

Service Framework Specification, Part 1
Version 2.0

Arindam Banerji, Claudio Bartolini, Dorothea Beringer,
Abdel Jabbar Boulmakoul, Svend Frolund, Kannan Govindarajan (Ed.),
Alan Karp, Michal Morciniec, Gregory Pogossiants, Chris Preist,
Shamik Sharma, David Stephenson, Scott Williams
Software Technology Laboratory
HP Laboratories Palo Alto
HPL-2001-138
June 7th , 2001*

 The service framework specification is a layered specification

that enables interoperability through the use of XML and
formal definitions of interactions amongst services. It also
provides mechanisms for dynamically discovering services as
well as interacting with them through the exchange of XML
documents. The specification has two parts: the first part
specifies more horizontal infrastructural services such as
messaging, service definition, transactions, management,
vocabularies, and discovery of services. The second part focuses
on higher level business interactions such as negotiation and
contract formation.

* Internal Accession Date Only Approved for External Publication
 Copyright Hewlett-Packard Company 2001

Page 2 SFS Version 2.0

Abstract

The web is evolving from a platform for serving web pages to a platform that hosts applications
that interact using standard protocols. In addition, XML has emerged as a way to enable loose
coupling amongst these applications or services. These technologies essentially enable a world of
dynamic web services or e-services that are created and used in a dynamic fashion. Web services
architectures provide a framework for creating, and deploying loosely coupled applications. One
of the consequences of the loose coupling is that any entity that a web service may interact with
may not exist at the point of time the web service is developed. New web services may be created
dynamically just as new web pages are added to the web and web services should be able to dis-
cover and invoke such services without recompiling or changing any line of code. A fundamen-
tally different component model is required for modeling web services. This is because the
assumptions that are made by traditional distributed component models are violated by web ser-
vices. In addition, we believe that a comprehensive web services platform has at least three
related technologies:

1. The technologies that define the hosting platform that hosts services. Service pro-
viders typically will host their services on this hosting platform.

2. The technologies that define the hub that allows services to dynamically discover
other services and establish trust in the context of the community. This hub technology
potentially is compatible with other hub-like efforts such as UDDI (www.uddi.org).

3. The technologies that define the standard conventions that ensure that services can
inter-operate with each other irrespective of their implementations.

The hosting platform provides, among other things, technologies that are required to model exist-
ing business asset/process as a web-service, allows clients of web services to invoke services, etc.
The hub provides technologies for web services to be described, discovered, etc., and the standard
conventions specify the things that have to be standardized so that web services hosted on various
web service platforms inter-operate.

The service framework specification is a layered specification that enables interoperability
through the use of XML and formal definitions of interactions amongst services. It also provides
mechanisms for dynamically discovering services as well as interacting with them through the
exchange of XML documents. The specification has two parts: the first part specifies more hori-
zontal infrastructural services such a messaging, service definition, transactions, management,
vocabularies, and discovery of services. The second part focuses on higher level business interac-
tions such as negotiation and contract formation.

Table of Content
Table of Content.. i

1 Introduction.. 1
1.1 About this document.. 1
1.2 Purpose of the Service Framework Specifica-

tion.. 1
1.3 Overview of SFS 2.0.. 4
1.4 Related work.. 6

2 SFS Concepts.. 9
2.1 E-services and Eco-systems.. 10

2.1.1 E-services... 10
2.1.2 Eco-systems... 12
2.1.3 Market places... 13

2.2 Communication and service description con-
cepts.. 14

2.2.1 Document exchange model... 14
2.2.2 Messages, Conversations, Interactions...

15
2.2.3 Vocabularies and e-service descriptions...

18
2.3 Communicating E-services: SFS Messaging Protocol

Stack.. 19
2.4 Typical eco-system use-cases.. 21
Figure 7: 2.5 End-To-End Example: Description..

23
3 SFS Messaging.. 31

3.1 SFS Messages.. 31
3.1.1 The SFS message structure... 31
3.1.2 SFS Message tags: Overview... 32
3.1.3 SFS Message tags: Details... 34
3.1.4 SFS Message tags: Schema... 37

3.2 Mapping to Transport layer.. 38
3.2.1 Mapping of SFS messages to HTTP... 38
3.2.2 Mapping of SFS messages to HTTPS... 40

3.3 SFS Messages: Example.. 40
4 Conversation Definition Language CDL.. 43

4.1 Introduction.. 43
4.2 The elements of CDL.. 45

4.2.1 Overview... 45
4.2.2 Interactions... 46
4.2.3 Document Types... 46
4.2.4 CDL Interaction Definition... 47
4.2.5 Transition:... 49
4.2.6 Exceptions... 51
4.2.7 Well-formed Conversation Definitions...
Page i SFS Version 2.0

52
4.3 Complete Conversation Example.. 52
4.4 CDL Element Details.. 56

5 Vocabularies, Service Description and Introspec-
tion.. 60

5.1 Vocabularies.. 60
5.1.1 Purpose of vocabulary definitions... 60
5.1.2 Defining Vocabularies... 62
5.1.3 Schema of the vocabulary definition lan-

guage... 63
5.1.4 Constraints of Attribute Values... 63

5.2 Example of a Vocabulary.. 65
5.3 Service Descriptor.. 66

5.3.1 Elements of the Descriptor document... 66
5.4 Registering Vocabularies, Conversation Definitions and Servic-

es.. 67
5.5 Introspection Conversations.. 68

5.5.1 Roles and scenarios for the introspection conversa-
tions:... 68

5.5.2 ServiceDescriptorIntrospection Conversa-
tion... 69

5.5.3 ServiceConversationIntrospection Conversa-
tion... 70
6 Match Maker Specification.. 73

6.1 Introduction.. 73
6.2 Offers.. 75

6.2.1 Overview... 75
6.2.2 Detailed Structure of Offers... 77

6.3 Match Making Conversations.. 81
6.3.1 Creating a business relationship with a matchmak-

er... 82
6.3.2 Registration Conversations... 82
6.3.3 Lookup Conversation and Queries... 84

7 Transactions.. 88
7.1 Introduction.. 88
7.2 Two-Phase Commit and XA.. 89
7.3 Compensation.. 90
7.4 Internet Issues.. 92
7.5 Conversations.. 93
7.6 Conclusions.. 98

8 Managing an E-Service.. 99
8.1 ARM.. 99
• XAM.. 99
8.2 Measurements.. 101

8.2.1 Measurement Hierarchy... 101
8.2.2 Measurement Type System... 102
Page ii SFS Version 2.0

8.2.3 Measurement Categories... 102
8.2.3 TopN.. 104

8.2.4 Measurement Variables... 105
8.3 Measurement Type Information Model.. 105

8.3.1 Measurement Request Information Mod-
el... 107

8.3.1 Restrictions.. 108
8.3.2 Measurement Instance Information Mod-

el... 109
8.3.3 Correlator... 111

8.3.3 Calculated Variables.. 111
8.3.4 Measurement System Information Mod-

el... 112
8.3.5 Time... 113
8.3.6 Aggregation... 114

8.3.6 Automatic Derivation of Aggregate Types..
114

8.3.6 Collapse Dimension Examples.. 118
8.4 Protocol.. 119

8.4.1 Errors... 122
8.5 XAM Summary.. 122

9 Negotiation.. 124
9.1 General Negotiation Framework.. 124

9.1.1 What Can One Negotiate?... 125
9.1.2 The General Negotiation Protocol... 126

9.2 Dictionary.. 127
9.3 Negotiation Protocol.. 129

9.3.1 Admission... 129
9.3.2 Negotiation... 131

9.4 Examples.. 140
10 Contract Specification.. 146

10.1 Lifecycle of the B2B interaction.. 146
10.1.1 Realization of Conceptual Model... 148

10.2 Animation of Roles in the Lifecycle.. 151
10.3 Contract Instantiation Model.. 153
10.4 Contract System Components.. 160

10.4.1 Functional View... 160
10.4.2 Design: validation of the functional

view... 162
10.4.3 Mediation Model... 165

10.5 Legal Status of Electronic Contracts.. 166
10.6 Security Requirements.. 167

References.. 169
Appendix A: Schemas and Example Docu-

ments.. 170
XML Schema of the CDL language.. 170
Page iii SFS Version 2.0

Schema of the ServiceDescriptor document.. 173
Example of a ServicePropertySheet document..176
Example of the XML body of a ConversationDefinitions mes-

sage.. 177
Schemas and DTD of the Vocabulary Definition Lan-

guage.. 179
Contract XML Schema.. 181
Example of an Offer.. 185
Relationship to UDDI.. 188

Appendix B: Software Support for SFS.. 193
Developing and deploying e-services.. 193
Generic Software Stack for sending and receiving SFS messag-

es.. 193
Figure 1: E-speak: E-Services Village (Collaborative Portal Frame-

work).. 193
Figure 1: E-speak: Conversation Server.. 193
Page iv SFS Version 2.0

1 Introduction

1.1 About this document
This document contains the specification of SFS version 2.0. It is meant for architects and soft-
ware engineers who are interested in the technical details of the SFS. Though the main concepts
are the same in SFS 1.1 and SFS 2.0, there have been various significant changes. Some of these
are:

1. The message format has been defined to work with SOAP 1.1
2. The conversation definition language has changed from XMI based finite-state machine

description to a new language that is used to specify interactions and conversations.
3. The notion of vocabularies as a mechanism for defining meta-data of e-services has been

introduced and the matchmaking section has been updated accordingly.
4. The atomocity of interactions and conversations is addressed with the transaction specifi-

cation.

In this introductory chapter, we motivate the need for a service framework specification by intro-
ducing the notion of e-services. We briefly discuss how e-services cannot be modeled through
traditional distributed component architectures. We then outline HPs service framework specifi-
cation and briefly discuss how it addresses the issues that are required for enabling the world of e-
services.

1.2 Purpose of the Service Framework Specification

The E-services Vision

The internet is evolving beyond being an infrastructure for putting up electronic store fronts. It is
beginning to provide a channel for companies to automate their business processes, and their rela-
tionships with their suppliers and customers. This new infrastructure does not require a lot of
investment in value added networks as was the case for EDI based business automation solutions.
However, most infrastructures that exist today are proprietary, and though there are a few stan-
dardization efforts for specific business processes as witnessed by RosettaNet (www.rosetta-
net.org), most implementations do not inter-operate. For instance, in order to inter-operate with a
partner who has software provided by a specific company, one at least needs some software from
the same company in order to interoperate. Furthermore, the recent explosion of marketplaces,
each with its own XML schemas, has led to fragmentation. This fragmentation will eventually
lead to companies having to invest in different technology stacks for participating in various mar-
ketplaces. For example, if a company buys steel from one market place and plastics from another
marketplace, it may potentially need to invest in two completely different technology stacks for
participating in the two marketplaces if the technologies powering the marketplaces are different.

HP’s e-service vision addresses this problem by allowing any existing business asset/process to be
modeled as an e-service. In addition, it also specifies other conventions that enable interoperabil-
ity amongst services. Essentially, there are three pieces of technology that need to be specified for
providing the infrastructure for HPs e-services vision. These are:
Page 1 SFS Version 2.0

1. The specification that provides the technical conventions supported by e-services.
2. The hosting platform that hosts these e-services and provides the communication between

these e-services potentially across enterprises.
3. The hub that serves as a aggregation point for the e-services and also helps in establishing a

web of trust for the e-services interacting at the hub.

Exposing business assets as services and standardizing interactions amongst services has the
added advantage that any enterprise can out-source parts of its operation that it does not have
expertise in. In addition, since the vision of e-services enables e-services to dynamically find new
e-services that it can interact with, enterprises can find new providers for the service relatively
quickly. A specific application of this dynamism is in the e-procurement arena. For example, the
average sourcing/procurement cycle in enterprises is of the order of 3-4 months (cite appropriate
study). Of this time, about 50% of the time is spent in identifying the appropriate suppliers, about
20% of the time in handling the RFQ (request for quotes) process, and an additional 10% of the
time is spent in negotiating the appropriate deal. The ability to dynamically find suppliers can
translate to significant time savings, and therefore to lowering of costs. Essentially, the procure-
ment and fulfillment business process are modeled as services, and a hub is the aggregation point
for the services. In such an architecture, finding a new supplier is the same as finding the fulfill-
ment service of the supplier at the hub. HPs e-services vision enables such a dynamic world by
allowing business processes to be modeled as e-services, by providing a platform for hosting such
e-services, by defining the technical conventions that enable the interoperability between e-ser-
vices, and by defining a hub, or aggregation mechanism for eco-systems of e-services to be built.

The complete e-service interaction cycle has the following phases:

1. Identify potential e-services to interact with
2. Negotiate terms and conditions of e-service interaction
3. Formalize a contract based on the negotiations
4. Execute the interaction
5. Monitor the execution of the interaction in order to determine compliance with contract.

The Service Framework specification specifies conventions that can be used in each phase of the
interaction outlined above. In addition, it also specifies other conventions that are required for
these services to communicate with each other.

Traditional component models: Why they dont suffice.

E-services cannot be modeled using traditional software component models that provide an infra-
structure for enterprise-level distributed application development. Such traditional frameworks
are not suited to deploying services across organizational boundaries due to the following charac-
teristics of the inter-enterprise e-services:

• Loose Coupling among E-services: Changes to the e-service should not require re-installa-
tion of software components by the users of the e-service.
Page 2 SFS Version 2.0

• Dynamic binding: Typically, application designers bind software components to one another
at development time. The notion of services implemented and provided by different service
providers is not accounted for. Yet we must enable easy changes to the services we are using,
easy discovery of new services, of new capabilities of existing services, and of new binding or
location information of services.

• Document Exchange Model: Traditional component frameworks support a network-object
model of interaction in which objects of strictly defined types are transferred between compo-
nents using a request-response interaction pattern. Cross-organizational business interactions
do not fit this framework well for two reasons. The interfaces of services may need to be
changed in ways that cannot be captured by simple extensions. This precludes the use of
object inheritance to support the inter-operability in presence of change. Secondly, interac-
tions can be long lived. Therefore, asynchronous exchange of XML documents is better suited
for cross-organizational business transactions.

• Differing semantics: The interpretation of the data communicated among enterprises is dif-
ferent for each enterprise. For instance, the address field of a purchase order may have differ-
ent significance for the parties. If a uniform object model is used, the semantics of data often
tends to be similar or homogeneous contributing to tighter coupling.

• Distributed security: Security responsibilities are split amongst the enterprises. Each enter-
prise manages its end of the security infrastructure independently.

• Disparate technology stacks are used. Each enterprise decides on the computing infrastruc-
ture independently taking into consideration many factors.

• Firewalls: Interactions need to traverse corporate firewalls. Traditional distributed systems
are tuned for applications that are deployed within the enterprise.

Communication requires standards

In order for e-services to communicate with each other they have to agree on the technology, stan-
dards and protocols for communication. They also need to agree on the syntax and semantics of
data they are going to exchange. However, the data that they exchange can be classified into infra-
structure parts that the infrastructure uses in order to route the message and application specific
parts that the infrastructure does not inspect.

There are various reasons for a standard service framework specification:
• Electronic market places and service portals need to be built fast based using off-the

shelf components, and the various market places and portals should be able to interact
seamlessly.

• E-services need to be developed and deployed fast and with ease.
• Standard bodies are trying to standardize business processes in order to enable compa-

nies to interact in B2B environments.

In order to achieve these goals, it is necessary specify standards that define the following:
1. The basic concepts and mechanisms of an system of e-services
2. The interaction protocols used to communicate between e-services, and
3. The language used to define the public interface of e-services.
Page 3 SFS Version 2.0

The Service Framework Specification from HP

The E-Speak Service Framework Specification introduces a uniform service model in order to
address some of the interoperability issues concerned with application integration across enter-
prises. This uniform service model makes possible dynamic interactions between e-services. The
SFS defines the technical conventions necessary for the creation, deployment, and interaction of
e-services. It also enables the formation of dynamic electronic business relationships through
negotiation, contract formation and business process integration. This common business and tech-
nology level interaction framework builds upon several emerging industry standards such as
XML, MIME, SOAP, and UDDI. By defining a uniform, non-proprietary, and extensible means
for interaction between Internet services, business collaboration in the new economy through
direct interaction, auction sites, exchanges or aggregators can be unified.

1.3 Overview of SFS 2.0
When architecting e-services systems we have to clearly distinguish between the external visible
behavior of an e-service, i.e., its external interaction protocol, and the implementation of the e-
service, i.e., its actual internal implementation. This concept is often referred to by other terms
such as the interface of an e-service and its realization, or the public process of the e-service and
its private process. The external interaction protocol and the internal implementation of an e-ser-
vice are closely linked as the internal implementation should match the specified external behav-
ior. SFS provides standards for defining the external interaction protocol of e-services. The
mapping between the external interaction protocol and the internal implementation is not speci-
fied in the Service Framework Specification.

Figure 1: Specifications for service interaction

Ontologies/Vocabularies

Registration &
Matchmaking

Introspection

Conversations for service formation
(horizontal business conversations)

Horizontal
infrastructure
conversations

Billing

Auctioning

Settlement
Conversations of core business E-service

(often used business conversations)

Business Negotiation

Agreement Formation

Composition

Business Negotiation

Agreement Formation

Composition

Monitoring,
Measuremant and

Instrumentation

Conversation based high-level
Service Interactions

CDL

W3C SOAP1.1 on HTTP/TCP with MIME encoding

SFS 2.0
Part 3

SFS 2.0
Part 2

SFS 2.0
Part 1
Page 4 SFS Version 2.0

The various specifications for service interactions can be thought of as a stack, where each layer
builds on the previous one as shown in figure 1. The lowest layer defines the standard transport
and messaging protocols used, and the language for defining the payloads of messages and their
orders. The next layer, the horizontal infrastructure conversations, defines the conventions that
allow a basic system of e-services to function. This involves the functionality required for offer
registration, match-making, discovery, transactions, monitoring and management. The higher lay-
ers contain horizontal business conversations. The conversations of service formation layer is
needed where services need to negotiate contracts with each other. The top layer contains core e-
services like billing, auctioning and settlement.

SFS 2.0. Part I contains the following parts:

SFS concepts: The e-services vision envisages that the e-services are aggregated into eco-sys-
tems where the relationships between the e-services are formed dynamically. In such eco-systems,
e-services communicate with each by asynchronous messages containing XML documents. The
sequence of messages exchanged in order to perform one specific task forms a conversation. Ser-
vices are characterized by two things: their description that is registered at a matchmaker, and the
set of conversations they support that represents the set of interfaces they implement. The services
are described using the notion of vocabularies that provide an extensible mechanism for defining
the meta-data of e-services.

SFS messaging: SFS enables the interaction of services developed, hosted and provided by dif-
ferent service providers. SFS messaging defines the format and default protocol mapping of the
messages exchanged by the services. It defines the standard structure of the messages and is based
on XML/SOAP/MIME. The SFS tags that are common to all SFS messages, as well as the map-
ping to an example transport protocol, HTTP, is also specified.

CDL: The conversation description language CDL allows standard bodies and service providers
to define the expected external behavior of services in a formal way. CDL is an XML based lan-
guage that defines documents exchanged between services, and the requested order of these docu-
ments. It is the language used to define the business payload in the SFS messages and makes it
possible for different service providers and implementers to provide compatible services. It also
allows the creation of conversation libraries by vertical standard bodies that can be used by the
service providers in that domain.

Transactions: In traditional distributed systems, the notion of transactions typically involves four
properties: Atomicity, Consistency, Idempotence, and Durability (ACID properties). The tighter
coupling between the various parts of the distributed system makes the problem of transactions
solvable to some extent. In the world of e-services, however, guaranteeing all the four properties
can be a challenge. In SFS, we first consider the problem of atomicity and propose two alternative
approaches to solve the problem. These two approaches are based on compensation and two-
phase commit protocols.

Service registration and discovery mechanisms: Service descriptions specify the various prop-
erties of a service offering. These properties contain e.g. the interfaces supported and the provider
Page 5 SFS Version 2.0

of the service, but also many domain specific characteristics. The necessary terms for the domain
specific part of the description are defined in vocabularies. Vocabularies and service descriptions
play an important role in the conversations used for registering and finding services. In SFS 2.0
these are the following conversations:

• Offer registration conversation: this conversation is used by service providers to regis-
ter their services or their need for services with a registry service.

• Introspection conversations: the two introspection conversations allow a potential ser-
vice consumer to inquire a service for its capabilities.

• Match-making conversation: service consumers can ask registry services about poten-
tial services using the match-making conversation. This conversation matches the cri-
teria given by service consumers with the service descriptions of available service
offers.

Service monitoring:
In order for an eco-system to function, comprehensive management support is critical. This man-
agement functionality not only provides support for low-level operations such as starting, stop-
ping, and monitoring the state of e-services, but also provides support for high-level operations
such as generating audit trails, contract compliance, etc.

SFS 2.0 part II containts the following parts:

Negotiation Framework
The negotiation framework provides building blocks for expressing various negotiation protocols
that occur in practice. This framework captures not only 2 party negotiations, but also multi party
negotiations such as auctions, exchanges, etc. Note that the negotiation framework provides sup-
port for various negotiation protocols, but not the negotiation strategy used in the negotiations.

Contract Framework
The contract framework establishes the conventions necessary for forming electronic contracts
amongst e-services. It builds on the matckmaking and negotiation frameworks for this purpose.

SFS 2.0 part III is not available yet.

1.4 Related work
We now briefly outline other efforts in the industry that have a similar scope.

UDDI:

UDDI specifies common API’s for service registries, and specifies how UDDI registries have to
be operated. These registries contain information about the service providers and the services they
provide. In addition, these registries also provide models for enterprises and specifies how the
UDDI registries synchronize the data they contain. There is significant overlap between the func-
tionality in UDDI and SFS as far as the notion of registering services, searching for services, etc.
Page 6 SFS Version 2.0

Eventually, since parts of SFS are being submitted to UDDI, and support for UDDI APIs will be
added to SFS, SFS will be fully compatible with UDDI.

RosettaNet:

RosettaNet is a consortium that defines standards for e-business. The RosettaNet PIPs defines the
business content of the messages exchanged between companies, i.e. the content of the documents
and the order of the document. RosettaNet refers to this also as the public process. Currently most
PIPs concern procurement. While the guidelines that specify how to describe PIPs can be com-
pared to the Conversation Description Language CDL in SFS, the guidelines are not formal and
are only used to specify those public processes standardized by RosettaNet. CDL can be used for
specifying standardized conversations as well as any conversations some partners agree upon.

The RosettaNet Implementation Framework (RNIF) defines the format of the message exchanged
between businesses, i.e. all the header tags needed in additional to the business payload, the con-
tent of acknowledge messages, the handling of security, and how the messages map to HTTP(S).
This part of RosettaNet can be compared to SFS messaging.

RosettaNet addresses a more static e-business environment than SFS in that prior to having elec-
tronic exchange companies set up a business relationship and trading partner agreements. There-
fore RosettaNet does not address dynamic elements like service registrations and service
discovery.

ebXML:

ebXML is an OASIS/UN initiative to define all the layers in the web services architecture stack.
These include registries, business process modeling, service descriptions, and transporting/pack-
aging/messaging. The ebXML architecture is based on the Open-edi reference model, in that it
supports a business operational view (BOV) to describe the relevant aspects of business transac-
tions and a functional service view (FSV) to implement the business operational view using stan-
dard technologies such as XML, Java etc. More specifically, the BOV deals with operational
conventions, agreements and mutual obligations of a trading partner, while the FSV addresses the
functional capabilities, service interfaces, protocols, data transfer infrastructure, inter-operability
among XML vocabularies of different businesses, discovery, deployment and runtime scenarios.

ebXML architecture specifies suitable registry service interfaces/wrappers to connect to UDDI.
This establishes inter-operability among UDDI and ebXML service registries. ebXML's messag-
ing service extends support for various transport protocols such as HTTP, SMTP, FTP etc, but it is
not SOAP compatible. Hence, ebXML messages need to be explicitly cast/converted into SOAP,
before sending it to a UDDI service. ebXML registries are distributed much like UDDI registries.
UDDI does not mandate conformance requirements as to what constitutes a UDDI service, while
ebXML specifies conformance to the complete ebXML technical specification as a pre-requisite
for qualifying as an ebXML service (OASIS specified test suites are recommended by ebXML for
conformance testing). ebXML architecture refers tpaML (trading partner agreement, invented by
IBM) to enforce multi-party business process integration, while UDDI is not related to tpaML at
this point.
Page 7 SFS Version 2.0

BizTalk:

Biztalk is an industry initiative started by Microsoft with the goal of driving the rapid, consistent
adoption of XML to enable e-commerce and application integration. The Biztalk platform com-
prises Biztalk.org (a library of XML schemas for various vertical industry business processes), the
Biztalk Framework 2.0, a specification based on industry standards for data exchange in a reliable
and secure manner over the Internet, and the Biztalk Server 2000, the engine that unites EAI, B2B
and the Biztalk orchestration technology to allow companies to build dynamic business processes
that span applications and organizational boundaries. From the web services stack architecture
perspective, Biztalk specifies the technical conventions such as reliable messaging and routing
(using SOAP/XML/S-MIME like technologies), and business process modeling/process orches-
tration using X-LANG, a workflow modeling language (designed by Microsoft).
Page 8 SFS Version 2.0

2 SFS Concepts
The following diagram provides an overview of the main concepts of SFS and how they relate to
each other. The diagram uses UML class diagram notation.

Figure 1: UML model of main SFS concepts

As shown in above figure, an eco-system consists of various e-services interacting with each other
across organizational boundaries. Offers for using or providing these e-services get registered in a
registry service, also often called a match-maker or an e-services village. These offers contain a
description of all the relevant characteristics of the needed or provided service. The service regis-
try matches queries by service users and providers with the registered offers (match making con-
versations). The registry service itself is a speciliced e-service. Each e-service also knows about
its capabilities and interfaces and can be introspected by using the introspection conversations.

+name

. E-Service .

Eco-System

+name

Conversation Definition

Business Data XML Document

Vocabulary

Registry Service

Interaction

+name of service : URL
+address of service

Service Descriptor Document

Service Description

*

*
defined by�

1*
� executed with

*

1,2

*

0..1

*

*

*

0..1

has typically one directory

role of the service

* 1..*

Message

*

*

communicate with each other .

1

1

*

1*

*
terms for describing�

*

*

registered in�

* *

registered in�

{Service::name = ServicePropertySheet::name = Message::Routing::URL,
ConverationDefinition::name = ServicePropertySheet::name of conversation definition}

Offer

*

*registered in�

*

1

* 0..1

. for
Page 9 SFS Version 2.0

This conversation returns a service descriptor that contains various predefined fields about the
address, provider and conversations of the e-service, plus a service description done in any vocab-
ulary chosen by the service provider and registered with a service registry. The e-services commu-
nicate with each by asynchronous messages containing XML documents. The content of the
documents and the order their exchange is defined by interactions and their possible orders speci-
fied in conversation definitions.

2.1 E-services and Eco-systems

2.1.1 E-services

Definition

In general, e-services1 are applications or components that can be accessed by other applications
or components over the internet and across organizational boundaries. In the context of SFS, e-
services have to fulfill additional conditions. These conditions are the following:

• E-services are addressable units of software (e.g. by URIs), and other services can
send them messages over the internet using the address.

• E-services are optionally registered with a service registry (a special e-service). This
allows e-services to dynamically find new e-services or changes to existing e-services,
as defined by SFS.

• E-services support introspection, i.e. they must be able to provide information about
themselves as defined by SFS.

• E-services communicate using the document exchange model and SFS messaging.

The only exceptions are applications that only use other e-services, but are never used by other e-
services. Such applications are called end-user applications and are also considered to be e-ser-
vices though they normally are not registered in a registry and cannot be introspected.

In SFS all applications that fulfill the above definition are called e-services, independent of
whether they provide a service or use a service. The e-services can take on different roles in their
communication. Depending on the kind of the communication, different terms for these roles are
used. Examples are: initiator and listener, client and service or server, user and service, consumer
and service, consumer and service provider. In all these cases, the clients, consumers, and initia-
tors are e-services. The actual role taken on by e-services depends on the functionality of the e-
services.

Interfaces and implementations

One can clearly distinguish between the interface and implementation of e-services. The interface
(also called public process) defines the functionality visible to the external user and how this
functionality is accessed. The implementation (also called private process) realizes this interface,
and the implementation details are hidden from the users of the e-service. Polluting the conversa-

1. Often also called web-services.
Page 10 SFS Version 2.0

tional interface with details of the implementation limits the reusability of the conversation defini-
tion. When properly seperated, the same interface can be implemented by different service
providers using any programming language of their choice. One service implementation might
provide all the functionality itself, whereas another service implementation might use other e-ser-
vices to provide the same functionality.

The term e-service refers to both, the e-service interface (the functionality provided by the e-ser-
vice) and the e-service implementation (the software component providing the functionality).

E-services and web-pages

E-services are different from simple web-pages. Web-pages may also offer access to applications
across the internet and across organizational boundaries. However, web-pages are targeted at
human users, whereas e-services are accessed by other applications. E-services can use HTTP as a
transport protocol, but they can also use other transport protocols, and their address may or may
not be an URI. E-services are about machine to machine communication, web-pages about human
to machine conversations. There is an overlap where web-pages targeted at humans get also
accessed by applications. Often these applications act as proxies and are special parsers able to
find the relevant information in the pages and to present them to other applications. In fact, these
proxy applications then are e-services with the business logic provided by web-pages.

Customers may access web-pages that in turn access other applications from other companies
over the internet. Whereas SFS does not apply to the communication between the customer and
the web-page, it applies to the communication between the web-page applications and the other
applications. A typical scenario for this are service provided to mobile phone customers.

Figure 2: Portal services acting as e-services and providing user interface

Business logic in e-services

In most cases, e-services delegate the actual business logic to other applications. E-service might
use other e-services hosted by other service providers in order to fulfill the required tasks or pro-
vide the requested information. Or they might use any other in-house applications or back-end
systems in order to provide their tasks. Such applications might be applications implemented as
EJBs on application servers, remote objects accessible over CORBA, or ERP systems like SAP.

Broswer

Mobile
Devices

WAP – portal
applications

RemotePrinting
Web – portal
applications

Mobile
Devices
Mobile
Devices
Mobile
Devices

BroswerBroswercBrowser

MovieTickets

TravelAgency

html pages

wap pages
SFS

E-services
Page 11 SFS Version 2.0

Figure 3: Existing business logic applications used by E-services

E-services may provide some standalone functionality, e.g. mathematical calculations or provid-
ing weather forecasts. Especially in B2B contexts, e-services are often used to enable business
processes or workflows from two companies to interact. The applications controlling the overall
business processes, e.g. workflows hosted by workflow engines or ERP systems, provide inter-
faces for company external access. These interfaces can be implemented as e-services.

2.1.2 Eco-systems

Definition

An eco-system is a collection of e-services that are inter-related because of the functionality they
provide each other. In addition, the eco-system provides mechanisms for establishing the web of
trust between the various e-services participating in the eco-system.

For example, board designers need information about various hardware components like IC’s,
microprocessors, resistances, they are putting together. After circuits have been designed, they
need to be checked, and the components need to be ordered. An eco-system contains the applica-
tions used for designing boards, services that provide information about the characteristics of the
components, services that know the availability of the components, services for ordering compo-
nents, services for verifying designs, and finally services that route designs to prototype manufac-
tureres. This eco-system specifies the interfaces of all involved e-services, and makes sure all the
necessary support e-services like service registries and billing are in place. By allowing all these
e-services to work together across organizational boundaries, the eco-system provides important
functionalities to its various end-users like designers using the e-service enabled design applica-
tions or the seller of components.

Service providers and consumers

Service providers are entities that host e-services. For example, a bank may host an e-service that
provides financial services and thus is the service provider of these e-services. The term service
consumer if often used both for an organization using services of other organizations, and for the
end-user applications that directly or indirectly use other e-services in the eco-system. Often, an

Procurement
Service

Company A

SAP System

Procurement
Service

Company B

EJB Application

SFS

E-services
Page 12 SFS Version 2.0

organization providing services also uses services, thus acting as both, a provider and a consumer
of services.

Roles in an eco-system

E-services in an eco-system can often be classified along the role that they enact in the eco-sys-
tem. These roles can either refer to the role played by an e-service in a conversation, or a higher-
level role in an eco-system. Examples of roles in an eco-system are buyer, seller, match-maker,
negotiator. An e-service can play several roles concurrently or subsequently. During a specific
conversation all e-services play either one of the following roles during a specific conversation:

• listener (also referred to as server, and service)
• initiator (also referred to as client, and consumer)

Service registries

A service registry is a directory for e-services. It allows service providers to register services, and
service consumers to find services. Service registries act as match-makers by introducing con-
sumers searching for a service to providers capable of delivering the service. SFS compatible ser-
vice registries support the registration and match-making services defined by SFS.

2.1.3 Market places

Eco-systems that provide B2B e-commerce functionality are often also called market places.
Some e-service in a market place take on very specific roles. Many of the high-level conventions
of SFS directly apply to this kind of eco-system.

A market-maker is an e-service that simplifies, or in some instances establishes, the web of trust
among participants in an eco-system. It maintains contractual relationships with a large number of
e-services and other market-makers. Its role is to establish the trustworthiness of a service, vouch
for it in the marketplace, and take punitive actions if the service should violate its trust. The mar-
ket-maker essentially acts as a broker between parties involved in economic transactions. It may
assist negotiating parties to establish contracts with one another, and may actively monitor their
exchanges to verify that the terms of agreement are being met. In times of dispute, the market-
maker may assume the role of market-mediator, as it determines fault between disputing parties.
Page 13 SFS Version 2.0

Figure 4: Example of a market place

The figure below shows an eco-system with a service registry that acts also as match maker. The
various providers register offers for their services with the match-maker, and consumer either
query these offers or place offers for consuming services. Latter offers can be queried by service
providers. After a service has discovered another servive with which it wants to communicate, it
interacts with that service directly.

In most market places there is one service taking on the role of a market-maker as well as of a ser-
vice registry. The market-maker may even aggregate a set of services if one single service cannot
deliver the desired features. A market-maker may also communicate with other market-makers to
help create the best possible match for a service consumer.

2.2 Communication and service description concepts

2.2.1 Document exchange model

The e-services in an eco-system that adhere to the SFS standards use the document exchange
model for communication. The business data to be exchanged is expressed in XML. The only
exceptions are standard document files to be exchanged, e.g. MSWord or Excel files, which may
be exchanged as binary attachments to XML messages.

The document exchange model has the following characteristics:

Service Registry

Match-Maker

Service C

Service A

Service B

Back-end
System 1

Back-end
System 2

Company U Company V

Company W

Company Z

Service B

Company X
Page 14 SFS Version 2.0

• Clear separation between implementation and realization: a client does not need to
have any knowledge about the implementation. It does not create any remote object,
and does not handle any system specific references of remote objects. The client sim-
ply sends the document to the address of the service, and it is up to the receiving soft-
ware to find the right process, and if necessary, to start applications and create objects.

• Extendable and flexible: If a sender puts additional tags in document that the receiver
does not know, or if the sender does not put in all tags that are required by the receiver,
the receiver still can read the XML document, act on it, and if there is enough informa-
tion, return the desired information. This allows upgrading of services without forcing
all consumers to upgrade as well. It also allows clients to participate in the eco-system
that for some reason cannot provide all the information required in the document
schema.

• Human readable: If everything fails, XML documents can be read by humans and
communication problems can thus be resolved.

In addition, a document exchange model based interaction operates on a larger level of granularity
than an object model. Several small method calls of an object system are aggregated into one doc-
ument exchange in the document exchange model. This granularity is more appropriate for the
loosely coupled cross-organization communication. On the other hand, the tight coupling offered
by traditional object models is more appropriate for distributed systems within an enterprise.

Documents are the basic unit of data exchanged in SFS. With documents we always refer to busi-
ness documents, the data exchanged between the application logic. Which documents are
exchanged between two services is defined in their conversations definitions using the conversa-
tion definition language CDL.

In SFS the content of the documents to be exchanged is defined by XML Schemas. Preferably
these Schemas are defined for by standard bodies for specific problem domains, together with the
semantics of each data element.

2.2.2 Messages, Conversations, Interactions

Messages

Messages in SFS are asynchronous one-way messages. Each message carries a payload contain-
ing an XML document, optional attachments, and some additional meta information about the
message and the conversation also in XML. SFS messages can be exchanged over various differ-
ent transport protocols, e.g. HTTP, ftp, email, ESIP and other open and proprietary messaging
protocols that are capable of carrying XML documents. At this point in time, the messaging spec-
ification does not contain any mechanism for bundling multiple XML messages between two
entities. It is assumed that the bundling is achieved by appending multiple XML documents
within a single document in the payload.
Page 15 SFS Version 2.0

Figure 5: Conversations, Interactions, Messages, Documents
Above figure shows two services, which communicate with each other using the conversation
Ordering. This conversation contains various interactions, the ones shown are the MakeOrder
interaction that exchanges the documents Order and OrderAck, the Notify interaction that
exchanges either the document MoreInfo or the document DeliverDate, and the AdditionalInfo
interaction with the DetailInfo document. Additional messages without business payload are not
shown.

Conversations

Conversations define not only the document definitions, but also the sequence in which they are
exchanged in order to carry out specific business tasks. Though in the simplest case a conversa-
tion can consist of just one or two document exchanges, in general, they can be quite lengthy and
contain an arbitrary number of document exchanges. For example, bodies such as RosettaNet
define the conversation definitions for specific functions in the supply-chain industry. If for a spe-
cific problem domain no predefined conversations exist, they need to be defined by the partici-
pants of the eco-system.

Conversations are specified using the conversation definition language CDL. Each conversation
defines a set of interactions between the participants needed to fulfil a specific purpose or task. It
defines the documents exchanged in these interactions, and it defines the possible sequences of
interactions. Conversations only define an interface of the service, not its implementation. In
other words, they specify the public process, and not the private process.

Service
Client

Service
Sale

Order

Order
Ack

Detaill
Info

Deliver
Date

More
Info or

messages

SendReceive interaction MakeOrder

Receive interaction Notify

Send interaction AdditionaInfo

etc…

Conversation Ordering
Page 16 SFS Version 2.0

Each service can support one or more conversations, taking on a specific role in each conversation
(e.g. the role of the buyer, of the match-maker, or the client trying to find a service,...).

Interactions

Interactions are units of information exchange between participants in an eco-system, they are the
basic building blocks of conversations in the conversation definitions using CDL. An interaction
contains one or two documents exchanges, i.e. one or two messages with business payload.

In general, interactions can be classified along many dimensions:

Two-way or One-way interactions: Two-way interactions typically consist of a request and a
response. The initiator of the two-way interaction views the interaction as a out-bound request
message followed by the in-bound reply. The recipient of the interaction views the interaction as
an inbound request followed by an outbound response. One-way interactions essentially are uni-
directional interactions. They involve sending a message from the sender to the recipient. As in
the case of two-way interactions the two end points of the interaction have different views on the
interaction. The sender’s view of the interaction is that an out-bound message is sent, whereas the
receiver’s view is that an in-bound message is received.

Two party or multi-party interactions: Most interactions take place between two parties. How-
ever, any interaction can occur among many parties. For instance, in order to model the participa-
tion of an e-service in an auction, one can make use of the multi-party interaction. Suppose, for
instance, that the auction is an open-cry english auction, when a participating e-service places a
bid, it has to reach all the participants. This broadcast of the bid by a participant to the other par-

ticipants can be modeled as a single multi-party interaction1.

Mediated Interactions: A mediated interaction is an interaction that occurs through an interme-
diary. The intermediation can occur at the transport level, as happens on the internet today, or at
the application level. The mediated interactions in SFS are mediated at a level that is higher than
the transport level mediation. For example, in a electronic hub where suppliers and consumers
conduct business, mediation means that all the interactions between the suppliers and consumers
occurs through the

Some of these benefits are:
• Virtualization: This allows e-services to be addressable with an extra level of indirection. This

allows clients of the e-service to bind more loosely to the e-service. This allows, for instance,
the mediating entity to replace the e-service with a separate e-service that has the same
attributes when the original e-service goes off-line.

• Security: Mediation provides a nice mechanism to implement various security policies.
• Management: Mediation allows the interactions to be monitored and managed more easily.

1. Either each participant broadcasts to all the others, or the auction holder has to broadcast to all the aprtic-
ipants.
Page 17 SFS Version 2.0

Some of the standard business level interactions such as negotiation, contract maintenance, etc.
need the notion of mediated interactions.

