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1. Introduction 
An increasingly large number of distributed applications are constructed by being 
composed from existing applications. The resulting applications can be very complex in 
structure, with complex relationships between their constituent applications. 
Furthermore, the execution of such an application may take a long time to complete, and 
may contain long periods of inactivity, often due to the constituent applications requiring 
user interactions. In a loosely coupled environment like the Web, it is inevitable that long 
running applications will require support for fault-tolerance, because machines may fail 
or services may be moved or withdrawn. A common technique for fault-tolerance is 
through the use of atomic transactions, which have the well know ACID properties, 
operating on persistent (long-lived) objects [1]. Transactions ensure that only consistent 
state changes take place despite concurrent access and failures. 

1.1 Problem statement 

Traditional transaction processing systems are sufficient if an application function can be 
represented as a single top-level transaction. Frequently this is not the case. Top-level 
transactions are most suitably viewed as “short -lived” entities, performing stable state 
changes to the system; they are less well suited for structuring “long-lived” application 
functions (e.g., running for minutes, hours, days, …). Long-lived top-level transactions 
may reduce the concurrency in the system to an unacceptable level by holding on to 
resources (e.g., locks) for a long time; further, if such a transaction aborts, much valuable 
work already performed could be undone [2]. 
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Several enhancements to the traditional flat -transaction model have been proposed. One 
enhancement (supported by the Object Transaction Service [3]), permitting a finer 
control over recovery and concurrency, is to permit nesting of transactions [4]; 
furthermore, nested transactions could be concurrent. The outermost transaction of such a 
hierarchy is typically referred to as the top-level transaction. The permanence of effect 
property is only possessed by the top-level transaction, whereas the commits of nested 
transactions (subtransactions) are provisional upon the commit/abort of an enclosing 
transaction. This allows for failure confinement strategies, i.e., the failure of a 
subtransaction does not necessarily cause the failure of its enclosing transaction. 
Resources (e.g., locks) acquired within a subtransaction are inherited (retained) by parent 
transactions upon the commit of the subtransaction, and (assuming no failures) only 
released when the top-level transaction completes, i.e., they are retained for the duration 
of the top-level transaction. 

Nested transactions allow the construction of modular applications: the builder of an 
object can use transactions within its methods if those methods need to be transactional, 
and if they are subsequently invoked from within another transaction they will simply be 
nested. They also allow for fault containment: if a failure occurs within a subtransaction 
then it can be rolled back without forcing the enclosing transaction to roll back. This 
latter property may be particularly useful within a loosely coupled environment such as 
the Web. 

Another possible enhancement is to introduce type specific concurrency control, which is 
a particularly attractive means of increasing the concurrency in a system. Concurrent 
read/write or write/write operations are permitted on an object from different transactions 
provided these operations can be shown to be non-interfering (for example, for a 
directory object, reading and deleting different entries can be permitted to take place 
simultaneously). Object -oriented systems are well suited to this approach, since semantic 
knowledge about the operations of objects can be exploited to control permissible 
concurrency within objects [5]. Additional work may be needed when working with 
procedural systems. 

In addition, although strict two-phase locking protocols are typically implemented by 
transaction systems to ensure that locks are (apparently) released instantaneously when 
the transaction terminates, this is not a requirement. As long as failures do not occur that 
would cause the transaction to rollback, locks can be released early. However, if the 
transaction rolls back, it may cause a cascade rollback scenario, where other transactions 
that have acquired these early released locks are told to rollback as well. 

Note, that traditional transaction systems tie persistence and concurrency control together 
at the level of the database. This is not a transaction requirement. In object-oriented 
systems, typically persistence and concurrency control are separated, allowing finer 
granularity locking to occur. 
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Structuring certain activities from long-running transactions can reduce the amount of 
concurrency within an application or (in the event of failures) require work to be 
performed again. For example, there are certain classes of application where it is known 
that resources acquired within a transaction can be released “early”, rather than having to 
wait until the transaction terminates; in the event of the transaction rolling back, 
however, certain compensation activities may be necessary to restore the system to a 
consistent state. Such compensation activities (which may perform forward or backward 
recovery) will typically be application specific, may not be necessary at all, or may be 
more efficiently dealt with by the application. It is important to realise that these types of 
application can be implemented using traditional transaction systems, but simply in a less 
efficient manner than may be possible given other techniques. 

