even conversations of
different types.

WSCL specifies the public interface to welb-services, it does not specify how the conversation
participants will handle and produce the documents received and sent. A conversation definition is thus
service independent, and can be used by any number of services with completely different
implementations. A conversation developer (e.g. a verticad standards body) can create a WSCL
description of some conversation, and publish it in a UDDI directory. A service provider who wanted
to create a service that supported that conversation description could create and document service
endpoints that support the messages specified by the WSCL document. Any software devel oper who
wants to create an application using the published web-service can download the WSCL files describing
the conversations supported, and implement the necessary methods accordingly. Ideally, software
developers creating and using web-services will be supported by tools that allow them to map easly
and quickly from the interactions outlined in the conversation definition to any existing applications and

Page 5

back-end logic, while separating cleanly between the public and the private processes. Without any
formal definition of the conversations, such tool support will not be possible.

Figure 1 depicts a UML diagram of a smple purchase conversation definition from the perspective
of the seller. A service that supports this conversation definition expects a conversation to begin with
the receipt of a LoginRQ or a RegistrationRQ document. Once the service has received one of these
documents, it answers with aVaidLoginRS, a InvaidLoginRS, or a RegistrationRS, depending on the
type and content of the message received. Although this conversation is defined from the perspective
of the seller, it can be used to determine the appropriate message types and sequences for both the seller
and the buyer. The buyer smply derives his conversation definition by inverting the direction of the
messages halves of a conversation.

There are four elements to a WSCL specification:

Document type descriptions specify the types (schemas) of XML documents that the
service can accept and transmit in the course of a conversation. The schemas of the
documents exchanged are not specified as part of the WSCL specification document; the
actual document schemas are separate XML documents and are referenced by their URL in
the interaction elements of the conversation specification.

Interactions model the actions of the conversation as document exchanges between
conversation participants. WSCL currently supports four types of interactions. Send (the
service sends out an outbound document), Receive (the service receives an inbound
document), SendReceive (the service sends out an outbound document, then expects to
receive an inbound document in reply), and ReceiveSend (the service receives an inbound
document and then sends out an outbound document).

Transitions specify the ordering relationships between interactions. A transition specifiesa
source interaction, a destination interaction, and optionally a document type of the source
interaction as additiona condition for the trangtion.

The Conversation element lists dl the interactions and transitions that make up the
conversation. It also contains additiona information about the conversation like its name,
and with which interaction the conversation may start and end. A conversation can aso be
thought of as being one of the interfaces or public processes supported by aservice. Yetin
contrast to interfaces as defined by CORBA IDE or Java interfaces, conversations also
specify the possible ordering of operations, i.e. the possible sequences in which documents
may be exchanged.

Although WSCL specifies the valid inbound and outbound document types for an interaction, it does
not specify how the conversation participants will handle and produce these documents; it only

Page 6

specifies the abstract interface, the public process. The WSCL specification of a conversation is thus
service-independent, and can be used (and reused) by any number of services. We can use the tModel

structure to register WSCL conversation specifications in UDDI registries (as illustrated above).

3.3 Web-Service Definition Language (WSDL)
As noted before, WSCL specifications are conversation-specific. WSCL describes the structures

(types) of documents a service expects to receive and produce (by either explicitly including or else by
referring to the document type definitions), as well as the order in which document interchanges will
take place, but does not specify how to dispatch received documents to the service. This is partidly
addressed by WSDL. WSDL documents describe the abstract interface and protocol bindings of a
network service. WSDL specifications that describe abstract protocol interfaces are reusable and thus
areregistered as UDDI tModels.

A reusable WSDL document consists of four components. document type, message, portType
(named set of abstract operations and messages involved with those operations), and binding definitions
(define message format and protocol details for a specified portType's operations and messages). For
example, the “storefront” conversation shown in Figure 1 requires that a service implementing the
“Start” interaction provide some sort of endpoint that can accept a LoginRQ or RegistrationRQ

document and output either a LoginRS or a RegistrationRS document.