Note that mediation can also occur right on the transport layer, this kind of mediation already
occurs on the internet where web servers essentially mediate incoming requests to business logic.
However, the mediated interactions that we discuss here are higher level mediation that the e-ser-
vice can take advantage of. For instance, the mediator may expose APIs that allow any e-service
to produce an audit trail of any mediated conversation that it has been a part of.

Secure interactions: The e-speak services framework enables e-services on the internet to
dynamically interact with other e-services over the open internet using standard protocols. In
order for this to be successful, the infrastructure has to be able to provide a comprehensive secu-
rity infrastructure. Depending on the deployment, the intended use, etc., there may be different
security requirements. Examples include:

• Authentication of parties involved in the interaction
• Encryption to ensure that messages carried in the interaction are not tampered with.
• Access control mechanisms that allow any party in an interaction

Each e-service should be able to define, for any interaction, what security parameters are required.

Transactional interactions: One of the most important properties that any interaction can have is
a all-or-nothing semantics. This may be because a sequence of external interactions can comprise
a single transaction in the implementation of an e-service. Either the interaction definition guaran-
tees all-or nothing behavior, or it specifies compensating interactions that need to occur in order
to negate the effect of the original interaction.

Disconnected interactions: The services framework provides support for disconnected interac-
tions in order to support mobile customers. An interaction is said to be disconnected when one of
the end points is not on-line when the interaction occurs. A mobile client may initiate a conversa-
tion, but may not be online when the response to its request is created. In order to support discon-
nected interactions, the framework needs to provide means for storing the state of the
conversation and messages that are involved in a conversation. It should allow a client to resume
a conversation from the state where it left off.

Though we classify these as dimensions, they may not be entirely independent of each other. For
instance, if an interaction is mediated, it impacts the kinds of security that the interaction can
leverage. Similarly, if the interaction is transactional, and is a two-party interaction, one of the
parties can be the owner of the transaction. However, if the interaction is transactional and
involves multiple parties, the protocol can be involved. In SFS 2.0, we only address one-way and
two-way interactions and do not consider the other dimensions of interactions. The other issues
will be included into later versions of the SFS.

2.2.3 Vocabularies and e-service descriptions

Vocabularies:
Page 18 SFS Version 2.0

Each service in an eco-system is described by some metadata. In SFS, we introduce the notion of
vocabularies for defining the metadata or terms that may be used in service descriptions and offer
descriptions. In most cases, vocabularies are specified by vertical standards bodies for specific
business domains, and a service provider reuses the existing vocabularies of its domain.

Service Descriptor Document:

Each SFS compliant e-service provides information about itself through the service descriptor
document. It contains various information elements common to all e-services, and a description of
the service in terms specific to the business domain. The common elements contain the address of
the service, the list of supported conversations, required credentials, plus references to the service
provider. The service description conforms to one or several selected vocabularies. In addition to
appearing at matchmakers, service descriptions may be part of the service descriptor of a service.

Offers:

Before services can interact with each other they need to discover each other. SFS introduces the
notion of offers that are registered with service registries. Offers are a generalization that can be
specialized in many ways. Some of these are offers to sell, offers to buy, offer to provide, and
offers to consume. Offers to sell are offers of service proviers for services that can be used and
offers to buy are posted by potential service consumers. Both kind of offers are queried by inter-
ested services. Offers can refer to the capabilities of a service in general, e.g., describing a service
that can perform specific computational tasks, or to goods traded by the services, e.g., available or
needed items. Offers contain a description that uses the terms defined in a specific vocabulary to
describe the service offering.

Identifying services and conversations:

The names of services and conversation definitions need to be unique within the scope of the reg-
istry in which they are registered. In addition, conversations themselves may be registered at
matchmakers.

2.3 Communicating E-services: SFS Messaging Protocol Stack

The ultimate goal of communication between e-services is to exchange business payload, i.e. to
exchange XML documents according to the specification of the conversation that is being carried
out. In order to exchange this payload, lower level protocols are used for transport and quality of
communication, and additional information has to be exchanged about the messages, services
sending and receiving the messages, and the conversation being carried.

SFS clearly separates out the various layers of the protocol stack. It also makes use of existing and
emerging standards for e-services communication as far as possible, adding value only where nec-
essary to support the more advanced features provided by SFS for e-services interactions, e.g., the
Page 19 SFS Version 2.0

concept of conversations. In the following we have a closer look at the various layers of the SFS
protocol stack:

Figure 6: Figure: Protocol Stack of SFS Messaging

The transport layer simply provides transport of the message from the sender to the receiver, if
necessary through firewalls. If transport is done over HTTP, the HTTP header and any informa-
tion stored in the URI such as session ids are part of this layer. The transport layer is not part of
the SFS specification, SFS messages can be exchanged over any transport layer. SFS assumes a
clear decoupling between transport and messaging layer.

The messaging layer can be split up into three parts:

• The SFS messaging specification is concerned with providing additional information
about the message that is needed by the receiver, e.g. address of the sender, intended
receiver service, conversation id. These fields are defined by SFS and are needed by
the receiver either for constructing any return messages, or for finding the right service
and the right conversation instance, once a conversation has been started, this message
needs to be dispatched to.

• The SFS messaging specification also defines the basic structure of the message,
which is based on SOAP and MIME. Essentially, the message is a MIME multipart
message, where the first part is a SOAP message with SOAP envelope, header, and
body. The SFS messaging elements are placed into the SOAP header, the business
content of the message is in the SOAP body.

• Depending on the transport protocol, there might be the need for an additional layer
for reliable messaging. ESIP and MQSeries already provide reliable transport,
whereas HTTP and HTTPS do not. Therefore, they require an additional layer
between transport and SFS messaging to provide reliable messaging. Reliable messag-
ing may add additional SFS messages that may either serve for acknowledgement or

Business content of message (in XML)
(defined by a conversation description in CDL)

Conversation Layer

Transport Layer

MIME, SOAP message structure: envelope,
routing and basic structure of message

e.g. http, https, JMS, MQSeries, ESIP

Messaging Layer

Protocol layers:

SFS message elements: XML elements
common to all messages (e.g. service id,
converstion id, security elements)

Additional messages: e.g. reliable messaging
layer

defined by SFS

defined by
vertical standard

bodies

common
standards
Page 20 SFS Version 2.0

repeatition. Reliable messaging is not yet defined in SFS 2.0, it is currently achieved
by having a reliable transport layer. It will be addressed in future extensions of SFS.

The conversation layer processes the actual payload of the information exchanged between the
services. This is the information in the messages that is actually handled and created by the busi-
ness logic. The content of the payload is defined in the conversation definitions. The content of
the payload is either defined by SFS predefined conversations such as match making, or defined
by standards bodies of eco-system participants using the conversation definition language CDL.

2.4 Typical eco-system use-cases
In this sub-section, we briefly consider some of the typical operations in an eco-system. The typi-
cal interaction cycle in eco-systems consists of the following steps.
1. Identify potential e-services: This involves both registration of offers and lookup of offers at

matchmakers
2. Negotiate terms and conditions of e-service conversation: This involves using the negotiation

protocols to identify the terms and conditions of the conversation.
3. Formalize a contract based on the negotiations.
4. Execute the conversation.
5. Monitor the execution of the conversation in order to determine compliance with contract.

We now consider brief use cases that analyse each step in turn.

Offer registration:

Services can make themselves available to other services by registering offers with a service reg-
istry service. These offers can be offers to provide a service or offers to consume services. The
registry service can be hosted e.g. by a match-maker like in the figure below (1). For registering
offers services use the predefined registering conversations supported by any SFS compliant ser-
vice registry.

Service discovery:

There are various aspects of a service that can be discovered. These include:
1. the conversations realized by a service,
2. a specific service hosted by a service provider and its various characteristics,
3. the address of the service.

These various aspects can be discovered either at development time or at run-time. The developer
may just use the conversation definitions for developing its application that uses other services, or
he may also cache the reference to his preferred service that implements conversations. Using the
browser interface of a service registry, a developer can find suitable conversations and services
(2). At run-time the client application can use the cached reference, or it can dynamically discover
services that realize the chosen conversation using the match-making conversation with a service
registry (3). A client application can also discover dynamically new or updated conversations by
introspecting services it is either already using or that it has discovered by the match-making con-
Page 21 SFS Version 2.0

versation. Conversation definitions and other service properties are requested from a service by
using the introspection conversation (4).

Contract negotiation:

Once services have discovered an offer by another service, they may then negotiate with each
other to form a contract. The contract is an XML document that specifies the precise rules of
engagement. It is worth noting that the e-speak infrastructure itself is not responsible for generat-
ing negotiation offers and counter-offers. The infrastructure functions as a mechanism for trans-
porting these offers, and may be responsible for maintaining the state of the transactions so that
the parties negotiating may operate in a disconnected manner. Essentially, the negotiation frame-
work in SFS provides conversation definitions that define the various negotiation protocols that
can occur in typical eco-systems. These negotiation protocols encompass not only two-party
negotiation protocols, but also multi-party negotiation protocols such as auctions, double auc-
tions, etc.

Service interaction:

Services interact with each other by sending SFS messages to each other that contain the XML
documents specified in the conversation definition. Normally, the communication between the
services is a peer-to-peer communication that does not involve any other services (5). However,
SFS can accomodate the notion of mediated interactions. A mediated interaction is an interaction
that occurs through an intermediary. The intermediation can occur at the transport level, as hap-
pens on the internet today, or at the application level. The mediated interactions that we discuss
here, are mediated at a level that is higher than the transport level mediation. For example, in a
electronic hub where suppliers and consumers conduct business, mediation means that all the
interactions between the suppliers and consumers occurs through the hub. This allows the hub to
act as the marketmaker ensuring that the participants comply with the contracts that they have
entered into.

Figure 7: Various use cases in an eco-system (details see text)

Service Registry

Match Maker

Service C

Service A

Service B

Back-end
System 1

Back-end
System 2

Company U Company V

Company W

Company Z

Service B

Company X

1

2

3

4
5

Page 22 SFS Version 2.0

2.5 End-To-End Example: Description
To provide a concrete example of how the various components of the SFS fit together, this section
introduces a complete end-to-end scenario describing the sale, dynamic discovery, and purchase
of paper supplies. Note however, that this section is intended to be a high-level description only. It
describes the parties involved and the roles they play, but does not provide the code necessary for
each XML message. For a complete listing of XML code related to this example, please refer to
the appendix of this document.

Scenario:

In this example, consider the following three parties: Enterprise A (the buyer), Enterprise B (the
seller), and an e-speak Market-Maker (the intermediary). Assume that Enterprise A seeks to pur-
chase several units of 8 1/2" x 11" acme copy plus paper. Also assume that Enterprise B sells that
particular type of paper, but has no prior knowledge of Enterprise A. Finally, assume that the Mar-
ket-Maker exists to serve as the central point of contact between buyers and sellers that want to be
dynamically matched with one another on the Internet.

Note that it is not necessary for a market-maker to be present; any entity that provides matchmak-
ing functionality can play this role, including the matchmaking and advertising service on the E-
services Village.

(Or E-services Village)
Figure 9: Enterprise A, Enterprise B, and a Market-Maker

The following 10 steps describe a complete end-to-end scenario involving Enterprise A, Enter-
prise B, and a Market-Maker.

Step 1: Enterprise A Introspects the Market-Maker

Before interacting with a Market-Maker found on the Internet, an enterprise must first discover
the following two pieces of information: what the market-maker is, and how it can communicate
with it. The process of discovering this information is known as service introspection- the details
of which are completely defined in the service description section of this document.

To briefly summarize how introspection relates to this end-to-end example, Enterprise A queries
the market-maker by delivering introspection request messages, and the market-maker replies
with introspection response messages that contain the requested information. At the end of a suc-
cessful introspection, Enterprise A will understand how to communicate with the market-maker.

Enterprise A

Paper Supply Buyer

Enterprise B

Paper Supply Seller

E-speak
Market-Maker

The Intermediary
Page 23 SFS Version 2.0

Alternatively, Enterprise A may talk to a well known site such as E-servicesVillage's advertising
service through DSML to extract the property descriptor that would typically be returned in an
Introspection Response Message.

Figure 10: Enterprise A Introspecting an E-speak Market-Maker

Step 2: RFQ Generation and Registration

After successfully introspecting the market-maker, Enterprise A initiates its own internal process
of creating a Request For Quotes (RFQ) for paper supplies. An RFQ is a document that describes
the properties of the product that a given client seeks to purchase. In this example, Enterprise A
generates an RFQ for 8 1/2" x 11" acme copy plus paper costing less than $22.95 per unit. This
RFQ also contains contact information for Enterprise A, so that potential suppliers will know who
to contact should they discover and respond to this RFQ in the future.

Figure 8: Simple Diagram of an RFQ for Paper Supplies

Next, Enterprise A registers this newly generated RFQ with the Market-Maker. The Market-
Maker responds with an acknowledgement indicating the status of the attempted registration-
"success" in this case.

Enterprise A

Paper Supply Buyer

E-speak
Market-Maker

The Intermediary

Introspection Request Messages

Introspection Response Messages

RFQ

Contains information about the desired product,
such as paper size, paper width, paper length, and
desired price per unit. Also contains contact
information for the RFQ owner, Enterprise A in
this case.
Page 24 SFS Version 2.0

Figure 9: RFQ Registration and Status Response

Note that other clients seeking to buy paper supplies might submit similar RFQ's to the market-
maker as well. A single e-speak market-maker is capable of handling requests from multiple cli-
ents.

Step 3: Enterprise B Introspects the Market-Maker

Identical to that of step 1, with the exception that Enterprise B is now introspecting the market-
maker. This step requires no additional illustration.

Step 4: RFQ Lookup Request

Having successfully introspected the market-maker, Enterprise B now sends a lookup request for
all paper supply RFQ's registered with the market-maker that offer to pay more than $20.00 per
unit. Since Enterprise B is in the business of selling paper supplies, retrieving the Market-Maker's
list of paper supply RFQ's is an effective way to obtain a new, potentially large list of clients. It is
worth noting that this lookup request contains contact information for its owner, Enterprise B.

In response, the Market-Maker delivers a list of paper supply RFQ's that match the criteria of the
lookup request. Since Enterprise A is willing to pay up to $22.95 per unit of paper, its RFQ is con-
sidered a match, and is included in the Market-Maker's response.

Note once again that the market-maker is capable of receiving requests from multiple clients.
Therefore, it is likely that new suppliers will send similar lookup requests for paper supply RFQ's
as well.

Enterprise A

Paper Supply Buyer

E-speak
Market-Maker

The Intermediary

RFQ Registration Message

Registration Status Message
Page 25 SFS Version 2.0

Figure 10: RFQ Lookup Request and Response Messages

After receiving the response from the Market-Maker, Enterprise B now has direct contact infor-
mation for many potential buyers, including that of Enterprise A.

Step 5: Enterprise B Introspects Enterprise A

Since the Market-Maker has provided Enterprise B with a list of potential buyers, Enterprise B is
now free to initiate direct communication with each buyer on the list. Because each buyer has
been dynamically discovered, Enterprise B must first perform a generic introspection to deter-
mine how the buyer expects its quotes. In this scenario, Enterprise B directly introspects Enter-
prise A.

Figure 11: Enterprise B Introspecting Enterprise A

Note that this introspection is only required when the two enterprises directly interact for the first
time.

Step 6: Enterprise B Sends Quote to Enterprise A

Having successfully introspected Enterprise A, Enterprise B now executes its own internal busi-
ness processes for generating quotes in response to Enterprise A's RFQ. It delivers a quote to

Enterprise B

Paper Supply Seller

RFQ Lookup Request Message

RFQ Lookup Response Message

E-speak
Market-Maker

The Intermediary

Enterprise B

Paper Supply Seller

Enterprise A

Paper Supply Buyer

Introspection Request Messages

Introspection Response Messages
Page 26 SFS Version 2.0

Enterprise A. In turn, Enterprise A responds with a message acknowledging that it has received
the quote.

Figure 12: Enterprise B Sending a Quote in Response to Enterprise A's RFQ for Paper
Supplies

Because other suppliers may have obtained Enterprise A's RFQ from the Market-Maker as well,
Enterprise A could potentially receive quotes from many different sellers. In such a situation,
Enterprise A would send a quote acknowledgement message to every enterprise that had issued it
a quote. Additionally, if the suppliers were previously unknown, Enterprise A may choose to
enlist the assistance of a third party business rating agency to determine if a particular enterprise
is a reputable dealer.

Step 7: Purchase Order Negotiation

At this point, Enterprise A and Enterprise B may negotiate directly with one another until they
reach agreement or disagreement on the contents of a purchase order. Negotiation itself comes in
several varieties, but always consists of negotiating parties exchanging a series of offers/counter-
offers until they either reach agreement or declare negotiations failed.

Each offer in the following diagram contains a partial purchase order with property values that
become modified by the negotiating parties during each exchange. Enterprise A initiates the nego-
tiation process by sending a negotiation offer, offering to negotiate the contents of a purchase
order. The internal business process of enterprise A generates the purchase order template that is
sent to Enterprise B.

Quote acknowledgement message

Enterprise B

Paper Supply Seller

Quote message delivery in response to the RFQ

Enterprise A

Paper Supply Buyer
Page 27 SFS Version 2.0

Figure 13: Negotiation Between Enterprise A and Enterprise B

Note: For a comprehensive discussion of negotiations, consult chapter 9 in part II of this docu-
ment.

Step 8: Contract Formation

Assuming that Enterprise A and Enterprise B have successfully reached agreement on the con-
tents of the purchase order in step 7 above, the two parties are now ready to form a contract. A
contract is an XML document that specifies the goods and services to be exchanged, along with
the rules that both parties must follow. Contracts may also codify the sequence of actions that
must be performed in order to complete the transaction between the enterprises. For instance, the
contract could stipulate that payment for the purchase order must be made within 30 days of
receiving the invoice.

Having previously reached agreement on all negotiable attributes of the purchase order, the two
enterprises now draw up a contract, which they send to each other.

Figure 14: Enterprise A and Enterprise B Reach Agreement and Exchange Contracts With
Each Other

Alternatively, the Market-Maker could form and maintain the contract on behalf of the two enter-
prises.

Step 9: Purchase Order Generation and Shipping Documentation Delivery

Enterprise B's Counter-Offer Message

Enterprise B

Paper Supply Seller

Enterprise A's Offer Message

Enterprise A

Paper Supply Buyer

CONTRACT
Enterprise A

Paper Supply Buyer

Enterprise B

Paper Supply Seller
Page 28 SFS Version 2.0

Next, Enterprise A places its order for paper supplies (which conforms to the contract) with Enter-
prise B. Enterprise B returns a message acknowledging that it accepts the order "as is".

Figure 15: Purchase Order Placement and Acknowledgement

Enterprise B next creates a sales order in its enterprise system and begins the order fulfillment
process. When it executes a goods issue, Enterprise B creates the necessary shipping documents
and sends them to Enterprise A. In return, Enterprise A sends an acknowledgement message to
Enterprise B.

Figure 16: Shipping Document Delivery and Acknowledgement

Step 10: Invoice, Payment, Receipt, and Product Delivery

Enterprises A and B execute the remaining steps to complete the sale:

• Enterprise B sends Enterprise A an invoice.
• Enterprise A sends Enterprise B an acknowledgement response.

Order Placement Message

Order Acknowledgement Message

Enterprise A

Paper Supply Buyer

Enterprise B

Paper Supply Seller

Shipping Documents Message

Enterprise A

Paper Supply Buyer

Enterprise B

Paper Supply Seller

Acknowledgement Message
Page 29 SFS Version 2.0

• Enterprise A sends Enterprise B payment for the invoice.
• Enterprise B sends Enterprise A the payment receipt.

And finally,

• Enterprise B ships the product to Enterprise A.

Alternate Scenario:

In some situations, it may be desirable for one service to be managed by another- a functionality
that is made possible within E-speak through the XML Application Response Measurment
(XAM) specification defined in chapter 8. The following illustration shows an alternate scenario
in which Enterprise B functions as a managed service that communicates with a management ser-
vice housed by Enterprise C. For a complete illustration of the types of messages passed between
an application and its measurement agent, refer to section on management of e-services (chapter
8).

Figure 17: Alternate Scenario With Enterprise C Managing Enterprise B

Enterprise A

Paper Supply Buyer

Enterprise B
(Now A Managed
Service)
Paper Supply Seller

E-speak
Market-Maker

The Intermediary

Enterprise C:
Provides
Management Service

Management
Messages:
Init, Config, Report
Page 30 SFS Version 2.0

3 SFS Messaging
In order for services to interact with each other, they need to define the exact protocol and mes-
sage format they are using. The Service Framework Specification defines such a format, based on
existing and emerging standards, and taking into account the specific requirements of loosely cou-
pled services carrying out long-lived business conversations.

3.1 SFS Messages

The messaging layer is responsible for maintaining a communication channel between two ser-
vice instances. This communication channel carries back and forth all the business logic payload
belonging to one specific conversation instance. Furthermore, the messaging layer has to add all
the meta information necessary for dispatching the business logic payload to the correct conversa-
tion controller and business logic instance. In SFS the message format chosen for carrying the
business logic payload is based and SOAP 1.1 and MIME.

3.1.1 The SFS message structure

SFS messages have to carry business logic payload plus meta information about the message like
routing, property and manifest information.

The business logic payload can be split up into two parts:

• XML documents: The CDL conversation definition defines when which XML docu-
ment has to be exchanged and provides a pointer to the XML schema for the docu-
ment.

• Binary attachments (e.g. EXCEL spreadsheets): These also have to be specified by
in the CDL conversation definition. Currently this has to be done in the XML docu-
ment schema, as CDL itself only specifies XML documents as payload.

The meta information about the message, i.e. routing, property and manifest information is car-
ried in the SOAP header. The XML document payload is part of the SOAP body. SOAP header
and SOAP body, wrapped into the SOAP envelope, are the first part of a multi-part MIME struc-
ture. Binary attachments are additional parts of the multi-part MIME structure. The following fig-
ure shows the basic SFS message structure:
Page 31 SFS Version 2.0

Figure 1: Figure: SOAP/MIME structure of an SFS message

The following example shows the structure of an SFS message when mapped to the HTTP trans-
port protocol:

POST /StockQuote HTTP/1.1
Host: www.ordering.com
Content-Length: nnnn
MIME-Version: 1.0

Content-Type: Multipart/Related;
boundary="-----------1234567890";
type=text/xml;

SOAPAction: ""
-----------1234567890
Content-Type:text/xml;
Content-Transfer-Encoding: 8bit
<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope encodingStyle="http://schemas.xmlsoap.org/soap/encoding"

xmlns:SOAP-ENV=”http://schemas.xmlsoap.org/soap/envelope”
xmlns:TRANSP=”http://schemas.e-speak.net/transport”>

<SOAP-ENV:Header>

<!—Here go the various SOAP header tags defined by SFS. ->

</SOAP-ENV:Header>
<SOAP-ENV:Body>

<!—Here goes the actual XML payload as defined by CDL. ->

</SOAP-ENV:Body>
</SOAP-ENV:Envelope>
-----------1234567890

3.1.2 SFS Message tags: Overview

In this section we describe the SFS XML tags that provide meta information about a message.
They are part of each SFS message and are put into the SOAP header.

Routing: Conversations, Senders and Receivers

HTTP Header HTTP Body

SOAP
Envelope

SOAP
Header

SOAP Body

- Content Type:
MIME multi-part

- SOAPAction
- ...

SFS tags:
- routing,
- properties,
- manifest

XML business logic payload

First MIME part Aditional MIME parts....

Binary attachments and certificates, one
attachment per MIME part
Page 32 SFS Version 2.0

The Route element contains information about the sender, receiver and their conversation.

From the messaging point of view, conversations are stateful business communication channels
whose lifetime is independent of the underlying communication and transport framework. The
lifetime is solely controlled by the service as specified in the conversation definition. Conversa-
tions may last for a long time (e.g. several days), therefore several transport sessions may be
needed to carry out a conversation. Furthermore, the participants in a conversation must be able to
keep the state of the conversation over a long time (e.g. persistent memory), and to continue old
conversations with new transport sessions.

The SFS message contains the name of the conversation as well as the id of the conversation
instance. One specific service may carry out the same conversation with different partners at the
same time, having several concurrent conversation instances of the same conversation type.
Therefore conversation instances must be identified uniquely for both parties in a conversation.

The routing element also contains the name in form of the URI of both, the sender service and the
receiver service.

Properties

The SOAP header may have a Properties element that contains further information about the mes-
sage. SFS specifies the following subelements of Properties, which are all optional:

• MessageID: This ID is provided by the sender, and can be used by the receiver to
make sure it does not process duplicate messages (e.g. due to resends after time-outs).

• SentAt: Time the message has been sent.

• ReceivedAt: Time the message has been received.

• ExpiresAt: Time when this message is no longer relevant and can be directly dis-
carded upon receipt by the receiving server, i.e. the business logic would never see this
message.

Binary data, attachments

If there are any attachments with the message (e.g. binary documents), the attachments are carried
additional part of the MIME structure. The SOAP header may contain a manifest element that
lists and describes the various documents attached. The manifest is a messaging layer flag and
helps the messaging layer software in the receiver to correctly handle attached documents and to
hand them over to the service or conversation controller layer software as needed. The SOAP
body itself may also contain references to the attached documents (href attribute of SOAP body
elements, the href reference do not reference any other elements, they reference the MIME ID of
the attachment).

An example of a message with a manifest and attachment is in the example section of the SFS
Messaging chapter.
Page 33 SFS Version 2.0

3.1.3 SFS Message tags: Details

All the XML tags specified here are part of the SOAP header of an SFS message.

Routing tags:

Attributes of routing elements:

ConversationName: The name of the conversation is needed in the first message of a conversa-
tion in order to notify the other party of the conversation which type of conversation is being

Tag Name Required Occurs Semantics Contains

Route Yes Once Contains the routing infor-
mation in the SFS message

To, From

To Yes Once Uniquely identifies the
receiver service and the cur-
rent conversation instance
this message is part of

URI,
ConversationID,
ConversationName

From Yes Once Uniquely identifies the
sender service and the cur-
rent conversation instance
this message is part of

URI,
ConversationID,
ConversationName

URI Yes Once in To,
once in From

Name of the receiving or
sending service. This is the
ServiceName field of the
service descriptor.

String containing
URI of sender or
receiver service

Conversation-
Name

Yes Once in To,
once in From

Name of the conversation.
This is the conversation
name in the service descrip-
tor and conversation defini-
tion of the service that has
the listener role in this con-
versation.

String containing the
name.

ConversationID Yes Once in To,
once in From

Unique ID of the conversa-
tion instance.

String containing the
ID.

Element Attribute Required Occurs Semantics Value

Route mustUnderstand Yes Once Required by SOAP standard
because routing element is man-
datory and needs to be handled
by receiver of message.

“1”
Page 34 SFS Version 2.0

started. As soon as both sides have established a new conversation runtime instance and assigned
a unique ID to this instance, the conversation name becomes redundant.

The conversation name in the TO element of the first message of a conversation has to correspond
to the conversation name published in the service descriptor of the receiving service. The conver-
sation name in the FROM element is the name used by the sender for this conversation type.

ConversationID: This is a unique identifier chosen by each party at the beginning of the message
exchange. The identifier has to uniquely identify the conversation instance of the sender (in the
the FROM element) and of the receiver (in the TO element). In order to be unique for both parties,
ID is made up of two parts: both parties in the conversation provide an id that is unique for them,
forming an overall unique id. These id’s are sent back and forth and stay the same for the whole
life-time of the conversation. Upon receiving a message, the receiver simply copies the conversa-
tion id from the FROM element (containing information about the sender) into the TO element
(containing information about the receiver) of the response message, and vice versa. The first
message only contains a value for the conversation id of the sender, the conversation id element of
the TO element is empty.

The following figure shows how conversation name and id are created and exchanged:

Figure 2: Creation of Conversation Name and ID in SFS messages

URI of sender and receiver service: These are the URIs that have to be used by the other party
to respond to the message. They identify the end-points to the messaging layer of both services.
The URI in the TO element of the first message of a conversation is the URI as defined in the ser-

Service
SN

Initiating an
OrderAll

conversation
with

Service SA

Service
SA

Providing an
OrderAll

conversation
to

Service SN

To: URL = “http://all.net/SA”
To: ConversationName = “OrderAll”
To: ConversationID = “”
From: URL = “http://need.net/SN
From: ConversationName = “OrderAllClient”
From: ConversationID = “1234a”

To : URL = “http://need.net/SN
To : ConversationName = “OrderAllClient”
To : ConversationID = “1234a”
From: URL = “http://all.net/SA”
From : ConversationName = “OrderAll”
From : ConversationID = “09_09_09”

To: URL = “http://all.net/SA”
To: ConversationName = “OrderAll”
To: ConversationID = “09_09_09”
From: URL = “http://need.net/SN
From: ConversationName = “OrderAllClient”
From: ConversationID = “1234a”

etc…

name of conversation as defined in the
service property sheet of service SA

name used by SN

identifier chosen by SN

identifier chosen by SA
Page 35 SFS Version 2.0

vice descriptor of this message. If SFS is mapped onto HTTP, then the URI of the receiver in the
SOAP header and the URL in the HTTP header may be identical, or the URI in the SOAP header
may be more detailed e.g. if several services share a common servlet for dispatching, or the URL
in the HTTP header may be completely different if it designates a SOAP server that will forward
the message to its final destination.

Property tags:

ReceivedAt: While the message is transported to the receiver this field is empty. It gets a value
once the message has been received, and is of importance if the message gets saved or buffered.

ExpiresAt: This is a flag targeted at messaging software at the receiving end. If the message has
been expired before it arrives at the receiver, or before the receiver has time to deal with it, then
the messaging software at the receiving end can discard this message without even forwarding it
to the business logic. Information about the validity of business data that is relevant for the busi-
ness logic (e.g. until when an offer is valid) has to be part of the business data payload in the
SOAP body. ExpiresAt is a pure messaging layer tag.

Subject: The exact semantic and content of this field is not defined by SFS, therefore it has to be
defined by the eco-system and is of limited value.

Tag Name Required Occurs Semantics Contains

Properties No Once Contains information about the
message itself.

MessageID, Subject,
SentAt, ReceivedAt,
ExpiresAt

MessageID No Once Identifier for this message. The
identifier has to be unique for
Sender within this conversation
instance.

String

SentAt No Once Time when the message is sent.
This element is filled in by the
sender of the message.

timeInstance data
type of XML
Schema

ReceivedAt No Once Time when the message is sent.
This element is filled in by the
receiver of the message.

timeInstance data
type of XML
Schema

ExpiresAt No Once Time when the message can be
discarded without ever having
been handled by the receiver.
This element is filled in by the
sender of the message.

timeInstance data
type of XML
Schema

Subject No Once Classification of the message. String
Page 36 SFS Version 2.0

Manifest tags:

Attributes of routing elements:

URI attribute of Reference element: This value of this attribute corresponds to the value of the
Content-ID tag of the MIME part containing the corresponding attachment.

3.1.4 SFS Message tags: Schema

<?xml version='1.0'?>
<schema name = “SFSMessaging”

targetNameSpace='http://www.e-speak.net/Schema/header'
xmlns='http://www.w3.org/1999/XMLSchema'
xmlns:ES-HEADER='http://www.e-speak.net/Schema/header'>

<annotation>
<documentation>SOAP header elements for SFS messages</documentation>

</annotation>

<!-- address type -->
<complexType name='addressType'>
<element name='URI' type='uri-reference' minOccurs='1' maxOccurs='1'/>
<element name=”ConversationName” type=”String” minOccurs='1' maxOccurs='1'/>
<element name=”ConversationID” type=”String” minOccurs='1' maxOccurs='1'/>

</complexType>

<!-- Route information -->
<element name='Route' minOccurs='1' maxOccurs='1'>

<complexType>
<element name='To' type='ES-HEADER:addressType' minOccurs='1' maxOccurs='1'/>
<element name='From' type='ES-HEADER:addressType' minOccurs='1'

maxOccurs='1'/>
</complexType>

</element>

<!-- Message properties -->

Tag Name Required Occurs Semantics Contains

Manifest No Once Contains information about
binary attachments.

Reference

Reference No Multiple, one
for each
attachment

References the attachments
with are in additional MIME
parts of the message.

Description

Description No Once Additional information
about attachment.

String

Element Attribute Required Occurs Semantics Value

Reference URI Yes Once References the appropriate
MIME part containing this
attachment.

String contain-
ing name of
attachment.
Page 37 SFS Version 2.0

<element name='properties' minOccurs='0' maxOccurs='1' content='elementOnly'>
<complexType>

<!-- a unique ID to identify the message -->
<element name='MessageID' type='uri-reference' minOccurs='0' maxOccurs='1' />
<!-- time when the message is sent -->
<element name='SentAt' type='timeInstance' minOccurs='0' maxOccurs='1' />
<!-- time when the message is received -->
<element name='ReceivedAt' type='timeInstance' minOccurs='0' maxOccurs='1' />
<!-- time when the message expires -->
<element name='ExpiresAt' type='timeInstant' minOccurs='0' maxOccurs='1' />
<!-- synchronous or asynchronous message -->
<!-- the subject -->
<element name='Subject' type='string' minOccurs='0' maxOccurs='1' />
<!-- any extra elements -->
<any minOccurs='0' maxOccurs='unbounded' namespace='##any' processCon-

tents='lax'/>
</complexType>

</element>

<!-- Manifest of the MIME message body -->
<element name='manifest' minOccurs='0' maxOccurs='1' >

<complexType>
<!-- refer to a sub-part in the body -->
<element name='reference' minOccurs='0' maxOccurs='unbounded' >

<complexType>
<element name='description' type='string' minOccurs='0' maxOccurs='1'/>

<attribute name='uri' type='uri-reference' use='required'/>
</complexType>

</element>
</complexType>

</element>

</schema>

3.2 Mapping to Transport layer

SFS does not mandate any specific transport protocol. SFS specifies the mapping to HTTP as an
example. An alternative to using SOAP/MIME/HTTP is to use ESIP for the messaging and trans-
port layer. ESIP is the e-speak engine to engine communication protocol. If the services commu-
nicating with each other are all hosted by e-speak engines, then using ESIP is the easiest approach
for the service provider and user. All the details of mapping SFS messages to ESIP are taken care
of by the engine, and are hidden from the user.

3.2.1 Mapping of SFS messages to HTTP

SFS uses HTTP-POST with multipart MIME format. The body of the HTTP messages carries the
SFS message. The first MIME part of the body carries the SOAP message, additional parts can
carry attachments if there are any. The following example shows the HTTP header of a typical
SFS message mapped to HTTP:

Each document exchange defined in the conversation (i.e. in the CDL description of the conversa-
tion) is mapped to an HTTP-POST, independent of the document exchange being part of an asyn-
Page 38 SFS Version 2.0

chronous or synchronous interaction. Each HTTP-POST gets answered by an HTTP-RESPONSE
without payload. This HTTP-RESPONSE either acknowledges the receipt of the message, or
reports an error. The format of these responses is either simply according to SOAP standard, or
extended by reliable messaging information if a reliable messaging layer is added on top of the
HTTP transport layer. The conversation layer is not aware of any HTTP-RESPONSE messages,
i.e. the conversation controller and business logic software does not receive any HTTP-
RESPONSE messages, these are entirely handled by the transport software, and, if necessary, by
and additional reliable messaging layer on top of transport. Of course, if the messaging layer can-
not deliver the message, it may raise an exception to the higher levels like conversation controller
and business logic.

Figure 3: Mapping of business documents to HTTP messages

If the business logic needs to have explicit acknowledgement of the receipt of a message by the
other party (e.g. if the answer to a request could take some hours, but the sender wants to know
before if the other party actually has received the message), then the conversations definition in
CDL must contain explicit acknowledge messages. Also the appropriate time-outs must be
defined in the conversation definition (not yet possible with CDL 1.0). These business level
acknowledgements are again mapped to HTTP-POST messages. There is a clear distinction
between the acknowledge documents exchanged on the business level and defined in the conver-
sation definition, and the HTTP-RESPONSES received and discarded on the messaging level
without any influence on the conversation and business logic.

Service
Local

Service
Sale

http-POST, SOAP body contains Order document

etc…

Order

http-RESPONSE, SOAP body is empty or contains
SOAP Fault elements if message could not be processed

Order
Ackhttp-POST, SOAP body contains OrderAck document

http-RESPONSE, SOAP body is empty or contains
SOAP Fault elements if message could not be processed

CDLof Purchase Conversation:
Ordering interaction (SendReceive)
contains the OutboundDocument
Order and the InboundDocument
OrderAck
Page 39 SFS Version 2.0

3.2.2 Mapping of SFS messages to HTTPS

In order to achieve secure transport, SFS messages can be mapped to HTTPS instead of HTTP.
The mapping is analogue to the one shown for HTTP.

3.3 SFS Messages: Example

SFS message mapped to HTTP

The following message contains a PurchaseOrder document and sends it in the body of a SOAP
message mapped to an HTTP-POST to the server www.ordering.com who hosts the ordering ser-
vice offering the purchase conversation.

POST /StockQuote HTTP/1.1
Host: www.ordering.com
Content-Length: nnnn
MIME-Version: 1.0

Content-Type: Multipart/Related;
boundary="-----------1234567890";
type=text/xml;

SOAPAction: ""

-----------1234567890
Content-Type:text/xml;
Content-Transfer-Encoding: 8bit
<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope encodingStyle="http://schemas.xmlsoap.org/soap/encoding"

xmlns:SOAP-ENV=”http://schemas.xmlsoap.org/soap/envelope”
xmlns:TRANSP=”http://schemas.e-speak.net/transport”>
<SOAP-ENV:Header>

<TRANSP:Route mustUnderstand="1">
<TRANSP:From>

<TRANSP:URI>http://www.SmallCompany/procurement/</TRANSP:URI>
<TRANSP:ConversationName>purchase</TRANSP:ConversationName>
<TRANSP:ConversationID>354</TRANSP:ConversationID>

</TRANSP:From>
<TRANSP:To>

<TRANSP:URI> http://www.BestOrder.com/OrderService</TRANSP:URI>
<TRANSP:ConversationName>purchase</TRANSP:ConversationName>
<TRANSP:ConversationID>76</TRANSP:ConversationID>

</TRANSP:To>
</TRANSP:Route>
<TRANSP:Properties>

<TRANSP:SentAt>Oct/23/2000::23/10</TRANSP:SentAt>
<TRANSP:MessageID>345-ertert-34m6s3</TRANSP:MessageID>

</TRANSP:Properties>
<TRANSP:Manifest></TRANSP:Manifest>

</SOAP-ENV:Header>
<SOAP-ENV:Body>

<MYCOPO:PurchaseOrder xmlns:MYCOPO=”http://myco.com/schemas/po”>

<!—Here is where the actual PO document is represented. ->

</MYCOPO:PurchaseOrder>
</SOAP-ENV:Body>
Page 40 SFS Version 2.0

</SOAP-ENV:Envelope>
-----------1234567890

A SFS message with attachments

The following message contains not only XML payload in the SOAP body, but has also binary
payload as attachments in additional MIME parts of the message:

POST /StockQuote HTTP/1.1
Host: www.ordering.com

MIME-Version: 1.0
Content-Type: Multipart/Related;

boundary="-----------1234567890";
type=text/xml;

SOAPAction: ""

-----------1234567890
Content-Type:text/xml;
Content-Transfer-Encoding: 8bit

<?xml version='1.0' ?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV='http://schemas.xmsoap.org/soap/envelope/'>

<SOAP-ENV:Header xmlns:TRANSP=”http://schemas.e-speak.net/transport”>
<TRANSP:Route mustUnderstand =1>

<TRANSP:TO ::::: </TRANSP:to>
<TRANSP:FROM> :::: </TRANSP:FROM>

</TRANSP:Route>
<!--Manifest about attachments for the dispatcher -->
<TRANSP:manifest xmlns:TRANSP='http://www.e-speak.net/Schema/header/'>

<TRANSP:reference uri='order-form'>
<TRANSP:description>The order form</TRANSP:description>

</TRANSP:reference>
<TRANSP:reference uri='catalog'>

<TRANSP:description>The catalog document</TRANSP:description>
</TRANSP:reference>

</TRANSP:manifest>
</SOAP-ENV:Header>
<SOAP-ENV:Body>

<a:Order xmlns:a='http://www.ServiceB.com/Schemas/order/'>
<!-- references to attached documents, because the hrefs do not appear

in the XML part, the receiving conversation controller knows to look
for them in the attachments-->

<a:Item href = ‘catalog’ />
<a:SignedOrder href = ‘order-form’ />

<!-- other content of the order -->
:::::::::::

</a:Order>
</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

-----------1234567890
Content-Type: application/msword
Content-Transfer-Encoding: binary
Content-ID:<order-form>
::::::: <!—the actual data, MIME encoded -->
-----------1234567890
Page 41 SFS Version 2.0

Content-Type:application/pdf
Content-ID:<catalog>
::::::: <!—the actual data, MIME encoded -->
-----------1234567890
Page 42 SFS Version 2.0

4 Conversation Definition Language CDL

4.1 Introduction
The goal of CDL is to provide a standard way of describing conversations, and thus to enable rich
interactions amongst services. These interactions include the introspection of services, the match-
making of services by service directories. CDL is used for specifying predefined conversations in
SFS, but also for specifying conversations by vertical and domain specific standards bodies or by
the participants of a specific eco-system.