The following discussion is background describing some typical applications where 
extended transaction structuring techniques may be beneficial. For simplicity we assume 
that all applications require some form of durability, but this is not necessarily the case, 
and transactions can still be used to control non-durable state changes. 

1.1.1 Arranging a night out 

Consider the following long running business transaction, illustrated by Figure 1. The 
application activity is concerned with booking a taxi ( t1), reserving a table at a restaurant 
(t2), reserving a seat at the theatre (t3), and then booking a room at a hotel (t4). If all of 
these operations were performed as a single transaction (shown by the dotted ellipse), 
then resources acquired during t1 would not be released until the top-level transaction 
has terminated. If subsequent activities t2, t3 etc. do not require those resources, then 
they will be needlessly unavailable to other clients. 

Long-running applications and activities can be structured as many independent, short -
duration top-level transactions, to form a long-running business transaction. This 
structuring allows an activity to acquire and use resources for only the required duration 
of this long-running transactional activity. Therefore, as shown the business transaction 
may be structured as many different, coordinated, short-duration top-level transactions. 
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Figure 1: An example of a logical long-running “transaction”, without failure. 

However, if failures and concurrent access occur during the lifetime of these individual 
transactional activities then the behaviour of the entire “logical long-running transaction” 
may not possess ACID properties. Therefore, some form of (application specific) 
compensation may be required to attempt to return the state of the system to (application 
specific) consistency. Just as the application programmer has to implement the 
transactional work in the non-failure case, so too will programmers typically have to 
implement compensation transactions, since only they have the necessary application 
specific knowledge. Note, for simple or well-ordered work it is possible to provide 
automatic compensations. 

For example, let us assume that t4 has failed (rolls back). Further assume that the 
application can continue to make forward progress, but in order to do so must now undo 
some state changes made prior to the start of t4 (by t1 , t2 or t3). Therefore, new activities 
are started; tc1 which is a compensation activity that will attempt to undo state changes 
performed, by say t2 , and t3 which will continue the application once tc1 has completed. 
tc5’ and tc6’ are new activities that continue after compensation, e.g., since it was not 
possible to reserve the theatre, restaurant and hotel, it is decided to book tickets at the 
cinema. Obviously other forms of transaction composition are possible. 
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Figure 2: An example of a logical long-running “transaction”, with failure. 
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It should be noted that even with suitable compensations, it can never be guaranteed to 
make the entire activity transactional: in the time between the original transaction 
completing and its compensation running, other activities may have performed work 
based upon the results of the yet to be compensated transaction. Attempting to undo these 
additional transactions (if this is possible) can result in an avalanche of compensations 
that may still not be able to return the system to the state it had prior to the execution of 
the first transaction. In addition, compensations may (continually) fail and it will then be 
extremely important to inform users (or system administrators). Note, it will be 
application specific as to whether or not a compensation should be tried again if it does 
fail. For example, consider the situation where a transaction sells shares and the 
compensation is to buy them back; if the compensation fails it may be inappropriate (and 
expensive) to try it again until it does eventually succeed if the share price is going up 
rapidly. 

1.1.2 Home entertainment system 

Let us assume that we are interested in building our own customised home entertainment 
system consisting of TV, DVD player, hi-fi and video recorder. Furthermore, rather than 
purchase each of these from the same manufacturer we want to shop around and get the 
best of each from possibly different sources. 

 

t2 

time 

Application 
activity 

t4 t5 t3 t1 

 
Figure 3: Building a home entertainment system via the Web. 

When we visit the TV site we wish to start a transactional activity, t1, that will allow us 
to search and provisionally reserve (obtain transactional locks on) a number of different 
televisions (set A) that match our requirements. Before t1 terminates, we select a subset 
of the televisions, B, we are interested in, and provide a reference to our online bank 
account which the television site may contact to check that we have sufficient funds. t1 
then ends, any locks obtained that are not members of B are released as normally for a 
transaction, (allowing other users to acquire them immediately if necessary), and all other 
locks are obtained and passed to t2. 