3.4 Mapping between WSDL and WSCL

We identify three main aspects of web services. The abstract interface (public process, business
model) describes the messages or documents (business payload) a service can exchange, as well asthe
order in which they are exchanged. The protocol binding represents the protocols used for exchanging
documents. Findly, the service itself consists of a particular location that implements a set of abstract
interfaces and protocol bindings.

The following table shows how these three different aspects are covered by WSDL and WSCL. It is
evident that the only overlap between WSDL and WSCL exists in the specification of the documents
being exchanged:

WSDL WSCL
Abstract choreography out of scope Trangtion
Interfaces messages Operation Interaction
Protocol Bindings Binding out of scope
Concrete Services Service out of scope

We can map the corresponding terminology used by WSDL and WSCL to describe operations and

interactions as follows:

Page 7

WSDL WSCL
Port Type Conversation
Operation: Interaction”:
One-way Receive
Request-response ReceiveSend
Solicit-response SendReceive
Notification Send
[nput [nboundX ML Document
Output, Fault OutboundXM L Document
Names of Operation, Id of Interaction, InboundXMLDocument,
Input, Output, Fault OutboundX ML Document
Message URL of XML schema (WSCL delegates the
specification of the payload entirdy to an
external XML schema, whereas WSDL directly
uses XML data types)

There are a number of ways that we could extend WSDL or WSCL to make explicit the mapping
between WSDL port types/operations and WSCL interactions. For example, we could add protocol
bindings in WSDL that refer to WSCL conversation specifications or we could add choreography to
WSDL port type descriptions. However, to do so by extending WSDL or WSCL would couple these
specifications. Instead, we advocate that services should use other methods of mapping between the
WSDL and WSCL specifications that they support. For example, one option is that when a service
populates its UDDI businessService entry, it creates tModel I nstancel nfo records for the WSDL and
WSCL specifications that it supports. The mappings between these specifications can then be deduced
by document type (mapping WSDL input message types to WSDL InboundXMLDocument schemas).
Alternatively, a separate mapping document could be created to map explicitly between WSCL
interactions and WSDL operations and port types.

4 Dynamic Conversation Controller for E-Services

Thus far we have shown how WSDL and WSCL can be used to specify the conversationd and
functional interfaces of EServices. We have implemented a prototype conversation controller that
leverages these specifications to direct services in their conversations. (This prototype is described
more fully in [12].) We exploit the fact that E-Service messages are XML-based business documents
and can thus be mapped to XML document types. Our conversation controller can act as a proxy to an
E-Service, and track the state of an ongoing conversation based on the types of messages exchanged.
Specificdly, the Conversation Controller requires two pieces of information: a specification of the

2 Theinteraction of type “Empty” does not appear in thislist asit isonly used for modeling the start and end state of
conversations, and does not contain any documents exchanged.

3 WSCL uses attributes of type HREF to refer to other elements. Therefore, in order to refer to operations from a
WSDL document the WSCL schema needs to be slightly adapted in order to accept also values of type QNAME.

Page 8

structure of the conversations supported by the service (interactions, valid input and output message
types of interactions, and transitions between interactions), and a specification of the service's
interfaces, mapping document types to appropriate service entry points (for given interactions).

Our Conversation Controller is designed to act as a proxy to a service. Once it has received a
message on behalf of an EService, the Conversation Controller can dispatch the message to the
appropriate service entry point, based on the state of the conversation and the document’ s type.

When forwarding the response from the E-Service to the client, the Conversation Controller includes
a prompt indicating valid document types that are accepted by the next stage of the conversation. This
prompt can optionally be filtered through a transformation appropriate to the client’s type. In addition,
if the client requests it and provides a specification of its interfaces, the Conversation Controller can
aso direct the client’s side of the conversation. Thus neither the service nor the client developer must
explicitly handle conversationa logic in their code.