A conversation specification in CDL is itself an XML-document. Using XML for specifying con-
versations has the big advantage that specifications are formal and can be easily exchanged e.g. in
introspection conversations and be interpreted by software. CDL describes interactions that con-
tain documents relevant for the business logic. When conversations described by CDL are
mapped to a specific transport protocol.

Figure 1: Business logic payload: CDL definitions

Projected description of conversations:

CDL describes a conversation from the point of view of a specific participant, i.e. it is a projected
description. A conversation definition done in CDL specifies all the incoming and outgoing docu-
ment for one of the participants in the conversations, normally for the one taking on the role of a
service provider. This definition is than distributed to everybody else interested in either provid-
ing the same type of service or in using the service. In order for a potential client of the service to
implement the conversation described for the server role, the client has to map the description to
his own role, a task easily achieved by a tool.

One specific service can participate in several conversations, either in several instances of the
same conversation at the same time, or by taking on different roles in different conversations.

ServiceBus & JESI

Business Logic

Conv.
Controller

Framework

ServiceBus & JESI

Business Logic

Conv.
Controller

Framework

Business Logic

Conv.
Controller

Framework

“Service” Application

ServiceBus & JESI

Business Logic

Conv.
Controller

Framework

Business Logic

Conv.
Controller

Framework

Transport

Business Logic

Conv.
Controller

Framework

Business Logic

Conv.
Controller

Messaging Software

“Service” Application

ServiceBus & JESI

Business Logic

Conv.
Controller

Framework

ServiceBus & JESI

Business Logic

Conv.
Controller

Framework

Business Logic

Conv.
Controller

Framework

“Client” Application

ServiceBus & JESI

Business Logic

Conv.
Controller

Framework

Business Logic

Conv.
Controller

Framework

Business Logic

Conv.
Controller

Framework

Business Logic

Conv.
Controller

Messaging Software

“Client” Application

Internet/Intranet

XML

Transport: HTTP

MIME/SOAP/XML

Transport: HTTP

XML Conversation

Transport

XML

Transport: HTTP

MIME/SOAP/XML

Transport: HTTP

SFS Messaging

CDL Definition
Page 43 SFS Version 2.0

Figure 2: Defining conversations for specific roles of a conversation

Above figure shows an eco-system with three participating e-services, some of them participating
in more than one conversation instance. All the conversations are two party conversations, with
each participating e-service being either in the role of the listener or initiator. The initiator is the
party that sends the first message in the conversation. Participant A is involved in two instances of
a ContractNegotiation conversation, each time in the role of the listener. B is involved in a Con-
tractNegotiatioin conversation, a Selling conversation, and a Gaming conversation, in the first
two conversation instances as an initiator (client for negotiation, byer), in the third one as the lis-
tener (gameserver).

By default, two party conversations get defined and published for the listener e-service (darker
colors in diagram). When initiator e-services get implemented they derive their conversation def-
inition from the published listener conversation definitions. In an eco-system all conversation def-
initions for the listener role should be published and registered in a service registry along with the
e-services realizing these conversations. Both, listener and initiator conversations carry the same
name, yet they can be distinguished by their initial interaction. Listener conversations have an ini-
tial interaction that is a Receive or a ReceiveSend interaction.

Content and limitations of the current CDL:

For two parties to communicate with each other the following elements have to be specified in
their conversation definitions:

A B
Conversation
definition of

ContractNeg
for server

(listener) role

Conversation
definition of

ContractNeg
for client

(initiator) role
Conversation
definition of

ContractNeg
for server

(listener) role

Conversation
definition of

Gaming
for gameserver

(listener) role

Conversation
definition of

Selling
for byer

(initiator) role

ContractNegotiation

ContractNegotiation Gaming

C
CDL

defines

participant

Conversation
definition of

ContractNeg
for client

(initiator) role

Conversation
definition of

Gaming
for gamer

(initiator) role

Conversation
definition of

Selling
for seller

(listener) role

Selling
Page 44 SFS Version 2.0

• the interactions that can occur between the two parties,
• the format and content of the documents exchanged in the interactions (i.e. their xml-

schemas),
• the possible orders of the interactions (i.e. the state machine that controls the conver-

sation).

The current version of CDL can only define two-party conversations. Conversations where more
than two participants are involved can be described by future extensions to CDL. Also not yet
included in the current CDL are time-outs between messages, transactions, and events.

The following sections of this chapter contain the specification of CDL and an example of a con-
versation definition.

4.2 The elements of CDL

4.2.1 Overview

Figure: UML model of the CDL language

Conversation

+name : String

Interaction

+id : ID
+InteractionType

: Enum

Transition

SendReceive ReceiveSend Send Receive

{disjoint, complete}

XMLDocumentType

+name : ID
+hrefSchema : uriReference

n

1..n

inbound document

n

1..n

outbound

n

1..ninbound

n

1..n outbound

n

1..n

outbound

n

1..n

inbound

n

1..1

SourceInteraction

n
1..1

DestinationInteraction

n

0..1

triggering document

DocumentGroup
1..1

1..1

contains

{Runtime: first one outbound
Document, then one inbound
document}

initialInteraction

1..1

{Runtime: first one inbound document,
then one outbound document}

{Runtime: just one document}

{Runtime: just one document}
Page 45 SFS Version 2.0

A conversation definition document in CDL essentially contains two parts:
• a list of possible interactions (and the documents they exchange)
• a list of the possible transitions between these interactions (i.e. the allowed orders of

these interactions).
The schemas of the documents exchanged are not part of the CDL specification document, they
are separate XML documents and are referenced by their URL in the interaction elements of the
conversation specification.

4.2.2 Interactions

In CDL, four types of interactions that can be specified. These are:
• Send: an interaction that contains exactly one message/document that is sent out (an

OutboundXMLDocument)
• Receive: an interaction that contains exactly one message/document that is received

(an InboundXMLDocument)
• SendReceive: an interaction where the participant first sends out a document and then

receives a document
• ReceiveSend: an interaction where the participant first receives a document and then

sends out a document
Interactions are always specified from the point of view of one participant, therefore we distin-
guish between inbound and outbound documents. For all the interactions the conversation specifi-
cation can list more than one possible inbound or outbound document. However, at runtime
exactly one document of all the possible documents in the list is exchanged. Send and Receive
interactions are one-way interactions.

The transition elements represent the possible orders of interactions, each transition element con-
taining one possible transition from one specific interaction (the SourceInteraction) to another
one (the DestinationInteraction). Because an interaction can list several possible documents to be
exchanged, a transition element also has to state for which document of the source interaction it is
valid (the TriggeringDocument). In case of the source interaction being a SendReceive or
ReceiveSend interaction, the triggering document has to refer to the second document exchanged.
A Default Transition or Exception Transition without a triggering document can be specified for
any of the defined or any unexpected documents.

In order to mark the beginning of the conversation, the conversation specification marks one
interaction as the initialInteraction. For a conversation specification to make sense, the interac-
tions and transitions should form a complete graph where all the interactions can be reached from
the initial interaction.

In the following we describe these elements into more detail.

4.2.3 Document Types

The interaction between service-consumer and service-provider is achieved through XML docu-

ment exchange1. A conversation definition language must be able to define all the input and out-
Page 46 SFS Version 2.0

put document types. The document type definitions refer to the schema that the document

corresponds1 to and also serve to declare an id for the document that can be used within the rest of
the conversation definition. For example, the following definition defines an input document that
conforms to a purchase order schema defined in PurchaseOrderRQ.xsd.

<InboundXMLDocument
hrefSchema="http://foo.org/PurchaseOrderRQ.xsd"
id="PurchaseOrderRQ">

</InboundXMLDocument>

In a conversation definition, the document types are declared within the interaction definitions.
There are two types of document type declarations in the conversation definitions depending on
whether the document is expected as input in an interaction (InboundXMLDocument) or whether
the document is produced as output in an interaction (OutboundXMLDocument).

4.2.4 CDL Interaction Definition

An interaction is an exchange of one or two messages between a service and its client. Currently
there are two types of interactions that are supported: one-way (Send interaction, Receive interac-
tion) and two-way (SendReceive interaction, ReceiveSend interaction).

One-way Interactions:

These interactions represent a single one-way message being sent or received by a participant.
There are two sub-types of one-way interactions: Receive, and Send. The Send interaction repre-
sents a message sent out by a participant, and on the other hand a Receive interaction represents a
message being received by a participant.

The following two interactions represent a Receive and a Send interaction. The following interac-
tion represents a simple Receive interaction that receives a purchase order.

<Interaction interactionType="Receive" id="PO">
<InboundXMLDocuments>

<InboundXMLDocument id="PurchaseOrderRQ"
hrefSchema=”http://foo.org/PurchaseOrderRQ.xsd”>

</InboundXMLDocument>
</InboundXMLDocuments>

</Interaction>

Note that in each of these interaction definitions, there is the ability to select one from a set of
incoming or outgoing documents. For example, a receive interaction can receive a document from
a possible set of documents, and a send interaction can be defined to send a document from a set

1. Binary attachments are also supported by SFS, yet they are not defined by the CDL of a conversation.
The ability to attach binary documents is specified in the XML schema for the payload, addresses this
issue (see also the Manifest tags in 3.1 “SFS Messages“).

1. CDL only supports XML schema specifications of payload, as schemas seem to become the prevailing
means of describing data exchanged on the internet. Therefore SFS compatible servers only have to sup-
port schemas. Existing DTD specifications can easily be translated into XML schemas.
Page 47 SFS Version 2.0

of documents. Therefore, the CDL of a conversation can define several Inbound- or Outbound-
XMLDocuments for one interaction. At execution time, only one of them can be sent or received.

An interactionType of Receive must be associated with InboundXMLDocuments. An interaction-
Type of Send must be associated with OutboundXMLDocuments.

Two-way Interactions:

Two-way interactions can have one of two forms: SendReceive or ReceiveSend corresponding to
whether the participant sent out a message for which it got a response (SendReceive) or whether
the participant responded to a request that it received (ReceiveSend).

ReceiveSend Interactions: Each such interaction is the logical unit of receiving a request and
then returning a response. The interaction is not complete until the response has been sent.

<Interaction interactionType="ReceiveSend" id="Quotation">

<InboundXMLDocuments>
<InboundXMLDocument id="PurchaseOrderRQ"

hrefSchema=”http://foo.org/PurchaseOrderRQ.xsd”>
</InboundXMLDocument>

</InboundXMLDocuments>
<OutboundXMLDocuments>

<OutboundXMLDocument" id="InvoiceRS"
hrefSchema="http://foo.org/InvoiceRS.xsd>

</OutboundXMLDocument>
</OutboundXMLDocuments>

</Interaction>

SendReceive Interaction: Each such interaction is the logical unit of sending a request and then
receiving a response. The interaction is not complete until the response has been received.

<Interaction interactionType="SendReceive" id="Payment">

<OutboundXMLDocuments>
<OutboundXMLDocument id="Receipt"

hrefSchema="http://foo.org/ReceiptRS.xsd">
</OutboundXMLDocument>

</OutboundXMLDocuments>

<InboundXMLDocuments>
<InboundXMLDocument" id="Payment"

hrefSchema="http://foo.org/Payment.xsd>
</InboundXMLDocument>

</InboundXMLDocuments>

</Interaction>

As with Send and Receive interactions, SendReceive and ReceiveSend interactions can specify
multiple inbound and outbound documents. At run time exactly one inbound and exactly one out-
Page 48 SFS Version 2.0

bound message from these sets will be exchanged. For example, the following is a definition of a
simple ReceiveSend interaction that has multiple inbound documents.

<Interaction interactionType="ReceiveSend" id="Start">

<InboundXMLDocuments>
<InboundXMLDocument id="LoginRQ"

hrefSchema="http://conv123.org/LoginRQ.xsd">
</InboundXMLDocument>
<InboundXMLDocument hrefSchema="RegistrationRQ.xsd"

id="RegistrationRQ">
</InboundXMLDocument>

</InboundXMLDocuments>
<OutboundXMLDocuments>

<OutboundXMLDocument id="ValidLoginRS"
hrefSchema="http://conv123.org/ValidLoginRS.xsd" >

</OutboundXMLDocument>
<OutboundXMLDocument id="RegistrationRS"

hrefSchema="http://conv123.org/RegistrationRS.xsd" >
</OutboundXMLDocument>

</OutboundXMLDocuments>

</Interaction>

Note that a conversation that breaks up this single interaction into separate interactions each with
a single incoming and a single outgoing document may not have the same semantics as the exam-
ple. In the example, the business logic may choose to change the outgoing document without
changing the definition of the conversation.

The Send interaction is the dual of the Receive interaction, and vice versa. Similarly, the SendRe-
ceive interaction is the dual of the ReceiveSend interaction and vice versa. The notion of duality is
important when two entities have to interact. Essentially, two or more entities can successfully
interact if the conversation definitions that the two entities use are duals of each other.

4.2.5 Transition:

A conversation can proceed from one interaction to another according to the legally defined inter-
actions in the service conversation definition document. The ordering amongst the interactions is
defined in the transition element (the attribute transitionType is optional for the basic transitions).

<Transition transitionType=”Basic”>
<SourceInteraction href="#Invoice"/>
<DestinationInteraction href="#Receipt"/>
<TriggeringDocument href=”#invoiceRS”/>

</Transition>

The SourceInteraction references an interaction that can precede the DestinationInteraction when
the conversation is executed. Similarly, the DestinationInteraction references one of the interac-
tions that can follow the SourceInteraction when the conversation is executed. All transitions
together thus specify all possible sequences of the interactions.
Page 49 SFS Version 2.0

The TriggeringDocument is an additional constraint on the transition, needed because interaction
specifications can list several possible documents to be exchanged. The TriggeringDocument ref-
erences which document must have been exchanged in order for this transition to happen.

Note that there is a correspondence between the triggering document and the Source interaction
definition. If the source interaction is a SendReceive interaction, the triggering document has to
be among the list of incoming documents that are defined in the InboundXMLDocuments group
in the interaction definition. Similarly, if the interaction is a ReceiveSend interaction, the trigger-
ing document has to be among the OutBoundXMLDocuments group. This restriction also holds
for Send and Receive interactions. That is, if the source interaction is a Receive interaction, the
triggering document has to be among the InboundXMLDocuments group that is defined in the
interaction.

Figure 3: Transitions with triggering documents

The figure above shows the generic relation ship between interactions, transitions and triggering
documents. Interactions are drawn as generic blocks with possible arrows representing the direc-
tion of the messages in the interaction. An arrow pointing to the right is a document that is
received, and an arrow pointing to the left is a document that is sent. Furthermore, the actions on
the left of the interaction box occur before the actions on the right of the box. Returning to the fig-
ure above, interaction I1 is a SendReceive Interaction that sends out one document and expects
one of two documents as replies. However on each of those possible replies, the next allowable
interaction can be different. Therefore, in the figure above, on receiving document B in Interac-
tion I1, the next possible interaction is interaction I2 and on receiving document C the next possi-
ble interaction is interaction I3.

In CDL 1.0 there are two special transitions: Default Transition and Exception Transition (see
section Exceptions). For each source interaction, the CDL definer can also specify one default
transition. This is a shortcut in case the same transition can be triggered by more than one trigger-

SendReceive
Interaction

I1

Send
Interaction

Receive
Interaction

I2 I3

Doc A
Doc B

Doc C

Doc EDoc D

Transition on Doc B Transition on Doc C
Page 50 SFS Version 2.0

ing document. This transition takes place if a document is received that is defined in the source
interaction yet that does not appear as a triggering document in any of the other defined transi-
tions for this source interaction. No TriggeringDocument is specified. There can be at most one
default transition definition per SourceInteraction. Default interactions are defined as follows:

<Transition transitionType=”default”>
<SourceInteraction href=”#Invoice”/>
<DestinationInteraction href=”#InvExpected”/>

</Transition>

4.2.6 Exceptions

Similarly to the default transition the exception transition does not define any triggering docu-
ment. Yet the exception transition happens when a document that is not expected at the current
interaction is received while executing the conversation. Excpetion interactions are defined as fol-
lows:

<Transition transitionType=”Exception”>
<SourceInteraction href=”#Invoice”/>
<DestinationInteraction href=”#InvExpected”/>

</Transition>

In this case, any document not specified in the SourceInteraction of “#Invoice” will result in a
transition to the interaction “#InvExpected”. These ExceptionTransitions are more likely to be
defined for Receive, ReceiveSend, and SendReceive interactions because some document
involved in the interaction potentially originates in another enterprise. Note that no Triggering-
Document is specified. There can be at most one exception transition definition per SourceInter-
action.

Exceptions occuring while handling an expected document and payload signalling bussines logic
exceptions are not treated specially in CDL. An exception is denoted simply as one of the outgo-
ing documents. The implementation at each end can treat the exception document as it chooses.
Consider for example a simple login interaction that accepts a login request (represented by Log-
inRQ.xsd) and returns a login response. In order to indicate that the login interaction can result in
an InvalidPasswordException, the interaction definition contains the definition of the InvalidPass-
wordException document as one of the possible responses to the LoginRQ document.

<Interaction interactionType="ReceiveSend" id="Start" >
<InboundXMLDocuments>
<InboundXMLDocument id="LoginRQ" hrefSchema="http://conv123.org/LoginRQ.xsd"/>

</InboundXMLDocuments>
<OutboundXMLDocuments>

<OutboundXMLDocument id="ValidLoginRS"
hrefSchema="http://conv123.org/ValidLoginRS.xsd"/>

<OutboundXMLDocument id="InvalidPassword”
hrefSchema="http://conv123.org/BadPasswordExcp.xsd" />

</OutboundXMLDocuments>
</Interaction>
Page 51 SFS Version 2.0

4.2.7 Well-formed Conversation Definitions

Conversation definitions have one initial interaction, denoted by the attribute initialInteraction of
the element Conversation. The possible end-states of the conversation are given by all those inter-
actions that do not appear as a source interaction in any transition. Under normal circumstances a
conversation instance is expected to execute until one of these interactions has been reached, upon
which the conversation is terminated. Any interaction other than the initial interaction has to
appear in at least on transition as the destionation interaction. Transitions of type default or excep-
tion are specified at most once per source interaction. Conversations fulfilling these conditions are
considered as well-formed. Only well-formed conversations should be published and used.

4.3 Complete Conversation Example
This section contains a complete definition of a simple conversation. It is annotated to explain the
various features.

There are two parties involved in this conversation: the Listener and (in this case the service pro-
vider) the Initiator (in this case the client).

<?xml version="1.0" encoding="UTF-8"?>
<Conversation xmlns=”http://www.e-speak.net/schema/conversation”

name="http://conv123.org/conv123" initialInteraction=”#Start”>

The name is the shared piece of information needed by both parties so they realize the same con-
versation type in their service implementation. This name would also appear in the SFS messages
exchanged between the two parties, and in the service descriptor of the listener party. Here, we’ve
shown a URL, but a reference to a UDDI tModel would serve as well.

<ConversationInteractions>

The conversation definition begins by specifying the set of interactions involved. Each has a type
and a set of incoming and outgoing messages that depend on the type.

<Interaction interactionType="ReceiveSend" id="Start">

The first interaction in the conversation, denoted by initialInteraction in the Conversa-
tion tag is normally of type Receive or ReceiveSend when the conversation is defined from the
perspective of the service provider, in this case from the perspective of the listener. The Initiator
need only reverse the sense of all tags to understand its role in the conversation. In this case, the
Initiator knows that it starts the conversation with the complementary interactionType, here Sen-
dReceive. The type of the interaction also determines the document group that occurs within the
interaction.

<InboundXMLDocuments>
<InboundXMLDocument id="LoginRQ"

hrefSchema=”http://conv123.org/LoginRQ.xsd” />
<InboundXMLDocument id="RegistrationRQ"

hrefSchema="http://conv123.org/RegistrationRQ.xsd" />
</InboundXMLDocuments>
Page 52 SFS Version 2.0

The Listener is expecting a login or a registration request. The Initiator can parse the conversation
to determine that it must send a message of one of these types.

<OutboundXMLDocuments>
<OutboundXMLDocument id="ValidLoginRS”

hrefSchema="http://conv123.org/ValidLoginRS.xsd">
</OutboundXMLDocument>
<OutboundXMLDocument id="RegistrationRS"

hrefSchema=”http://conv123.org/RegistrationRS.xsd”>
</OutboundXMLDocument>
<OutboundXMLDocuments id=”InvalidLoginRS”

hrefSchema=”http://conv123.org/InvalidLoginRS.xsd”>
</OutboundXMLDocument>

</OutboundXMLDocuments>

Documents of one of three types can be returned, one denoting a successful login, another an
unsuccessful one, and one a successful registration. While the information about an unsuccessful
login could be carried in the body of a single type of document, using different document types
allows exception handling to be defined as part of the conversation.

The Listener also accepts a registration request from new users and returns a RegistrationRS doc-
ument. In this case, the return document contains any necessary error messages.

</Interaction>

That ends the first interaction. The rest of the definitions follow the same pattern.

<Interaction interactionType="ReceiveSend" id="LoggedIn">
<InboundXMLDocuments>

<InboundXMLDocument id="CatalogRQ"
hrefSchema="http://conv123.org/CatalogRQ.xsd">

</InboundXMLDocument>
</InboundXMLDocuments>
<OutboundXMLDocuments>

<OutboundXMLDocument id="CatalogRS"
hrefSchema="http://conv123.org/CatalogRS.xsd">

</OutboundXMLDocument>
</OutboundXMLDocuments>

</Interaction>

<Interaction interactionType="ReceiveSend" id="Registered">
<InboundXMLDocuments>

<InboundXMLDocument id="LoginRQ"
hrefSchema="http://conv123.org/LoginRQ.xsd">

</InboundXMLDocument>
</InboundXMLDocuments>
<OutboundXMLDocuments>

<OutboundXMLDocument id="ValidLoginRS"
hrefSchema="http://conv123.org/ValidLoginRS.xsd">

</OutboundXMLDocument>
</OutboundXMLDocuments>

</Interaction>

<Interaction interactionType="ReceiveSend" id="Catalogued">
<InboundXMLDocuments>
<InboundXMLDocument id="QuoteRQ"
Page 53 SFS Version 2.0

hrefSchema="http://conv123.org/QuoteRQ.xsd">
</InboundXMLDocument>

</InboundXMLDocuments>
<OutboundXMLDocuments>

<OutboundXMLDocument id="QuoteRS"
hrefSchema="http://conv123.org/QuoteRS.xsd">

</OutboundXMLDocument>
</OutboundXMLDocuments>

</Interaction>

<Interaction interactionType="ReceiveSend" id="Quotation">
<InboundXMLDocuments>

<InboundXMLDocument id="PurchaseOrderRQ"
hrefSchema="http://conv123.org/PORQ.xsd">

</InboundXMLDocument>
</InboundXMLDocuments>
<OutboundXMLDocuments>

<OutboundXMLDocument id="InvoiceRS"
hrefSchema="http://conv123.org/InvoiceRS.xsd">

</OutboundXMLDocument>
</OutboundXMLDocuments>

</Interaction>

<Interaction interactionType="SendReceive" id="Invoiced">
<OutboundXMLDocuments>

<OutboundXMLDocument id="ConfirmationRS"
hrefSchema="http://conv123.org/ConfirmRS.xsd" >

</OutboundXMLDocument>
</OutboundXMLDocuments>

<InboundXMLDocuments>
<InboundXMLDocument id="AuthorizePaymentRQ"
hrefSchema="http://conv123.org/AuthPaymentRQ.xsd">

</InboundXMLDocument>
</InboundXMLDocuments>

</Interaction>

<Interaction interactionType="ReceiveSend" id="end">

<InboundXMLDocuments/>
<OutboundXMLDocuments/>

</Interaction>

</ConversationInteractions>

The next part of the definition of the conversation is the actions that occur when different docu-
ment types are received or sent. It is this part that imposes the ordering. In essence, the interac-
tions define the interface, while the transitions define the protocol.

<ConversationTransitions>

Most transitions have three parts, a source, a destination, and a document type that triggers the
transaction. Note that it is a document type, not an interaction that triggers the transition. That’s
why we are free to combine several interactions into one with several incoming and outgoing doc-
ument types without changing the semantics of the conversation.

<Transition>
Page 54 SFS Version 2.0

<SourceInteraction href="#Start"/>
<DestinationInteraction href="#LoggedIn"/>
<TriggeringDocument href="#ValidLoginRS"/>

</Transition>

When the conversation is in the Start interaction, the Initiator will switch to the LoggedIn interac-
tion when a ValidLoginRS message is received. The Listener will do the same when it sends a
message of this type. In this way, both parties are guaranteed to be in a compatible state, reducing
the chance of having badly formed conversations.

<Transition>
<SourceInteraction href="#Start"/>
<DestinationInteraction href="#BadLogin"/>
<TriggeringDocument href="#InvalidLoginRS"/>

</Transition>

The above transition illustrates how nicely exceptions fit into the CDL; each simply becomes a
different transition. We can also handle all other possible document types in the ineraction quite
simply.

<Transition transitionType=”Exception”>
<SourceInteraction href="#Start"/>
<DestinationInteraction href="#Start"/>

</Transition>

<Transition>
<SourceInteraction href="#Start"/>
<DestinationInteraction href="#Registered"/>
<TriggeringDocument href="#RegistrationRS"/>

</Transition>

The remainder of the transition should be clear.

<Transition>
<SourceInteraction href="#Registered"/>
<DestinationInteraction href="#LoggedIn"/>
<TriggeringDocument href="#ValidLoginRS"/>

</Transition>
<Transition>

<SourceInteraction href="#LoggedIn"/>
<DestinationInteraction href="#Catalogued"/>
<TriggeringDocument href="#CatalogRS"/>

</Transition>
<Transition>

<SourceInteraction href="#Catalogued"/>
<DestinationInteraction href="#Quotation"/>
<TriggeringDocument href="#QuoteRS"/>

</Transition>
<Transition>

<SourceInteraction href="#Quotation"/>
<DestinationInteraction href="#Invoiced"/>
<TriggeringDocument href="#InvoiceRS"/>

</Transition>
<Transition>

<SourceInteraction href="#Invoiced"/>
<DestinationInteraction href="#end"/>
Page 55 SFS Version 2.0

<TriggeringDocument href="#ConfirmationRS"/>
</Transition>

</ConversationTransitions>
</Conversation>

4.4 CDL Element Details
This section summarizes the various elements of a CDL description and their constraints:

Conversation tag:

Attributes of Conversation element:

ConversationInteractions tag:

Interaction tag:

Attributes of Interaction:

Tag Name Required Occurs Semantics Contains

Conversation Yes Once This is the root element of
the conversation defini-
tion document

ConversationInteractions,
ConversationTransitions

Attribute Required Occurs Semantics Value

InitialInteraction Yes Once Indicates the initial inter-
action

href

Name Yes Once Reference to conversation String, URN or tModel
key

Tag Name Required Occurs Semantics Contains

ConversationIn-
teractions

Yes Once Encapsulates the set of
interactions that this ser-
vice can have.

Interaction

Tag Name Required Occurs Semantics Contains

Interaction Yes Many
times

Denotes one interaction InboundXMLDocuments,
OutboundXMLDocu-
ments

Attribute Required Occurs Semantics Value
Page 56 SFS Version 2.0

InboundXMLDocuments tag:

InboundXMLDocument tag:

Attributes of InboundXMLDocument:

OutboundXMLDocuments tag:

OutboundXMLDocument tag:

interactionType Yes Once Type of interaction Receive, Send, Receive-
Send, SendReceive

ID Yes Once Reference to this interac-
tion

Tag Name Required Occurs Semantics Contains

InboundXML-
Documents

Yes Once per
Receive, Sen-
dReceive or
ReceiveSend
interaction

Lists the possible incoming
documents in this interaction
(at runtime only of the possi-
ble ones will be chosen).

InboundXML-
Document

Tag Name Required Occurs Semantics Contains

InboundXML-
Document

Yes One or many per Inbound-
XMLDocuments tag

References the type of
document to be exchanged

Attribute Required Occurs Semantics Value

hrefSchema Yes Once Schema for document href

Id Yes Once Root element of document String

Tag Name Required Occurs Semantics Contains

OutboundXML-
Documents

Yes Once per Send,
SendReceive or
ReceiveSend
interaction

Lists the possible incoming
documents in this interaction
(at runtime only of the possi-
ble ones will be chosen).

InboundXML-
Document

Tag Name Required Occurs Semantics Contains

OutboundXML-
Document

Yes One or many per Out-
boundXMLDocuments tag

References the type of
document to be exchanged
Page 57 SFS Version 2.0

Attributes of OutboundXMLDocument:

ConversationTransitions tag:

Transition tag:

Attributes of Transition:

SourceInteraction tag:

Attributes of SourceInteraction:

Attribute Required Occurs Semantics Value

hrefSchema Yes Once Schema for document href

Id Yes Once Root element of document String

Tag Name Required Occurs Semantics Contains

Conversation-
Transitions

Yes Once This defines the set of all ordering
transitions (defining all possible
sequences of the interactions of this
conversations)

Transition

Tag Name Required Occurs Semantics Contains

Transition Yes Zero,
once or
more

Defines each ordering
transition

SourceInteraction, Desti-
nationInteraction,
TriggeringDocument

Attribute Required Occurs Semantics Value

transitionType Only if it is not a
basic transition

Once Denotes the kind
of transition.

Basic, Default, Exception.
If the attribute is omitted,
the value of the attribute is
“Basic”.

Tag Name Required Occurs Semantics Contains

SourceInterac-
tion

Yes Once per
Transi-
tion

Identifies the interaction in the con-
versation can precede the Destina-
tionInteraction

Attribute Required Occurs Semantics Value

href Yes Once Reference to Interaction href
Page 58 SFS Version 2.0

DestinationInteraction tag:

Attributes of DestinationInteraction:

TriggeringDocument

Attributes of TriggerDocument:

The schema of the CDL language can be found in the appendix.

Tag Name Required Occurs Semantics Contains

DestinationInter-
action

Yes Once per
Transi-
tion

Identifies the interaction in the conversa-
tion can follow the SourceInteraction

Attribute Required Occurs Semantics Value

href Yes Once Reference to Interaction href

Tag Name Required Occurs Semantics Contains

TriggeringDocu-
ment

Yes Optional Identifies a document that must have been
exchanged as part of the SourceInterac-
tion in order for the transition to be
allowed to happen

Attribute Required Occurs Semantics Value

href Yes Once Reference to either an InboundXMLDoc-
ument (if SourceInteraction of type
Receive or SendReceive) or an Out-
boundXMLDocument (if SourceInterac-
tion of type Send or ReceiveSend) of the
SourceInteraction

href
Page 59 SFS Version 2.0

5 Vocabularies, Service Description and Introspection
One of the most important predefined conversations in SFS is introspection. Every service in SFS
supports the introspection conversation. The introspecton conversations allow a potential service
consumer to ask another service about its properties and interfaces. The introspection covnersa-
tions return a service descriptor describing the properties of the service, and the conversation def-
initions for all the conversations supported by the service.

The service descriptor contains meta-information about the service. Some of the content of the
service descriptor is domain specific. In order to define the content of the domain specific parts of
the descriptor, vocabularies are specified.

In this chapter we first introduce vocabularies. Then we specify the structure of the service
descriptor, and finally specify the introspection conversations.

5.1 Vocabularies

5.1.1 Purpose of vocabulary definitions

Many of the meta-data elements in a service descriptor or an offer are predefined by SFS. Their
names, properties and possible values are defined by XML-schemas in the sections about service
descriptors and offers. However, parts of the service descriptor and offers are domain dependent.
These parts are, respectively, the service description and offer description. The attributes of the
domain specific parts are defined in vocabularies. An offer or a service descriptor references the
vocabularies it uses, and can use all the terms defined in these vocabularies for the offer descrip-
tion or service description. Because vocabularies are domain specific, they cannot be defined by
SFS, but must be defined by the service providers or by domain specific standards bodies.

Figure 1: Vocabularies used in offers and service descriptors

Service Descriptor Document
of Otto’sPaper Service:
-- name, version
-- service description
-- supported conversations
- provider information
- registration information
- credentials, legal

Otto’s
Paper Service Service Registry

Match Maker

@Otto

Company Z

Offer for Otto’sPaper
Service:
-- id, timestamp
-- offer description
-- supported conversations
- provider information
- availability, pricing
- contract information

Service B

Company X

Service B introspects Otto’s
Paper Service, receiving its

descriptor document
Otto registers an offer for
Otto’s Paper Service at a

match-making service

Paper Vocabulary:
-- product type
- paper description
- catalog identifier
- various constraints

between these terms
Page 60 SFS Version 2.0

In above figure, we have a service called “Otto’s Paper Service”, hosted by @Otto. @Otto regis-
ters an offer for this service with the service registry of company Z, where it can be queried by
potential consumers. Furthermore, any entity that has the address of the service (e.g. after finding
it at a match-maker or from previous use) can introspect the service and get back a service
descriptor. Both, the service descriptor and the offer contain a description part whose meta-ele-
ments are defined by the vocabulary “Paper Vocabulary”.

Attributes and Vocabularies

An attribute is a meta-data element. It consist of the attribute name and the attriute value. In SFS,
an attribute describes one specific aspect or property of a service or an offer.

A vocabulary defines the attributes that may or must be used in a service or offer description. The
notion of a vocabulary definition language as introduced here builds on some of the notions that
are prevalent in RDF schemas, and XML schemas. Essentially, a vocabulary is a framework for
defining meta-data that can be used in service descriptions. XML-schemas define the type system
and the structure of each meta-data entry. XML schemas define a rich extensible type system.
XML schemas, however, only define the syntactic structure of the XML documents. We augment
XML schemas with a simple constraint language to express simple constraints (such as some ele-
ments have to be non-null, references have to be valid, sum of line items plus tax should be total
in PO, etc.) in order to quarantee the well formedness of a description.

Requirements for a vocabulary definition language

A language for defining vocabularies must fulfill the following requirements:
• It should be capable of defining the metadata for a wide variety of services. This means that if

different vertical industries want to define their metadata for the services in their industry in
different ways, the mechanism should allow that.

• It should allow the metadata to evolve in a gradual manner without changes to the backends
or the enterprises that are using old versions of the metadata definition. This allows specific
advertisers to differentiate their descriptions of the goods/services they sell with characteris-
tics that enhance their advantage over their competitors.

• It should be compatible with existing metadata definition mechanisms so that existing web
services can be advertised at matchmakers and discovered.

• It should identify portions of the metadata that are searchable.
• It should identify the portions of the offers that are visible to entities other than the creator of

the offer. More specifically, it should provide for the specification of security rules that.
• It should support a rich type mechanism for modeling the services that it describes.

There are many ways to define the structure of meta-data. Standards bodies such as W3C are con-
sidering recommendations such as RDF (Resource Description Framework), that provide very
flexible ways to define the meta-data for web resources. However, the RDF schemas themselves
are not quite appropriate for defining the meta-data for e-services, and offers that e-services regis-
ter with matchmakers. The main reason for this is that RDF is more about representing the rela-
tionships between web resources than the data types of individual attributes and their
relationships.
Page 61 SFS Version 2.0

5.1.2 Defining Vocabularies

The vocabulary definition language in SFS uses XML schemas to define vocabularies. The
descriptions using these vocabularies are XML documents. Essentially, the relationship between
vocabularies and any service or offer description is akin to the relationship between a table
schema definition and rows in the table in database terms. The vocabulary defines the attributes
that the description must or may specify. In addition, it also specifies the types of the values that
any named attribute of the description can take.

The vocabulary definition language in SFS defines for each attribute:
• the name of the attribute
• the valuespace of the attribute defined by a datatype
• properties of the attribute

Furthermore, the vocabulary definition language defines the constraints that apply accross several
attributes.

Vocabulary:

Each vocabulary is defined by one XML schema, containing one top-level element. This top-level
element represents the vocabulary, its name is the name of the vocabulary. Each vocabulary
declared in an XML schema has an associated XML namespace. The namespace is declared by a
URI value of the targetNS attribute of a schema document. The URI value space includes URL's,
URN's and other URI derivatives. For example:

<?xml version='1.0'?>
<schema targetNS="http://vocabularies.foo.com/paper">

<element name=”PaperVocabulary”>
<complexType content = "elementOnly">
<--XML elements and XML attributes specifying the attributes of the vocabulary-->
<element name="catalog-identifier" type=”string” required=”yes”/>
<element name= "paper-description" type=”paper-description-type”/>
<attribute name= "supplier-part-number" type=”number”/>

</complexType>
</element>
<complexType name='paper-description-type'>

<sequence>
<element ref=”paper-desc” datatype=”string”/>
<element ref=”paper-size” datatype=”integer”/>
<element ref=”width” datatype=”integer”/>
<element ref=”length” datatype=”integer”/>

</sequence>
</complexType>

</schema>

The vocabularies used in a description are referenced with their namespaces. Different vocabular-
ies can be referenced in the same description as each XML fragment of the description can have
its own namespace and thus its own vocabulary.

The meta-data elements or vocabulary attributes are defined as XML elements or attributes of the
vocabulary element. In above example we only define a vocabulary that has only three attributes:
catalog-identifier, paper-description, and supplier-part-number. The first meta-data element is
Page 62 SFS Version 2.0

defined as an XML element of a simple data type, the second one as an XML element of a com-
plex data type, and the third one as an XML attribute.

Datatypes of vocabulary attributes:

The type system used by vocabularies is the type system defined by the XML Schema data type
recommendation and is available at http://www.w3d.org/TR/xmlschema-1/.

The datatypes defined can be put into one of the following categories:
• Simple: Simple data types are no further structured. XML Schema defines all the basic

ones, and lets the user derive additional simple datatypes.
• User defined aggregate: XML Schema allows the user to define compex datatypes,

consisting of several other complex or simple datatypes.

Properties of vocabulary attributes:

The vocabulary can also specify properties for the attributes. Possible properties are:
• default: contains the default value for the attribute, has to conform to the type speci-

fied for the attribute.
• required: a boolean that determines whether every this attribute has to be present in

every description that uses this vocabulary.
• ismultivalued: a boolean that indicates whether the value of the attribute is a collec-

tions of values all of the same data type. Data types themselves can also be defined as
lists. It is up to the user to choose between the two possibilities: multivalued attribute
or a single valued attribute with a list as data type.

• isreference: a boolean that indicates whether the value of this attribute is a reference.
If it is a reference it might be of XML Schema type URL, yet it might also be of a spe-
cial user defined reference type. If a data type is a reference or not is important for
consistency checks - references need to be resolvable, i.e. they need to point to a valid
and accessable resource.

5.1.3 Schema of the vocabulary definition language

The schema of the vocabulary definition language as presented above is very similar to the
schema for XML schema, as vocabularies are in essence schemas with some restrictions. The
schema is described in details in the appendix of SFS 2.0.

5.1.4 Constraints of Attribute Values

Unrestricted schemas are limited in their ability to capture the meta-data of services. For instance,
consider an offer description to sell a good that contains a reference to the owner of the good. We
may want to ensure that the reference is a well-formed reference and not a dangling reference.
The actual semantics of dangling depends on the type and representation of the reference. Using
just schemas, it is not easy to specify the requirement of well-formedness. Another example is in
the case where we want the portions of offers in a particular vocabulary to be unique to the offer
relative to the other offers in the same vocabulary. In general, one can envisage a user specified
constraint on the vocabulary that enforces an arbitrary well formedness constraint on each offer
Page 63 SFS Version 2.0

that is registered in the vocabulary. We should note that the additional constraints that optional in
the definition of a vocabulary, and in general, any XML schema qualifies as a vocabulary defini-
tion. At the outset, early implementations may support schemas that are flat, that is, those that do
not contain any nested schemas, but the specification allows for arbitrary schemas with additional
constraints as the basis for defining vocabularies.