(c) Copyright 2001 Hewlett-Packard Company 

  6 

The sequence of operations for t2, t3, and t4 are identical, where only subsets of items 
(DVD player, hi-fi, video) we have transactionally locked are released when each activity 
terminates. By the time t5 is executed there is a list of items that are locked and under it’s 
control, possibly also including the on-line bank account. Therefore, t5 is responsible for 
committing or rolling back the final purchase order. All locked resources are atomically 
handed off to the next atomic action, and failures do not require compensation: the 
atomicity property of t1, t2, t3, t4 and t5 ensures that either the purchase happens, or it 
does not (and all resources will be released). 

1.1.3 Web services coordination 

Web services (components, objects, …) will typically not open up two-phase commit 
protocols to be driven by external coordinators. As a result, coordinating multiple Web 
services within a single transaction can never give the same ACID guarantees as multiple 
two-phase commit resources: in a single-phase model if a failure occurs after having 
committed some resources it is not possible to undo those that have committed. There are 
two solutions to this: 

1) Wrap these one -phase objects in a two-phase wrapper which ignores the 
“prepare” phase and register them with a traditional transaction manager. 

2) Treat this as an extended transaction model that requires specific coordination 
and error treatment. 

In terms of implementation, there is no difference between 1 and 2: the resources are still 
one phase and may fail in exactly the same manner. However, on a conceptual level there 
is a significant difference: when using a transaction manager, programmers expect an all-
or-nothing effect, especially since applications typically do not know about one-
phase/two-phase restrictions of resources and may mix them in the same transaction; 
raising heuristic exceptions is the only possible solution for the transaction manager that 
finds it cannot undo committed operations, and then the application (or typically the 
administrator) has to deal with the outcome [1]. 

Giving applications a specific extended transaction model that clearly defines how 
resources behave and does not allow one-phase and two-phase resources to be registered 
in the same atomic action, gives a better understanding to users: the programmer must 
make a conscious choice as to the model that is being used, and the entire application is 
structured accordingly. In the end these types of applications are not transactional, and a 
traditional two-phase aware transaction system is inappropriate for them. 

This notion of having a different extended transaction model for each use-case makes 
applications aware of the issues involved and helps to categorize objects and activities 
into which type of model they support. So, for example, one object may be used 
successfully within a two-phase and one-phase model, whereas another may only be used 
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within two-phase. It is important to reduce complexity in developing “transactional” 
internet application by not over overloading a given model (e.g., ACID transactions). 

1.1.4 Timed transactions  

Many business transactions have specific “real-time” deadlines within which they must 
operate (e.g., purchasing of shares). After the deadline has elapsed, if the business 
transaction has not completed in a normal manner, there will typically be application 
specific ways in which it must terminate (e.g., purchase the shares at the current price if 
it is less than a certain value). However, while this business transaction is running, its 
constituents may still require some or all of the ACID properties associated with 
transactions. 

1.1.5 Arranging a meeting 

The requirement is to arrange a date for a meeting between a group of people; it is 
assumed that each user has a personal diary object which records the dates of meetings 
etc., and each diary entry (slot) can be locked separately. The application starts by 
informing people of a forthcoming meeting and then receiving from each a set of 
preferred dates. Once this information has been gathered, it will be analyzed to find the 
set of acceptable dates for the meeting. This set is then broadcast to the users to get a 
more definitive idea of the preferred date(s). This process is repeated until a single date is 
determined. To reduce the amount of work which must be re-performed in the event of 
failures, and to increase the concurrency within the application, it would be desirable to 
execute each “round” of this protocol as a separate top-level transaction. However, to 
prevent concurrent arrangement activities from conflicting with each other, it would be 
beneficial to allow locks acquired on preferred diary entries to be passed from one 
transaction to another, i.e., the locks remain acquired on only those entries which are 
required for the next “round”. 

1.2 Conclusions 

These applications share a common feature that as viewed by external users, in the event 
of successful execution (i.e., no machine failures or application-level exceptional 
responses which force transactions to rollback), the work performed possesses all ACID 
features of traditional transactional applications. If failures occur, however, non-ACID 
behaviour is possible, typically resulting in non-serializability. For some applications this 
does not result in application-level inconsistency, and no form of compensation for the 
failure is required. However, for other applications compensation may be required to 
restore the system to a consistent state from which it can then continue to operate. 