Each time the Conversation Controller receives a message on behalf of the service, it will identify
the current stage of the conversation and verify that the message' s document type is appropriate; if not,
then it will send an exception. If the message type is vdid, then the Conversation Controller will
invoke the service appropriately. It will then identify the document type of the response from the
sarvice, identify the new state and the valid input documents for that state, and format an appropriate
response for the client. The Conversation Controller can also pass the response through an appropriate
transformation, if requested by the client. (For example, if the client is a web browser and has
requested form output, then the Conversation Controller may transform the response into an HTML
form prompting for appropriate input.) Moreover, if the client is another service that can return a
specification of its own service entry points, then the Conversation Controller could automatically send
the output message to appropriate client entry points; if a valid input document for the new dtate is
returned, the Conversation Controller could then forward it to the service, thus moving the conversation
forward dynamicaly. As aresult, the Conversation Controller can help a client and service carry out an
entire conversation without either the dient or the service developer having to implement any explicit
conversation control mechanisms. This means that the client developer does not need complete
knowledge of &l the possible conversations supported by al the services with which the client might
interact in the future. For example, each time the Conversation Controller receives a message on behalf
of aservice, it could implement the pseudo-code listed in Figure 4, below.

Page 9

1. Look at the message header and determine the current state of the conversation. (Ask the service for
specifications, if necessary.)

2. From the conversation specification, get the valid input document types for the current state.

3. Verify whether the current message is of avalid input document type for the current state.

4. If the received message is of avalid type, then look up the inbound document in the dispatch
specification and dispatch the message to an appropriate service entry point. 1f more than one
appropriate service entry point exists, then dispatch it to each entry point (in order specified by the
service) until the service produces an output document of avalid document type. If no entry point
exists or no valid output document is produced, then inform the client, also prompting for valid
input document types.

5. From the conversation specification, calculate the conversation's new state, given the document type
of the output document returned by the service. Look up the valid input documents for this new
state.

6. Format the output document in aform appropriate to the client type, also prompting for the input
document typesthat are valid in the new state.

Figure 4. The Conversation Controller receiving and handling a message on the behalf of a service.

4.1 Client automation
An argument can be made that developers implementing E-Service clients will not want a

conversation controller to direct their part of the conversation, both because they expect to hard-code
the client parts of the conversation and also because they will find the idea of using a third-party to
control the conversation foreign®. However, decoupling conversation logic from business logic on the
client sde greatly increases the flexibility of a client by allowing it to interact dynamically with services
even if thelir conversation policies do not match exactly. For example, the same client code could be
used to interact with two services that support different conversation policies but common interfaces.

In order for a conversation controller to direct the client’s part of a conversation, the controller must
be able to dispatch messages the client receives from the server in order to generate documents that the
server requests. This means that the client must be able to communicate its service interfaces to the
Conversation Controller. For example, we can extend the process described in Figure 4 to alow the
Conversation Controller to direct both the server and client sides of the conversation, producing the

pseudo-code listed in Figure 5.

4 Conversation with Kevin Smathers, 1/4/2001.

Page 10

1. Look at the message header and determine the current state of the conversation. (Ask the service for
specifications, if necessary.)

2. From the conversation specification, get the valid input document types for the current state.

3. Verify whether the current message is of avalid input document type for the current state.

4. If thereceived messageis of avalid type, then look up the inbound document in the dispatch
specification and dispatch the message to the appropriate service entry point; otherwise, inform the
client that the message is not avalid type and prompt for the input document types that are valid in the
new state.

5. From the conversation specification, calcul ate the conversation's new state, given the document type of
the output document returned by the service. Look up the valid input documents for this new state.

6. If the client wishesto be treated as a browser, then format the output document in an appropriate
HTML form, also prompting for the valid input document types for the new state.

7. If the client wishesto be directed by the Conversation Controller and there are valid input documents
for the new state, then look up outbound document typesin the client'sdispatch table, and invoke the
appropriate client methods that could produce valid input documents.

8. If theclient produces avalid input document, then send it to the service, invoking it through the
Conversation Controller (recursion takes place here).