The constraints that can be defined in vocabularies come in two types:
• Integrity constraints that validate the description using this vocabulary internally.
• External constraints that are imposed by the vocabulary definer in order to ensure the proper

interoperation of offer or services descriptions created with it and registered in it.
These constraints are also prevalent in traditional databases and are well accepted.

Constraint specification based on horn clauses

We can use any standard language for encoding the constraints, examples include KIF, horn
clauses, etc. The DTD presented here encodes the constraints as a sequence atoms that have to
evaluate to true given a sequence of rules. These rules can be interpreted as horn clauses for the
purpose of evaluating whether the atoms are true. In addition, it allows the specification of certain
well-defined constraints captured by the element wdConstraint. A more detailed discussion of the
constraint language will be added.

<?xml version='1.0' encoding='us-ascii'?>
<!ELEMENT constraint (goal*, rule*)>
<!ELEMENT goal (atom | batom)>
<!ELEMENT rule (head, body)>
<!ELEMENT head (atom)>
<!ELEMENT body (batom*)>
<!ELEMENT atom (predicate, args)>
<!ELEMENT batom (atom | wdConstraint)>
<!ELEMENT wdConstraint (atom)>
<!ELEMENT args (term*)>
<!ELEMENT term (constant | complexTerm| variable)>
<!ELEMENT variable #PCDATA>
<!ELEMENT constant #PCDATA>
<!ELEMENT complexTerm (functor, args)>
<!ELEMENT functor #PCDATA>
<!ELEMENT predicate #PCDATA>

Constraint specification based on first-order logic:

An alternative way of expressing constraints in a vocabulary is by using first-order logic expres-
sions. The following DTD for the extension of a schema by constraints represents the notion that
the constraint is a list of first-order expressions. A more detailed discussion of the constraint lan-
guage will be added.

<?xml version='1.0' encoding='us-ascii'?>
<!ELEMENT constraint (expression)>
<!ELEMENT expression (and | or | not | forall | exist | simplePredicate)>
<!ELEMENT and (expression*)>
<!ELEMENT or (expression*)>
<!ELEMENT not (expression)>
<!ELEMENT forall (iterator, iteratorQuery, expression)>
Page 64 SFS Version 2.0

<!ELEMENT exist (iterator, iteratorQuery, expression)>
<!ELEMENT simplePredicate (name, (subject| combinedSubject) ,

(object | combinedObject))>
<!ELEMENT combinedSubject (iterator, query)>
<!ELEMENT combinedObject (iterator, query)>
<!ELEMENT subject (iterator, query)>
<!ELEMENT object (iterator, query, constant)>
<!ELEMENT iterator #PCDATA>
<!ELEMENT query #PCDATA>
<!ELEMENT name #PCDATA>
<!ELEMENT constant #PCDATA>

5.2 Example of a Vocabulary
The following vocabulary defines the meta-data needed for describing and registering paper sell-
ers:

<?xml version='1.0'?>
<schema targetNS="urn:schemas-paperXchange-com:paperOffer.xsd"

xmlns="http://www.w3.org/1999/09/24-xmlschema-1/structures.xsd"
paper:xmlns=”http://paper.foo.com/paper_terminology.xsd>

<element name=”PaperVocabulary”>
<complexType content = "elementOnly">
<element name="catalog-identifier" type=”string” required=”yes”/>
<element name="supplier-name" type=”URL” required=”yes” isreference=”yes”/>
<element name= "supplier-part-number" type=”integer”/>
<element name=”product-type” type=”paper:prodType” />
<element name= "paper-description" type=”paper-description-type”/>
<element name= "paper-pricing" type=”paper-pricing-type”/>
<element name= "classification" type=”classificationType”/>

</complexType>
<element>
<constraint>

<goal> <batom> <wdConstraint> <atom>
<predicate>unique</predicate>
<args> <term>

<variable>$paper/catalog-identifier</variable>
</term> </args>

</atom> </wdConstraint> </batom> </goal>
</constraint>
<constraint>

<goal> <batom> <wdConstraint> <atom>
<predicate>private</predicate>
<args>

<term>
<variable>$paper/paper-pricing</variable>

</term>
</args>

</atom> </wdConstraint> </batom> </goal>
</constraint>

<complexType name='paper-description-type' content=”elementOnly”>
<element name=”paper-desc” type=”string”/>
<element name=”paper-size” type=”integer”/>
<element name=”width” type=”integer”/>
<element name=”length” type=”integer”/>

</complexType>
Page 65 SFS Version 2.0

<complexType name=’paper-pricing-type’ content=”elementOnly”>
<element name=”list-price” />
<element name=”list-uom”/>

</complexType>

<simpleType name="classType" base = “string”>
<enumeration value=”UN/SPSC”/>
<enumeration value=”NAICS”/>

</simpleType>

<complexType name=”classificationType” content=”empty”>
<attribute name=”classificationType” type=”classType”/>

</complextType>

</schema>

Essentially, the above schema defines the notion of a vocabulary for a paper seller. The name of
the vocabulary is “paper”, and it defines the structures required for registering a paper seller
description. It specifies that the catalog identifier is required for any paper seller to be registered
with the matchmaker and the constraint is that the catalog identifier has to be unique. The vocab-
ulary also indicates that the paper descriptions that are registered are such that the width of the
papers are greater than 6 units. It also says that the supplier name must be a reference to an entity
that should point to an entity registered in the business entity vocabulary.

5.3 Service Descriptor
The purpose of a service descriptor is to provide some of the meta-data of the service. This meta-
data provides information relating to the description of the service, some of the binding informa-
tion that determines the transport level protocols that the service supports, some of the security
related information needed to inter-operate with the service, etc. The service descriptor document
uses some of the concepts that emerging standards such as UDDI use in order to describe services.
For instance, the notion of business Service, binding Template, and tModels are used by the ser-
vice descriptor document in order to express the meta-data of the service.

This section represents the current thinking of the service descriptor and may change before
the final version of the SFS 2.0.

5.3.1 Elements of the Descriptor document

The service descriptor includes all parameters necessary for describing an e-speak service. It con-
sists of the following six parts:

• Service Information: Includes details such as service name, version, description, and
type

• Service Provider Information: Includes information about the business that is host-
ing the service.

• Service conversation Definition: Includes the definition of the conversation or a ref-
erence to the definition.
Page 66 SFS Version 2.0

The following represents an example of a service descriptor document that captures some of this
information.

<ServiceDescriptor xmlns:xsi="http://www.w3.org/2000/10/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="C:\sriram\sdlcdlpdl\SDLSchema.xsd">

<ServiceProperty>
<AuthInfo />
<BusinessService serviceKey="serviceKey" businessKey="businessKey">

<Name />
<Description />
<BindingTemplates>

<BindingTemplate>
<AccessPoint urlType="http" />
<tModelInstanceDetails>

<tModelInstanceInfo tModelKey="tModelKey" lang="cdl">
<Description />
<ConversationDefinition id="ConvDef1" href="#ConvDef1" />

</tModelInstanceInfo>
</tModelInstanceDetails>

</BindingTemplate>
</BindingTemplates>
<CategoryBag>

<KeyedReference tModelKey="" keyName="" keyValue="" />
</CategoryBag>

</BusinessService>
</ServiceProperty>
<ServiceVariable>

<ServiceURL />
<ServiceURI />

</ServiceVariable>
<ConversationDefinitions>
<ConversationDefinition id="ConvDef1" href="http://www.convserv.com/CDL1.xml" />
<ConversationDefinition id="ConvDef2" href="http://www.convserv.com/CDL2.xml" />

</ConversationDefinitions>
</ServiceDescriptor>

5.4 Registering Vocabularies, Conversation Definitions and Services

Registration of vocabularies

Vocabularies are made available as generally accessable resources on the web, e.g. on the web
sites of the standard bodies defining the vocabularies. In addition, all the vocabularies used for
service or offer descriptions are registered with the service registry.

More details about vocabulary registration will be added.

Registration of conversation definitions

More details about conversation definition registration will be added.

Registration of services

In order to facilitate dynamic discovery, services are registered with service registries, also called
match makers. In SFS, this is done by using offers and the match-making conversations. If a ser-
Page 67 SFS Version 2.0

vice provider wants to make a service available for discovery, the provider creates an offer for the
service and registers this offer with a match-maker. If a consumer needs a service, he either que-
ries a match-maker for existing offers to sell services, or creates an offer to buy a service and reg-
isters this offer with the match-maker.

The content of an offer and the match-making conversations are specified in the match maker
chapter of SFS 2.0.

5.5 Introspection Conversations
There are two conversations that allow services to get information about another service they are
interested in. These two conversations support the dynamic interaction by allowing a functionality
that is similar to the notion of introspection in traditional object systems. SFS defines two conver-
sations for introspection. The ServicePropertyIntrospection conversation provides general infor-
mation about the service, the conversation it supports, its provider, and how to access the service.
The ServiceConversationIntrospection conversation returns the complete description of the con-
versations as CDL documents.

Every service in SFS has to provide these too conversations. For practical purposes, the server
hosting the service might actually take care of these conversations - the service provider simply
registers the service descriptor with the e-speak compliant server when deploying a service on it.

5.5.1 Roles and scenarios for the introspection conversations:

Figure 2: Introspection Conversations

Interested
Consumer

My
Service

etc…

Conversation ServicePropertyIntrospection

GetServiceProperty

ServicePropertySheet

Conversation ServiceConversationIntrospection
GetConversationDefinitions

ConversationDefinitions

Business conversation, as defined in one of the conversation
definitions returned in ConversationDefinitions

Service Discovery,
Gets address of MyService

1

2

3

6

7

5

4

Page 68 SFS Version 2.0

During a typical introspection conversation between a client (service-consumer) and a service
(service-provider), communication proceeds as follows (see also figure):
1. A client (interested consumer in above figure) discovers a service on the network.
2. It generates a service descriptor request message and passes it to the service. This message is

an XML document that represents the client's request for the service descriptor.
3. The service receives this request from the client. It generates a service descriptor response

message and passes it back to the client. This message is an XML document that contains all
service descriptor information.

4. The client receives this response from the service. It examines the information contained in
the descriptor and makes a decision as to whether or not it will use the service.

5. If the client decides to use the service, it generates a service conversation definition request
message and passes it to the service. This message is an XML document that represents the
client's request for the conversation definitions of the service.

6. The service receives this request from the client. It generates a service conversation defini-
tions response message and passes it back to the client. This message is an XML document
that contains all service conversation definition information.

7. The client receives this response from the client, and at this point may begin its interaction
with the service.

5.5.2 ServiceDescriptorIntrospection Conversation

The ServiceDescriptorIntrospectio conversation is a very simple conversation. It just consists of
one single ReceiveSend interaction. The interaction contains one possible inbound document and
one possible outbound document:

• GetServiceDescriptor: requests information about the service
• ServiceDescriptor: returns the available information about the service as defined in

the service descriptor specification.

The following CDL defines the ServiceDescriptorIntrospection from the point of view of the
service that is being inquired:

<?xml version="1.0" ?>
<Conversation name="ServiceDescriptorIntrospection"

xmlns=”http://www.e-speak.net/schema/conversation”
initialInteraction=”#ServiceDescriptorIntrospection” >

<ConversationInteractions>
<Interaction id="ServiceDescriptorIntrospection"

interactionType="ReceiveSend" >
<InboundXMLDocuments>

<InboundXMLDocument id="GetServiceDescriptor"
hrefSchema="GetServiceDescriptor.xsd" />

</InboundXMLDocuments>
<OutboundXMLDocuments>

<OutboundXMLDocument id="ServiceDescriptor"
hrefSchema="ServiceDescriptor.xsd" />

</OutboundXMLDocuments>
</Interaction>

</ConversationInteractions>
<ConversationTransitions>
</ConversationTransitions>
Page 69 SFS Version 2.0

</Conversation>

The following is the schema of the GetServiceDescriptor document:

<?xml version="1.0" ?>
<schema name=”GetServiceDescriptor”

targetNamespace="http://www.e-peak.net/schema/SFS”
xmlns="http://www.w3.org/1999/XMLSchema"
xmlns:sfsc=”http://www.e-speak.net/ServiceFrameWorkCommand>

<element name=”GetServiceDescriptor” type=”sfsc:GetServiceDescriptorType”/>
<!—Define empty GetServiceDescriptorType --!>
<complexType name=” GetServiceDescriptorType” content=’empty’>
</complexType>

</schema>

The following example shows the business payload of a GetServiceDescriptor message:

<SOAP-ENV:Body>
<GetServiceDescriptor xmlns=”” >
</GetServiceDescriptor>

</SOAP-ENV:Body>

The schema of the ServiceDescriptorSheet document has already been specified in section 5.3
“Service Descriptor“.

5.5.3 ServiceConversationIntrospection Conversation

The ServiceConversationIntrospection conversation is a very simple conversation. It just consists
of one single ReceiveSend interaction. The interaction contains one possible inbound document
and one possible outbound document:

• GetConversationDefinitions: requests detailed information about the conversations
of the service

• ConversationDefinitions: returns the CDL specification of all the conversations sup-

ported. 1

The following CDL defines the ServiceConversationIntrospection from the point of view of the
service that is being inquired:

<?xml version="1.0" ?>
<Conversation name="ServiceConversationIntrospection"

xmlns=”http://www.e-speak.net/schema/conversation”
initialInteraction=”#ServiceConversationIntrospection” >

<ConversationInteractions>

1. The ConversationDefinitions message returns all the CDL documents, yet it does not contain the schemas
of the payload documents referenced in the CDL. The CDL document provides the URLs of the sche-
mas.
Page 70 SFS Version 2.0

<Interaction id="ServiceConversationIntrospection"
interactionType="ReceiveSend" >

<InboundXMLDocuments>
<InboundXMLDocument id="GetConversationDefinitions"

hrefSchema="GetConversationDefinitions.xsd" />
</InboundXMLDocuments>
<OutboundXMLDocuments>

<OutboundXMLDocument id="ConversationDefinitions"
hrefSchema="ConversationDefinitions.xsd" />

</OutboundXMLDocuments>
</Interaction>

</ConversationInteractions>
<ConversationTransitions>
</ConversationTransitions>

</Conversation>

The following is the schema of the GetConversationDefinitions document:

<?xml version="1.0" ?>
<schema name=”GetConversationDefinitions”

targetNamespace="http://www.e-peak.net/schema/SFS”
xmlns="http://www.w3.org/1999/XMLSchema"
xmlns:sfsc=”http://www.e-speak.net/ServiceFrameWorkCommand>

<element name=”GetConversationDefinitions”
type=”sfsc:GetConversationDefinitions”/>

<!—Define empty GetConversationDefinitionsType --!>
<complexType name=” GetConversationDefinitionsType” content=’empty’>
</complexType>

</schema>

The following example shows the business payload of a GetConversationDefinitions message:

<SOAP-ENV:Body>
<GetConversationDefinitions xmlns=”” >
</GetConversationDefinitions>

</SOAP-ENV:Body>

The following is the schema of the ConversationDefinitions document:

<?xml version="1.0" ?>
<schema name=”ConversationDefinitions”

targetNamespace="http://www.e-peak.net/schema/SFS”
xmlns="http://www.w3.org/1999/XMLSchema”
xmlns:conv=”http://www.e-speak.net/schema/conversation>

<element name=”ConversationDefinitions”
type=”sfsc:ConversationDefinitionsType”>

<complexType name=”ConversationDefinitionsType”>
<sequence>

<element name=”Conversations” minOccurs=”1” maxOccurs=”1”>
<complexType>

<element name=ConversationDefinition
minOccurs=”1” maxOccurs=”unbounded”
dt:schema=”conv:ConversationDefinition”/>

</complexType>
Page 71 SFS Version 2.0

</element>
</sequence>

</complexType>
</element>

</schema>

An example for the ConversationDefinitions document can be found in the appendix.
Page 72 SFS Version 2.0

6 Match Maker Specification

6.1 Introduction
As mentioned earlier, SFS supports dynamic discovery of e-services. In this chapter we describe
the SFS concepts related to registering and matchmaking, how service registries can support
match-making, and the specification of the registration and match-making (lookup) conversa-
tions.

Matchmaking is the process of putting service providers and service consumers in contact with
each other. The matchmaker is where services that want to be dynamically discovered register
themselves, and where services that want to find other services send their request for matches.
Some of the services advertising themselves through the matchmaker will be simple end-provid-
ers, while others may be brokers, auction houses and marketplaces which offer a locale for nego-
tiating with and selecting among many potential providers. The matchmaker is a very simple,
foundational, service on which the rest of the service framework rests, and should be as neutral as
possible. It is the web-spider search engine of the e-services world. Other value-added services
can take output from matchmakers to assist a service consumer in their selection of a business
partner - they could provide recommendations over the set of results based on quality data, past
performance metrics and prices, current state of the market etc -however, this is outside the scope
of the SFS, but is instead a set of value-added trust services which can be built on top of it. For
example, a service consumer wishing to place an order for DRAM may send a message to the
matchmaker, and receive pointers to direct suppliers such as INTEL, an industry exchange such
as E-HITEX and excess inventory auction sites such as fastparts.com.

Matchmaking is the process of connecting up the buyers with sellers, or service-consumers and
providers. The matchmaker is where services that want to be dynamically discovered register
themselves (i.e., their advertisements, or offers), and where services that want to dynamically find
other services send their requests for matches. Essentially, the matchmaker itself is a service that
participates in the services framework. Matchmaker and service registry are used as interchange-
able terms within SFS.

Tasks of the matchmaker service

Service providers can register their offers, i.e. information about their services with the match-
maker. In addition to service provider data, matchmakers may contain registrations from service
consumers who wish to be dynamically discovered by providers.

A matchmaker receives a lookup request containing a service description. The service description
specifies the nature of the service the initiator wishes to trade and can potentially express con-
straints associated to each of the aspects of the description. The job of the matchmaker is to
return:

• compatible service descriptions registered by other service providers or service con-
sumer along with contact their information

• compatible agreement templates, each with associated negotiation locales (see chapter
on negotiation)
Page 73 SFS Version 2.0

• compatible contract template, each with associated market governance services (see
chapter on contract)

The matchmaker returns all service descriptions that are compatible with the service description
specified. Two service descriptions are compatible if they can refer to at least an instantiation of
the service that is common to them.

As far as agreement templates and contract templates are concerned, the matchmaker returns all
agreement templates and contract template that specify that they are able to reach agreements on
the given service

Usage scenario of a match maker service

At the outset, we outline the high-level steps for dynamic discovery of services. It should be noted
that these steps are meant as a guideline and are included here to provide a grounding for some of
the concepts introduced in this chapter.

1. Service provider gets reference to a service registry acting as matchmaker.
2. Service provider optionally establishes a contract with matchmaker for hosting its offers.
3. Services are registered by their providers with a service registry using an offer that contains at

least a short service description. This step uses the registration conversation.
4. If the service description uses a vocabulary not yet known to the service registry, the vocabu-

lary also has to be registered with the service registry. This step uses the vocabulary creation
conversation. However, we expect vocabularies to be created by standards bodies or by opera-
tors of matchmakers.

5. Consumers gets reference to a service registry acting as matchmaker.
6. Consumers optionally establishes a contract with matchmaker for hosting its offers.
7. Consumers request from the service registry a domain specific vocabulary, using the querying

the matchmaker for vocabularies.
8. The consumer then queries the service registry for suitable services, the queries are formu-

lated using the vocabulary. This step uses the the look-up conversation.
9. Optionally the consumer now introspects the services it has been referred to by the service

registry, using the introspection conversations. Part of the introspection may be to receive the
conversations supported by the service, in case the requied conversations have not been part
of the conditions in the look-up.

10. Once the consumer has found a suitable service, it starts interacting with it using the conversa-
tions supported by the service.

On-line and off-line matchmaking:

Matchmakers interact with their clients in the following two manners: on-line and off-line.
Matchmakers that support on-line interactions respond to queries in a synchronous manner. That
is, when a client submits a matching request, the matchmaker returns the list of matched service
providers immediately. However, a matchmaker that supports off-line interactions allows the
query from the client to be executed in some time frame specified by the client. Such interactions
are especially relevant in the case of complex matching mechanisms where matching is sophisti-
cated. Furthermore, the off-line matching ability also allows the matchmaker to support discon-
Page 74 SFS Version 2.0

nected and mobile clients. Off-line matchmakers provide mechanisms that allow entities to
interact using event notification mechanisms. Essentially, one can define the notion of event
vocabularies to categorise various kinds of events. Event subscribers subscribe to events by send-
ing queries in a vocabulary to the matchmaker that further constrain the events. Event publishers
publish events by sending offers registrations to the matchmaker that also conform to a vocabu-
lary. Events and off-line matchmaking are not yet part of SFS 2.0, SFS 2.0 does not offer any pre-
defined publish-subscribe service or messaging.

Simple Match Making

In simple matching, the eventual buyer or consumer drives the matching process. For example, in
the case of a simple catalog management system each entry in the catalog can be treated as an
offer to sell the good or service described in the catalog. The client who is interested in buying
goods browses the catalog and picks a supplier. Another example is when the buyer initiates an
offer to buy some good or service and providers of the good may bid on the offer and the buyer
may choose amongst the bidders in some manner. Such a protocol is popular in a business to busi-
ness scenario, where a company interested in purchasing some good creates a request for quotes
(RFQ) that suppliers respond to. The above example assumes that the suppliers register their con-
tent with the matchmaker in order to make up the catalog.

This model of operation has challenges because suppliers have to update a catalog that is hosted
by a matchmaker. If the suppliers want to maintain the portions of their offers under their control,
they need only register their location with the matchmaker that can get the contents of their offers
from the registered location. Such a mode of operation, where the catalog is hosted at the supplier
is mandated when one uses a framework such as UDDI. On the other hand, there are situations
where greater efficiencies are enabled by having the matchmaker host the offers on behalf of the
clients. For instance, if the service provider and clients want to be mobile and still make use of the
matchmaking facility, it may be more appropriate for the matchmaker to host the offers. In the
rest of this section, we will not distinguish between the case where the matchmaker hosts the
offers and the case where the offers are hosted by the offer creator unless specifically stated. We
will assume that even if the offers are hosted by the offer creator, they conform to exactly the
same schema as the case when the offers are hosted by the matchmaker. When the offers are
hosted by the offer creator, the matchmaker acts like a search engine on the web today. However,
on the other hand, when the offers are hosted by the matchmaker, it can support a additional fea-
tures such as mobility, disconnected operation, etc.

6.2 Offers

6.2.1 Overview

The matchmaker can be viewed as managing offers that serve as the basis of communication
between service providers and consumers. Services that want to dynamically interact with other
services do so because they are interested in either providing services to, or consuming services
from, other services in the economy. Offers themselves generally have two major flavors: offers
to buy (i.e. to consume or use another service) and offers to sell (i.e. to be used by other services).
Page 75 SFS Version 2.0

In addition, the offers are also classified according to the vocabulary that they conform to. The
vocabulary provides a framework for specifying the metadata of services. The vocabulary mecha-
nism allows offer creators to specify the information that they want to specify in their offers. Fur-
thermore, the vocabularies also allow clients who are searching for offers to structure their queries
in a manner so as to find the service of interest to them.

There may be other requirements from the matchmaker that affect the information that is con-
veyed in an offer or a lookup request. Some of these requirements are:

1. Security: The security mechanisms required by the matchmaker can be quite comprehensive.
For instance, buyers who want to create offers to buy may want to restrict the visibility of this
offer to buy to the list of preferred vendors. Furthermore, the security component enforces the rule
that only the owner of any offer can change the contents of the offer if permitted by the terms and
conditions between the matchmaker and the service provider. The creator of the offer defines the
security rules to be used when matching this offer against a query issued by a client.

2. Matchmaker Business Rules: The matchmaker provides a service to both service providers
(by hosting their offers), and clients (by searching for their requirements). Therefore, it may bill
its clients for the services provided. The billing rules can be quite sophisticated as the matchmaker
may charge its clients in many different ways. For example, the matchmaker may charge the ser-
vice providers a fee depending on how many times the service provider's offer was forwarded as a
potential match to a client's request. In some other deployments, the matchmaker may choose to
not bill for hosting ads or performing queries. In addition to billing, the contract between the cre-
ator of an offer and the matchmaker can stipulate the length of time the offer is going to be hosted
by the matchmaker. The offer that is created in the matchmaker can optionally refer to a business
contract between the creator of the offer and the matchmaker that outlines the terms and condi-
tions for hosting the offer at the matchmaker. These business rules may also apply to queries that
are sent to the matchmaker especially if the queries are off-line queries.

3. Offer Owner Reference: When a client requests a match from the matchmaker, it expects in
return a reference to the service provider that created the offer. If the matchmaker is part of a
financial intermediary, the financial intermediary may present itself as the owner of all the offers
that are available on it.

4. Query Owner Reference: The matchmaker can require query owners to include a reference to
themselves in the queries that they send to the matchmaker. This is required for the off-line oper-
ation of the matchmaker.

5. Offer Owner Business Rules: Matchmakers can allow creators of offers some control over
how their offer is to be managed by the matchmaker. For instance, suppose enterprise A creates
an offer to sell pencils. Furthermore, suppose another enterprise searches for pencil providers in
order to buy pencils worth $100,000 (some large amount). Enterprise A can ask the matchmaker
to send a message to enterprise A if a potential buyer is interested in pencils in either a large
enough quantity or dollar value. Essentially, these rules can be thought of as being a generalized
event subscription rules. Another use of these business rules is to incorporate inventory, pricing,
and QOS parameters into the offer.
Page 76 SFS Version 2.0

6. Query Owner Business Rules: Just as creators of offers can associate business rules with their
offers, query owners can also associate business rules with their queries that can trigger messages
to the client when some condition is satisfied. These are particularly relevant when issues such as
inventory, price, and QOS parameters are parts of the query.

7. Offer Owner Preferences: The creator of the offer can choose amongst alternative clients
when certain conditions are met. For instance, if the offer is an offer to sell steel, and the supplier
has only 100 tons of steel, and two clients want to buy 75 tons of steel each, the supplier has to
choose whose query she would rather fulfill as she cannot fulfill both. These preferences associ-
ated with offers allow the creator of the offer to specify the rules for selecting one client over
another in case of conflict.

8. Query Owner Preferences: The initiator of a query may also specify preferences that she
wants satisfied. These preferences provide a way for the client to choose amongst alternative pro-
viders whose offers match her query based on criteria that she defines.

9. Owner interfaces: Each offer also has a reference to the list of interfaces that the owner of the
offer supports in relation to this interface offer.

6.2.2 Detailed Structure of Offers

In this section we define the various elements of the XML document for an offer. In the descrip-
tion we mostly refer to offers to sell, yet the same elements need to be specified when creating
offers to buy. The elements are grouped into public elements and private elements. Private ele-
ments contain information only relevant to the matchmaker service, this information is never sent
to the consumer, and naturally, can never be searched by the consumer. Public elements contain
the information available to the consumer.

The matchmaker associates a unique identifier with each offer that it hosts. This identifier can be
requested by the clients when looking up offers and be used to refer to them later. Also, the
matchmaker may pass along these identifiers to other parties when it wants to provide them with a
reference to the offer.

In the following description we have grouped the elements into general information about an
offer, information about provider, and special information and rules used for matchmaking.

General information about the offer:

Tag Name Required? Occurs Description Semantics

<offer-description> Yes
Public
Searchable

Once Describes the offer Public searchable
attributes of offer
Page 77 SFS Version 2.0

The offer-description element contains the describes the service to which this offer belongs. The
service description uses the attributes defined in vocabularies, an offer might use several vocabu-
laries at the same time. The content of the offer-description element can therefore be any XML
document that conforms to the selected vocabularies. The offer-description element is one of the
basic elements used in the lookup queries.

The service description in the offer can be compared to the service description in the service
descriptor. They are both based on vocabularies, and they both serve the same purpose, to give
further information about a service. Yet they might not be the same, they might have different
attributes, there content may overlap or one description may be a subset of the other one, or they
may even use different vocabularies.

The offer-info element contains other public information that clients who find the offer can
peruse. For instance, in the case of a catalog, the public information can contain pictures of the
item that is being sold.

The offerID element is associated with the offer by the matchmaker. It is not specified by the cre-
ator. However, for the consumer it looks like any other public searchable element of the offer.

The element offer-type determines the type of offer. For instance, if this offer is an offer to sell in
an auction, additional information about the auction can be specified here. Clients who discover
the offer can inspect this element to determine the kind of offer.

The time-of-creation element contains a timestampt giving the time the offer was registered with
the service registry.

The offer validity element determines the period of time for which the offer is valid. If unspeci-
fied, the offer is assumed to be valid until it is explicitly removed by the creator of the offer. Cli-
ents who discover this offer can inspect this field in order to determine the length of time for
which the offer is valid.

<offer-info> No
Public, Non-
searchable

Once Other public info
associated with
offer

Public non-searchable
attributes of offer

<offerID> No,
Public,
Searchable

Once The unique id asso-
ciated with offer by
matchmaker

<offer-type> No
Public, Non-
searchable

Once The type of offer This captures the kind
of auction/exchange bid
this offer is.

<time-of-creation> No Once Time stamp of cre-
ation of offer

<offer-validity> No Once Time line for
which offer is valid
Page 78 SFS Version 2.0

Interface and provider information::

The owner field provides a reference to the creator of the offer, i.e. the provider of the service. It
may, for example, point to a URL of the creator. This element is also a public element, but is not
searchable. It is a required element within each offer, because the match-maker typically returns
the contents of this element within an offer as the result of a lookup.

The offer-interfaces element lists the conversation supported by the service.

The matchmaker contract element contains a reference to the contract between the creator of the
offer and the matchmaker. This element is also optional. It is likely to be present in complex
matchmakers and likely to be absent in simple matchmakers.

The private-info element contains information that is private to the owner of the offer and is
associated with the offer. The creator of the offer can interpret this in any way she pleases. This
information is typically in addition to the security information and is optional. Other clients who
find this offer do not get to see this information.

Special elements for match-making

Currently, the concrete syntax (schemas) for some of these elements is not defined by SFS. It is
up to the matchmaking service to define which syntax it wants to use for these fields. It is
assumed that a matchmaking service might provide more than one possible syntax for some of the
fields, and the service provider can use the once most appropriate for his kind of offer.

Tag Name Required? Occurs Description Semantics

<owner> Yes
Public, Non-
searchable

Once Owner of offer. Reference to owner,
can be url, etc.

<offer-interfaces> Yes
Public, Non-
searchable

Once Conversations sup-
ported by the ser-
vice advertised in
the offer

List of conversation
names

<matchmaker-contract> No,
Private

Once Contract between
matchmaker and
creator of offer

This contract contains
the terms and condi-
tions for hosting the
offer.

<private-info> No
Private

Once Private info associ-
ated with offer

Private info that the
creator can associate
with this offer.
Page 79 SFS Version 2.0

Also some of these elements are dynamic in nature, i.e. they need to get updated very frequently.
There are three possible ways to do this:

• Modify-offer conversation: whenever the element changes, the provider notifies the
matchmaker using the modify-offer conversation.

• Events: whenever the element changes, the provider notifies the machmaker by send-
ing an event over a publish-subscribe mechanism (currently not supported in SFS)

• Callbacks: whenever the machmaker needs to know the value of the element, it asks
the provider for the up-to-date value using a conversation predefined by the match-
maker. SFS currently does not define this conversation, nor how this conversation is
described in the offer. It is up to the matchmaking service to specify the mechanisms it
wants to use.

The availability element of the offer determines the mechanism by which the owner of the offer
determines the current availability of the service or good being offered for sale. In the case of
goods, the availability refers to the inventory. However, in the case of services, the availability
can refer to the current load and incorporate QOS parameters. Service providers can register call-
backs that the matchmaker can invoke when client requests depend on the availability.

The pricing element of the offer determines the mechanism by which the owner of the offer
determines the current price of the service or good being sold. The service provider can associate
interaction with its pricing module in order to determine the price. For instance, if this were an
offer to sell airline tickets, the pricing can depend on when the airline ticket is being purchased.

Tag Name Required? Occurs Description Semantics

<availability> No Once Availability crite-
ria

Rules that determine
availability criteria.

<pricing> No Once Pricing criteria Pricing rules associ-
ated with this offer.

<fulfillment> No Once Fulfillment rules Has criterion for fulfill-
ment

<owner-rules> No,
Private

Once Rules that the cre-
ator associates with
the offer

The matchmaker
enforces these rules

<contract-templates> No, Public Once Templates of
potential contracts
that can be reached
with owner of offer

These are templates of
contracts that can be
reached amongst the e-
services in eco-system.

<agreement-templates> No, Public Once Agreement tem-
plates that govern
this offer

These templates form
the basis of the start of
negotiations

<owner-preferences> No
Private

Once Preferences of the
owner

These are rules that
specify conflict resolu-
tion strategies.
Page 80 SFS Version 2.0

The fullfillment element describes when and how this offer is going to be fulfilled (especially
useful if physical goods are going to be shipped). It may, for example, have a link to the owner
that can determine when the owner can fulfill the request.

The owner-rules element contains, among other things, the security information associated with
this offer. The security element contains the visibility rules that the creator of the offer wants to
associate with the offer to sell. For instance, the creator of the offer may want to make the offer
visible to clients with a credit rating of 'B' or better, or HP employees. If a service provider does
not associate any security information with an offer, it is assumed that there are no security
restrictions, and the offer can be made visible to any client who sends a lookup request that
matches the offer.

In addition, the creator of the offer can associate other business rules with the offer. For instance,
these could specify additional conditions required by the owner for a match, or could specify con-
ditions under which some message is sent to the owner of the offer. These rules are especially use-
ful in complex matchmaking. For instance, in an auctioning engine, the rules could specify some
of the rules that govern the auction.

The contract-templates element contains the templates of contracts that can be reached amongst
the e-services that are participating in the eco-system for which the matchmaker is a registry. The
actual contents of this element can contain references to the actual contract template documents if
they are registered with the matchmaker. The reader is referred to the section on the contract for-
mation and maintenance in SFS part II for details of the contract template.

The agreement-templates element contains various agreement templates that can be used by the
parties in order to negotiate terms and conditions of their interaction. This specifies the different
parameters of the negotiation, e.g., product type, price, supply date etc. Some of the parameters
will be constrained within the template while others may be completely open. The agreement tem-
plate is decided at the matchmaking stage - matchmaking is the process by which one party
locates other parties with agreement templates compatible with their needs.

The owner preferences provides rules for conflict resolution. Suppose for instance that two cli-
ents want to buy some quantity of some good that cannot be simultaneously satisfied by the ser-
vice provider, the owner preferences can dictate which client's lookup request the service provider
would rather satisfy. Again, this element is more likely to be used in a complex matchmaker such
as a commodity exchange.

6.3 Match Making Conversations
The following conversation definitions only support one vocabulary per offer. All of the conver-
sations specified below consist of exactly one ReceiveSend interaction. We have therefore
ommitted the various CDL definitions for the conversations.
Page 81 SFS Version 2.0

on 2.0
Page 82 SFS Versi

6.3.1 Creating a business relationship with a matchmaker

The business relationship with a matchmaker is established using the negotiation and contract for-
mation framework discussed in part II of the SFS. A service that needs to register at a matchmaker
either has a reference to a matchmaker, or, it can search for a matchmaker at other matchmakers.
The recursion ends at a root matchmaker such as HPs developer village hub.

6.3.2 Registration Conversations

There are three registration conversations for offers which all consist of one ReceiveSend intrac-
tion with exactly one possible inbound and one possible outbound document:
• Register an Offer:

- inbound document: offer
- outbount document: offer-reply

• Modify an Offer:
- inbound document: offer-modify
- outbount document: offer-reply

• Retract an Offer:
- inbound document: offer-retract
- outbount document: offer-reply

In the following sections we specify the XML Schemas of these messages.

XML document: Register an Offer

Services register offers with matchmakers using the by sending the matchmaker offer documents.
The schema for the offers looks as follows:

The top level schema for the offer registration message looks as follows (for further details see
previous chapter on offers):

<element name="offer" >
<complexType content=”elementOnly” model=”open”>
<element name="offer-description"/>
<element name="offer-info"/>
<element name="owner"/>
<element name="owner-interfaces"/>
<element name="availability"/>
<element name="pricing"/>
<element name="fulfillment"/>
<element name="private-info"/>
<element name="matchmaker-contract"/>
<element name=”matchmaker-rules”/>
<element name="owner-rules"/>
<element name =”contract-templates” />
<element name=”agreement-templates” />
<element name="owner-preferences"/>
<element name="time-of-creation" />
<element name="validity"/>
<element name="offerID"/>
<element name="offerType"/>

</complextype>
</element>

The precise contents of the some of the elements such as the availability and fulfillment tags can
be determined by the matchmaking service. In the description element of an offer, one can include
any XML document that conforms to a particular vocabulary. The schemas used in the descrip-
tions are found in schema repositories or in the matchmaker. If there are multiple XML docu-
ments that correspond to different vocabularies, the service offer will be registered in all the
vocabularies, and any client will be able to search for the service in any of those vocabularies.

XML document:Modify Offer

The modify offer request modifies an existing offer registered with a matchmaker. Clients may
use this message to modify any aspect of the offer that is allowed according to the terms and con-
ditions reached between the client and the matchmaker. In essence, the offer modify message
sends another offer to the matchmaker to replace the existing offer. The result of sending an offer-
modify message is another offer-reply message . In essence, the offer-modify message has the fol-
lowing schema.

<element name="offer-modify">
<complexType content=”elementOnly” model=”open”>

<element name="offer"/>
<element name="offerID"/>

</complexType>
</element>

XML document:Retract Offer

The offer-retract document can be sent by the creator of the offer in order to retract a previously
registered offer. The structure of this document looks as follows:

<element name="offer-retract" >
<complexType content=”elementOnly” model=”open”>

<element name="offerID"/>
</complexType>

</element>

Both the offer-retract and the offer-modify messages receive an offer-reply document as a reply
that indicates whether the message was successfully processed.

XML document: Reply to an offer

The matchmaker replies to registration requests with an offer-reply document. This offer-reply
document typically contains an offerID that the client who created the offer can use in order to
make other changes to the offer.

<element name="offer-reply">
<complexType content=”elementOnly” model=”open”>

<element name="status"/>
<element name="offerID"/>

</complexType>
</element>
Page 83 SFS Version 2.0

The status element determines, for instance whether offer was accepted by the matchmaker. The
matchmaker can reject offers for a variety of reasons, some of which are:

• The offer document is not well formed. For example, some of the required elements
may be missing, etc.

• The offer document does not comply with the contract under which it has been sent.

The offerID can be used by the client for subsequent requests to the matchmaker for modifying
the contents of an offer.

6.3.3 Lookup Conversation and Queries

The lookup conversation consists of only one ReceiveSend intraction with extacly one inbound
document (lookup-request) and one outbound document (lookup-reply).

Structure of Lookup Request

Lookup requests to the matchmaker have the following parts:

1. The constraints and preferences that make up the query (given by the vocabulary and by the
various searchable elements of the offer schema).

2. The contract with the matchmaker under which the query is being executed, especially if this is
an off-line query.

3. The business rules of the client issuing the query.
4. The reference to the client making the lookup request.

The various elements in the lookup request are:

Tag Name Required? Occurs Description Semantics

<query> Yes Once The query Contains the constraints
and preferences of user.

<matchmakercontract> Yes Once Contract with
matchmaker

<owner> Yes Once The owner of the
query

<owner-rules> No Once Rules associated
with this query

<validity> No Once The time period for
which the query is
valid.

<notification-method> No Once The nofitication
mechanism
Page 84 SFS Version 2.0

The query element represents the constraints and preferences of the query that the client uses to
find offers. This essentially contains a document that conforms to the ESXQL schema [1]. In
addition, it may have certain elements such as quantity, that represents the number of items being
ordered. There can be a sequence of constraint elements that make up the query, and these can
represent a more complex query that can be used in the context of combinatorial matching, etc.
The query can also specify preferences that further refines the query by specifying additional
requirements that offer or the owner of the offer may have. This allows clients to specify, for
example, conditions such as given two potential offers, the client would rather consider the offer
that has earlier shipping dates. Note that this is not just a min or max operation. Since this element
represents the query itself, it is required.

The matchmakercontract element represents the contract that the client has with the match-
maker. For example, this allows the matchmaker to bill for the services it provides to the clients.