As mentioned previously, compensation activities will typically be written for specific 
applications (and specific operations). However, even if compensation activities are 
required, it may be more efficient to exploit application-level semantics and allow the 
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application programmer to drive compensation, rather than rely upon system-driven 
compensation. Additionally, it me be impossible to guarantee that compensations will 
succeed, especially in the presence of failures. 

There are several ways in which some or all of the requirements outlined above could be 
met [6][7][8][9]. We shall briefly outline two approaches: 

• independent top-level transactions: with this mechanism it is possible to invoke a 
top-level transaction from within another transaction [7]. If the invoking 
transaction rolls back, this does not lead to the automatic rollback of the invoked 
transactions, which can commit or rollback independently of its invoker, and 
hence release resources it acquires. Such transactions could be invoked either 
synchronously or asynchronously. In the event that the invoking transaction rolls 
back, and compensation is required, compensating transactions may be invoked 
automatically by the transaction system or by the application.  

• structured top-level transactions: long-running top-level transactions can be 
structured as many independent, short-duration top-level transactions, to form a 
“logical” long-running transaction [6]. This structuring allows an activity to 
acquire and use resources for only the required duration of this long-running 
transactional activity. In the event of failures, to obtain transactional semantics 
for the entire long-running transaction may require compensation transactions 
which can perform forward or backward recovery. Structuring applications which 
have long-running transactions out of many smaller transactions may require 
additional techniques (e.g., scripting languages) to ease the burden on application 
programmers. 

Several industrial transaction systems already exist which support at least one of the 
above mentioned techniques. Experiences from these systems suggest that users benefit 
from the capability to relax strict ACID properties in a structured, and well defined 
manner. The ability to reason about applications structured from these techniques in both 
failure-free and failure-prone situations is extremely important. Traditional transaction 
semantics are a well understood concept, which users find useful. What these various 
techniques show is that one-size does not fit all, and different applications will require 
different qualities of “transactional” service. However, it is our belief that these different 
models share a core model based upon activity signalling and distribution. 

To differentiate between ACID transactions and extended (non-ACID) transaction 
models we shall use the following terminology: 

• Atomic transaction (transaction): a traditional ACID transaction. 

• Atomic action: an activity, or group of activities, that does not necessarily possess 
the guaranteed ACID properties. An extended action still has the “all or nothing” 
effect, i.e., failure does not result in partial work. 
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• Business transaction: an activity, or group of activities, that is responsible for 
performing some application specific work. A business transaction may be an 
atomic transaction or an atomic action. 

1.3 Protocol configuration and negotiation 

Just as we believe that one extended transaction model does not suit all application 
domains, it is possible that Web Service components may support multiple different 
extended transaction models (possibly representing different qualities of service). Either 
when the Web application is created, or when one component initially interacts with 
another, some level of protocol negotiation will be necessary to determine which 
transaction model will be used. If the component does not support the required extended 
transaction model then it will be up to the application to determine whether or not it 
makes sense to continue to use the component. For example, it may make sense for a 
transactional application to refuse to work with any service that does not support 
transactional semantics, i.e., does not accept (and use) transaction contexts that may be 
sent to it. 

In addition, we do not assume that a single remote invocation mechanism (e.g., CORBA 
IIOP) will be the natural communication medium for all Web Services. How participants 
within and between activities appear to each other is not central to this discussion. They 
may be CORBA objects, communicating via IIOP, or they may be coarser grained Web 
Services objects, communicating via SOAP, for example. We assume that they will use 
the most appropriate invocation protocol for the application, e.g., it is unlikely that there 
will be much real-time video streaming over SOAP/HTTP. This does not preclude a 
given application from using multiple object models and communication protocols 
simultaneously. Note, in an internet environment where network and machine failures are 
relatively common (compared to, say, a LAN), the use of a slow invocation mechanism 
is more likely to result in transaction failures, particularly during the two-phase commit 
protocol. Since SOAP over HTTP is much slower than IIOP, it is likely that critical 
transactional applications (obviously a subjective term) will not use SOAP for 
transactional invocations (or at least for completing transactions). 