9. If the client does not produce any valid input documents, or if there were no valid input documentsin
the new state, then format and return the output document in an appropriate HTML form, also
prompting for the new state.

Figure 5. The Conversation Controller receiving a message, dispatching it to the service, and then prompting the client for an
appropriate response.

4.2 Conversation controller state
The Conversation Controller that we have outlined above does not include any performance

management, history, or rollback mechanisms. If one subscribes to the idea that intermediate states of
an E-Service's conversation are not transactional, and one aso supposes that Conversation
Management functionality (including performance history, status of ongoing conversations, etc.) is
distinct from Conversation Control functiondlity, then the Conversation Controller can operate in a
stateless mode.

5 Rdated Work

In his survey of agent systems for ECommerce, Griss [9] notes that researchers in the agent
community have proposed a number of agent communication systems over the past decade, and indeed
agent-based e-commerce systems seem like a natura model for the future of EServices. Griss
identifies several kinds of agent systems appropriate for E-Commerce, including persona agents,
mobile agents and collaborative/social agents. Griss then lists seven properties that represent
dimensons of agent-like behavior: adgptability, autonomy, collaborations, intelligence, mobility,
persistence and personality/sociability. We bdieve that athough EServices exhibit some of these

Page 11

properties, E-Services are not necessarily adaptable, intelligent or anthropomorphic (they are not
required to exhibit personality/sociability). However, since agents dynamicaly communicate via
message exchanges that conform to specified protocolg/patterns, agent-based conversations are
recognized as an especialy appropriate model for E-Service interactions.

Severa existing agent systems alow agents to communicate following conversationa protocols (or
patterns). However, to the best of our knowledge, dl of these are tightly coupled to specific agent
systems, and require that al participating entities must be built upon a common agent platform. For
example, the Knowledgeable Agent-oriented System (KaoS)[6] is an open distributed architecture for
software agents, but requires agent developers to hard-wire conversation policies into agents in
advance. Waker and Wooldridge [15] address the issue of how a group of autonomous agents can
reach a globa agreement on conversation policy; however, they require the agents themselves to
implement strategies and control. Chen, et a. [7] provide a framework in which agents can
dynamically load conversation policies from one-another, but their solution is homogeneous and
requires that agents be built upon a common infrastructure. Our Conversation Controller is unique in
that we require only that a participating service produce two XML-based documents — 1) a specification
of the conversationa flows it supports and 2) a specification of the service's functionaity (describing
how the service can be invoked).

A few E-Commerce systems support conversations between services. However, these al require
that the client and service developers implement matching conversation control policies. RosettaNet's
Partner Interface Processes (PIPs)[14] specify the roles and required interactions between two
businesses. Commerce XML (cXML)[]] is a proposed standard being developed by more than 50
companies for business-to-business electronic commerce. cXML associates XML DTDs for business
documents with their request/response processes. Both RosettaNet and CommerceXML require that
participants pre-conform to their standards. Our work is completely compatible with such systems, but
is dso unique in that we adlow a service's clients to share the service's Conversation Controller
dynamicaly — without having to implement the client to the specifications of the service.

Insofar as they reflect the flow of business processes, EService conversations also resemble
workflows. However, as the authors of the E-Speak Conversation Definition Language (CDL®) [10]
observe, workflows and conversations serve different purposes. Conversations reflect the interactions
between services, whereas workflows delineate the work done by a service. A conversation models the
externally visible commercia interactions of a service, whereas a workflow implements the service's

® The E-Speak Conversation Definition Language (CDL) is not related to the Component Description
Language (CDL).

Page 12

business functiondity. In addition, workflows represent long-running concurrent fully integrated
processes, whereas E-Service conversations are loosely coupled interactions.

6 Conclusons / FutureWork

E-services pose a new set of requirements and usage models for service interactions. E-services
must enable business-to-business interactions without requiring intensive collaboration between service
developers. Therefore, we advocate a service-centric perspective that separates service interfacesfrom
conversation specifications. Distinguishing between conversation logic and service functiondity alows
us to treat services as pools of interfaces that can be described using service specifications and
composed using conversation specifications.