The owner element provides a reference to the query-owner so that the matchmaker can reply to
the lookup request at a subsequent time, or forward the reference to service providers.

The owner-rules element provides a mechanism for clients to associate other rules that can affect
the outcome of potential matches. For example, they can associate conditional callbacks that
allow the clients to verify the contents of the offer before accepting it as a potential match.

If the query is an off-line query, the client can specify the time-line associated with the reply in
the validity element.

If the query is off-line, the notification-method element has the notification method for notifying
the owner. This allows the owner of the query to get off-band notifications such as e-mail, cell-
phone calls, etc.

Query element of the lookup-request

The schema for the query element looks as follows:
<?xml version="1.0"?>
<schema xmlns='http://www.w3.org/1999/XMLSchema'

xmlns:ES-CORE='http://www.e-speak.net/Schema/core/'
targetNamespace='http://www.e-speak.net/Schema/core/'>

<element name='query' minOccurs='0' maxOccurs='1'>
<complexType>
<!--the vocabulaies used in the query, if not present, use the Base Vocabulary-->
<element name='vocabulary' minOccurs='0' maxOccurs='unbounded' content='empty'>

<complexType>
<!-- the prefix. If not presented, the current vocab is the default vocab-

ulary -->
<attribute name='prefix' type='string' use='optional'/>
<!-- the name (e.g. URL) of the vocabulary -->
<attribute name='src' type='string'/>

</complexType>
</element>

<!-- result specifies the output of the query -->
<element name='result' minOccurs='0' maxOccurs='1'> </element>
Page 85 SFS Version 2.0

<!-- the constraint -->
<element name='where' type='constraintType' minOccurs='1' maxOccurs='1'/>
<complexType name='constaintType'>

<element name='condition' type='string'/>
</complexType>

</schema>

The essential parts of the schema for queries above are the following:
• The vocabularies that define the definitions of the attribute names in descriptions

against with the query is run against.
• The result that is expected from the query. Essentially, the result element allows the

searchers to define the part of the offer that they want returned as a result of executing
the query.

• The where element that captures the constraint that the results to the query satisfy.

In essence, the query element defined here is similar to standard query languages such as SQL,
XQL, etc. In essence, the vocabulary definitions are akin to table definitions and the list of vocab-
ularies are similar to the from clause in SQL queries. The result element of a query is similar to
the select clause in SQL queries, and the where element is similar to the where clause in SQL
queries.

The following is an example of a query for a service that offers letter size paper that costs less
than 25 US dollars per unit.

<lookup>
<query xmlns="http://www.e-speak.net/Schema/core" >

<vocabulary prefix="pv" name="paper-vocab"/>
<result>$offer/owner</result>

<where>
<condition>

<and>
<and>

<equals>
<left>pv:paper-description/paper-size</left>
<right>'letter'</right>

</equals>
<lessThan>
<left>pv:paper-description/paper-price/list-price</left>
<right>25</right>
<lessThan>

</and>
<equals>
<left>pv:paper-description/paper-price/currency</left>
<right>'usd'</right>
</equals>

</condition>
</where>

</query>
<owner></owner>
<validity></validity>
</lookup>

Structure of Lookup Reply
Page 86 SFS Version 2.0

The reply to a lookup request depends on the lookup request. In a generic lookup request, the cli-
ent typically wants references to the service providers that match the constraints and preferences
expressed in the lookup request. If the lookup request is an on-line lookup request, the reply will
contain the result of the lookup. However, if the lookup request is an off-line lookup request, the
reply will contain a lookupID that can be used by the client to subsequently determine the status
of the lookup request.

<element name="lookup-reply">
<complexType content=”elementOnly” model=”open”>

<element name="result"/>
<element name="lookupID"/>

</complexType>
</element>

For instance, the lookup request asked for the references to the owners to the offers that matched
the request for paper. Therefore, the reply from the matchmaker may look as follows:

<lookup-reply>
<result>

<esurl>es://server.acme-paper.com:8080/paperseller</esurl>
<url>http://server.roadrunner.com:80/ps</url>

</result>
</lookup-reply>

The client can inspect any aspect of the offer that is public.
Page 87 SFS Version 2.0

7 Transactions
In this chapter, we introduce the problem of transactions over the open internet. The transaction
problem for web services should first be limited to providing atomicity and not the other proper-
ties that transactionality in traditional distributed applications typically provide.

7.1 Introduction

The problem is to ensure two-party as well as multi-party atomicity on the Internet. The parties in-
volved are e-services that may be owned by different organizations and composed dynamically.
The challenge is to implement activities (or transactions) that span multiple e-services and still be
atomic (either they happen entirely or not at all). As an example, consider the following three par-
ties: a manufacturer, a supplier, and a shipment service. The manufacturer orders parts at the sup-
plier and then organizes for these parts to be shipped by the shipment service. Figure 1 illustrates
this scenario.

The manufacturer only wants to order the parts if shipment is possible, and vice versa. That is,
the total order-shipment activity should be atomic. The atomicity should protect against failures
(an e-service goes down) as well as user-level issues (shipping is impossible).

Each service typically has its own notion of transaction. These local (or internal) transactions
update the data within a service. We can view the support for transactions as a composition
mechanism for these local transactions to create a global (or public) transaction that have these
local transactions as constituent parts. Traditional transactions usually satisfy consistency,
isolation, and durability in addition to atomicity (ACID transactions). Initially, we are primarily
concerned with providing the atomicity property for global transactions. We discuss two different
ways to achieve global atomicity from local atomicity: two-phase commit and compensation. We
also discuss ways to express the underlying protocols in terms of conversations. Using
conversations allows us to make the protocols explicit rather than hard-wired, and we can
(potentially) have multiple protocols co-exists in a system of e-services.

Figure 1. Three-party interaction between e-services

supplier

shipment

manufacturer

order

invoice

delivery info

ack
Page 88 SFS Version 2.0

More specifically, the document is organized as follows. We first discuss the basics of two-
phase commit and compensation. Then we touch upon various issues that arise when applying
either two-phase commit or compensation in an Internet context. Finally we describe how two-
phase commit and conversations play together with conversations and CDL.

7.2 Two-Phase Commit and XA

Overview

The standard solution to the atomicity problem, with multiple transaction participants, is the two-
phase commit protocol. This is a two-round protocol in which a transaction coordinator takes votes
among all transaction participants. If all participants vote yes, and therefore promise that they will
be able to commit (i.e. make durable) the transaction results, the coordinator determines the trans-
action’s outcome to be commit, and tells all participants to commit the transaction (this is the sec-
ond round). If a participant votes no, or if the coordinator suspects a participant to have crashed,
the coordinator determines the outcome to be abort, and informs all participants to abort the trans-

action. An example for a two-phase commit protocol is XA1, which is the standard interface that
transaction participants, such as databases and message queues, implement in tightly coupled ob-
ject systems in order to participate in two-phase commit protocols.

Discussion

Two-phase commit and XA are standard means to achieve multi-party atomicity within an enter-
prise. The near universal support for XA makes it attractive to leverage XA into any standardiza-
tion effort. The transaction participants in a global transaction would then be the per-service
transaction coordinators who use XA to control local, intra-service transactions. The resulting (glo-
bal) protocol would be a hierarchical two-phase commit protocol, where a (global) transaction co-
ordinator would control a number of sub-ordinate transaction coordinators. This notion of

hierarchical two-phase commit is at the core of the TIP protocol 2.

The main problem with using two-phase commit and XA on a global scale is that transaction
participants (services) must hold locks on a transaction’s data until the transaction terminates
(abort or commit). Since the participants are independent services, the running time of a transaction
is unpredictable and potentially long. Thus, a local transaction within a service may hold locks on
data on behalf of a long-running global transaction. Because locked data cannot be accessed by

other transactions,3 holding locks for long-running transactions is usually not a good idea since it
hampers concurrency and scalability.

Global transactions may be long-running transactions for several reasons:

1. Distributed Transaction Processing: The XA Specification, X/Open Snapshot, 1991. XA also supports
one-phase commit, but here we only consider two-phase commit.

2. K. Evans, J. Lyon, and J. Klein, “Transaction Internet Protocol, Version 3.0,” Network Working Group
RFC 2371, The Internet Society 1998.

3.The actual rules for data sharing in the presence of locking depends on the isolation level. For example, it
is usually possible to share read-only data (data held by read locks) between transactions.
Page 89 SFS Version 2.0

• The completion time for a transaction is limited by the slowest participant. The running time
of individual participants is less predictable on the Internet than within an enterprise.

• Transactions may now span entire conversations between distributed parties. For example, a
multi-service transaction on the Internet may span an entire order-fulfillment process.

• Timeouts for failure-detection on the Internet typically have to be longer because of the
unpredictable performance of the underlying network. Thus, it may take longer for a
transaction to be rolled back if one of the participants fail.

• Finally, the two-phase commit protocol itself (when using XA) requires two round-trip
messages with each participant. The latency of these interactions may be significant on the
Internet.

The XA interface provides the option for transaction participants to unilaterally terminate
transactions. That is, if a transaction participant is in its uncertainty period because it has voted yes
to a transaction, it may decide by itself to either commit or abort the transaction as long as it
remembers what it decided. The ability to decide unilaterally is provided so that transaction
participants do not remain blocked if the transaction coordinator crashes and does not recover. One
question is whether we want to allow unilateral decisions. Furthermore, if we choose to allow such
decisions, should the circumstances be the same as in XA?

Another troubling aspect of using two-phase commit for the Internet is its failure in the past. In
particular, TIP has been proposed 2 or more years ago, but has not seen wide spread adoptation (as
far as we know). Is this simply because TIP was ahead of its time, or were there fundamental
problems with TIP.

7.3 Compensation

Overview

The standard solution to ensuring atomicity for long-running transactions is to use compensating

actions1. A compensating action is a piece of user-defined logic that cancels the effects of a previ-
ously committed transaction. For example, if the transaction transferred $34 between two bank ac-
counts, the compensating action would be to transfer $34 between the same two accounts, but in
the reverse direction. Compensating actions have to be user-defined because the state of the system
may have changed since the original transaction was committed.

We can use the basic concept of compensation for long-running transactions. The idea is to
break the long-running transaction into a number of sub-transactions. These sub-transactions are
sometimes called (transactional) steps. Each step now has a compensating action. With this setup,
we can commit each step as soon as it has completed, we do not have to wait for the global, long-
running transaction to commit. If we cannot execute step n, we simply compensate every step up
to n to cancel out the side-effect of the transaction so far.

Discussion

1. Y. Breitbart, H. Garcia-Molina, and A. Silberschatz, “Overview of Multi-Database Transaction Manage-
ment,” VLDB Journal, Volume 1, Number 2, October 1992.
Page 90 SFS Version 2.0

Traditional transactions hold locks on data until they terminate. This allows system-level cancel-
lation of the transaction’s update: we can cancel a transaction by re-establishing the values that ex-
isted before the transaction executed. With compensation, we cancel the effect of a transaction after
the locks have been released, which means that another transaction may have seen the effect that
is been cancelled. Thus, with compensating actions, we cannot cancel effects by re-establishing the
pre-transaction data values. Instead, we have to explicitly program an “inverse” transaction. Fur-
thermore, since we cancel updates that may have been seen by other transactions, we obtain a
weaker notion of atomicity with compensating actions. This notion is called “semantic atomicity.”

Nevertheless, the notion of compensation is actually alive and well on the Internet today. It is
used primarily in the B2C space, where customers can submit an order and then later cancel it
within a given time window. What likely goes on within such a B2C site is that an order is placed
in a shipping queue and is not actually shipped for a certain period of time. Compensation now
amounts to removing the order from the queue (and adding the items back to the inventory
database).

The primary drawback of compensating actions is that they are user-defined. Thus, it is up to
the programmer to verify that a given action in fact compensates for another action. Another
drawback is that we may expose an update that is later rolled back (compensated). For example, if
a customer books the last seat in a flight, and then later compensates (cancels the reservation),
another customer may see a full flight, which turns out to be a transient state. Although this is a
drawback from an ACID transaction point of view, travel reservation systems usually have this
property.

As is usually the case with B2C transactions, the compensating actions most likely will have an
expiration time. That is, the option of cancellation is only possible for a given period of time after
the original transaction committed. There are at least a couple of reasons for having expiration
times:

• The ability to compensate may be due to “delayed” server-side effect rather than truly
compensatable server-side effect. For example, if the transaction orders an item that is then
shipped to the customer, we can only delay the shipment (at least it is complicated to cancel
a shipment once UPS takes over).

• Compensation may require a service to store some information that allows it to compensate.
For example, if we are compensating a non-deterministic action, the service has to remember
the non-deterministic choices made during the original transaction. We do not want the
service to store such information forever.

The compensation period may even be a QoS aspect of services where some clients negotiate
longer expiration times because they are willing to pay more, or because they are preferred clients
for some other reason.

Finally, we notice that compensating actions have been utilized in some environments, such as
workflow, that have some similarity to the Internet-based e-services scenario. In particular,
workflow systems must deal with long running actions that make holding resource locks infeasible
similar to what we described with the arguments against two-phase commit previously. Further,
most approaches to e-services development provide more semantic information about the services,
such as how they are invoked and the sequence of operations expected by the services (via
conversation descriptions or service “choreographies”). This more detailed semantic information
may help to make implementation of compensating actions easier and more reliable.
Page 91 SFS Version 2.0

7.4 Internet Issues

Security

Both two-phase commit and compensation assumes that the various parties are well-behaved (or
trusted). For example, two-phase commit assumes that participants vote “honestly” and that they
do as instructed (commit or abort). Furthermore, the notion of compensation also assumes that a
participant actually executes a compensating action if instructed to do so. With two-phase commit,
each participant also trusts the coordinator to be in control of the protocol—the protocol is inher-
ently asymmetric because the coordinator knows the outcome before any of the participants.

The issues of trust are magnified when we deploy the atomicity protocols on the Internet. The

protocols concerned with fair exchange1 may provide inspiration for tackling some of the issues,
but at this point we merely identify the issue rather than propose solutions.

Recovery Assumptions

For two-phase commit and compensation protocols to ensure atomicity, some entities in these pro-
tocols need to make assumptions about the recovery of other entities. For example, a participant in
two-phase commit will have to make assumptions about the recovery of the coordinator—if the
participant suspects the coordinator to have crashed, it must either wait for the coordinator to re-
cover or it must unilaterally decide an outcome for the transaction. In a tightly coupled system,
where all entities are within the same domain of control, the recovery assumptions can remain im-
plicit parts of the system and be hard-wired policies. In an open Internet-based environment, we
need to be more explicit about such assumptions.

Notice that recovery assumptions also affect global atomicity with compensation. For example,
consider a client that starts a global transaction, and crashes after executing half of the steps. To
ensure atomicity, we need to assume that the client recovers and compensates for the executed
steps.

Composition Issues

If we have nesting of services, which we are very likely to have, a tree structure will be a natural
way to organize the resulting transactions. Each node in the tree will correspond to a local trans-
action within a service, and the global transaction is to provide atomicity over the entire tree. The
previous discussion applies to homogeneous trees where all parent-child relationships are based on
either two-phase commit or compensation. One question is what happens when we combine the
two ways to implement global atomicity.

For simplicity, but without loss of generality, let us consider a two-level, heterogeneous tree.
We consider two types of trees in Figure 2. The first scenario is two-phase commit (2pc) with
compensation. The service a exports 2pc as its notion of atomicity. In turn, a uses services b and
c, and b exports compensation and c exports 2pc. This type of composition seems to be possible.
If a is asked to vote, it passes on c’s vote if b’s actions completed successfully, and votes no

1. J. Garay amd P. MacKenzie, “Abuse-Free Multi-Party Contract Signing,” Distributed Computing (DISC)
1999, LNCS 1693.‘ S. P. Ketchpel and H. Garcia-Molina, “Making Trust Explicit in Distributed Com-
merce Transactions,” IEEE International Conference on Distributed Computing Systems (ICDCS), 1996.
Page 92 SFS Version 2.0

otherwise. If the outcome is abort, a compensates the action at b and propagates the outcome to
c. Of course this assumes that the ability to compensate b has not expired when a is instructed to
abort.

Consider now the second scenario in Figure 2. A service d exports compensation, and relies on
compensation from f and 2pc from e. The question is: when should e commit its action. Ideally,
we would like to commit e’s action when the global transaction is complete. However, since the
compensation approach is inherently optimistic, d will not know when the global transaction is
complete, it will only know if it needs to compensate its action. Thus, e cannot commit its action
until d knows that it no longer needs to be able to compensate its action. That is, for this case to
work, we need expiration times on the ability to compensate, and we need to hold the locks at e
for that entire period.

If the ability to compensate is unbounded in time (there is no expiration time), we can
implement 2pc on top of compensation (the left-hand side of the figure). If, on the other hand,
compensation is time bounded, we can implement compensation in terms of 2pc (the right-hand
side of the figure).

7.5 Conversations

We want support for transactions in the context of CDL conversations. Since services use CDL
specifications to export information about their behavior, we would like CDL specifications to re-
flect the atomicity support provided by a service. Furthermore, we would like to use CDL to cap-
ture the conversations about atomicity that services engage in in order to collectively ensure global
atomicity. Integrating atomicity with CDL allows multiple services to agree on the atomicity model
(compensation or two-phase commit) up front when they bind to each other based on which con-
versations they support. In this section we examine more closely what it might mean to integrate
atomicity (specifications) with CDL.

If we consider the example from Figure 1, the manufacturer engages in two conversations: one
with the supplier and one with the shipment service (CDL supports 2-party conversations only).
We illustrate the corresponding state machines in Figure 3.

We depict interactions as transparent boxes with black connectors. The connectors capture the
inbound and outbound documents for an interaction (e.g order and unavailable are document
types). The inbound documents are on top of the box, and the outbound documents are on the

2pccompensate 2pc

compensate

compensate

2pc

2pc with compensation compensation with 2pc

Figure 2. Composition of atomic actions

a

b c

d

e f
Page 93 SFS Version 2.0

bottom. The text within an interaction box is the name of the interaction. The arrows depict
transitions. A transition connects one interaction with another. A transition is triggered by the
sending or reception of documents. Both conversations contain a single ReceiveSend interaction,
and the triggering documents for the end states are the outbound documents from the ReceiveSend
interaction.

Compensation and CDL

The basic idea is to make compensation an explicit part of conversations. From a CDL
perspective, interactions that compensate are no different from “regular” interactions. Whether a
particular interaction updates the state of a service or compensates for a previous update is up to
the service implementer. In particular, we do not provide a systematic way to generate a
compensating conversation from a regular conversation. The fact that a given interaction
compensates for one or more previous interactions may only be evident from the names and types
of the documents that trigger the compensating interaction.

To illustrate the notion of compensation in a CDL context, consider Figure 4, which shows the
order conversation from Figure 3 enhanced with a notion of compensation. The left-hand side is
the conversation without any notion of compensation; the right-hand side shows a conversation in
which an order can be cancelled. The cancellation can either trigger submission of another order
or it can simply terminate the conversation. Thus, there are two types of documents that trigger
compensation: redo order and cancel. If the compensation fails, the conversation terminates in an
error state. A manufacturer may invoke one of these compensating actions if it is impossible to ship
the part from this supplier (the manufacturer may then contact another supplier).

The compensation in Figure 4 cancels the effects of the previous interaction. In general,
compensation may “reverse” an ongoing conversation an arbitrary number of steps, perhaps all the
way back to the beginning. That is, we envision conversations where a single compensation
document triggers cancellation of the entire conversation.

In general, we may have nested conversations. For example, the interaction in one (high-level)
conversation, may be implemented as a (lower-level) conversation with another set of services.
The nesting of conversations gives rise to the nesting of compensation. Thus, for a service s to

Figure 3. State machines for the order-ship conversations

receive order

order

invoiceunavailable

error success

perform shipping

confirmationimpossible

shipping info

error success

order conversation shipping conversation
Page 94 SFS Version 2.0

compensate a particular interaction with a client, s may have to compensate for a conversation it
had (or has) with another service s’. To perform this type of conversation, s will first of all have to
remember the identity of s’, and it will have to remember the exact conversation it engaged in with
s’.

Because compensation inherently takes place at the semantic level, and because we do not want
to systematically construct compensating conversations from “regular” conversations, tracking the
dependencies between nested conversations is an application-level matter. Hopefully, we can build
an infrastructure to help applications track such dependencies. The need to remember, in order to
compensate, means that the ability to compensate is likely to be time-bounded. As we remarked
previously, the expiration time may be subject to negotiation between the services.

Two-Phase Commit and CDL

Let us first recapitulate the use of two-phase commit in an internet web services context to provide
global atomicity. We assume that the parties in a global transaction are independent e-services that
communicate using CDL conversations. Each service may have its own internal transaction-pro-
cessing system, with a transaction coordinator that terminates local (intra-service) transactions.
The role of the global transaction co-ordinating mechanism, in terms of two-phase commit, is to
orchestrate the communication between the local transaction coordinators in order to accomplish
atomicity for the global transaction. The global picture is that the transaction coordinators are or-
ganized in a tree, where the root is the global transaction coordinator who determines the outcome
of the global transaction. Another role of the global co-ordinator is to facilitate the construction of
this tree of coordinators.

Figure 4. The order-placement conversation with compensation

receive order

order

invoice

unavailable

error

order conversation (with compensation)

error cancelled

invoiced

receive order

order

invoice

error invoiced

order conversation

redo order

cancelcancel failed
Page 95 SFS Version 2.0

We can use CDL to express the communication between the various transaction coordinators as
conversations. These conversations will then be concerned with building the tree structure and with
executing a hierarchical two-phase commit protocol in this tree structure. The alternative to using
CDL to describe these conversations is to decide on a particular protocol between transaction
coordinators up front, and hard-wire this protocol into all services that wish to participate in global
transactions. With CDL, we can have a more flexible scheme in which the inter-coordinator
protocols are defined explicitly. For example, we can add new protocols to the system later on, and
if these new protocols conform to the old protocols, we can support evolution with backward
compatibility. One starting point may be to express TIP in CDL, and then make that the basic two-
phase-commit conversation.

Each global transaction has an initiator1, which is the service (or client) that demarcates the
transaction. Each service within the transaction has a local transaction coordinator. These
coordinators can play two roles relative to the global transaction: master or slave. The (global)
notions of master and slave are simply re-incarnations of the (local roles of) coordinator and
participant. A coordinator can be both a master and a slave, this happens if it is neither root nor leaf
in the tree of coordinators. The root of the tree is only master, and the leaves of the tree are only
slaves. The master-slave distinction determines who gets to vote (the slaves) and who collects the
votes and determines an outcome (the masters). The root master determines the outcome of the
global transaction; intermediate masters determine the outcome of sub-transactions.

We may not want the initiator to always be the global master. For example, the initiator may be
a client (e.g. a browser), and we may not want a client to control a global transaction. Moreover,
we may want to allow third-party entities, who are not even services within the transaction, to be
the global master. For example, we may want to define a global transaction-termination service
(run by HP of course) that can function as master (because it is trusted to be up and impartial).

There are many ways to instantiate the above concepts in CDL. Here we outline one such way
in order to make the concepts slightly more concrete. The starting point is a number of
conversations, for example the conversations from the order-ship example. The question is how to
extend these ‘‘regular’’ conversations with transactional semantics. Our proposal here is for a
service to export a conversation that defines its role (master or slave) relative to clients (or other
services). If a service is willing to play both roles, it can export multiple conversations.

In Figure 5, we illustrate how to enhance conversations with transactional semantics. The left-
hand side of the figure shows how to enhance a server-side conversation with the role of a master.
The client first sends a document to the service to ask the service to establish a transactional
context. The service establishes a context, becomes master for it, and returns the context to the
client. The client can then use the context to enroll other services in the transaction (if those
services are willing to be slaves relative to this particular context). After sending the context to the
client, the service engages in the regular conversation. When the regular conversation is complete,
the service waits for a document that terminates the context. The service cannot terminate the
context until explicitly told so because the context may still be active at other services. The server-
side implementation of the terminate interaction is to activate the transaction coordinator within
the service to play the role of global master and execute a global two-phase commit with the other

1. Not to be confused with the initiator of the conversation. If A sends the first message in a conversation,
then A is the initator of the conversation, and stays that for the rest of the conversation (see chapter about
CDL). Yet during the conversation any participant can initiate interactions.
Page 96 SFS Version 2.0

transaction coordinators. The other transaction coordinators have used the context to register,
directly or indirectly, with the global master. If the tree of coordinators have more than two levels,
we have indirect registration.

The right-hand side of the figure depicts a way to describe transactional enhancements for a
service that plays the role of a slave. Because it is a slave, it receives a transactional context from
the client. After receiving the context, the service becomes a slave by instructing its transaction
coordinator to register with the coordinator identified by the received context. The service may
refuse to do so (if it does not like or trust this particular coordinator). If the service becomes a slave,
it then continues with the regular conversation. When the regular conversation is complete the
service activates its local coordinator to engage in a two-phase commit protocol as slave. Notice
that a slave enters its part of the two-phase commit without further interaction with other services.
This is because it is a passive entity in the two-phase commit protocol, simply waiting for a vote
request.

The “become master”, “become slave”, “terminate”, “error” conversations shown in Figure 5
are predefined two-phase commit conversations that can be described by CDL like any other
conversations. These predefined conversations are then added to any regular conversations carried
out between two services needing two-phase commit. These predefined two-phase commit
conversations (also called inter-coordinator conversations, as the participating services take on the
roles of coordinators) have two aspects:

• A service that takes on the role of a slave coordinator executes an enrollment conversation
with another service that acts as its master coordinator. The enrollment is relative to a specific
transaction context.

• All services engage in a two-phase commit conversation to terminate the transaction. The
global master starts the commit conversation based on the outcome of the regular
conversation with the initiator. Of course, the initiator and the global master may be the same
service, in which case noone uses the conversation with the master role.

error

become master become slave

send context ackrefuse

regular conversation

regular conversation

terminate

receive context

Figure 5. Enhancing conversations with transactional semantics

Enhancement for master role Enhancement for slave role

receive contextestablish context

terminate
Page 97 SFS Version 2.0

We do not give here CDL descriptions for the inter-coordinator conversations. These
conversations will largely follow the conventional two-phase commit pattern. However, there are
a couple of things worth noting:

• Two-phase commit is inherently a multi-party protocol. A master transaction coordinator
communicates with a number of slave coordinators to obtain their vote and instruct them how
to terminate their (part of the) transaction. Currently, CDL is a two-party conversation model.
Thus, we either have to make CDL a multi-party conversation model, or we have to describe
the two-phase commit conversation as a number of two-party conversations that are
composed in a manner that is not captured in CDL.

• Two-phase commit enhanced conversations can be seen as having two conversations in
parallel (the regular conversation and the inter-coordinator conversation) that are highly
interrelated and need to be coordinated by the internal logic of the service. Or two-phase
commit enhanced conversations can be seen as one conversation aggregated from the regular
conversation and the inter-coordinator conversations.

• As inter-coordinator conversations will be predefined, it could be feasible to simply enhance
CDL and other conversation description languages by attributes denoting which interactions
are transactional and which two-phase commit protocol is used.

• A given transaction coordinator can simultaneously engage in conversations as both slave
and master, even for the same transaction. This will happen if it resides neither at the root nor
at the bottom of the tree.

7.6 Conclusions

Our primary conclusion is that providing multi-party atomicity on the Internet is a complex prob-
lem that is unlikely to have a single solution that covers all cases. Simply re-coding XA in XML is
not flexible enough. This is not surprising since XA was designed for tightly-coupled systems. On
the other hand, completely discarding two-phase commit as a possible solution for certain scenar-
ios is probably too extreme. The wide-spread support for XA makes it a highly attractive basis for
a more global, wide-reaching transaction/atomicity protocol. If we can build a protocol where the
XA operations are taken as the fundamental building blocks, we very quickly make much existing
infrastructure compatible with transactional web services. If we are willing to live with the draw-
backs of two-phase commit, the TIP protocol seems to be a promising way to glue together XA-
based transaction managers into a global hierarchy that provides global atomicity.

To support long-running, global transactions, we need some ability to release local resources
before the global transaction terminates. Compensation is one way to achieve this goal. In contrast
to two-phase commit conversations that can be predefined, the various interactions needed for
componsation need to be added explicitly into each business conversation.
Page 98 SFS Version 2.0

8 Managing an E-Service
This section defines the XML Application Response Measurement (XAM) specification. It fol-
lows in the footsteps of, and aims to be backward compatible with, the Application Response
Measurement (ARM) standard as defined by the Open Group (http://www.opengroup.org). Like
ARM, XAM is designed to measure the availability, performance, usage, and end-to-end transac-
tion response times of distributed applications. This document defines a measurement hierarchy, a
protocol for XML-based document exchange between application and measurement agent. It
focuses on ways in which measurement information is collated, aggregated, delivered, and con-
trolled. It assumes the reader to be familiar with the terms and concepts presented in the ARM
specification, available at http://www.opengroup.org/management/l2-arm.htm.

8.1 ARM
The Application Response Measurement (ARM) standard as defined by the Open Group, is a
measurement standard that allows application developers to instrument their code with little over-
head. The programmer defines transactions that are specific to the application. In the simple case,
calls to the ARM routines are inserted when a new transaction is started and when the transaction
terminates. The standard specifies the semantics of the six ARM routines and how measurement
types can be associated with transactions. The implementation of the routines is left to the ARM
provider and the manner with which the transaction data is stored and transported to the manage-
ment stations is undefined.

ARM has the following good points:

• It is relatively simple to understand and use.
• It does not constrain programmers to use standard transaction types.
• It is widely used (for a measurement standard).

Why do we need something more than ARM?

• The ARM calls only provide for instrumentation of one particular type of measurement the
transaction. There are other valid and useful measurements that we would like to capture.

• The ARM standard assumes that a library such as a DLL, or a shared object is present on the
target machine, possibly a daemon process, disk storage and that an unspecified communica-
tions path exists between the target machine and the management console. This is valid for
intra-enterprise management but not for inter-enterprise management.

• The ARM standard does not specify how measurements are encoded for transportation to the
management system, or how the management console controls which transaction types are
recorded.

• The ARM standard does not specify what types of aggregation are possible and where the pro-
cessing is performed.

XAM
This section is concerned with how the measurement information is collated, aggregated, deliv-
ered and controlled. The ARM calls could be used as defined in the standard for instrumenting
Page 99 SFS Version 2.0

transaction response times. Other API's could be standardized for instrumenting other measure-
ment types.

In this specification we generally follow two guiding principles that ARM advocates. These are:

1. Make it simple for the programmer.
2. Let the programmer define the measurement types.

Extending ARM to include more measurement types may be misunderstood as extending the
measurement types defined in ARM to convey measurements about transactions. Some of the
measurement types defined by ARM are gauge, counter, opaque etc. The purpose of XAM is not
to extend transaction-related measurements but to introduce application-related measurements, of
which transaction-related measurements are a subset.

The following entities will be used throughout this document:

• E-service: The application which has been instrumented.
• XAM API: The application programming interface to the XAM library.
• XAM library: The code the application invokes and which sends and receives the XML doc-

uments.
• XAM service: The remote entity which receives the measurement reports and which confi-

ures the XAM library.

XAM Service

XAM API

XAM Library

E-service

Model,
Configuration,

Measurement reports

XAM API

XAM Library

E-service’
Page 100 SFS Version 2.0

Figure 25: E-service, XAM API, XAM Library, and XAM service

The XAM specification assumes that a particular e-service/XAM library instance will have a sin-
gle XML dialog with an XAM service. However several e-services may converse with a single
XAM service instance. The XAM service may pass the measurement data to several other parties.
Only one entity may converse with the XAM library at one time; the XAM library has one master.

8.2 Measurements

8.2.1 Measurement Hierarchy

Applications, services, transactions, and conversations need to be instrumented for management
purposes. The instrumentation code makes various measurements. There should be a mechanism
both for expressing (representing) these measurements and communicating them with manage-
ment systems.

The measurement hierarchy is designed to allow expression of two types of measurement instru-
mentation:

1) Instrumentations that are placed into applications and frameworks at their design time. This
instrumentation should be written to be generic and should be usable by multiple management
systems.

2) Other types of instrumentation may be specific to a management system and are usually
deployed into the application environment by the management system itself to collect additional
measurements.

XAM can be used to express, control and deliver measurements in these two forms.

One important goal of a measurement hierarchy definition is that it expresses more semantics to
the receiver of the measurements (management system in this case). The extreme way for bring-
ing an agreement between the managed application and the management system is to define every
possible measurement and its semantics. Since the number of possible measurements is very
large, this is not feasible. Hence, a measurement category system provides a framework for defin-
ing real measurements that can be understood by a management system. Just using the type defi-
nitions in the hierarchy, the management system will be able to interpret, operate on, and display
the various measurements. One of the main advantages of the measurement hierarchy is that the
amount of code needed to be written is bounded by the size of the hierarchy and not the number of
different types of measurement that applications produce.

Another important goal of the hierarchy is to accommodate measurements that are both primitive
and aggregated. If the type hierarchy does not include any measurements that correspond to
aggregates, then a lot of data has to be passed between two parties, and it involves performing the
same computations everywhere. However, the number of possible ways in which aggregation
could be done is not bounded. So, a compromise has been made on the kinds of aggregations that
Page 101 SFS Version 2.0

are supported. These aggregate categories supported are count, sum, group and threshold these in
turn support topN (the N most frequently occurring items from a set).

8.2.2 Measurement Type System

This document uses a three level system for defining measurement categories, measurement types
and measurement instances. Each level follows from the last. We expect the top level (which
defines the different categories of measurement) to be static. The second level, which defines
measurement types, is where application programmers and standards organizations will specify
well-known types. The third level is where the actual measurement values come in.

For example an application that wishes to measure the names that new files are created under
could use the atomic category and define a atomic measurement type with the type ID field equal
to "fileCreated". When an instance of this measurement is sent out it may have the fileName value
of "/docs/index.html".

Figure 26: Example Application

8.2.3 Measurement Categories

What categories of measurement do we need?

For the 1.0 release of XML Application Measurement (XAM) we will specify three main catego-
ries of measurement, each with some levels of sub-categories. Later versions of XAM could add
extra sub-categories if needed; the XML is excellent for allowing such additions.

At the top of the measurement hierarchy is the category Measurement. The three important sub
categories of Measurement are Polling, Occurrence and Aggregate. Each differ in the way that
they treat time. Polling measurements are those where a sample must be taken to retrieve an actual
value. Occurrences are asynchronous events that may occur at any time and we report each indi-
vidual happening. The Transaction sub category also has a duration field, which is the time inter-
val between the start of the transaction and the end of the transaction. Aggregate measurements
report things that either do not have discrete time based events or need to be sampled or counted
to reduce the data rate. Aggregate measurements can perform aggregation over occurrence vari-
ables and polling variables.

Category Type Instance

Atomic fileCreated /docs/index.html
Page 102 SFS Version 2.0

Figure 27: Measurement Category Hierarchy

The figure above shows the measurement category hierarchy. Three of the categories are abstract
and simply form part of the information model. These categories are Measurement, Occurrence
and Aggregate.

A definition of each category can be found below:

Category Description

Measurement The root of the category hierarchy.

Primitive The root of the measurements that are supplied by
the application.

Occurrence Measurements of incidents that happen asynchro-
nously. I.e. some action performed by the applica-
tion that could occur at any time.

Aggregate Measurement over time period which collate or
sample the primitive measurements. The primitive
measurements are Polling and Occurrence and their
sub categories. All sub categories of Aggregate can
be configured to either report all data over the time
period or to report the topN of the data over the time
period (see description of topN below)

Measurement

Occurrence
Atomic

Transaction

Aggregate Group

Count

Polling

Sum

Threshold

Primitive
Page 103 SFS Version 2.0

Of the seven concrete categories, three can have specific types defined by the application pro-
grammer; the others are auto-generated from the three primitive categories. The category that cor-
responds to ARM is Transaction. The ARM API’s have also been used to produce Atomic
measurements by calling arm_start() and then arm_end() immediately.

TopN
The idea behind the topN is to sample in such a way as to report the most important information.
For example, an application may have several hundred different error conditions which may occur
during normal operation. If the frequency occurrence of these errors is such that reporting each
one individually is to costly, then the topN is the solution. The topN reports the N most numerous
errors in each reporting period. Sampling techniques can make calculating topN's less costly
while retaining the statistical properties of the data.

Polling Measurements of things that either are changing to
rapidly which must be sampled to at some rate to
create an aggregate measurement. E.g. free memory.
Or measurement data, which is available on request
but cannot for some reason be asynchronously sup-
plied to the library.

Atomic The concrete subcategory of Occurrence. Can be
used to report application actions or measurable
events.

Transaction A specialization of Occurrence which includes a
time duration which is calculated by the XAM
library.

Count A concrete subcategory of aggregate. Can be used to
report things such as counts of instances of an
Occurrence measurement type.

Group A concrete subcategory of aggregate which reports
the frequency of a group of Occurrence measure-
ment types. Each Occurrence type in the group has
its own frequency.

Sum A concrete subcategory of aggregate. Can be used to
report summations of variable values from occur-
rence instances. Can be used to report the average,
min, max and standard deviation of the variable val-
ues.

Threshold A concrete subcategory of Aggregate. Is used to dif-
ferentiate between good and bad data and count in
which case each instance of a value falls.
Page 104 SFS Version 2.0

8.2.4 Measurement Variables

All XAM measurement types have a list of variables that are specified by the application when
they are defined. When the application gives actual measurement data it must supply values for
the variables defined. When defining a variable the following information is supplied:

8.3 Measurement Type Information Model
For each measurement type defined by the programmer there is a set of fields that detail the spec-
ification of the measurement type. The fields for each measurement type include the fields
defined for the measurement category that type was created from.

Field Possible values comment

Name Any combination of alphanumeric characters and ‘-
‘, ‘.’, ‘_’,’:’. Must start with a letter. E.g.
“user_name”.

‘:‘ is reserved for use by
the XAM system and
may not be used in type
names specified by the
application. Alphanu-
meric includes Unicode
characters not in the
ASCII set.

Class One of string, long or double

isKey Either true or false Default false. Variables
of class double may not
be keys.

Alphabet Either an enumeration of the valid string values or a
range list for the long or double. E.g.

Enum = { “ready”, “running”, “stopped” }

Range = { “11”,”12”,”15”,”32..126”}

Optional

Unit A string describing the unit of the variable. E.g.
“kilos”, “sessions”, “requests”, “seconds”

Optional. If unspecified
the name field is used.

Desciption Can contain any string, might contain a URL to a
localization service and a message ID and. E.g

“the number of users logged in”

“http://www.locals-are-us.com/msgId324432432”

Optional
Page 105 SFS Version 2.0

Figure 28: Measurement Category Hierarchy

Black underscore text is for model information, which describes the transaction types the applica-
tion has instrumented for. This model information is sent by the application to the management
system in the ‘measurement type catalog’ as part of the details document.

The type fields for each category are defined below:

Category Name Class Description

Measurement Type Identifier String A unique name with which the
application identifies a measure-
ment type. Same rules as for the
measurement variable name field.

Description String A human readable description of
the measurement {optional}

Variable Spec Set of specs as
defined in sec-
tion 3.5.3.4

A set of variable specifications as
described in the previous section.

No two variables may have the
same name within one type.

Aggregate Derived type ID String The Type Identifier of the type
which this measurement uses for
source data.

Measurement

Aggregate Group

Count

Sum

Threshold

- Type Identifier
- Variable Def[]
- [Description]

- Member Type Identifiers[]
- Derived Type Identifier
- Derived Variable Name

Occurrence
Atomic

Transaction

Polling

Primitive
Page 106 SFS Version 2.0

For each measurement type registered by the programmer (polling or occurrence) there will be a
number of aggregate measurements automatically generated. The XAM library will give the
XAM service a catalog of available measurement types. The measurement type catalog will con-
tain all the occurrence sub types defined plus any automatically generated aggregate types.

8.3.1 Measurement Request Information Model

For each measurement type in the catalog the XAM service may request a measurement report to
be generated. The XAM library holds a list of requested measurements. Each item in the request
list corresponds to one measurement type's configuration data. The configuration data stored
depends on the category of the measurement type being requested. The request configuration data
for each category is described below.

Figure 29: Request Configuration Data

Each category inherits its parent’s variables as per normal. For example: configuration data for a
measurement type of category Atomic will have the following fields: Type Id, Handle and
Restriction[].

Derived variable name String The variable within the type
which is used as source data for
this measurement type. May be
empty for certain aggregate cate-
gories.