We assume that protocol negotiation will occur on many levels (e.g., which transaction 
models are supported by a Web Service and in use by the invoker, which 
communications protocols are provided, business level issues, etc.) We do not prescribe 
when such negotiation occurs, but rather assume that any (or all) of the following 
mechanisms will be supported: 

• Statically: prior to using a Web Service, an invoker may contact a 
naming/location service (e.g., UDDI), and from this obtain information about 
protocols etc. that the service provides, e.g., typically in the form of an XML 
document. 
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• Dynamically: when the Web Service is initially contacted there may be some 
initial set up (handshake) protocol during which protocol information in the form 
of XML documents will be exchanged. This may be necessary if a reference to a 
Web Service is returned from another service. 

• Caching: once protocol information has been obtained about a Web Service, it 
may be cached and used again. Obviously cache information may become 
invalid, and cache invalidation protocols, or dynamic set ups may be used to 
solve this problem. 

How protocol information is subsequently used to determine which transaction model, or 
communication protocol to use, for example, is beyond the scope of this paper, and will 
typically depend upon the application. For example, business considerations, or quality 
of service considerations may play a large part in this: SOAP may be the default 
communication protocol, however, if company A is prepared to pay for extra bandwidth 
then a different protocol may be used. 

2. The proposed framework 

Rather than construct each different extended transaction implementation from scratch, 
another approach would be to construct a generic framework on which many extended 
transaction models may be built [9][10][11]. This is the approach taken in [9] by the 
Object Management Group, in which it is shown that extended transaction models share 
a common requirement of coordination and control. This has several advantages: (i) the 
flexibility of such a framework allows for the reuse of components from one model in 
another, (ii) the framework adopted by the OMG to standardise extended transaction 
models is now also a JSR from Sun for extensions to J2EE [9][10], and will eventually 
be available in many servers and enterprises; leveraging this technology could help 
advance the development and use of enterprise level Web Services. Note, members of the 
Hewlett-Packard Arjuna Labs played a key role in specifying this OMG specification 
along with IBM and Iona Technologies. 

In the rest of this paper we shall briefly describe the framework specified in [9][10] 
which we believe is sufficient to allow middleware to manage complex business 
transactions that extend the concept of transaction from the well-understood, short -
duration atomic transaction. The different extended transaction models can be mapped 
onto specific implementations that use this framework such that they may interoperate 
and allow such transactions to span a network of systems connected indirectly by some 
distribution infrastructure. Owing to space limitations we can only give an overview of 
this work, and the interested reader is referred to [9] for a more detailed description. 
Note, although the framework in [9] is CORBA specific, the ideas it describes are not. 
Furthermore, CORBA implementations of it may be better suited to intranet 
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environments, with gateways or bridges to equivalent Web Services implementations in 
an internet setting. 

There are several ways in which some or all of the application requirements outlined in 
Section 1 could be met. However, it is unrealistic to believe that the “one-size fits all” 
paradigm will suffice, i.e., a single high-level model approach to extended transactions is 
unlikely to be sufficient for all (or even the majority of) applications. The area of 
business transactions is relatively new, and is still evolving, necessitating the use of a 
flexible, extensible protocol. Therefore, we shall describe a low-level infrastructure to 
support the coordination and control of abstract, application specific entities. As we shall 
show, these entities (activities) may be transactional, they may use weaker forms of 
serializability, or they may not be transactional at all; the important point is that we are 
only concerned with their control and co-ordination, leaving the semantics of such 
activities to the application programmer. 

2.1 Activities 

An activity is a unit of (distributed) work that may, or may not be transactional, and 
during its lifetime an activity may have periods of transactionality and periods of non-
transactionality. An activity is created, made to run, and then completed. An outcome is 
the result of a completed activity, and this can be used to determine subsequent flow of 
control to other activities. Activities may run over long periods of time (minutes, hours, 
days, …) and can thus be suspended and then resumed later. 

A very high level view of the role of the Activity Service is shown in Figure 4. 
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Figure 4: The role of the Activity Service. 

Note, it is not expected that the operations in the Activity Services will be used directly 
by end-user programmers. In this context, the term application programmers refers to 
those who write for example, workflow managers or component management systems or 
who are extending the functionality of the Containers of Enterprise Java Beans (EJBs). 
Extended transactions like Sagas and Compensations have a complex structure and are 
intended to last over quite long intervals. Therefore a significant amount of middleware 
is required to manage the progress and recovery of an extended transaction. This should 
not be in the domain of an application programmer employed to write business software 
rather than middleware. 