In this paper, we have sketched how to use WSDL to create specifications describing service
interfaces and how to use WSCL to create abstract conversation specifications. We have discussed how
these standards relate to each other and how we can use them to compliment each other. We also
described how services can refer to the WSDL and WSCL specifications they support in their UDDI
registrations. We have built a prototypical conversation controller service that leverages these
specifications to direct services in ther interactions. This third-party conversation controller uses
“reflected” XML-based specifications to direct the message exchanges of EServices according to
protocols without the service developers having to implement protocol-based flow logic themselves.
The advantage of this approach is that it treats services as pools of methods that can be easily and
flexibly composed with a minimum of programming effort.

In the future, we plan to investigate more sophisticated uses of conversation policies. For example,
we would like to provide a modd for the explicit support of deciding conversation version
compatibility. We would dso like to explore how to support both nested conversations and multiparty.
Finaly, we hope to address how to exploit document type relationships when manipulating message
documents. For example, we would like to use subtype polymorphism to establish a relationship
between a document type accepted as input by an interface specification and a corresponding document
type in a conversation specification.

References
[1] Webpage: cXML.org. URL: http://www.cxml.org
[2] Ariba, IBM, Microsoft Corporation, UDDI Technical White Paper, Sep 6, 2000.

[3] Baneii, A., Bartolini, C., Beringer, D., Govindargan, K., Karp, A., Kuno, H., Lemon, M.,
Pogossants, G., Sharma, S., and Williams, S., Web Services Conversation Language (WSCL),
Hewlett-Packard Web Services Organization, May 2001.

Page 13

[4]
(3]
6]

[7]

(8]
(9]
[10]

[11]

[12]

[13]

[14]
[19]

Boubez, T., Hondo, M., Kurt, C., Rodriguez, J., and Rogers, D.,UDDI Programmer's API 1.0, Sep
20, 2000.

Boubez, T., Hondo, M., Kurt, C., Rodriguez, J., and Rogers, D., UDDI Data Structure Reference
V1.0, Sep 30, 2000.

Bradshaw, JM., KAoS: An Open Agent Architecture Supporting Reuse, Interoperability, and
Extensibility. Knowledge Acquisition for Knowledge-Based Systems Workshop, 1996
URL.: http://spuds.cpsc.ucalgary.cal K AW/K AW96/bradshaw/K AW.html

Chen, Q., Daydl, U., Hsu, M., and Griss, M., Dynamic Agents, Workflow and XML for E-
Commerce Automation. First International Conference on E-Commerce and Web-Technology,
2000. http://Amww.hpl.hp.com/org/stl/dmsd/publications/gchen EC2000. pdf

Web page: Web Services Description Language (WSDL) 1.0. URL:
http://msdn.microsoft.com/xml/genera /wsdl.asp

Griss, M., My Agent Will Call Your Agent . . . But Will It Respond?. Software Development
Magazine, 2000. (Also available as technica report HPL-1999-159)

HP E-Speak Operations, Conversation Definition Language Specification for UDDI version 1.0,
Nov, 2000.

Kuno, H., Surveying the E-Services Technical Landscape. International Workshop on Advanced
Issues of E-Commerce and Web-Based Information Systems (WECWIS), 2000. (Also available as
technical report HPL-2000-22)

Kuno, H. and Lemon, M., A Lightweight Dynamic Conversation Controller for E-Services, June
2001. International Workshop on Advanced Issues of E-Commerce and Web-Based Information
Systems (WECWIS) 2000. (Also available as technical report HPL-2001-25R1)

Kuno, H., Lemon, M., and Beringer, D., Using CDL in a UDDI Registry 1.0: UDDI Working
Draft Best Practices Document, April 2001. (Also appears as HPL-2001-72).

Web page: http://rosettanet.org

Waker, A. and Wooldridge, M., Under standing the emergence of conventions in multi-agent
systems. First International Conference on Multi-Agent Systems, 1995.

Page 14