Group Member type IDs String[] An array of Type Identifier names
one for each member of the
group.

Measurement

Aggregate Group

Count

Sum

Threshold

- Type Identifier
- Handle
- Restriction[] - Collapse Dimension[]

- Aggregation Interval
- TopNSize

- Threshold Test

- Sample Interval

- Ignore Members[]

Occurrence
Atomic

Transaction

Polling

Primitive
Page 107 SFS Version 2.0

Restrictions
When a measurement request is registered with the model a restriction set can be specified. For
each variable defined a restriction of one the following forms can be used:

Category Name Class Description

Measurement Type Identifier String A unique name with which the appli-
cation identifies a measurement type

Handle String A handle set by the XAM service and
which is set along with the measure-
ment results.

Restriction String[] For each variable there may be a
restriction. For definition of restric-
tion see below.

Aggregate Collapse Dimension Boolean[] Indicate to the XAM library if the
key field in question is to be used
when cutting the data. Default true.
See 3.5.3.12.2 for example of usage.

Aggregate Interval Double The time over which this aggregate
measurement is to be taken before
the aggregate result is calculated.
Unit is seconds.

TopN Size Long The maximum number of measure-
ments results to be returned in any
one reporting interval. Range = -
1,1..200

Group Ignore Members Boolean[] Indicates whether each of the types
that make up the group should be
included in the group for reporting
purposes.

Threshold Threshold Test A restriction The test which discriminates the val-
ues.

Polling Sample Interval Double Seconds between samples.

Class of Variable Restriction Description

String Enumeration The value of the variable must match one of the
elements in the enumeration. E.g. { ‘ready’,
‘running’, ‘stopped’ }
Page 108 SFS Version 2.0

The restriction sets use the same format for enumeration and range as the measurement variables
in section 3.5.3.4.

If the variable does not match the restriction then the instance data is not used for this measure-
ment. See 3.5.3.12.1 for examples of restrictions. If no restriction is specified for a variable then
no checking against the value will take place.

8.3.2 Measurement Instance Information Model

For each measurement request registered by the XAM service, XML measurement reports will be
sent out. The report data delivered depends on the category of the measurement type being
reported. The report for each measurement type includes the fields defined for the measurement
category that type was created from.

The measurement report fields are shown below:

Figure 30: Measurement Report Fields

Prefix The first characters of the value of the variable
must match the complete prefix string.

Postfix The last characters of the value of the variable
must match the complete postfix string.

Long or Double Range set The value of the variable must lie within the
ranges specified.

Measurement

Occurrence
Atomic

Transaction

Aggregate Group

Count

Sum

Threshold

- Type Identifier
- Time Base
- Variable Value[]

- Parent Correlator

- Instance Identifier
- Duration
- Status

- Frequency[]
- Identifier[]

- Ex
- Ex2
- N
- Max
- Min

- Count

- NumerPass
- Total Pop

- Aggregation Interval

Polling

Primitive
Page 109 SFS Version 2.0

Sub categories include all of the fields of their parents. For example reports for measurement
types of category Transaction have the following fields: TypeId, TimeBase, ParentInstanceId,
InstanceId, and Duration.

The reporting fields for each category are defined below:

Category Name Class Description

Measurement Type Identifier String This field is defined as part of the measure-
ment type information model and is sent
along with every report.

Time Base Time The time when this measurement hap-
pened. For a transaction this corresponds to
the start time. For a polling value it will
correspond to the time when the callback
method is called. [UTC time string]

Variable Value Value[] Either a String Long or a Double.

Occurrence Parent Correlator String A field which links several different trans-
actions together. Can be used to link up
transactions which occur on different enti-
ties but which are initiated by the same
source. This field may be empty.

Transaction Type Instance
Identifier

String This field is created in by the XAM library
and may be used as a valid value for part of
the Parent Correlator field. Any Unicode
character is valid except ‘!’. Should be
world and time unique.

Duration Double The time between the call to start() and the
call to end(). This value is calculated by the
XAM library.

Status String Whether the transaction was completed
sucessfully on not valid values are “ok” or
“failed”

Count Frequency Long The number of instances of the occurrence
type delivered by the application during the
reporting period.

Group Frequency Long[] As above for the type within the group.

Identifiers String[] The type Identifier’s that go with the fre-
quencies above.
Page 110 SFS Version 2.0

8.3.3 Correlator

The correlator is used to create aggregate measurements, which tie two or more transactions
together. The correlator from one transaction may be provided when a sub or daughter transaction
is started. If the sub transaction is started on another process then the correlator of the parent must
be transferred to the remote process (probably along with the action which starts the transaction).
The correlator can be used by the XAM library to create further aggregate measurements.

The correlator contains the following fields:

1. System Identifier (defined in 3.5.3.8)
2. System Instance Identifier (defined in 3.5.3.8)
3. Type Identifier (defined in 3.5.3.5)
4. Type Instance Identifier (defined in 3.5.3.7)

The four fields above are encoded into a string, which can be passed around from one application
to another. The format is a Unicode string of the following form:

"System Identifier! System Instance Identifier! Type Identifier! Type Instance Identifier"

The '!' character is explicitly not a valid character in the four sub fields. Any or all of the four
fields can be empty for example "!!!" is a valid correlator field and the default if one is not speci-
fied.

Calculated Variables
The Transaction category is unique in that is has the ‘duration’ variable, which is very similar to a
variable supplied by the application but that it is calculated by the XAM library. Because the
library calculates this variable the application programmer cannot calculate further variables from

Sum Ex Long The summation of value of the variable
over the reporting period.

Ex2 Long The sum of the squares of the variable over
the reporting period.

N Long The number of variables summed over the
reporting period.

Max Long The highest variable during the reporting
period.

Min Long The lowest variable during the reporting
period.

Threshold NumberPass Long The number of instances in which the value
passed the threshold test.

Total Pop Long The number of instances of the value that
were tested.
Page 111 SFS Version 2.0

the duration. The XAM library calculates these variables if required. For the measurement types
of category transaction a number of calculated variables are created these variables are not
directly visible but cause extra aggregate types to be created. The following calculated variables
are created.

For all transaction measurement types (T) {

Within T For each non string variable (V):{

Register a variable in T

with Name = ‘V_by_Duration’

with Key = false.

with unit = ‘V.unit/second’

with class = double.

}

}

These calculated variables are never directly delivered to the XAM Service.

8.3.4 Measurement System Information Model

Each application has a set of fields that affect the collection and reporting of all the measurement
types which the application produces.

System field name description class Change-
able

Enable Boolean field, which controls if any measurement
reports are generated by the application. Default is true.

Boolean Yes

Service Identifer The name of the application or service will be the same
for all instances of the service that ever run. Eg “virtual
file system version 1.5.4”. Any Unicode character is
valid except ‘!’

String No

Service Instance Identifier A string that will uniquely identify the instance of the
application or service. Eg. “15.144.69.2:pid=1234”.
Any Unicode character is valid except ‘!’

String No

Service Description A description of the service or application or a URL to
a localization service and a message ID

String No

Clock Resolution The smallest period of time that the library can measure
in seconds.

Double No
Page 112 SFS Version 2.0

8.3.5 Time

Measurement reports are sent out at least every minReportInterval and contain the measurement
data collected since the last report was sent. Atomic instances are sent in the next report. Transac-
tions are reported when they finish. Aggregates also produce measurement report information at
the end of their AggregateInterval. Polling measurement types are sampled according to the sam-
pleInterval. If AggregateInterval and sampleInterval are the same the polling measurement type
will be sampled once only. Depending on the semantics of the polling measurement this may or
may not make sense.

Figure 31: Measurement Reports sent over Time

minReportInterval Time is seconds between the application sending mea-
surement reports. If this is set to zero then a report will
be sent as soon as measurement data is available. Val-
ues above zero allow the application to bundle up sev-
eral measurements into a single XML report document.
Default is 5 seconds.

Long Yes

Atomic

Aggregate

Atomic

Time

Aggregate

Report interval Report interval

Transaction

Aggregate

Polling

Aggregate
Page 113 SFS Version 2.0

The diagram above shows three occurrences types being aggregated and one polling measurement
being sampled. The data from these four aggregates is shown in relation to the report interval and
is packaged into the reports send at the end of the report interval.

8.3.6 Aggregation

There are four sub-categories of the aggregation category:

Count – each instance of a measurement type of category ‘occurrence’ can be counted.

Group – a set of measurement types of category can be grouped together and counted. The fre-
quency of each measurement type in the group is stored.

Sum – each occurrence of a measurement provides an value which is summed, The sum of the
values and the sum of the squares of the values is calculated. From these fields the average and
standard deviation can be calculated.

Threshold – each occurrence of a measurement provides an value which is compared against a
restriction and the number of instances which pass the threshold are counted along with the total
number of occurrences.

In every case some time interval must be chosen over which the aggregation is performed.

Key Dimensions

Every aggregate type can have a number of key variables, which are transferred over to the aggre-
gate from the occurrence or polling measurement type. Only the variables that are keys are trans-
ferred to the aggregate. The instance variable key information will be retained for every key
variable that has a "collapse dimension" field value of 'false' in that measurement request. This
means that at the end of a reporting period (for an aggregate measurement type with one or more
key variables) an unspecified number of measurement instance reports may be sent from the
XAM Library to the XAM service.

For an example of an aggregate type with multiple keys see section 3.5.3.12.

If the size number of keys is large, the number of measurement instance reports may approach the
number of Occurrence instances in the reporting period and there will be no advantage to the
aggregation. In this case, using the topNSize is efficient way to reduce the unknown set too a
finite set. See section 3.5.3.3.1 for a description of topN's.

Automatic Derivation of Aggregate Types
The XAM library automatically generates a catalog of measurement types, which includes a set of
aggregate measurement types that are derived from the occurrence and polling types, which have
been registered by the programmer. The following aggregate types are derived.

For all polling measurement type (T) {

Within T For each non key non string variable (V):{
Page 114 SFS Version 2.0

Register a measurement type of category Sum

with TypeId = ‘T-Sum-V’

with Variables = key variables from T

with DerivedTypeID = T

with DerivedVaraiableName = V

Register a measurement type of category Threshold

with TypeId = ‘T-Threshold-V’

with Variables = key variables from T

with DerivedTypeID = T

with DerivedVaraiableName = V

}

}

For all atomic measurement type (T) {

// same as for polling plus…

Register a measurement type of category Count

with TypeId = ‘T-Count’

with Variables = key variables from T

with DerivedTypeID = T

}

For all transaction measurement type (T) {

// same as for atomic plus…

Register a measurement type of category Sum

with TypeId = ‘T-Sum-duration’

with Variables = key variables from T

with DerivedTypeID = T

with DerivedVaraiableName = ‘Duration’

Register a measurement type of category Threshold

with TypeId = ‘T- Threshold -duration’

with Variables = key variables from T

with DerivedTypeID = T

with DerivedVaraiableName = ‘Duration’

// don’t forget the calculated variables derived from Duration

// which will fall into the non key non string case for atomic above.

}

Page 115 SFS Version 2.0

A compliant XAM implementation is not required to support any of the above derivations but its
utility will be significantly reduced.

Example Measurements

The table below gives an example of each of the three types of measurement that an application
programmer can define i.e. Polling, Transaction, and Atomic.

If an application programmer defined the three measurements above then the following aggregate
measurements would be automatically created by the XAM lib.

For the ‘disk_utilization’ measurement type:

Category Type name Variables

Name Class IsKey Alphabet Unit

Polling Disk_utilization Utilization Dou-
ble

No 0..100 percent

Disk Long Yes 1..i

User String Yes

Transaction Download_file File_name String No

File_type String Yes

Size Long No bytes

Invoker_ID String Yes

Duration Dou-
ble

No 0..i second

Size_by_dura
tion

Dou-
ble

No bytes/second

Atomic Security_Authorizatio
n_failure

Conversation
_type

String Yes

Document_ty
pe

String Yes

Invoker_ID String Yes

Recipient_ID String Yes

Reason String Yes

Category Type name Variables
Page 116 SFS Version 2.0

For the ‘Download_file’ measurement type:

Name Class IsKey Alphabet Unit

Sum Disk_utilization:Utili-
zation

Disk Long Yes 1..i

User String Yes

Threshold Disk_utilization:Thres
hold:Utilization

Disk Long Yes 1..i

User String Yes

Category Type name Variables

Name Class IsKey Alphabet Unit

Count Download_file:count File type String Yes

Invoker ID String Yes

Sum Download_file:sum:si
ze

File type String Yes

Invoker ID String Yes

Sum Download_file:sum:d
uration

File type String Yes

Invoker ID String Yes

Sum Download_file:sum:si
ze_by_duration

File type String Yes

Invoker ID String Yes

Sum Download_file:sum:
duration_by_size

File type String Yes

Invoker ID String Yes

Threshold Download_file:
threshold:size

File type String Yes

Invoker ID String Yes

Threshold Download_file:
threshold:duration

File type String Yes

Invoker ID String Yes

Threshold Download_file:
threshold:duration
by size

File type String Yes
Page 117 SFS Version 2.0

For the ‘Security_Authorization_failure’ measurement type:

Restriction Examples

For the ‘Disk_utilization’ atomic measurement here are some valid restrictions:

Utilization = “80..100” // only measurements with a disk utilization over 80% will be considered.

Disk = “1,2,3” // only measurements for disks one two and three will be considured.

User = “{“root”,”sysadmin”}”

For the ‘Download_file’ measurement type:

File name = “prefix:/dev/” // any file under /dev

File type = “{“pdf”,”doc”,”jpg”,”gif”}”

Size= “5000..i” // only files larger than 5000 bytes.

Collapse Dimension Examples
The aggregate measurement types, which are given above all, have some number of key variables.
For each key variable there is a collapse field which controls if the key is used to cut the data i.e.
if different measurement reports will be sent for different values of the key variable.

For the ‘Disk_utilization-SumSample-Utilization’ measurement type defined above 4 dimen-
sional cuts are possible.

Invoker ID String Yes

Threshold Download_file:
thresh-
old:size_by_duration

File type String Yes

Invoker ID String Yes

Category Type name Variables

Name Class IsKey Alphabet Unit

Count Security_Authorizatio
n_failure:count

Conversation

type

String Yes

Document type String Yes

Invoker ID String Yes

Recipient ID String Yes

Reason String Yes
Page 118 SFS Version 2.0

These are by:

In the first case None only one measurement report will be sent. In the other cases, an unknown
number of reports will be sent. If the topNSize field is set to a value other than –1, the number of
measurement reports sent will be limited to the topNSize value.

For the ‘Security_Authorization_failure-Count’ measurement type defined above, 32 dimensional
cuts are possible. What these are is left as an exercise for the reader.

8.4 Protocol
We have two parties involved: the application and the measurement service. We assume each
application has only one measurement service and that they share a communications channel
down which they may exchange XML documents. This paper does not specify what form com-
munications channel takes nor what addressing is used nor how the application comes by the ser-
vices address. The specifics of the communications channel will depend on which distributed
middleware solution the application uses
.
When the measurement service and the application communicate three types of information travel
between them, these are Data, Control and Model.

There are seven documents that make up the protocol and these are: { init, request, details, config-
ure, report, close, info }. The protocol has six sub-parts A-F. These are described below:

A) Initialization: The application sends an “init” document to the measurement service. The ser-
vice will usually move to sub-part B or if it is not unwilling, move to sub-part E.

B) Model acquisition: The measurement service sends a “request” document to the application,
the application will reply with a details document which will contain the measurement system
information model, measurement type information model and the measurement request informa-
tion model. This sub-part can take place any time after sub-part A and before sub-part E. If the
measurement type information model changes after being sent to the measurement service the
library may send out a “details” document asynchronously to the measurement service.

C) Configuration: The measurement service sends a “configure” message to the application. The
application will update its internal state to reflect the document content.

D) Reporting: Depending on the application configuration, reports will be sent periodically from
the application to the measurement service. If no measurements are enabled then no reports will

None

Disk

User

Disk,User
Page 119 SFS Version 2.0

be sent. Reports contain bundles of measurement data collected over the last system reporting
period.

E) When either party wishes to terminate the conversation they send a “close” message to the
other party which replies with another close message.

F) An “Info” message can be sent by either party to the other at any time to inform the other party
that something has gone wrong but the session does not need to be closed.

The protocol must start with sub-part A and end with sub-part E.
The diagram below shows a normal conversation between an application and a measurement ser-
vice.
Page 120 SFS Version 2.0

Figure 32: Normal conversation between an application and a measurement service.

Application
Measurement

Service

init

report

request

details

close

close

configure

A)

B)

C)

D)

E)
Page 121 SFS Version 2.0

When an application talks to a measurement service for the first time, all its measurements should
be disabled. The measurement service will then enable the measurements it requires. If communi-
cation between an application and its measurement service fail, and the application then finds
another measurement service, it should reset the configuration state to the defaults before sending
the first "init" document

8.4.1 Errors

An info message containing an error description can be sent at any stage and can indicate one of
the following:

1) That the message that was last received from you
a) Contained Invalid XML (i.e could not be passed).
b) Did not match the schema.
c) Contained invalid data e.g. referencing of non-existing types or variables.

The error description will indicate whether the previous document was ignored or partially pro-
cessed.
2) An internal error occurred inside the XAM library:

a) A buffer overflow or out of memory quota condition arose and some data was lost.
b) A null pointer exception or other non recoverable exception was caught.
c) Some part of the library failed to load.

3) The application made incorrect use of the XAM library.

4) The data being sent to the XAM service from the library has exceeded the channels bandwidth:
a) Some data was discarded.
b) Some measurement requests has been removed as a consequence.

If the library cannot continue it will send the error description in a close message.

8.5 XAM Summary
XAM has been designed to provide a means for a programmer to instrument their code in such a
way as to allow for intra-enterprise management without the need for proprietary libraries to be
installed on the local machine. A measurement hierarchy has been defined which extends the
range of measurements beyond those provided by ARM. The measurement hierarchy is a balance
between simplicity and completeness. More measurement types could be added later with ease.
The measurements defined are backwards compatible with the ARM measurements. Existing
applications could be made to be XAM compliant by replacing the proprietary ARM library with
a standard XAM replacement. XML has been used as the messaging format to allows for maximal
interoperability and extensibility. The document dialog is simple with only six document types,
each document in turn has a simple structure. XAM supports ganged messaging reports to reduce
messaging overhead. Few assumptions have been made about the messaging middleware layer
being used to transport the XML documents beyond reliable delivery. Possible transports include
TCP, HTTP, E-Speak service bus, MQ series, RMI, CORBA, COM, etc. XAM is positioned to
move ARM into the Internet services arena.
Page 122 SFS Version 2.0

Page 123 SFS Version 2.0

Service Framework Specification, Part II
Version 2.0

9 Negotiation

The negotiation framework aims to provide infrastructure that allows two or more independent
entities to interact with each other over time to reach agreement on the parameters of a contract. It
is aimed primarily, though not exclusively, as a means to reach trade agreements. It can be used
both by automated entities, and by users via appropriate software tools.

Its value to negotiation participants is that it is a prerequisite to provide decision support or auto-
mation of the negotiation, and hence make the process more efficient. Furthermore, they can be
confident that the basic rules of interaction in any negotiation are standardised, hence reducing the
effort to automate many different kinds of business interactions. They are able to negotiate simple
contracts, where only price is undetermined, and more complex contracts where many complex
parameters depend on each other. Furthermore, the protocols provide the participants with trust
guarantees, that no party has access to extra information or is able to forge false information.

Its value to negotiation hosts such as auction houses and market makers is that it provides a stan-
dard framework that all potential customers can use to interact with them. However, it does not
require a specific market mechanism, so allows the host to decide on an appropriate one. It not
only provides standard off-the-shelf market mechanisms such as the English auction, but also
allows custom mechanisms to be implemented for particular special needs such as the FCC auc-
tion for auctioning bandwidth.

In this section, we present a framework for negotiation that can be used to model various negotia-
tion protocols that are commonly used in practice. In addition, the framework is extensible and
allows customization of existing negotiation protocols to suit specific needs.

9.1 General Negotiation Framework

We now briefly outline some of the high-level requirements of the negotiation framework.

1. The framework should be sufficiently formal that automated entities (e-services) can interact
with it.

2. The framework should allow negotiation about simple and complex objects.
3. The framework should be sufficiently general that a variety of different market mechanisms

such as 1-1 negotiation, combinatorial auctions, exchanges, etc., can be expressed as specific
instances of it.

4. The framework should be built on appropriate security mechanisms and protocols that partici-
pants can do business in a trusted way.

5. The framework should allow, but not require, the existence of a third party to arbitrate a given
negotiation, for example an auctioneer in an auction.

6. The framework should support existing ways people do business, as well as permitting more
radical approaches in the future.
Page 124 SFS Version 2.0

9.1.1 What Can One Negotiate?

Negotiation is the process by which two or more parties interact to reach an agreement. Usually,
this will be about some business interaction such as the supply of a service in return for payment.
However, the concepts described in this section are sufficiently general and they can be used to
negotiate other forms of agreement.

To be able to negotiate with each other, parties must initially share an agreement template. This
specifies the different parameters of the negotiation such as the product type, price, supply date
etc. Some of the parameters will be constrained within the template while others may be com-
pletely open. The agreement template is decided at the matchmaking stage – matchmaking is
exactly the process by which one party locates other parties with agreement templates compatible
with their needs. This is achieved in the matchmaking phase by allowing offers for services to
refer to agreement templates and contract templates that are relevant to the offer. A client search-
ing for a service can retrieve the agreement templates associated with the offer when performing
the lookup.

Depending on what parameters a party is willing to negotiate on, it will adopt more or less con-
strained agreement templates. For example, a party that is willing to negotiate nothing will only
advertise a fully instantiated agreement template, with a fixed price. An example of this is the
case where a company hosts a catalog that contains the descriptions and the prices of the goods in
it and is unwilling to negotiate any part of the catalog. A party willing to negotiate features of a
product, such as colour, as well as price and delivery date, will leave these parameters uncon-
strained.

The process of negotiation is the move from an agreement template to an agreement that the
agreeing parties find acceptable. A single negotiation may involve many parties, resulting in sev-
eral agreements between different parties and some parties who do not reach agreement. For
example, a stock exchange can be viewed as a negotiation where many buyers and many sellers
meet to negotiate the price of a given stock. Many agreements are formed between buyers and
sellers, and some buyers and sellers fail to trade.

After an agreement is reached, it is necessary to formalise this and to determine how the business
processes will interact with each other. This is the process of moving from agreement to contract,
and will be dealt with in the contract formation section.

In this document, we assume that all agreements are between two parties. However, the majority
of the protocols described generalise in a straightforward way to handle agreements between
more than two parties.
Page 125 SFS Version 2.0

9.1.2 The General Negotiation Protocol

When discussing negotiation, it is important to distinguish between the negotiation protocol and
the negotiation strategy. The protocol determines the flow of messages between the negotiating
parties – who can say what, when – and acts as the rules by which the negotiating parties must
abide by if they are to interact. The protocol is necessarily public and open. The strategy, on the
other hand, is the way in which a given party acts within those rules in an effort to get the ‘best’
outcome of the negotiation – for example, when and what to concede, and when to hold firm. The
strategy of each participant is necessarily private, and hence an exploration of appropriate strate-
gies falls outside the scope of the Service Framework Specification.

The Service Framework Specification offers a general negotiation protocol, by which service
buyers and service sellers can interact. This general protocol can be specialised to give specific
kinds of negotiation – such as catalog purchase sites, auctions, exchanges and multi-attribute one-
to-one negotiation. Any entity that is able to participate in the general protocol will be able to par-
ticipate in a specialised form of it, though its strategy may need to be altered.

There are 2 main roles in negotiation – participant, and negotiation host. The participants are
those who wish to reach agreement, and usually they are subdivided into service buyers and ser-
vice sellers. The negotiation host is the role responsible for enforcing the protocol and rules of
negotiation. The host is often a third party outside the negotiation. In the case of an auction, the
host is the auctioneer. In the case of an exchange, the host is the market provider. However, the
host may also be a participant - In 1-1 negotiation or catalog provision, this is usually the case.

The general negotiation protocol consists of 5 main stages;

1. Potential participants request the negotiation host for admission to the negotiation. If they are
accepted, they receive the agreement template and rules specifying how the negotiation
takes place. For example, the admission rules for an auction site are different from the
admission rules for an exchange, or a simple catalog based purchase site.

2. Negotiation takes place by participants making proposals. These proposals consist of con-
strained or instantiated versions of the agreement template. Participants may make propos-
als only according to the rules of the negotiation received at admission.

3. During negotiation, the host informs participants of the current status of the negotiation, either
by sending them current proposals, or by sending some form of ‘digest’ such as, the cur-
rent ‘best’ proposal. The content of these messages is determined by the rules of the nego-
tiation.

4. In circumstances determined by the rules, the negotiation host identifies compatible propos-
als, and converts them into agreements.

5. In circumstances determined by the rules, the negotiation host closes the negotiation locale,
and determines any final agreements.
Page 126 SFS Version 2.0

9.2 Dictionary

Before proceeding further with the detailed description of the negotiation framework, we first
introduce some of the key concepts and terminology required for formulating the negotiation
framework.

Negotiation Host Entity responsible for creation and enforcement
of rules governing participation, execution, reso-
lution and termination of a negotiation.

Participant Entity participating in a negotiation by posting
proposals according to the rules provided by the
negotiation host.

Negotiation locale Location where negotiation proposals are posted
according to the rules enforced by the negotiation
host.

Infrastructure provider Provider of the underlying communications infra-
structure of the negotiation locale.

Gatekeeper Sub-role of negotiation host. Responsible for
enforcement of policy governing admission to a
negotiation.

Participant credentials Information, with appropriate trust guarantees,
about a participant’s attributes, capabilities, etc.

Admission policy Policy used for determining who is allowed to
participate in a given negotiation.

Proposal Specification of potential value ranges in the
agreement template a participant is willing to
accept.

Negotiation table A negotiation locale with 1 buyer and 1 seller.

Auction room A negotiation locale with 1 seller and many buy-
ers.

Exchange floor A negotiation locale with many buyers and many
sellers.

Proposal validator Sub role of negotiation host: responsible for
ensuring that a proposal is well-formed.
Page 127 SFS Version 2.0

Agreement template A prototype specifying what is to be negotiated,
and the possible values different parts of the pro-
totype can range over.

Proposal well-formed-ness A proposal is well formed within a given negotia-
tion if all prototypes within it are subsumed by
the agreement template.

Proposal expiration time A parameter in a proposal defining when it no
longer can be considered valid.

Negotiation rules Rules determining the mechanism by which
negotiation proceeds – who may make a proposal
when, how existing proposals affect what propos-
als may be made.

Posting rule Negotiation rule determining in what circum-
stances a participant may post a proposal.

Visibility rule Negotiation rule specifying whom, among the
participants, has visibility over a submitted pro-
posal.

Display rule Negotiation rule specifying if and how the referee
notifies the participants that a proposal has been
submitted – could either be by transmitting the
proposal unchanged or by transmitting a sum-
mary of the situation.

Improvement rule Negotiation rule specifying, given a set of exist-
ing proposals, what new proposals may be
posted.

Withdrawal rule Negotiation rule specifying if and when propos-
als can be withdrawn from negotiation, and poli-
cies over the time expiration of proposals.

Termination rule Negotiation rule specifying when no more pro-
posals may be posted (e.g. a given time, period of
quiescence, etc.).

Protocol enforcer Sub-role of negotiation host. Responsible for
ensuring that participant’s proposals are posted
according to the negotiation rules.
Page 128 SFS Version 2.0

9.3 Negotiation Protocol

In this section, we first specify the XML messages and conversations associated with the general
protocol. We then outline how this general protocol can be extended to handle some more specific
instances such as purchasing at a catalog site, english auctions, and continuous double auctions.

We consider each of the five main stages of a generic negotiation protocol in turn.

9.3.1 Admission

In general, the admission procedure will involve authentication and authorization. In addition, to
authentication and authorization, there may be other admission rules that may be applicable.
For example, in the case of auctions, one can envisage two general types of admission rules.

1. Explicit rules: The creator of the auction can specify the criteria for selecting buyers. Exam-
ples of rules that restrict entry are: ‘Invitation,’ prior registration, explicit qualification rules etc.

2. Implicit rules – Entry fees (paid to participate in the auction) and reserve prices (lowest
acceptable bids) induce some of the potential buyers not to participate in a given auction. In this
sense, such aspects of the auction design indirectly determine the set of actual participants.

When admission is successful, the negotiation host sends a message specifying an identifier for
the particular negotiation, the agreement template, and a document containing the rules of negoti-
ation.

The following XDR schema captures the top-level structure of the negotiation-accept document.

Agreement A configuration of the attributes associated
agreement template that is understood by the par-
ticipants as being fully defined, together with the
identification of two (or more?) participants.

Agreement formation The conversion of a set of proposals, at least one
pair of which intersect, into a set of agreements.

Agreement maker The entity responsible for agreement formation.

Agreement formation rules Rules responsible for determining, given a set of
proposals at least one pair of which intersect,
which agreements should be formed.

Tie-breaking rule A specific agreement formation rule applied after
all others.
Page 129 SFS Version 2.0

<element name = “negotiation-accept”>

<complexType content=”elementOnly” model=”open”>

<element name = “negotiationID”>

<element name =”agreement-template” >

<element name =”negotiation-rules”>

</complexType>

</element>

The agreement-template is the starting point for the negotiations and specifies the template that
the two parties fill out during the negotiation process in order to reach agreement. The negotiation
rules specifies the constraints that govern the negotiation process.

For example, the agreement template for the paper example from the matchmaker chapter can
have the following entries:

• A list of possible catalog identifiers

• A list of possible supplier names

• A list of part numbers used by the suppliers to identify the goods
• Whether the product desired by the client is new, used, etc…

• Plain text description of the product
• Desired size of the paper

• Dunn and Bradstreet code or other such codes.

Agreement template validation rule
The agreement template validation rule enforces that any proposal has to match the validation
template. A RFQ (and RFQ lookup request) kind of proposal will specify enough detail to identify
what it is that the buyer (seller) wants to trade upon. Each of the proposals are validated against
the template and accepted or rejected accordingly. A proposal can specify more information such
as maximum buyer price, but it’s not requested to. Also an RFQ kind of proposal will have to
specify who is the requestor. When entering the phase of purchase order formation, sellers will
have a handle to identify the buyer and targeting them with their purchase order kind of proposal.
Examples of valid RFQ and counter-RFQ kind of proposal are seen at page 157-161.
Purchase order documents have to conform to the agreement template too. The examples in pages
162-164 are valid and their validity is guarantee by the fact that they follow pre-agreed RFQs.

More formally, the following DTD captures the structure of the agreement template in the paper
example:

<!DOCTYPE paperProposal [

<!ELEMENT proposal (paper, price, owner, purchase-order>

<!ATTLIST proposal type (buy | sell)>

<!ELEMENT paper (catalog-identifier, supplier-name, supplier-part-num-
Page 130 SFS Version 2.0

ber, product-type, product-desc, paper-size, commodity-code-name, com-

modity-code)>

<!ELEMENT price (numerical-constraint, currency)>

<!ELEMENT owner esurl>

<!ELEMENT purchase-order>

<!ELEMENT …>

]>

Now that the agreement template is defines, we turn our attention to defining the negotiation rules
that govern the negotiation. In general, the negotiation rules can be divided into the following cat-
egories:

Posting rule
This rule determines who can submit proposals at what time.
Visibility rule
The proposal submitter can identify a sub-set of participants who are allowed to see the proposal.
Notice that it’s in the interest of the submitter to have their RFQ visible by as many sellers as pos-
sible, but when submitting a purchase order kind of proposal, the visibility had better be reduced,
possibly to a single potential seller.
Information filtering (digest) rule
Each of the proposals that are submitted is transmitted unchanged to the participants who are
allowed to see them (see visibility rule). No data structures are defined that present a summary of
the proposals.
Time-bounding rule
Proposals are hold valid for a definite time, or up to agreement formation, whichever is first.
Improvement rule
Improvement rules are defined to have the purchase order formation phase converge more easily
(e.g. cannot go back on a proposal etc).
Termination rule
Negotiation ends at a certain time (decided by the marketMaker)

9.3.2 Negotiation

Negotiation consists of the sending of a series of proposals to the negotiation host. Proposals may
be sent at any time. If a proposal does not conflict with the negotiation rules, the host will accept
and process the proposal appropriately. If the proposal does conflict with the rules, the host may
simply ignore the proposal or it may explicitly reject the proposal. However, in general, the infor-
mation about the acceptance or rejection of the proposal can be infered from the information
about the negotiation that is made available by the negotiation host to the participants of the nego-
tiation.

In general, the steps for negotiation are:

1. PERFORM Initiate negotiation
Page 131 SFS Version 2.0

2. REPEAT
2.1 PERFORM Submit proposal
2.2 IF Agreement possible
2.2.1 PERFORM Agreement formation
2.3 ENDIF

UNTIL Termination
3. PERFORM Finalize negotiation

A proposal can have the form of an RFQ, or an RFQ lookup request, or a (possibly partial instan-
tiation of a) purchase order.
1) Proposals can come in at any time when negotiation is open.
2) Market maker validates incoming proposals against the agreement template. In order for a pro-

posal to be accepted, all the mandatory fields described in the agreement template will
have to be present in the proposal. Notice that at this stage we don’t make a distinction
between RFQ/RFQ lookup and purchase orders.

3) If the proposal is rejected, use case ends.
4) The referee then validates the proposal against negotiation rules. In this case, the rule that is

applied is the improvement rule. Every proposal submitted by a participant is checked
against previous proposals of the same kind submitted by the same participant. For exam-
ple, when working to form a complete purchase order, the improvement rule makes sure
the new proposal represents a step towards the formation of a complete purchase order,
with the given counter-part.

5) If the proposal is valid, the Market Maker applies the visibility rule, which allows a submitter
to specify who among the participants is permitted to see the proposal. The Market Maker
forwards then the proposal to the intended addressees.

The following schema outlines the top-level schema of a negotiation proposal.

<element name = “propose”>

<complexType content=”elementOnly” model=”open”>

<element name = “negotiationID”>

<element name =”proposal” >

</complexType>

</element>

The proposal consists of a constrained form of the agreement template, specifying attribute values
or value ranges which are acceptable to the proposer. For example, a buyer may constrain the
price attribute to be less than $100.

If the negotiation rules allow, a participant may withdraw a previously submitted proposal by
sending the following message;
Page 132 SFS Version 2.0

<element name = “proposal-withdraw” >

<complexType content=”elementOnly” model=”open”>

<element name = “negotiationID”>

<element name =”proposal” >

</complexType>

</element>

Information Display
The negotiation host sends information about the current status of negotiations to all participants,
as defined by the information display rules. By default, this consists of a set of current proposals.
However, in certain circumstances, other information could be sent as well or instead. Also, some
participants may receive different information from others

<element name = “negotiation-status”>

<complexType content=”elementOnly” model=”open”>

<element name = “negotiationID”>

<element name =”proposal” >

</complexType>

</element>

Participants may also withdraw from negotiations by sending a negotiation-withdraw message.
Often it is possible to withdraw at any time, though in some negotiations, the negotiation rules
will only allow withdrawing in certain circumstances. (For example, in an auction, it is not possi-
ble to withdraw if you have the best current bid.)

<element = “negotiation-withdraw” >

<complexType content=”elementOnly” model=”open”>

<element name = “negotiationID”>

</complexType>

</element>

The host responds to a withdraw message by removing all proposals from that participant.

Agreement Formation

In general, agreement formation consists of the following steps:

1) The Market Maker looks at the current sets of proposals to see whether agreements can be
made. As said above, it’s not enough to verify that two proposals are compatible (i.e.
define non incompatible value for each of the attributes). In order for an agreement to be
possible, all the mandatory fields in the purchase order have to be specified. In other
words, the two proposals have to be compatible with each other and have to be validated
against the agreement formation template, described above.
Page 133 SFS Version 2.0

2) Tie-breaker rules do not apply to this particular kind of negotiation
3) The Market Maker creates the agreement, as described in the example at page 164 (Contract

between enterprise A and enterprise B).
4) The Market Maker sends a copy of the agreement to both participants.

Proposals such as RFQ and RFQ lookup request can be matched (as they are seen by anyone
declaring an interest), but that’s not enough to get to agreement formation.
The agreement template extends the negotiation template with purchase order information
(deliver to, pack list requirements, ship from, product quantity). In general, the agreement tem-
plate extends the negotiation template with all the information that is necessary to form an agree-
ment but is not necessary in the RFQ exchange phase.
Agreement is formed as soon as two proposals that comply with the agreement template, match
with each other.
Tie-breaking rule
In this kind of negotiation, is not necessary to define a tie-breaking rule, because the purchase
order kind of proposals are directed to counter-parts that have been singled-out already. It’s
responsibility of the submitter to make sure that they can fulfil any proposal that they submit.

In circumstances determined by the agreement formation rules, the negotiation host checks exist-
ing proposals for compatibility. If all required attributes of a proposal are specified and agreed
between at least 2 parties, the host determines which parties actually will form an agreement, and
notifies successful parties of the outcome by sending them agreements with all attributes speci-
fied. In cases where more than one agreement is possible, the negotiation host uses the agreement
rules to determine which participants have priority.

<element name = “negotiation-agreement” >

<complexType content=”elementOnly” model=”open”>

<element name = “negotiationID”>

<element name =”agreement”>

</complexType>

</element>

The agreeing parties use the agreement in the contract formation phase. (See section ??)

Locale Closing

The negotiation locale closes in circumstances determined by the negotiation rules. (eg when all
participants have agreed or withdrawn, at a given time, after a period of quiescence, etc.) At this
point, the host notifies all participants with a negotiation-close message, and any further proposals
sent are ignored.
Page 134 SFS Version 2.0

<element name = “negotiation-close” >

<complexType content=”elementOnly” model=”open”>

<element type = “negotiationID”>

</complexType>

</element>

3.4.2.4 Protocol Conversation - Participant

In this section, we specify the conversation that a participant engages in when negotiating. In the
appendix, we will then use CDL for defining the conversation.

Interactions

Initial step of the conversation

Interaction Is initial step Transitions

Initial true Enter Negotiation

Interaction Is initial step Transitions

Initial
Negotiating

Success No-Deal

Enter negotiation

Send proposal, Withdraw proposal, Receive information update

Receive agremeent
Withdraw from negot iation

Negotiation close with no agreement
Page 135 SFS Version 2.0

Negotiation is open

Negotiation terminated with success for the participant

Negotiation terminated with no deal for the participant

Transitions

The participant requests admission to negotiation and receives a response

The participant sends a negotiation proposal

Negotiating false Send Proposal; Receive Proposal; Receive Infor-
mation Update; Receive Agreement; Withdraw
From Negotiation; Negotiation close with no
agreement

Interaction Is initial step Transitions

Success false

Interaction Is initial step Transitions

No Deal false

Transition SourceInterac-
tion

DestinationIn-
teraction

Triggering
Document

Enter Negotia-
tion

Initial Negotiating Admission
request

Transition From State To State Triggering
Document

Send proposal Negotiating Negotiating Negotiation
Proposal
Page 136 SFS Version 2.0

The participant withdraws a negotiation proposal

The participant receives an update on the current state of the negotiation. The update might
either be a negotiation proposal or a digest of the current state

The participant is informed that negotiation is closed (no agreement formed)

The participant requests to withdraw from the current negotiation altogether and receives a
response

Transition From State To State Triggering
Document

Withdraw pro-
posal

Negotiating Negotiating

Transition From State To State Triggering
Document

Receive infor-
mation update

Negotiating Negotiating Information
Update

Transition From State To State Triggering
Document

Negotiation
close with no
agreement

Negotiating No-deal Negotiation
Close

Transition From State To State Triggering
Document

Withdrawfrom
negotiation

Negotiating No-deal Withdrawfrom
Negotiation
Page 137 SFS Version 2.0

Documents

Document Schema Root Element Name

Request Admis-
sion

Admission
Schema

Admission-Request

Document Schema Root Element Name

Reply to Request
Admission

Admission
Reply
Schema

Admission-Request-
Reply

Document Schema Root Element Name

Negotiation Pro-
posal

Agreement
Template

Proposal

Document Schema Root Element Name

Negotiation Pro-
posal With-
drawal

Withdrawal
Schema

Withdraw

Document Schema Root Element Name

Agreement Noti-
fication

Agreement
Template

Agreement

Document Schema Root Element Name
Page 138 SFS Version 2.0

3.4.2.5 Protocol Conversations – Negotiation Host

Negotiation
Close

Negotiation
Close Schema

Negotiation-close

Document Schema Root Element Name

Negotiation
Withdraw
Request

Negotiation
Withdraw
Schema

Negotiation-with-
draw-request

Document Schema Root Element Name

Negotiation
Withdraw
Response

Negotiation
Withdraw
Schema

Negotiation-with-
draw-response

Negotiation
open

Initiate negotiation infrastructure

Receive proposal submission, Receive proposal withdrawal

AdmitReceive admission request

Agreement
formation

Agreement formation trigger
Agreem entnot possible

Information
update

Agreement possible

Send information update
Trigger information update

Trigger negotiation close

Send admission response
Page 139 SFS Version 2.0

9.4 Examples

We now consider three simple examples of negotiation and provide a high-level description of
how the various parts of the frmaework defined above work to enable the negotiation. The three
examples are: simple shop front, simple english auction, and a continuous double auction.