We shall define the Application Framework  to be that middleware supplied by specialist 
vendors required to manage the progress of workflows and long-running business 
transactions in a variety of business domains, and further define Application Component 
to describe the components that “plug in” to such a framework. The Workflow 
Management Coalition (WfMC) and the OMG’s Workflow Management Facility use the 
term Activity to describe a step in a path through a workflow digraph. An Application 
Component, if it is to be reusable, has to maintain a degree of independence from the 
Application Framework in which it runs. Thus a workflow manager might associate one 
or more Activities with a single Application Component each time giving it different 
properties that will serve to parameterize the enactment of the workflow [8]. For 
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example, an Application Component that holds a conversation with a graphical user 
interface (GUI) may be associated with two Activities, one of which has a property “the 
end-user language is French”, the other which has “the end-user language is English”, or 
again, the Application Component could be composed into a larger Activity that must run 
as a business transactions whose effects can be undone in some situations, whereas it 
could also be composed into another, or used stand-alone where no transactional 
behaviour is involved at all. 

2.2 Activity coordination and control 

An activity may run for an arbitrary length of time, and may use transactions at any 
number of points during its lifetime. For example, consider Figure 5, which shows a 
series of connected activities co-operating during the lifetime of an application. The solid 
ellipses represent transaction boundaries, whereas the dotted ellipses are activity 
boundaries. Activity A1 uses two top-level transactions during its execution, whereas A2 
uses none. Additionally, transactional activity A3 has another transactional activity, A3’ 
nested within it. The framework is responsible for distributing both the activity and 
transaction contexts between execution environments in order that the hierarchy can be 
fully distributed. 

A1 A2

A3

A4

A5

time

A3’

 

Figure 5: Activity and transaction relationship. 

Just as a thread of control may require transactional and non-transactional periods and 
can suspend and resume its transactionality, so too may it require periods of non-activity 
related work. Thus, it is possible for a thread to perform some work outside the scope of 
the activity before returning to activity related work. In the example diagram above, if 
the thread performing activity A3’ decided to perform some non-activity related work, it 
could do so outside the scope of A3’ and A3. 
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2.2.1 Actions and Signals 

Demarcation signals of any kind are communicated to registered entities (actions1) 
through signals. For example, the termination of one activity may initiate the start/restart 
of other activities in a workflow-like environment. Signals can be used to infer a flow of 
control during the execution of an application. The information encoded within a Signal 
will depend upon the implementation of the extended transaction model and is allowed to 
be any arbitrary information. 

An Action will use the Signal in a manner specific to the extended transaction model and 
return a result of it having done so. For example, upon receipt of a specific Signal, an 
Action could start another activity running (e.g., a compensation activity); another Action 
could commit any modifications to a database when it receives one type of Signal, or 
undo them if it receives another type. 

2.2.2 Signal factories 

To drive the Signal and Action interactions an activity coordinator is associated with 
each activity. Activities that require to be informed when another activity sends a specific 
Signal can register an Action with that activity’s coordinator. When the activity sends a 
Signal (e.g., at termination time), the coordinator’s role is to forward this signal to all 
registered Actions and to deal with the outcomes generated by the Actions. 

The implementation of the coordinator will obviously depend upon the type of extended 
transaction model being used. For example, if a Sagas type model is in use then a 
compensation Signal may be required to be sent to Actions if a failure has happened, 
whereas a coordinator for a strict transactional model may require to send a Signal 
informing participants to rollback. Therefore, to enable the coordinator to be 
configurable for different transaction models, the coordinator delegates all Signal 
generation and control to the SignalSet.  

The SignalSet is one of the keys to the extensibility of this framework: it’s 
implementation is peculiar to the kind of extended transaction being used. The SignalSet 
is essentially a Signal factory, that generates signals that are sent to participants and 
processes the results returned to determine which signal to send next. Signals are 
associated with SignalSets and it is the SignalSet that generates the Signals the 
coordinator then passes to Actions. The set of Signals a given SignalSet can generate 
may change from one use to another, for example based upon the current status of the 
Activity or the responses from Actions. The intelligence about which Signal to send to an 
Action is hidden within a SignalSet and may be as complex or as simple as is required. 

                                                 
1 Not to be confused with Atomic Action. 
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Importantly, a SignalSet is dynamically associated with an activity, and each activity can 
have a different SignalSet controlling it. 

With the exception of some predefined Signals and SignalSets, the majority of Signals 
and SignalSets will be defined and provided by the higher-level applications that make 
use of this Activity Service framework. To use the generic framework provided it is 
necessary for these higher-level applications to impose application specific meanings 
upon Signals and SignalSets, i.e., to impose a structure on their abstract form. 

For example, suppose we have two SignalSets to represent the possible outcomes for a 
transaction, Rollback and Commit, and register Actions with the Activity as the 
transactional resources; as with the OTS, it is up to the users of the Activity Service to 
ensure that appropriate Actions are registered at appropriate times. 

action action action action

activity coordinator

signal
set

get
signal

transmit signal

 
Figure 6, Activity coordinator signaling actions. 

The Signal associated with the Rollback SignalSet would simply be “rollback”, whereas 
the Commit SignalSet would have “prepare”, “commit”, and “rollback” Signals. If the 
application decides to commit, then when called by the Activity Coordinator the 
SignalSet would generate the “prepare” Signal to be sent to the registered Actions, as 
shown in Figure 6. The Activity Coordinator would then send this Signal to each Action, 
and inform the SignalSet of the result. Assuming none of the Actions returns an 
exceptional response to this Signal, then when all Actions have received the “prepare” 
Signal, and the Activity Coordinator asks the SignalSet for the next Signal, it will return 
the “commit” Signal. However, if during the “prepare” phase, an Action returns a 
response which indicates that there is no point in sending the “prepare” Signal to further 
Actions, the Activity Coordinator will be required to obtain a new Signal from the 
SignalSet (the “rollback” Signal in this case), and send this to all registered Actions. As 
stated previously, the intelligence about which Signal to send, and about interpreting 
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outcomes from Actions, resides within the SignalSet, allowing implementations of the 
framework to be highly configurable, to match application requirements. 

As new types of extended transaction emerge, so will new SignalSet instances and 
associated Actions. This allows a single implementation of this framework to serve a 
large variety of extended transaction models, each with its own idea of extended 
transactions, each with its own action and Signal Set implementations. The Activity 
Service implementation does not need to know the behaviour which is encapsulated in 
the Actions and SignalSets it is given, merely interacting with their opaque interfaces in 
an entirely uniform and transparent way. 

2.3 Composite activities 

An activity, which contains component activities, may impose a requirement on the 
Activity Service implementation for managing these component activities. It must be 
determined whether these component activities worked as specified or failed and how to 
map their completion (or non-completion) to the enclosing activity’s outcome. This is 
true whether the activities are strictly parallel, strictly sequential or a complex structure. 
In general, an activity that needs to co-ordinate the outcomes of component activities has 
to know what state each component activity is in: 

• which are active 

• which have completed and what their outcomes were 

• which activities failed to complete 

Another activity may be required to handle the sub-activity outcomes so that control 
flows can be made explicit. The activity determines the collective outcome of the 
component activity in the light of the various component failure and success situations. 
The framework does not specify how the activities should be coordinated, only providing 
interfaces for coordination to occur. The coordination may therefore be performed in a 
manner most suitable to the application or extended transaction model. For example, a 
suitable scripting language may be required to assist the application programmer to 
define the roles of outcome manager and activities [6]. 

2.4 Activity failures 

The failure of an individual activity may produce application specific inconsistencies 
depending upon the type of activity. 

• if the activity was involved within a transaction, then any state changes it may 
have been making when the failure occurred will eventually be recovered 
automatically by the transaction service. 

• if the activity was not involved within a transaction, then application specific 
compensation may be required.  
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• an application that consisted of the (possibly parallel) execution of many 
activities (transactional or not) may still require some form of compensation to 
“recover” committed state changes made by prior activities. For example, the 
application shown in Figure 2. 

Rather than distinguish between compensating and non-compensating activities, 
compensation is considered to be the role of another activity: a compensating activity is 
simply performing further work on behalf of the application. Just as application 
programmers are expected to write “normal” activities, they will therefore also be 
required to write “compensating” activities, if such are needed. In general, it is only 
application programmers who possess sufficient information about the role of data within 
the application and how it has been manipulated over time to be able to compensate for 
the failure of activities. 