Simple Shop Front
Actors:
shopkeeper: Participant, Referee
aBuyer: Participant

shopFront: Negotiation Locale

Use Cases:

1. Define admission policy
shopkeeper decides policy – usually this will be the null policy: anyone is admitted.

2. Define agreement template
shopkeeper decides on templates of goods it is willing to sell. These will be fully
defined, specifying all details exactly, including price.

3. Define negotiation rules
shopkeeper adopts standard ‘shopfront take it or leave it’ negotiation rules. These state
that;

a. A buyer may post a proposal at any time, irrespective of posted proposals by
other buyers. A seller may post or withdraw proposals at any time.

b. A buyer’s proposal must be an exact copy of the seller’s proposal (Except it is
‘buy’ rather than ‘sell’)

c. Termination occurs when there are no seller proposals posted in the shopFront
4. Define agreement formation rules

shopkeeper adopts standard shopfront agreement rule:
a. Agreements are formed whenever a buyer posts a proposal identical to the

seller’s proposal.
5. Negotiate:
6. Initiate Negotiation – as standard.
7. Submit Proposal

shopkeeper submits proposals for all goods it sells. (If it expects high demand, it can
place several identical proposals on the table for the same good.)
If all proposals for a given good are accepted, and the shopkeeper still has more in
stock, it resubmits identical proposals.
A buyer submits a proposal, an identical copy of the shopkeeper’s proposal, when it
wishes to purchase a given good.

8. Agreement Formation
shopkeeper (in referee role) identifies valid buyer proposals, and sends agreements to
Page 140 SFS Version 2.0

the buyers.
9. Finalize negotiation – as standard.

Single Item English Auction
Actors:
aSeller: Participant
aBuyer: Participant
auctioneer: Referee

auctionHouse: Negotiation Locale

Use Cases:

1. Define admission policy
auctioneer and seller decide policy – this could be the null policy: anyone is admitted,
or a list of invitees.

2. Define agreement template
seller decides on template of good it is selling. This will be fully defined, specifying
all details exactly, except for the price attribute, which will be open.

3. Define negotiation rules
auctioneer adopts standard ‘english auction’ negotiation rules. These state that;

a. A buyer may post a proposal at any time. The price field of the buyer’s proposal
must be a certain increment above the value of all previously posted buyer pro-
posals. The seller posts a single proposal at the start of the auction only.

b. A buyer’s proposal must be an exact copy of the seller’s proposal, with price
instantiated with its bid.

c. Termination occurs at a fixed time.
4. Define agreement formation rules

auctioneer adopts standard ‘english auction’ agreement rule:
a. After termination, an agreement between the highest bidding buyer and the

seller is formed.
5. Negotiate:
6. Initiate Negotiation – as standard.
7. Submit Proposal

Initially, seller submits proposal for the good it wishes to auction. It may constrain the
price to be above a certain reservation value.
A buyer submits a proposal instantiated to it’s bid value.

8. Agreement Formation
auctioneer identifies highest bidding buyer, and forms agreement between it and the
seller. It notifies both parties.

9. Finalize negotiation – as standard.
Page 141 SFS Version 2.0

Multiple Item Continuous Double Auction (aka Exchange)
Actors:
aSeller: Participant
aBuyer: Participant
marketMaker: Referee

exchangeFloor: Negotiation Locale

Use Cases:

1. Define admission policy
marketMaker decides policy – this could be the null policy: anyone is admitted, or a
list of invitees.

2. Define agreement template
marketMaker decides on template of good it is selling. This will be fully defined, spec-
ifying all details exactly, except for the price attribute and quantity attribute, which
will be open.

3. Define negotiation rules
marketMaker adopts standard ‘CDA (NYSE improvement)’ negotiation rules. These
state that;

a. Buyers and sellers may post proposals at any time. The price field of a buyer’s
proposal must be above the value of all currently posted buyer proposals. The
price field of a seller’s proposal must be below the value of all currently posted
seller proposals.

b. Proposals must be a copy of the proposal template, with price and quantity
instantiated to specific values.

c. Termination occurs only when the auction ceases to be used.
4. Define agreement formation rules

marketMaker adopts standard ‘CDA’ agreement rule:
a. Agreement is formed between all overlapping buyers and sellers. The price is

the midpoint of the overlap. Highest buyers and lowest sellers are satisfied
first.

b. When traders have different quantities, this may result in a single party having
trades with several others (multiple agreements).

c. In case of ties, earlier proposals have priority.
5. Negotiate:
6. Initiate Negotiation – as standard.
7. Submit Proposal

Buyers and sellers submit proposals at any time, instantiating the price and quantity
appropriately.
Page 142 SFS Version 2.0

8. Agreement Formation
Agreement formation occurs whenever there is an overlap between buyers and sellers,
according to the rules above. Participants are notified of any agreements made.

9. Finalize negotiation – as standard.
Page 143 SFS Version 2.0

Simplified templates and proposals

Agreement template
<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE paperProposal [

<!ELEMENT proposal (paper, price, owner, purchase-order>

<!ATTLIST proposal type (buy | sell)>

<!ELEMENT paper (catalog-identifier, supplier-name, supplier-part-num-

ber, product-type, product-desc, paper-size, commodity-code-name, com-

modity-code)>

<!ELEMENT price (numerical-constraint, currency)>

<!ELEMENT owner esurl>

<!ELEMENT purchase-order>

<!ELEMENT …>

]>

For an agreement to be formed, the two candidate proposals will have to specify all fields, and the
information will have to be consistent.

Proposals
These, taken from the service framework specification would be valid proposals.
This is an RFQ for paper at price less than 22.95

<!--Usual E-Speak wrappers, -->

<proposal type=buy>

<paper>

<catalog-identifier>

02010001

</catalog-identifier>

<!—- other fields to specify paper -->

</paper>

<price>

<constraint xmlns:pv=”http://vocab-auth.com/paper-vocab.xsd>

<condition test=”price < 22.95” />

</constraint>

</price>

<owner>

<esurl>es://server.enterpriseA.com:8880</esurl>

</owner>

</proposal>

This would a valid proposal when working towards a purchase order formation
Page 144 SFS Version 2.0

<!--Usual E-Speak wrappers, -->

<proposal type=buy>

<! –- paper, price and owner as above>

<purchase-order>

<deliver-to> etc… </deliver-to>

<! -- other purchase order fields -->

<! –- notice that price is out of this bracket! -->

</purchase-order>

</proposal>
Page 145 SFS Version 2.0

10 Contract Specification

The central idea of the conceptual model for contracts is that the business relationship that moti-
vates interactions that follow is captured explicitly in an electronic contract. An electronic con-
tract is a document formed between the parties that enter into economic interactions. In addition
to describing the promises that can be viewed as rights and obligations by each party, the e-con-
tract will describe their supposed respective behavior in enough detail, so that the contract moni-
toring, arbitration and therefore enforcement is possible.

The terms and conditions appearing in the e-contract can be negotiated among the contracting
parties prior to service execution. In this way businesses with no pre-existing relationships can
bridge the trust gap, be able to strike deals and take them to completion.
Negotiation happens by incrementally agreeing on the terms and conditions that govern business
interactions. Contract templates support this process by providing constraints that limit these
interactions.

10.1 Lifecycle of the B2B interaction

Conceptually the lifecycle of the B2B interaction can be split into following three stages:

Pre-contractual phase - includes composition and exchange of the metadata related to the con-
tract template also mechanisms for matchmaking of participants. In this phase the party types and
the types of trade procedures that they will fulfil are identified (e.g.: shipper delivers the goods,
buyer pays seller). The template typically has a number of free variables that are agreed upon in
the next phase.

Contractual phase - during which concrete trading partners assume contract party roles and nego-
tiate the details of their responsibilities. The negotiable variables of the contract (deadlines, order
of actions) become fixed and the trade procedures bound to specific business protocols. The rela-
tionships between contract parties are created and are embodied in an agreement that after signing
becomes fully-fledged e-contract.

Post-Contractual phase – during which actual delivery of contract consideration happens. Typi-
cally this constitutes of service or goods delivery, bill calculation, presentment and payment. The
interactions between the parties may be monitored for their conformance to the terms of the con-
tract.
Page 146 SFS Version 2.0

The three phases can be described both from the functional point of view (what functionality is
realized) and from the informational point of view (what document are generated and exchanged),
as depicted in Figure 1. The functional view is as follows:

Matchmaking
Matchmaking is the process of putting service providers and service consumers in contact with
each other. Matchmaking presupposes that services that want to be dynamically discovered will
have to publish themselves, and services that want to find other services will have to send their
request for matches. Some of the services advertising themselves for matchmaking will be simple
end-providers, while others may be brokers, auction houses and marketplaces which offer a locale
for negotiating with and selecting among many potential providers.

Negotiation
Negotiation is the incremental process by which participants get to agree on the terms and condi-
tion that will constitute the e-contract
The participants are seeking to strike the best deal for their stakeholders, who are the individuals
or organizations that will then have to execute according to the rights and obligations agreed
among participants. The rights and obligations will be expressed in an e-contract that will define
terms and condition through which sale/purchase of goods and/or provision/consumption of ser-
vices take place. Participants behave according to a set of rules, which determine what kind of
trading takes place. This set of rules is called the market mechanism.
The market mechanism is embodied by the negotiation protocol that participants must comply
with during negotiation.

Contract fulfilment
Once terms and conditions are defined, the fulfillment phase can begin. The fulfillment phase
requires a communication infrastructure to be in place, which can enable execution and monitor-
ing of the contractual service interactions. The communication between parties might be either

Contract
Template

Negotiation Fulfillment

Post-ContractualContractualPre-Contractual

DocumentAgreement Contract

Functionality

Phase

Matchmaking

Figure 1. Contract lifecycle views.
Page 147 SFS Version 2.0

mediated or non-mediated, according to nature of the relationship.
The parties might identify a trusted third party who would arbitrate possible disputes arising from
misbehavior or miscommunication during the execution of the service.

10.1.1 Realization of Conceptual Model

In order to realize any B2B interaction that we have outlined in the previous section an enabling
infrastructure must exist with functionalities. Essentially, we partition the infrastructure into
matchmaking service, market place services and market governance services and describe their
responsibilities.

We stress that the roles in the conceptual model do not imply a specific architecture. Many scenar-
ios are possible where the responsibilities associated with the Market Maker and Market Gover-
nor are fulfilled by the participants themselves (e.g. two parties that know each other may enter a
1-to-1 negotiation without the need for a Market Maker, but may want to ask for the Market Gov-
ernor to monitor the transaction; alternatively a buyer may require services of a Market Maker to
set up an auction but that of the Market Governor to automate the fulfillment which can happen
offline).
In a similar way, the degree of automation and facilitation possible will highly depend on the spe-
cific business scenario.

Matchmaking Service
The matchmaking service realizes the matchmaking functionality as described above.
A matchmaking service receives a lookup request containing a service description, and returns
information on how to reach compatible partners that have previously advertised their service
offer (or request).
The service description specifies the nature of the service the initiator wishes to trade.
The returned information might also consist in a set of contract templates, along with information
of where to go for negotiating the terms and conditions sketched in the templates and who will
enforce the execution of contracts derived from them.

Marketplace
A marketplace is a virtual place where one or more buyers and one or more sellers (market partic-
ipants) meet to trade on a (near -) homogeneous collection of goods or services.
The marketplace is run and regulated by a Market Maker. The Market Maker defines the entry
policy to vet participants into the market place, based on participant’s identity and/or credentials.
The Market Maker is also responsible for putting communication infrastructure in place to ensure
that relevant messages are delivered to whom - and only to whom - they are addressed to, based
on participant’s identity and/or credentials.
The participants are seeking to strike the best deal for their stakeholders, who are the individuals
or organizations that will then have to execute according to the rights and obligations agreed
among participants in the marketplace. The rights and obligations will be expressed in an e-con-
Page 148 SFS Version 2.0

tract that will define terms and condition through which sale/purchase of goods and/or provision/
consumption of services take place. Participants behave according to a set of rules, which deter-
mine what kind of trading takes place. This set of rules is called the market mechanism.
The incremental process by which buyers and sellers get to agree on the terms and condition that
will constitute the e-contract is called negotiation. The market mechanism of the marketplace is
embodied by the negotiation protocol that participants must comply with during negotiation. The
Market Maker is responsible for defining the market mechanism of the marketplace, for enforcing
its negotiation protocol, for defining and enforcing admission rules to the marketplace and for
providing the communication infrastructure for the marketplace. The role of the Market Maker
can be further refined into a set of roles as follows:
Market Infrastructure Provider - Provider of the underlying communications infrastructure of the
Marketplace

Gatekeeper - Responsible for enforcement of policy governing admission to a negotiation

Protocol Enforcer - Responsible for ensuring that during the negotiation process, participants fol-
low the established negotiation rules

Further refinement of roles and their relationship will be exposed in the chapter on Negotiation.

Market Governance
The Market Governance is the trust holding infrastructure that enables e-contract fulfillment. The
Market Governor plays the role of hosting and managing the Market Governance infrastructure.
The Market Governor provides a collection of components, which provide the monitoring and
communication functionality required for the contractual service interactions.

Market Governance

Contract
Repository

Citizen
Registrar

Contract
Monitor

Contract
Arbiter

Payment
Handler

Delivery
Handler

Contract
Validator

Billing
Handler

Figure 2. Market Governance. The components marked in white constitute a minimal set
necessary for contract monitoring.
Page 149 SFS Version 2.0

The Market Governor decides on the Market Governance services beyond the minimal
infrastructure that it will provide. It then provides information to a Contract Template Drafter so
that the metadata about the additional services can be a part of the template. A Market Maker
responsible for the creation of a Market Place may enter into a conversation with the Market Gov-
ernor. The outcome of this conversation is a contract template that is based both on the metadata
related to the Market Governance services as well as Market Place and service specific metadata.
The negotiation between the participants is based on that e-contract template that will eventually
become e-contract.
Anyone who would like to be a party in an e-contract will have to be registered as a Citizen with
the Market Governance. A participant contacts the Market Governor to obtain a citizenship. The
Market Governor requests a minimal set of credentials from the member that will be sufficient to
gain a citizenship within the Market Governance it represents. Once a participant fulfills these
requirements it obtains a citizen ID that he will require in order to be a party to the e-contract. As
citizens interact within the Market Governance the Market Governor may record their behavior in
order to create new services like credit history. The citizen will obey the Market Governance arbi-
trage in the case of disputes.

Market Governance can be viewed as a collection of components shown in Figure 2. The set of
minimal components allows for registration of citizens, validation and storage of contracts and
monitoring of activities with respect to the contract:

Market Governor – generic role responsible for coordinating between the roles defined below. In
the model where the business communication is mediated, Market Governor acts as a Market
Mediator.

Contract Drafter - drafts the contract template. Registers the template with the Market Gover-
nance.

Contract Arbiter – invokes alternative procedure when the when a violation of the promise by the
contract party is detected by the Contract Monitor.

Citizen Registrar – registers participants, checks validity of the identity credential, communica-
tion address and financial account information and stores this information as a citizen profile.

Contract Validator – checks if the contract document submitted is valid. This includes checking
the signatures of contract parties with the Citizen Registrar and validating the consistency with
the corresponding contract template.

Contract Repository –stores the contract and provides means to retrieve it. Publishes the contract
template available for refinement and binding into. Performs validation of the contract instance
against a corresponding contract template.
Page 150 SFS Version 2.0

Contract Monitor - monitors the contract fulfilment with respect to a given participant providing
information on the valid contract progression. Detects contract violation and passes the handling
of violation to Contract Arbiter.

As the contract includes logical sections grouping the promises of the same kind i.e., delivery,
billing, payment there is a need for specialised Handlers that will be able to format business docu-
ments conforming to the agreed protocol so that promises can be fulfilled.

10.2 Animation of Roles in the Lifecycle

Having introduced the main roles we animate them below taking the roles focusing on the func-
tionality of the components fulfilling the roles.

Market Making
This phase takes place on the boundary of market place and Market Governance and aims at arriv-
ing at a contract template that would be a basis for the e-contract formation. The primary roles
involved here are Market Maker and Market Governor.
1. When the Market Governance is created the Market Governor is responsible for assembling
Market Governance services and financial risk analysis. Contract Drafter interacts with the Mar-
ket Governance and drafts the contract template. The template is made public in the Market Gov-
ernance for registered citizens.
2. When the Market Place is created the Market Maker contacts a number of Market Governors
searching for a suitable contract template that would match the attributes present in the request for
market place creation.
3. Market Maker applies a utility function to decide the most suitable contract template and
advices the successful Market Governor. Market Governor may at that stage request Market
Maker to become a citizen.

Negotiation
This phase takes place inside of the marketplace and exploits type and constraint information con-
tained in the e-contract template. The aim of this phase is to refine contract template into a con-
tract that can be signed by citizens.
1. The participant goes to a well known match-making service (for instance the E-Service Vil-
lage), to find out which Market Makers are out there who host marketplaces where the services
are being traded that he's interested in trading.
2. In order to do this, the participant specifies a set of constraints on the market that he's interested
to take part in. The markets differentiate their offers – besides by the market mechanisms that they
implement - through the variety of trust services and Market Governance services that they sup-
port. Not only does the participant’s request specify the attributes and constraints related to the
kind of service that the participant is interested in trading, but also those related to contract fulfill-
ment.
Page 151 SFS Version 2.0

3. In response to the participant’s request, The Matchmaking Service1 presents the participant
with a collection of contract templates that cover the criteria expressed by them in the previous
step, together with information about the marketplace where they are being negotiated over. The
selected contract templates also carry information about the Market Governance that will enforce
the contract derived from them.
4. If there’s an active marketplace where the selected contract templates are being negotiated over,

the participant can require admission into it to negotiate over the selected contract templates.2

5. On verification of his credentials, the participant is vetted into the selected marketplaces and
can start to negotiate in those. The negotiation consists of attempting to agree the specific instan-
tiations of attributes in the contract templates, the price being one among them. The negotiation is
regulated by the market mechanism that is enforced in the marketplace where the negotiation is
taking place. The market mechanism defines the negotiation protocol that participants have to
comply with and rules for matching bids and offers (see chapter on Negotiation).
6. When participants arrive at an agreement each participant contacts their corresponding citizen
on behalf of whom they were negotiating. The participant presents the contract for verification
and request signing. If the citizen is satisfied with the negotiated contract it signs it and passes it to
the Market Governor who is responsible for the Market Governance where the contract templates
can be enforced that where utilized in this contract’s formation. The citizen may query the Market
Governor about the state of the contract - has it received all required signatures, has it been vali-
dated and lodged, etc.

Fulfillment
This phase takes place inside the Market Governance and its aim is to fulfill the contract. The pri-
mary roles are Market Governor and service provider/consumer, who are citizens in the Market
Governance. The Market Governor role is refined into Contract Verifier, Contract Monitor, and
Contract Arbiter.
3.1 The Market Governor receives signed contracts that were formed in the market place and
passes them to the Contract Verifier who is responsible for contract validation. If all signatures are
present the Contract Verifier validates the contract against the contract template that was agreed
upon with the Market Maker. He then verifies the signature verification of the citizens and the
Market Maker placed on the contract. Finally, contract Verifier passes the contract to the Contract
Repository.
3.2 The responsibility of the Contract Repository is to serialize the contract and instantiate appro-
priate object model for the Contract Monitor that determines the starting conditions for contract
fulfillment.
3.3 The Contract Monitor performs monitoring of the execution of the e-contract based on the

1. This is not the only way of functioning for the Matchmaker.
2. If there’s no active marketplace, following the request, a Market Maker can decide to create one and notify
all the participants that had previously subscribed expressing interest for the type of services in question. Negotiation
follows. Alternatively, a Market Maker might get back to the participant with an offer for subscription to be notified
when the marketplace will be created. In this case negotiation doesn’t follow right away.
Page 152 SFS Version 2.0

activities of the contract parties. The abstraction level at which the contract arbiter operates is
determined by the formal descriptions embedded in the contract. The primary responsibility of the
Contract Monitor is to advise on the valid contract progression and detect violation of contractual
promises. It delegates dispute resolution to the Contract Arbiter.
3.4 The Contract Arbiter notifies the parties indicated in the violated promise that a breach has
occurred. It then invokes the alternative procedure associated with the violation.

10.3 Contract Instantiation Model

Contracts contain the expected course of actions that is to be followed in given situations
as well as procedures that will be invoked when agreed actions are explicitly cancelled or not ful-
filled. As it is not possible to specify exhaustively every possible violation that might occur the
parties appoint a trusted third party that will invoke alternative procedures in situations not cov-
ered by the contract. There is a parallel between programming and construction of the contract in
that the expected course of actions corresponds to the main program flow, the contract procedures
for violation of non-fulfilment of actions corresponds to time-out procedure or handled exception
and the contract violation and dispute resolution can be equated with an exception that needs to be
handled outside of the main program flow.

It is important to understand that although contract contains the specification of proce-
dures it does not define them. The expected flow of these procedures is specified by the service
provider (in the metadata for service description). Contract on the other hand constrains and regu-
lates these procedures.

This is achieved by specifying contractual situations that imply deontic states (such as per-
missions, prohibitions and obligations). Contract policies specify how the states can be discharged
and so lead to further situations. In order to comply with the policy a business interaction is
invoked by the party. External events such as expiration of a deadline can also bring about change
in the situation. In this setting the situation and policy correspond to the label transition system
where situations describe states and policies describe possible transitions.

Contract template
The information that is not subject to change across many types of contract instances is

gathered in the contract template. On the basic level the contract contains the following informa-
tion:
- Descriptions of parties to contract (roles, names, addresses)
- Period of validity of contract
- Nature of consideration being exchanged (services rendered, goods)
- Obligations of parties (time, quality, action sequence)
- Procedures invoked in case of violations (late payment penalty)
- Domain of the contract that guarantees the correctness and enforcement
Page 153 SFS Version 2.0

Figure 1. Model of the contract template.

This information is captured in the model shown in Figure 1.
Contract role. In the template the concrete instance of organization, institution, or person

(in our model a Citizen) is abstracted into a contract role. As the negotiation starts the participants
take specific roles that allows them to understand which commitments they are entering into. This
binding occurs through association of the citizen ID with the role.

Role Description. Contains the description required for the identification of the contrac-
tual role. We require that the citizen ID is one of the attributes. Depending on the role there can be
further attributes like address, VAT number, company registration number, name of registering
body, etc.

Credential. Represents a document that is linked with the Role is a way that meets the
security requirements described in the section 4. It is used to demonstrate and express the
approval of the contractual commitments. All credentials are dated from a trusted time source.

Approval. Is a container for credentials of roles. When a credential instance is placed in
the Approval container it signifies that the taker of contract role understands and agrees to the
terms and conditions of the contract. The number of Credentials must be equal to the number of
Roles for the contract to be valid.

Clauses. It is a structured textual description of contractual obligations of parties. Clauses
are designed by an expert Contract Drafter.

Situation. Situation describes a state that implies that an obligation, permission or prohi-
bition exists for specified contract role. Situation has associated with it a number of Policies that
when fulfilled will lead to other Situations.

Policy. Describes how the contract party is expected to react to contractual situation. It
may contain complex expressions and has associated with it a number of AbstractBusinessInter-
actions that when realized will fulfill the Policy.

AbstractBusinessInteractions. Is atomic in the context of the contract template. When
negotiated upon in will be refined in a PrototypicalBusinessInteraction .

The model shown in the Figure 1 can be implemented as an XML document. In fact XML itself is
not expressive enough for content-based validation but we use it here for the demonstration pur-
poses. Below follows the fragment-by-fragment discussion of contract template components:

Approval Clauses Abs trac tBusinessI nt eraction

Credential
2..n

expressed by

Role

1..*

has

RoleDescription

ContractTemplate

Situation

1

1

describe

Policy

1 0..*

realized by

1..*

1
2..n1..*

1..*

1

1

1

0..*1
Page 154 SFS Version 2.0

Contract role.
One of the primary elements created during the drafting phase are contract roles. They have an
attribute for binding a specific citizen when contract formation commences

<element name="Role" content="elementOnly">

<group order="sequence">

<element name="RoleDescription" />

</group>

<attribute name="RoleRef" type="string"/>

</element>

<element name="RoleDescription" content="elementOnly">

<group>

<element name="Contact" minOccurs='1' maxOccurs='*'/>

</group>

<attribute name="CitizenId" type="string" minOccurs="1"/>

</element>

Example:

<Role RoleRef="Buyer">

<RoleDescription CitizenId="ctz45">

<Contact>

<Address>Filton Road BS34 8QZ UK</Address>

<VAT_Number>VAT5678</VAT_Number>

<Telephone>+44 344 555</Telephone>

Tag Name Required? Occurs Description Semantics

<Role> Yes Once or more Role of the
contract partici-
pants

Used for bind-
ing a specific
citizen.

Tag Name Required? Occurs Description Semantics

<RoleDescrip-
tion>

Yes Once

Describes the
role by provid-
ing informa-
tion as such as
contact infor-
mation and cit-
izenId.

Used for bind-
ing a specific
citizen.
Page 155 SFS Version 2.0

<Fax>+44 455 666</Fax>

<CompanyRegistration>Reg6588</CompanyRegistration>

<URL>www.A.com</URL>

</Contact>

</RoleDescription>

</Role>

Approval and Credential
As soon as the roles are known the Approval section can be created. It links the credential with the
role and indirectly with the citizen ID. We assume that all credentials will be time stamped when
placed in the approval section.

<element name="Approval" content="elementOnly">

<group order="sequence" minOccurs='1' maxOccurs='*'>

<element name="Credential" minOccurs='1' maxOccurs='*'/>

</group>

</element>

<element name="Credential" content="elementOnly">

<group order="sequence">

<element name="CredentialType" />

<element name="CredentialRef" />

</group>

<attribute name="CitizenId" type="string" minOccurs="1"/>

</element>

Tag Name Required? Occurs Description Semantics

<Approval> Yes Once or more

Links the cre-
dentials with
the role. It is
the place holder
for signing the
contract

The market
governor uses it
to validate the
citizens creden-
tials

Tag Name Required? Occurs Description Semantics
Page 156 SFS Version 2.0

Example:

<Approval>

<Credential CitizenId="ctz987">

<CredentialType>Certificate</CredentialType>

<CredentialRef>www.verisign/ctz987</CredentialRef>

</Credential>

<Credential CitizenId="ctz45">

<CredentialType>Certificate</CredentialType>

<CredentialRef>www.balltimore/ctz987</CredentialRef>

</Credential>

</Approval>

Clauses
The contract clauses are drafted by the legal expert. The clause can be pointed to using the clau-
seID. Clauses are grouped into sections that can also be pointed to.

<element name="Clause" content="elementOnly">

<group order="sequence">
<element name="Situation" minOccurs='1' maxOccurs='*'/>
<element name="ClauseDescription" />

</group>
<attribute name="ClauseId" type="string" minOccurs="1"/>

</element>

Situation

<Credential> Yes

Set of citizen
credetials.

Used by the
market gover-
nor tho vali-
date the
citizenship of
the contact par-
ticipant.

Tag Name Required? Occurs Description Semantics

<Clauses> Yes Once or more

Structured tex-
tual descrip-
tion of
contractual
obligations of
parties

Clauses are
designed by the
Contract
Drafter
Page 157 SFS Version 2.0

Situation describes a state that implies that an obligation, permission or prohibition exists for
specified contract role. Situation has associated with it a number of Policies that when fulfilled
will lead to other Situations.

<element name="Situation" content="elementOnly">

<group order="sequence">

<element name="Policy" minOccurs='1' maxOccurs='*'/>

</group>

<attribute name="SituationId" type="string"/>

</element>

Policy
Describes how the contract party is expected to react to contractual situation. It may contain com-
plex expressions and has associated with it a number of AbstractBusinessInteractions that when
realized will fulfill the Policy.

<element name="Policy" content="elementOnly">

<group order="sequence">

<element name="AbstractBusinessInteraction" />

</group>

<attribute name="PolicyId" type="string"/>

</element>

Tag Name Required? Occurs Description Semantics

<Situation> Yes Once or more
Describes a
state that
implies that an
obligation, per-
mission or pro-
hibition exist
for a specific
role.

The situation is
associated with
a number of
policies that
when fulfilled
will lead to
other situations.
It also used by
the contract
monitor.

Tag Name Required? Occurs Description Semantics
Page 158 SFS Version 2.0

AbstractBusinessInteractions

<element name="AbstractBusinessInteraction" content="elementOnly">

<group>

<element name="BusinessInteractionRef" minOccurs='1' maxOccurs='*'/>

</group>

<attribute name="InteractionId" type="string"/>

</element>

Example:
<Clause ClauseId=1.1>

<ClauseDescription>

After Invoice has been received the Buyer

has to pay the total amount within 7 days.

</ClauseDescription>

<Situation SituationId=1.1>

<Policy PolicyId=1.1>

<AbstractBusinessInteraction InteractionId="Invoice">

<BusinessInteractionRef>

<href link=PurchaseOrderInteraction#InvoiceReceived/>

</BusinessInteractionRef>

</AbstractBusinessInteraction>

<AbstractBusinessInteraction InteractionId="Payment">

<BusinessInteractionRef>

<href link=PurchaseOrderInteraction#SendPayment/>

</BusinessInteractionRef>

</AbstractBusinessInteraction>

</Policy>

<Policy> Yes One or more Describes how
the contract
party is
expected to
react to con-
tractual situa-
tion

The policy is
associated to a
number of
abstract busi-
ness interac-
tions. The
contract moni-
tor also uses it.

Tag Name Required? Occurs Description Semantics

<AbstractBusinessInterac-
tion>

No Once or
more

Describes
the abstract
business
interaction.

Used by the
Process
manager.
Page 159 SFS Version 2.0

</Situation>

10.4 Contract System Components

In this section we present in more detail the components involved in the contract performance
stage and their relationship to other components of the framework like the Communication Man-
ager and Process Manager. The later two components act as application integration interfaces
between the Contract System and messaging and enterprise process management systems.

10.4.1 Functional View

We start with the abstract view focusing on the main functional blocks. Distributed Contract Mon-
itor has the responsibility of maintaining consistency of views on the contract from the point of
view of participating parties. It also has to determine which Situations are applicable with respect
to the contract and what Policies apply to a given Situation. In effect the monitor determines set of
valid transitions that will result in contract progression. He then passes the Policies for evaluation
by the Decision Manger as shown in Figure 1. The responsibility of the Decision Manager is to
select the transition based on the contract Policy as well as the enterprise private data (e.g.: state
of the various business processes).

Figure 1. Functional view of contract performance. The expected behaviour is indicated with letter a, interactions
marked with letter b indicate need for arbitration. The monitor coordinates execution of contract across enterprise
domains.

Note that the Decision Manager may refuse to perform any of the transitions indicated by
the Monitor (which would require Arbitration). Under normal circumstances the Decision Man-
ager is able to select one of the transitions and schedules execution of a business process with the
Process Manager. The Process Manager is responsible for accomplishment of the transition cho-

Proce ssMgr A :
ProcessManager

DecisionMgr A :
DecisionManager

Monitor :
D is tr ibutedContractMonitor

DecisionMgr B :
Decision Manager

ProcessMgr B :
ProcessManager

evaluate()

getSituation()

a: schedule()

b: refuse()

a: complete()

b: exception()
getSituation()

evaluate() a: schedule()
b: refuse()

a: complete()

b: exception()

get Situation()
Page 160 SFS Version 2.0

sen by the Decision Manager. He notifies the Monitor of completion of the process or an excep-
tion if fulfilment of the process is not possible.

The contract Monitor initiates the arbitration in case of an exception or determines the
next Situation and applicable Policies if a transition has completed successfully.

We now turn our attention to the arbitration in case of the exception during the business interac-
tion. As mentioned above the Contract Monitor maintains transactional integrity with respect to
valid contract progression. It may receive an exception indicating that this progression in not pos-
sible. In this case it forwards the exception together with the data relating to the monitored inter-
action to the Arbiter. The Arbiter evaluates this data (audit log, business interaction stack trace,
etc.) in conjunction with the contract metadata that allows him to determine the Situation that
caused the exception. He then retrieves the Policy associated with disputed situation and on its
basis schedules the arbitration process with the Process Manager. As the arbitration process exe-
cutes exceptions may arise (exception from the exception) but under normal circumstances the
process will complete. The Contract Monitor is notified and resumes the monitoring of further
interactions. The Arbiter does not participate in these interactions until an exception is raised
again.

Figure 2. Processing of exceptions by the Arbiter. The exception carries information about the disputed situation
that allows the arbiter to determine the arbitration process.

The functional analysis may lead to various designs and implementations. The implementation
and a deployment model determine the specifics of the implementation of the Contract Monitor in
the distributed environment, communication protocols and further third party roles such as mes-
sage mediator.

Monitor :
DistributedContractMonitor

Arbiter : Arbiter Disputed :
Situation

ProcMgr :
ProcessManager

exception

ev aluate()

getPolicy()

schedule()

b: exception()

a: complete()
Page 161 SFS Version 2.0

10.4.2 Design: validation of the functional view

In our discussion below we focus on the post-contractual phase i.e., contract performance and the
components and their interactions can be readily validated with the use cases given in section
2.6.3. We do not discuss the Use Case 1 on the contract signing as this activity occurs in the enter-
prise once the participants concluded the negotiation process. We just assume that one of the
enterprises will lodge the signed contract with the Governance that can provide support for it.

The components involved in the contract lodging and set-up that are part of the Gover-
nance are shown in Figure 2. The Communication Manager receives a contract lodge request from
the enterprise that is a citizen of the Governance. He processes the message and forwards the
request and the contract to the ContractLifecycleManager. This component is responsible for
maintaining the status of the contract and dispatching to further components. The contract is
stored in the ContractRepository that and send for validation with the ContractValidator. This
component determines the contract template on which the contract instance was based and
retrieves it from the ContractRepository. It uses the information in the template to validate the
contract instance. This includes checking that for each contract role there is a binding to the citi-
zen and that the signatures placed on the contract are valid. It further validates any roles and con-
straints that the template may have with the negotiated contract instance. If the validation fails the
contract is purged from the ContractRepository and the citizen that lodges it is notified. If the val-
idation is successful the ContractLifecycleManager changes the state of the contract to LODGED
and hands off the contract to ContractMonitor that commences the contract set-up. This involves
determining the starting conditions for the contract and registering any triggers with appropriate
components. Finally the lodging citizen and remaining parties to contract are notified that the con-
tract has been accepted and when performance should begin.
Page 162 SFS Version 2.0

Figure 2. Market Governance: contract lodging and set up. Contract is processed and registered within the Gov-
ernance. If it is valid all parties receive notification of its acceptance and starting conditions for performance.

In our model we assume that the Governance acting as a trusted third party is executing the vali-
dation and set-up that results in the parties ready to perform. The enterprises that are party to con-
tract have identical components that allow for contract storing and processing as well as receiving
of messages but the validation is outsourced to the Governance.

The main components that are involved in the contract performance stage in the enterprise
are shown in Figure 3. We note that depending on the mediation model (i.e., outsourcing other
processes than validation) the Mediator components may follow exactly the same interaction.
This is discussed in more detail in section 2.1 and for the time being we turn our attention to the
enterprises.

Once the contract has been set-up the goal of the enterprises is to interact with each other
according to it. Valid contract progression is accomplished by responding to performance requests
that arrive at the Communication Manager who forwards it to the ContractLifecycleManager. He
determines if the status of the contract and if the contract is ready for execution passes the request
to ContractMonitor that is be able to determine how to respond to it. ContractMonitor retrieves
the Situation to which the request refers and obtains a policy that applies to it. It evaluates the pol-
icy taking into account enterprise private data and determines if the request should be accepted or
rejected. In the case of acceptance it schedules a process that will fulfil the policy and deliver
whatever output data necessary. Upon completion of the process the requesting party is notified of
the acceptance of performance request and the process output data if necessary. The enterprise
may also refuse the request. This may happen either because the enterprise chooses to breach the
obligation taking into account other contractual commitments and enterprise private data or
because the current Situation indicated by its Monitor does not warrant the Situation indicated in
the request.

Comms :
CommunicationManager

CLM :
ContractLif ecy cleManager

Repository :
ContractRepos itory

Validat or :
ContractValidator

Monitor :
Cont ract Monitor

1: lo dge()
2: store()

3: va li date()

4: getTemplate()

5: v alidate()

6a: setUp() if VALID6b: reject() if INVALID

7: accept() if VALID
Page 163 SFS Version 2.0

Figure 3. Enterprise: external performance requests. External party to contract requests performance of contrac-
tual obligation implied by the Situation. The Monitor determines contract Policies applicable to the Situation and
evaluates them taking into account other enterprise private information (e.g.: inventory levels). The evaluation results
either in acceptance (7a, 8a, 9, 10) or rejection (7b, 8b) of the contractual obligation implied by the Situation.

Apart from the external requests for the performance contract progression can occur as a result of
events such as expiration of a deadline. This is shown in Figure 4 where the EventManager noti-
fies ContractMonitor of the event. Typically ContractMonitor registers Situations with the Event-
Manager so that events carry the information about the relevant Situation. As before the
ContractMonitor retrieves the policy related to the Situation and performs the evaluation. If the
performance of external party is required it sends a request to the Communication Manager that
routs the message appropriately (where it is processed according to Figure 3). When the accept-
ance of the request is received the Monitor updates its information accordingly. If a rejection is
received an exception would be thrown by the enterprise and an Arbiter run by a trusted third
party will be involved.

The evaluation of the policy related to the event may also indicate need for internal per-
formance in which case the ProcessManager is requested to schedule relevant process. When it
completes the Contract Manager updates its information that may bring about new Situations.

We observe that the interactions described in Figure 3 and 4 imply a protocol (request,
accept, reject, exception) that the enterprises follow when performing the contract. The protocol
together with the Contract Monitor that each enterprise operates allows for coordinating contrac-
tual activities across the Internet. We observe that each enterprise has complete autonomy in how
to manage its processes and weather or not perform its obligations.

CommsMgr :
CommunicationManager

CLM :
ContractLif ecy cleManager

Monit or :
ContractMonitor

Si tuation :
Situation

ProcMgr :
ProcessManager

1: request()
2: getStatus()

3: request ()
4: getSituation()

5: getPol icy()

6: ev aluate()

7a : schedule ()7b: reject()

8b: reject()
8a: co mple te()9 : accept()

10: accept()
Page 164 SFS Version 2.0

Figure 4. Enterprise: internal performance request. Contractual situations can arise when temporal events like
expiration of a deadline happen. The valid contract progression may require performance of other parties (4a, 5a) or
enterprise process to the executed (4b, 5b).

It is also worth pointing out that the request of performance shown in Figure 3 may be made by as
a part of the dispute resolution when the Arbiter handling the exception requests performance of
the dispute resolution step.

10.4.3 Mediation Model

We return now to the issue of the trusted third party and motivation for business interaction medi-
ation. In our model Market Governance acts as a trusted third party and at a minimal functionality
level provides identification of the participants and arbitration, as these are the fundamental capa-
bilities required regardless of the business specialization of participants.

Arbitration

We noticed that the contract participant may choose to refuse performance when requested by
other party. When this situation arises the party sends an exception to the Governance.

As shown in Figure 5 the exception is received by the Communication Manager in the
Governance and if it relates to a contract instance that was lodged before is send to ContractMon-
itor for processing.