2.5 State management and recovery 

It is inherently complex to recover applications after failures (e.g., machine crashes); for 
example, the states of objects in use prior to the failure may be corrupt. The advantage of 
using transactions to control operations on persistent objects is that transaction systems 
ensure the consistency of the objects, regardless of whether or not failures occur. A 
transaction system guarantees that regardless of (non-catastrophic) failures, all 
transactions that were in flight when the failure occurred will either be committed or 
rolled back, making permanent or undoing any changes to objects. 

Rather than mandate a particular means by which objects should make themselves 
persistent, many transaction systems simply state the requirements they place on such 
objects if they are to be made recoverable, and leave it up to the object implementers to 
determine the best strategy for their object’s persistence. The transaction system itself 
will have to make sufficient information persistent such that, in the event of a failure and 
subsequent recovery, it can tell these objects whether to commit any state changes or roll 
them back. However, it is typically not responsible for the application object’s 
persistence. 

In a similar way, the Activity Service specification does not mandate a specific 
persistence and recovery mechanism. Rather it states what the requirements are on such a 
service in the event of a failure, and leaves it to individual implementers to determine 
their own recovery mechanisms. In a distributed application, where an individual activity 
may run on different implementations of the Activity Service during its lifetime, 
recovery is the responsibility of these different implementations. Each implementation 
may perform recovery in a completely different manner, forming recovery domains. 

Unlike in a traditional transactional system, where crash recovery mechanisms are only 
responsible for guaranteeing consistency of object data, applications that use extended 
transaction implementations will typically also require the ability to recover the activity 
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structure that was present at the time of the failure, enabling the application to progress 
onwards. 

Some of the recovery requirements are outlined below: 

• application logic: the logic required to drive the activities during normal runtime 
is required during recovery in order to drive any in-flight activities to application 
specific consistency. Since it is the application level that imposes meaning on 
Actions, Signals, and SignalSets, it is predominately the application that is 
responsible for driving recovery. 

• application object consistency: the states of all application objects must be 
returned to some form of application specific consistency after a failure. 

If Activities and transactions co-operate within a given application, then the respective 
recovery mechanisms will also be required to co-operate. Obviously it is not necessary 
for a user of the Activit y Service implementation to use transactions at all, in which case 
only Activity recovery will be required in the event of a failure, i.e., it is possible to have 
recovery domains that do not require a transaction service implementation at all. 

3. Conclusions and further issues 

From the previous discussions it should be evident that there are a range of applications 
that require different levels of transactionality. Many types of business transaction do not 
have the simple commit or rollback semantics of an ACID transaction, and may complete 
in a number of different ways that may still be interpreted as successful but which do not 
imply everything that the business transaction did has occurred.  

We have shown that a flexible and extensible framework for extended transactions is 
necessary, then in addition to standardising on the interfaces to this framework, we also 
need to work on specific extended transaction models that suit the Web. We would not 
expect applications to work at the level of Signals, Actions and SignalSets, as these are 
too low-level. Higher-level APIs are required to isolate programmers from these details. 
However, from experience we have found that this framework helps to clarify the 
requirements on specific extended transaction implementations. 

We have given examples of the types of Web applications that have different 
requirements on any transaction infrastructure, and from these we believe it should be 
possible to obtain suitable extended transaction models. Other issues that will need to be 
considered when implementing many business transactions include: 

1) Security and confidentiality: any business transaction involving buying or selling 
items, whether they be hotel rooms or newspapers, requires guarantees that the 
buyer/seller is who they appear to be, and that no one can “snoop” the connection and 
obtain information they are not entitled to. 
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2) Audit trail: maintaining a log of the actions performed during a business transaction 
can be useful for a number of reasons, not least that of non-repudiation in the case of 
legal action. 

3) Protocol completeness guarantee: even in the presence of failures, the correctness 
guarantee for the application relies upon the structure of the atomic action 
(application activity) being followed. The information about which activity to invoke 
when and under what circumstances must reside in, for example, a highly available 
repository, such that failure of the original “controller” (that entity which was 
responsible for parsing and driving the activities) does not cause the activity to stop, 
or for branches of it to be ignored. 

4) Quality of service: some Web Services may support different types of extended 
transaction model as well as different communication protocols. The selection of 
which model to use may depend upon quality of service requirements. 

How these fit into an extended transaction model will be one of the areas of future 
research and development. 
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