The Monitor retrieves the Situation indicated in the exception and sends it to the Arbiter
component. He retrieves the contract template associated with the contract instance and retrieves
the policy for Situation. It evaluates the situation, policy and information contained in the contract
template to determine if arbitration is justified. If so the Arbiter sends the accept message to the
parties to indicate that he accepts to arbitrate and schedules the arbitration process with the Proc-

EventMgr :
Even tM anager

Monit or :
ContractMonitor

Temporal :
Situation

CommsMgr :
CommunicationManager

ProcMgr :
ProcessManager

1: notify()
2: getPol icy()

3: ev aluate()

4a : request()

4b: schedule()

5a: accept()

5b : complete()
Page 165 SFS Version 2.0

essManager.

Figure 5. Market Governance: Arbitration. Contract participants send exceptions to Governance for arbitration.
Based on the contract template the Arbiter chooses a resolution procedure and requests performance from partici-
pants.

As the process executes requests for performance are send to the parties who are expected to
respond with the accept message (if one of the parties sends a refusal dispute settlement would
have to occur outside the scope of the system) to the Governance. Once the arbitration process is
completed the parties are notified and continue performing the contract without the involvement
of the Governance.

10.5 Legal Status of Electronic Contracts

The global pervasiveness of the Internet and the ability to use it as a medium for economic inter-
actions enables international trading for partners who otherwise would never have met before.
This revolutionary development leads to business scenarios and relationships that have not been
previously foreseen.

The work that is described in the previous sections postulates that in the near future con-
tracts will be drafted, formed and enforced on-line. This requires that established law and govern-
ments bodies evolve towards the vision of electronic society and pass appropriate legislation. The
world-wide legislation effort is limited to that of United Nations Commission on International
Trade Law (UNCITRAL) aimed at establishing a global legal framework for EDI but most nota-
ble efforts so far can be observed in the European Union where the EU Directive on Electronic

CommsMgr :
C ommunic at ionManager

Monitor :
Cont ract Monitor

Disputed :
Situat ion

Arbiter : Arbiter ProcMgr :
ProcessManager

1: except ion()
2: ge tS itua tion()

3: arbiter()
4: getTemplate()

5: getPol icy()
5: ev aluate()

7: schedule()

8: complete()
9:noti fy()

6: accept()

8: reque st() FORALL arb. steps
Page 166 SFS Version 2.0

Commerce has recently been passed. The directive lists a set of common rules for the conduct of
electronic trade. It states that if the services provided by the service provider are lawful in a mem-
ber state than the provision of these services in other member state is also lawful in other member
state. This “country of origin” principle aims to protect the service providers and applies to B2B
interactions. The rules laid out in the directive reinforce existing laws of Rome and Brussels Con-
ventions that regulate which legislation is applicable (typically the law of the country most
closely connected with the contract prevails). As many deployment models exist, determining the
governing legislation domain can be complex but this issue can be resolved within the European
law framework.

The consumer contracts are an exception where the “country of destination” principle pre-
vails. It states that customers will be able to sue under local consumer protection laws if dissatis-
fied with the service provided in a different country. This issue is further laid out in the directive
on the protection of consumers in the respect of distance contracts and specifies the rights for can-
cellation of the contract, deadlines and procedures for refunds in case of non-performance,
arrangements for payment and delivery etc.

The Directive on Electronic Commerce with regards to electronic contracts also places
certain information requirements that must clearly be given:
• An outline of different technical steps to follow to conclude contract;

• If the contract is to be filed or will be made accessible;
• Technical means for identifying and correcting errors prior to placing of the order;

• The languages in which contract can be concluded;

• Codes of conduct to which service provider subscribes.
A separate directive exists that stipulates validity of electronic signatures in electronic contracts
(although exceptions exist) and their admissibility in legal proceedings. Consequently the elec-
tronic contract cannot be dismissed purely on the basis that it is not paper based.

The implication of the on going legislative process is that there are some requirements and guide-
lines that electronic contract system designers have to take into account. They mostly impact the
design of the data structures and protocols involved in the contract formation and give high-level
guidelines as to the contract content. We believe that the conceptual model that we have intro-
duced takes into account the legal requirements indicated above.

10.6 Security Requirements

Trust and Security are critical concerns for interactions between business partners over the Inter-
net. The contract framework should support the following security requirements in order to pro-
vide the maximum level of trust.

• Authorization: The contract should be protected against improper, unauthorized access. Only
citizen who are signatories of the contract should be allowed to do so.

• Integrity: The contract should be protected against modifications as soon as at least one sig-
nature has been placed on the contract.
Page 167 SFS Version 2.0

• Non-repudiation: The contract participants (citizens) should not be able to deny their con-
tractual commitments.

• Confidentiality and Privacy: The contract content should only be revealed to the signatories
and/or trusted third parties that they have nominated.

• Authentication: the system must be able to identity contract participant.
• Valid signatures: The contract has to have valid signatures of the contract parties so as to

have and expression of commitment to contractual obligations.
• Transport security: the communication channel between the contract participant should be

secure.
• Secure Messaging: the business messages between the contract parties should be done in a

secure manner.
• Secure storage: the contract document should be stored in a storage that will guarantee that it

can be retrieved and processed even after a long time has elapsed.
Page 168 SFS Version 2.0

References

[1] SOAP: Simple Object Access Protocol: http://www.w3.org/TR/SOAP/

[2] WSDL: Web services Definition Language: http://msdn.microsoft.com/xml/general/wsdl.asp
Page 169 SFS Version 2.0

Appendix A: Schemas and Example Documents
This section contains various schemas that are part of the SFS specification but that have not been
put in the main text in order not to explode the main text. It also contains additional examples.

XML Schema of the CDL language
<?xml version="1.0" ?>

<schema name="ConversationDefinition"
xmlns="http://www.w3.org/1999/XMLSchema"
xmlns:dt="http://www.w3.org/1999/XMLSchema-datatypes"
xmlns:conv="http://www.e-speak.net/schema/conversation"

targetNamespace=”http://www.e-speak.net/schema/conversation”
elementFormDefault="unqualified"

attributeFormDefault="unqualified" >

<element name="InboundXMLDocument" dt:type="conv:XMLDocumentType"/>

<element name="OutboundXMLDocument" dt:type="conv:XMLDocumentType"/>

<element name="InboundXMLDocuments" >
<complexType>

<element ref=”conv:InboundXMLDocument” minOccurs=”1” maxOccurs=”unbounded” />
</complexType>

</element>

<element name="OutboundXMLDocuments" >
<complexType>

<element ref=”conv:OutboundXMLDocument” minOccurs=”1” maxOccurs=”unbounded”/>
</complexType>

</element>

<group name="ReceiveSendDocumentGroup">
<sequence>

<element ref="conv:InboundXMLDocuments" minOccurs="1" maxOccurs="1"/>
<element ref="conv:OutboundXMLDocuments" minOccurs="1" maxOccurs="1"/>

</sequence>
</group>

<group name="SendReceiveDocumentGroup">
<sequence>

<element ref="conv:OutboundXMLDocuments" minOccurs="1" maxOccurs="1"/>
<element ref="conv:InboundXMLDocuments" minOccurs="1" maxOccurs="1"/>

</sequence>
</group>

<group name="ReceiveDocumentGroup">
<sequence>

<element ref="conv:OutboundXMLDocuments" minOccurs="1" maxOccurs="1"/>
</sequence>

</group>

<group name="SendDocumentGroup">
<sequence>

<element ref="conv:InboundXMLDocuments" minOccurs="1" maxOccurs="1"/>
</sequence>

</group>
Page 170 SFS Version 2.0

<element name="Interaction" >
<complexType>

<attribute name = "id" type="dt:ID" required="yes" use="required" />
<attribute name = "initialStep" type="dt:boolean" required="yes"/>
<attribute ref="conv:interactionType" required="yes" use="required" />
<choice>

<group ref="conv:ReceiveSendDocumentGroup" />
<group ref="conv:SendReceiveDocumentGroup" />
<group ref="conv:ReceiveDocumentGroup" />
<group ref="conv:SendDocumentGroup" />

</choice>
</complexType>

</element>

<element name="Transition" >
<complexType name="TransitionType">

<attribute name = "transitionType" use=”default” value=”Basic”>
<simpleType base=”dt:string”>

<dt:enumeration value=”Basic”/>
<dt:enumeration value=”Default”/>
<dt:enumeration value=”Exception”/>

</simpleType>
</attribute>
<element ref="conv:SourceInteraction" minOccurs="1" maxOccurs="1"/>
<element ref="conv:DestinationInteraction" minOccurs="1" maxOccurs="1"/>
<element ref="conv:TriggeringDocument" minOccurs="0" maxOccurs="1"/>

</complexType>
</element>

<element name="Conversation" >
<complexType>

<attribute name = "name" dt:type="dt:string" required="yes" use="required" />
<attribute name = "initialInteraction" dt:type="dt:IDREF" required="yes"

use="required" />
<element ref="conv:ConversationInteractions" minOccurs="1" maxOccurs="1"/>
<element ref="conv:ConversationTransitions" minOccurs="1" maxOccurs="1"

required="yes"/>
</complexType>

</element>

<element name="ConversationInteractions" >
<complexType>

<element ref="conv:Interaction" minOccurs="1" maxOccurs="unbounded"/>
</complexType>

</element>

<element name="ConversationTransitions" >
<complexType>

<element ref="conv:Transition" minOccurs="1" maxOccurs="unbounded"/>
</complexType>

</element>

<element name="SourceInteraction" >
<complexType dt:content="empty" >

<attribute name = "href" dt:type="dt:IDREF" use="required" />
</complexType>

</element>
Page 171 SFS Version 2.0

<element name="DestinationInteraction" >
<complexType dt:content="empty" >

<attribute name = "href" dt:type="dt:IDREF" use="required" />
</complexType>

</element>

<element name="TriggeringDocument" >
<complexType dt:content="empty" >

<attribute name = "href" dt:type="dt:IDREF" use="required" />
</complexType>

</element>

<attribute name="interactionType" required="yes" use="required" >
<simpleType base="dt:string">

<enumeration value="SendReceive"/>
<enumeration value="ReceiveSend"/>
<enumeration value="Receive"/>
<enumeration value="Send"/>

</simpleType>
</attribute>

<complexType name="XMLDocumentType">
<attribute name = "id" dt:type="dt:ID" required="yes" use="required" />
<attribute name = "hrefSchema" dt:type="dt:uriReference" required="no"

use="optional" />
</complexType>

</schema>
Page 172 SFS Version 2.0

Schema of the ServiceDescriptor document
<?xml version="1.0" encoding="UTF-8"?>
<schema xmlns="http://www.w3.org/2000/10/XMLSchema" elementFormDefault="quali-
fied">
<element name="AccessPoint">
<complexType>
<attribute name="urlType" type="string" use="required"/>
</complexType>
</element>
<element name="AuthInfo">
<complexType/>
</element>
<element name="BindingTemplate">
<complexType>
<sequence>
<element ref="AccessPoint"/>
<element ref="tModelInstanceDetails"/>
</sequence>
</complexType>
</element>
<element name="BindingTemplates">
<complexType>
<element ref="BindingTemplate"/>
</complexType>
</element>
<element name="BusinessService">
<complexType>
<sequence>
<element ref="Name"/>
<element ref="Description"/>
<element ref="BindingTemplates"/>
<element ref="CategoryBag"/>
</sequence>
<attribute name="serviceKey" type="string" use="required"/>
<attribute name="businessKey" type="string" use="required"/>
</complexType>
</element>
<element name="CategoryBag">
<complexType>
<element ref="KeyedReference"/>
</complexType>
</element>
<element name="ConversationDefinition">
<complexType>
<attribute name="id" type="string" use="required"/>
<attribute name="href" type="string" use="required"/>
</complexType>
</element>
<element name="ConversationDefinitions">
<complexType>
<element ref="ConversationDefinition" maxOccurs="unbounded"/>
</complexType>
</element>
Page 173 SFS Version 2.0

<element name="ConversationProcessMap">
<complexType>
<element ref="Map"/>
</complexType>
</element>
<element name="Description">
<complexType/>
</element>
<element name="KeyedReference">
<complexType>
<attribute name="tModelKey" type="string" use="required"/>
<attribute name="keyName" type="string" use="required"/>
<attribute name="keyValue" type="string" use="required"/>
</complexType>
</element>
<element name="Map">
<complexType>
<attribute name="conversation" type="string" use="required"/>
<attribute name="process" type="string" use="required"/>
</complexType>
</element>
<element name="Name">
<complexType/>
</element>
<element name="ProcessDefinition">
<complexType>
<attribute name="id" type="string" use="required"/>
<attribute name="href" type="uriReference" use="required"/>
</complexType>
</element>
<element name="ProcessDefinitions">
<complexType>
<element ref="ProcessDefinition" maxOccurs="unbounded"/>
</complexType>
</element>
<element name="ServiceDescriptor">
<complexType>
<sequence>
<element ref="ServiceProperty"/>
<element ref="ServiceVariable"/>
<element ref="ConversationDefinitions"/>
<element ref="ProcessDefinitions"/>
<element ref="ConversationProcessMap"/>
</sequence>
</complexType>
</element>
<element name="ServiceProperty">
<complexType>
<sequence>
<element ref="AuthInfo"/>
<element ref="BusinessService"/>
</sequence>
</complexType>
</element>
Page 174 SFS Version 2.0

<element name="ServiceURI">
<complexType/>
</element>
<element name="ServiceURL">
<complexType/>
</element>
<element name="ServiceVariable">
<complexType>
<sequence>
<element ref="ServiceURL"/>
<element ref="ServiceURI"/>
</sequence>
</complexType>
</element>
<element name="tModelInstanceDetails">
<complexType>
<element ref="tModelInstanceInfo"/>
</complexType>
</element>
<element name="tModelInstanceInfo">
<complexType>
<sequence>
<element ref="Description"/>
<element ref="ConversationDefinition"/>
</sequence>
<attribute name="tModelKey" type="string" use="required"/>
<attribute name="lang" type="string" use="required"/>
</complexType>
</element>
</schema>
Page 175 SFS Version 2.0

Example of a ServicePropertySheet document

<ServiceDescriptor xmlns:xsi="http://www.w3.org/2000/10/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="C:\sriram\sdlcdlpdl\SDLSchema.xsd">

- <ServiceProperty>
<AuthInfo />
- <BusinessService serviceKey="serviceKey" businessKey="businessKey">
<Name />
<Description />
- <BindingTemplates>
- <BindingTemplate>
<AccessPoint urlType="http" />
- <tModelInstanceDetails>
- <tModelInstanceInfo tModelKey="tModelKey" lang="cdl">
<Description />
<ConversationDefinition id="ConvDef1" href="#ConvDef1" />
</tModelInstanceInfo>
</tModelInstanceDetails>
</BindingTemplate>
</BindingTemplates>
- <CategoryBag>
<KeyedReference tModelKey="" keyName="" keyValue="" />
</CategoryBag>
</BusinessService>
</ServiceProperty>
- <ServiceVariable>
<ServiceURL />
<ServiceURI />
</ServiceVariable>
- <ConversationDefinitions>
<ConversationDefinition id="ConvDef1" href="http://www.convserver.com/CDL1.xml" />
<ConversationDefinition id="ConvDef2" href="http://www.convserver.com/CDL2.xml" />
</ConversationDefinitions>
- <ProcessDefinitions>
<ProcessDefinition id="ProcDef1" href="http://www.convserver.com/PDL1.xml" />
<ProcessDefinition id="ProcDef2" href="http://www.convserver.com/PDL2.xml" />
</ProcessDefinitions>
- <ConversationProcessMap>
<Map conversation="ConvDef1" process="ProcDef1" />
</ConversationProcessMap>
</ServiceDescriptor>
Page 176 SFS Version 2.0

Example of the XML body of a ConversationDefinitions message
The ConversationDefinition is a document returned by the service in the ServiceConversationIn-
trospection conversation. The following example shows the business payload of a Conversation-
Definitions message from a weather service that realizes the two mandatory introspection
conversations plus one weather inquiry conversation :

<SOAP-ENV:Body>
<ConversationDefinitions xmlns=”http://www.e-speak.net/schema/conversation”>

<Conversations>
<ConversationDefinition>

<Conversation name="ServicePropertyIntrospection"
xmlns=”http://www.e-speak.net/schema/conversation”
initialInteraction=”#ServicePropertyIntrospection” >

<!— We omit here the rest of this conversation definition, the CDL
has been presented earlier on this document and would come here --!>

</Conversation>
</ConversationDefinition>
<ConversationDefinition>

<Conversation name="ServiceConversationIntrospection"
xmlns=”http://www.e-speak.net/schema/conversation”
initialInteraction=”#ServiceConversationIntrospection” >

<!— We omit here the rest of this conversation definition, the CDL has
been presented earlier on this document and would come here --!>

</Conversation>
</ConversationDefinition>
<ConversationDefinition>

<Conversation name="SimpleWeatherInquiry"
xmlns=”http://www.e-speak.net/schema/conversation”
initialInteraction=”#DefaultInquiry” >

<ConversationInteractions>
<Interaction id="DefaultInquiry" interactionType="ReceiveSend" >

<InboundXMLDocuments>
<InboundXMLDocument id="GetDefaultWeather"

hrefSchema="GetDefaultWeather.xsd" />
</InboundXMLDocuments>
<OutboundXMLDocuments>

<OutboundXMLDocument id="WeatherDefaultStatement"
hrefSchema="DefaultWeather.xsd" />

</OutboundXMLDocuments>
</Interaction>

</ConversationInteractions>
</Conversation>

</ConversationDefinition>
</Conversations>
<Documents>

<Schema name=”GetServiceProperty”>
<!— We omit here the rest of this document schema, it has been pre-
sented earlier on this document and would come here --!>

</Schema>
<Schema name=”ServicePropertySheet”>

<!— We omit here the rest of this document schema, it has been pre-
sented earlier on this document and would come here --!>

</Schema>
<Schema name=”GetConversationDefinitions”>

<!— We omit here the rest of this document schema, it has been pre-
sented earlier on this document and would come here --!>

</Schema>
Page 177 SFS Version 2.0

<Schema name=”ConversationDefinitions”>
<!— We omit here the rest of this document schema, it has been pre-
sented earlier on this document and would come here --!>

</Schema>
<Schema name=”GetDefaultWeather”>

<element name=”DefaultWeatherRequestParameters”
type=”sfsc:DefaultWeatherInputParametersType”/>

<complexType name=” DefaultWeatherInputParameters” >
<element name=”ZIPCode” type=”string”/>
<element name=”CountryCode” type=”string” />

</complexType>
</Schema>
<Schema name=”WeatherDefaultStatement”>

<element name=”DefaultWeatherStatementContent”
type=”sfsc:DefaultWeatherStatementContentType”/>

<complexType name=” DefaultWeatherStatementContentType” >
<element name=”ZIPCode” type=”string” minOccurs=”1” maxOccurs=”1”/>
<element name=”CountryCode” type=”string” minOccurs=”1” maxOccurs=”1”/>
<element name=”DateTime” type=”string” minOccurs=”1” maxOccurs=”1”/>
<element name=”TemperatureC” type=”string” minOccurs=”0” maxOccurs=”1”/>
<element name=”WindKnots” type=”string” minOccurs=”0” maxOccurs=”1”/>
<element name=”RainChance” type=”string” minOccurs=”0” maxOccurs=”1”/>
<element name=”Humidity” type=”string” minOccurs=”0” maxOccurs=”1”/>

</complexType>
</Schema>

</Documents>
</ConversationDefinitions>

</SOAP-ENV:Body>
Page 178 SFS Version 2.0

Schemas and DTD of the Vocabulary Definition Language

DTD for vocabulary definitions

This DTD is the DTD for schema definitions available at the W3S site with the following
changes:
- References to "export" have been eliminated - the assumption is that all parts of a schema are
"exportable" and when a schema is imported, all parts of the schema are imported.
- Related to the above, many of the attributes of the import element were deleted, as was the com-
ponent element (all related to export control).
- It is assumed that element refinement will not be initially supported; the "refines" element has
been removed from the DTD.
- The content model for archetype has been simplified by the removal of "mixed" and "any" from
content; model is either "open" or "closed" with "closed" as the default.
- DatatypeQual has been eliminated: for clarity, it is preferred that restrictions on datatype values
be accomplished via a named datatype.
- A modelGroup is a subset of archetype and has been eliminated. Perhaps modelGroupRef
should be retained but as "archRef." For now it is eliminated.
- A constraint element has been added to indicate the constraints that any offer description can
conform to.

It should be noted that Schemas that describe Vocabularies may be representable as a limited sub-
set of general purpose Schemas. Suppose that there are no aggregate datatypes, then an Attribute
Property is simply described as an XML element whose content is "textOnly" (no elements). This
assumption of no aggregate datatypes leads to a very simple Schema for Vocabularies, described
by the following simple DTD. Because of the simplifying assumption regarding the absence of
aggregate datatypes, the essential part of the schema definition is that an element contains only
data, and not other elements. The simplified DTD is as follows:

<!ELEMENT schema ((import*, include*, datatype*,
(element)*, constraint*))>

<!ATTLIST schema
targetNS CDATA #IMPLIED
version CDATA #IMPLIED

xmlns CDATA
'http://www.w3.org/XML/Group/1999/09/23-xmlschema/'

model (open|closed) 'closed' >

<!ELEMENT import EMPTY>
<!ATTLIST import

schemaAbbrev NMTOKEN #REQUIRED
schemaName CDATA #REQUIRED>

<!ELEMENT include EMPTY>
<!ATTLIST include
Page 179 SFS Version 2.0

schemaName CDATA #REQUIRED>

<!-- The datatype element is defined in XML Schema: Part 2: Datatypes -->
<!-- for publication:

http://www.w3.org/1999/05/06-xmlschema/datatypes.dtd -->
<!ENTITY % xs-datatypes PUBLIC 'datatypes'

'datatypes.dtd' >
%xs-datatypes;

<!ENTITY % xs-datatypes PUBLIC 'datatypes'
'datatypes.dtd' >

%xs-datatypes;

<!ELEMENT element (type, constraint*)>
<!ATTLIST element

required NMTOKEN
datatype NMTOKEN
ismultivalued NMTOKEN
isreference NMTOKEN
name NMTOKEN
defvalue NMTOKEN
schemaAbbrev NMTOKEN #REQUIRED
schemaName CDATA #REQUIRED>

Schema for vocabulary definition

An alternative method of defining the vocabulary is using schemas. The following schema defines
the schema for vocabularies.

<?xml version='1.0'?>
<!-- XML Schema for E-speak Vocabulary properties -->
<!-- location of this schema is at:

http://www.e-speak.net/Schema/core/E-speak.vocab.xsd
-->

<schema xmlns='http://www.w3.org/1999/XMLSchema'
xmlns:ES-CORE='http://www.e-speak.net/Schema/vocab/'
targetNamespace='http://www.e-speak.net/Schema/vocab/'>

<element name=”schema” minOccurs='0' maxOccurs='1' >
<type>

<element name=”element” minOccurs='1' maxOccurs='unbounded' con-
tent='elementOnly'>

<type>
<attribute name='name' type='string' use='required'/>
<attribute name='datatype' type='string' use='required'/>

<attribute name='required' type='boolean' use='default'
value='false' />
Page 180 SFS Version 2.0

<attribute name='ismultivalued' type='boolean' use='default'
value='false' />

<attribute name='isreference' type='boolean' use='default'
value='false' />

<attribute name='default' type='string' use='optional' />
<element ref=”constraint” minOccurs=’0’ maxOccurs=’unBounded’ content=’ele-

mentOnly’/>
</type>

</element>
<element ref=”constraint” minOccurs=’0’ maxOccurs=’unBounded’ content=’ele-

mentOnly’/>
</type>

</element>
</schema>

Contract XML Schema
<?xml version="1.0"?>

<schema>

<element name="Contract" content="elementOnly">

<group order="sequence">

<element name="Role" minOccurs='1' maxOccurs='*'/>

<element name="Approval" minOccurs='1' maxOccurs='*'/>

<element name="Clause" minOccurs='1' maxOccurs='*'/>

<element name="Duration" />

</group>

<attribute name="ContractId" type="string"/>

<attribute name="Type" type="string"/>

</element>

<element name="Role" content="elementOnly">

<group order="sequence">

<element name="RoleDescription" />

</group>

<attribute name="RoleRef" type="string"/>

</element>

<element name="Approval" content="elementOnly">

<group order="sequence" minOccurs='1' maxOccurs='*'>

<element name="Credential" minOccurs='1' maxOccurs='*'/>

</group>

</element>

<element name="Clause" content="elementOnly">

<group order="sequence">

<element name="Situation" minOccurs='1' maxOccurs='*'/>

<element name="ClauseDescription" />

</group>

<attribute name="ClauseId" type="string" minOccurs="1"/>
Page 181 SFS Version 2.0

</element>

<element name="Duration" content="elementOnly">

<group order="sequence">

<element name="Start" />

<element name="End" />

</group>

</element>

<element name="Start" content="textOnly">

</element>

<element name="End" content="textOnly">

</element>

<element name="Credential" content="elementOnly">

<group order="sequence">

<element name="CredentialType" />

<element name="CredentialRef" />

</group>

<attribute name="CitizenId" type="string" minOccurs="1"/>

</element>

<element name="RoleDescription" content="elementOnly">

<group>

<element name="Contact" minOccurs='1' maxOccurs='*'/>

</group>

<attribute name="CitizenId" type="string" minOccurs="1"/>

</element>

<element name="Contact" content="elementOnly">

<group order="sequence">

<element name="Address" />

<element name="VAT_Number" />

<element name="Telephone" minOccurs='1' maxOccurs='*'/>

<element name="Fax" minOccurs='1' maxOccurs='*'/>

<element name="CompanyRegistration" />

<element name="URL" />

</group>

</element>

<element name="Address" content="textOnly">

</element>

<element name="VAT_Number" content="textOnly">

</element>

<element name="Telephone" content="textOnly">
Page 182 SFS Version 2.0

</element>

<element name="Fax" content="textOnly">

</element>

<element name="CompanyRegistration" content="textOnly">

</element>

<element name="URL" content="textOnly">

</element>

<element name="CredentialType" content="textOnly">

</element>

<element name="CredentialRef" content="textOnly">

</element>

<element name="Situation" content="elementOnly">

<group order="sequence">

<element name="Policy" minOccurs='1' maxOccurs='*'/>

</group>

<attribute name="SituationId" type="string"/>

</element>

<element name="Policy" content="elementOnly">

<group order="sequence">

<element name="AbstractBusinessInteraction" />

</group>

<attribute name="PolicyId" type="string"/>

</element>

<element name="AbstractBusinessInteraction" content="elementOnly">

<group>

<element name="BusinessInteractionRef" minOccurs='1' maxOccurs='*'/

>

</group>

<attribute name="InteractionId" type="string"/>

</element>

<element name="BusinessInteractionRef" content="textOnly">

</element>

<element name="ClauseDescription" content="textOnly">

</element>

</schema>
Page 183 SFS Version 2.0

Page 184 SFS Version 2.0

Example of an Offer

For example, consider the following offer to sell paper put in by acme paper company. The con-
tents of the offer are similar to the suggested supplier catalog entries as specified by commer-
ceOne. Essentially, the following offer represents an offer to sell letter sized paper whose list price
is $ 22.95. It also outlines some of the other attributes of the paper being sold. The offer also indi-
cates that it is visible to users who have a credit rating of at least a 'B', or HP employees. Further-
more, the creator of the offer has asked the matchmaker to send it an even in the case when a user
orders paper worth $100,000 or more.

<offer type=”sell”>
<!-- Description of this offer --!>

<offer-description>

<!-- This namespace points to the schema that the paper element in the document con-
forms to --!>

<paper xmlns:pv=”urn:schemas-paperXchange-com:paperOffer”>

<!-- The catalog identifier is used for the description. Such an identifier is a
suggested field in the catalog entry for publishers in the commerceOne
marketsite --!>

<catalog-identifier>02010001</catalog-identifier>

<!-- Name of supplier --!>
<supplier-name>acme office products</supplier-name>

<!-- Part number --!>
<supplier-part-number>347005</supplier-part-number>

<!-- If product is new, used, etc --!>
<product-type>new</product-type>

<!-- Plain text description of product --!>
<paper-description>
<product-desc>acme copy plus paper 8 ½” x 11” </product-desc>

<!-- Paper attributes- width, length, etc. --!>

<paper-size>letter</paper-size>
<width>8.5</width>
<length>11</length>

</paper-description>
<paper-price currency=”usd”>

<list-price>22.95</list-price>
<list-uom>cs</list-uom>
</paper-price>
<classificationCode classType=”UN/SPSC”>

<!—- The standard encoding scheme that is used to identify the product. UN/SPSC
refers to the UN, Dunn and BradStreet encoding scheme for all commodi-
ties--!>

<!—- The 10 digit commodity code according to UN/SPSC encoding for paper. Note
that this code is an example. The actual code for paper may be differ-
ent. --!>

1234567689
Page 185 SFS Version 2.0

</ClassificationCode>
</paper>

</offer-description>

<!-- More information about the product --!>
<offer-info>

<!-- Location of product overview document --!>
<overview>http://www.acme-paper.com/347005/ov.pdf</overview>

<!-- Location of technical specs about the product --!>
<tech-spec>http://www.acme-paper.com/347005/ts.pdf</tech-spec>
<drawing>http://www.acme-paper.com/347005/drawing.gif</drawing>

</offer-info>
<private-info>

<upper-limit>100000</upper-limit>
</private-info>

<!-- ID number identifying the matchmaker-contract --!>
<matchmaker-contract>

<contractID>324fdgfd65765</contractID>
</matchmaker-contract>

<!-- Owner of this offer --!>
<owner>

<esurl>es://server.acme-paper.com:80/paperseller</esurl>
</owner>
<owner-rules>

<security>
<condition test=”$user/profile/credit_rating > ’B’” />
<condition test1=”$user/profile/certs contains HP-emp-cert”/>

</security>

<!-- Min and Max order information --!>
<min-order-quantity>10</min-order-quantity>
<max-order-quantity>1000</max-order-quantity>
<lot-size>10</lot-size>
<event-rules>

<arule>
<pre-condition>

greater($query/quantity * $offer/offer-description/paper/list-price,
$offer/private-info/upperlimit)

</pre-condition>
<action>

$self.notify($query)
</action>

</arule>
</event-rules>

<owner-rules>
<owner-interfaces>

</owner-interfaces>

<!-- How long this offer is good for --!>
<availability>

<availabilityTuple>
<offerRef>offer-description/paper</offerRef>
<time-line>6 months</time-line>
<quantity>1000</quantity>

</availabilityTuple>
<availabilityTuple>
Page 186 SFS Version 2.0

<offerRef>offer-description/paper</offerRef>
<time-line>1 month</time-line>
<quantity>100</quantity>

</availabilityTuple>
</availability>

<!-- ID number for this offer --!>
<offerID>

3484390548
</offerID>

</offer>

The description sent in by the supplier describes the product that is being put for sale.
Page 187 SFS Version 2.0

Relationship to UDDI
We now turn our attention to describing how the structures that we have outlined in the Match
Making and Offer chapters can be used to encode the kind of matchmaker that the UDDI specifi-
cation outlines. UDDI defines the notion of a registry for four things:
1. BusinessEntity
2. BusinessService
3. BindingTemplate
4. TModels

Essentially, each entity is registered with a site Provider, and the site provider also provides a key
for any entity registered with it. This key is similar to the offerID that the matchmaker returns as
the result of registering any offer. We now outline how the UDDI functionality can be captured
using the mechanisms outlined above.

1. save_*** APIs:
Essentially, the save_*** APIs in the UDDI programmers specification can be viewed as registra-
tion requests where the offer that is registered corresponds to the appropriate schema. That is, the
saveBusinessEntity API call can be translated to an offer registration request where the contents
of the offer description conform to the BusinessEntity vocabulary. Since any schema can form the
basis of a vocabulary, we can define the vocabularies for the entities.

For example, the business entity vocabulary looks as follows, (the schema for business entity in
UDDI):
<element name = "businessEntity">

<type content = "elementOnly">
<group order = "seq">

<element ref = "discoveryURLs" minOccurs = "0" maxOccurs = "1"/>
<element ref = "name"/>
<element ref = "description" minOccurs = "0" maxOccurs = "*"/>
<element ref = "contacts" minOccurs = "0" maxOccurs = "1"/>

<element ref = "businessServices" minOccurs = "0" maxOccurs = "1"/>
<element ref = "identifierBag" minOccurs = "0" maxOccurs = "1"/>
<element ref = "categoryBag" minOccurs = "0" maxOccurs = "1"/>

</group>
<attribute name = "businessKey" minOccurs = "1" type = "string"/>
<attribute name = "operator" type = "string"/>
<attribute name = "authorizedName" type = "string"/>
</type>

</element>

The vocabulary definition looks as follows:

<?xml version='1.0'?>
<schema targetNS="urn:uddi-org:businessEntity.xsd"

xmlns=”http://www.e-speak.net/Schema/vocab”>
<element name = "businessEntity">
Page 188 SFS Version 2.0

<type content = "elementOnly">
<group order = "seq">

<element ref = "discoveryURLs" required=”no” datatype=”URL” multi-val-
ued=”yes”/>

<element ref = "name" required=”yes” datatype=”string”/>
<element ref = "description" required=”no” datatype=”string”/>
<element ref = "contacts" />

<element ref = "businessServices" datatype=”businessService:serviceKey”
isreference=”yes” ismultivalued=”yes”/>

<element ref = "identifierBag" datatype=”tModelIdentifier:reference”
isreference=”yes” ismultivalued=”yes”/>

<element ref = "categoryBag" datatype=”category” ismultivalued=”yes”/>
</group>
<attribute name = "businessKey" required=”yes” type=”string” />
<attribute name = "operator" type = "string"/>
<attribute name = "authorizedName" type = "string"/>
</type>

</element>
</schema>

Any business entity can register itself with a matchmaker. In such a situation, the matchmaker
contract field can represent the contract between the business entity and the entity that runs the
matchmaker.

Note that the notion of vocabularies in e-speak also supports the notion of multi-valued attributes.
Essentially, one can define a named element and indicate that it takes on multiple values. This
allows the e-speak attributes to mimic the Bag construct in UDDI. Therefore, the identifierBag in
the schema above is can be modeled as an attribute named identifierBag that can take on multiple
values. In other words, it is a multi-valued attribute.

A similar technique allows e-speak matchmakers to accept other UDDI entity descriptions such as
Business Services, binding templates, and T-models. We briefly sketch the vocabulary definitions
for the other concepts in UDDI.

<?xml version='1.0'?>
<schema targetNS="urn:uddi-org:businessService.xsd"

xmlns=”http://www.e-speak.net/Schema/vocab”>
<import schemaAbbrev="be" schemaName="urn:uddi-org:businesEntity.xsd"/>

<element name = "businessService">
<type content = "elementOnly">
<group order = "seq">

<element ref = "name" required=”yes” datatype=”string”/>
<element ref = "description" required=”no” datatype=”string”/>
<element ref = "bindingTemplates" isreference=”yes” datatype=”bind-

ingTemplate:templateKey” />
<element ref = "categoryBag" datatype=”category” ismultivalued=”yes”/>

</group>
<attribute name = "serviceKey" minOccurs = "1" type="string"/>
<attribute name = "businessKey" type = "be:reference"/>
Page 189 SFS Version 2.0

</type>
</element>
<constraint>

<goal>
<batom>

<wdConstraint>
<atom>

<predicate>
isValid

</predicate>
<args>

<term>
<variable>

$businessService/businessKey
</variable>
</term>
<term>

$businessService/bindingTemplates
</term>

</args>
</atom>

</wdConstraint>
</batom>
</goal>

</constraint>
</schema>

<?xml version='1.0'?>
<schema targetNS="urn:uddi-org:tModel.xsd"

xmlns=”http://www.e-speak.net/Schema/vocab”>
<element name = "tModel">

<type content = "elementOnly">
<group order = "seq">

<element ref = "name" datatype=”string” required=”yes”/>
<element ref = "description" datatype=”string” required=”no”/>
<element ref = "overviewDoc" datatype=”URL” required=”yes”/>

<element ref = "identifierBag" datatype=”tmodel:identifier:refer-
ence” isreference=”yes” ismultivalued=”yes”/>

<element ref = "categoryBag" datatype=”category” ismultival-
ued=”yes” required=”no”/>

</group>
<attribute name = "tModelKey" minOccurs = "1" type = "string"/>
<attribute name = "operator" type = "string"/>
<attribute name = "authorizedName" type = "string"/>

</type>
</element>

<constraint>
<goal>

<batom>
<wdConstraint>

<atom>
<predicate>
Page 190 SFS Version 2.0

isValid
</predicate>
<args>

<term>
<variable>

$tModel/identifierBag
</variable>
</term>

</args>
</atom>

</wdConstraint>
</batom>
</goal>

</constraint>
</schema>

<?xml version='1.0'?>
<schema targetNS="urn:uddi-org:bindingTemplate.xsd"

xmlns:vocab=”http://www.e-speak.net/Schema/vocab”>
<import schemaAbbrev="tm" schemaName="urn:uddi-org:tModel.xsd"/>
<import schemaAbbrev="bs" schemaName="urn:uddi-org:businessService.xsd"/>

<element name = "bindingTemplate">
<type content = "elementOnly">

<group order = "seq">
<element ref = "description" datatype=”string” required=”no”/>
<group order = "choice">
<element ref = "accessPoint" datatype=”URL” isreference=”yes”/>
<element ref = "hostingRedirector" datatype=”URL” isrefer-

ence=”yes”/>
<element ref = "tModelInstanceDetails" datatype=”tm:tModelKey”

isreference=”yes”/>
</group>
<attribute name = "bindingKey" minOccurs = "1" type = "string"/>
<attribute name = "serviceKey" type = "bs:serviceKey"/>

</type>
</element>

<constraint>
<goal>

<batom>
<wdConstraint>

<atom>
<predicate>

isValid
</predicate>
<args>

<term>
<variable>

$bindingTemplate/serviceKey
</variable>
</term>

</args>
</atom>

</wdConstraint>
Page 191 SFS Version 2.0

</batom>
</goal>

</constraint>

</schema>

The key thing to note is that the addition of the constraint element to the schema allows us to cap-
ture the requirement that the references in the bindingTemplates, businessServices, tModels, and
businessEntitys should be well formed. For the purposes of this exercise, we have assumed that
the check for validity of these references is a well known operation as defined by the semantics of
UDDI.

2. Owner of any UDDI entity:
Furthermore, in UDDI, any BusinessService is owned by a BusinessEntity, and any BindingTem-
plate is owned by a BusinessService that has to already exist. The offers also have a notion of off-
erOwner. In addition, if any part of a description has a reference to another entity that is to be
registered, the implementation can stipulate that the references that are created have to exist.
Therefore, the description of the business services has references to the business entity that owns
it.

3. find_*** APIs:
The query language supported by e-speak is much richer than the query language supported by
UDDI. The query language in UDDI is basically based on matching the names, identifiers, and
catoegories and tModel Ids. Furthermore, the matching is a logical OR when applied to identifi-
ers, a logical AND when applied to tModel id matches, a logical OR when applied to url like ref-
erences, and a logical AND when applied to categories.

4. delete_*** APIs:
The matchmaker supports a retract-offer API that essentially captures the functionality provided
by the delete_*** APIs in UDDI.
Page 192 SFS Version 2.0

Appendix B: Software Support for SFS

Developing and deploying e-services

To be filled in...

Generic Software Stack for sending and receiving SFS messages

The following figure shows how the various protocol layers correspond to the abstract software
stack of any servers and clients in the eco-system that send and receive SFS messages. We do not
describe here what software components realize these abstract software layers, as this may vary
from server type to server type. The appendix describes how e-speak products support SFS and
SFS messaging.

Figure 1: Figure: Abstract software stack of servers and clients

E-speak: E-Services Village (Collaborative Portal Framework)
....

E-speak: Conversation Server
...

Conversation Controller:
verifies that correct messages are received and

dispatches to back-end business logic

Reliable Messaging:
generates addtional acknoweldge messages

WebServer:
handles http tags and SSL

Message packaging:
packages all header fields and payload into correct
SOAP/MIME structure, stores incoming certificates

Back-end Business Logic:
takes the appropriate actions based on the XML
payload received in the SOAP body, creates new

XML payloads

Abstract software stack:

Service Container:
contains all ongoing conversation instances of a
specific service, dispatches to conversation contr.

SFS Messaging Controller:
handles SFS predefined XML tags (service name
id, security, ...), dispatches to service container

Conversation Layer

Transport Layer:
e.g. HTTP

Messaging Layer:
e.g. SOAP/MIME

Protocol layers:
Page 193 SFS Version 2.0

