A format for virtual orchestras: FlowML
Version 0.5 - DRAFT*

Bert Schiettecatte (57986)
bschiett@vub.ac.be

May 2, 2000

RSITE,
V\\\]E /7*@ s

3\08 . VH 4
N N2
SRa5125°

&
<<§
Vincgre

Abstract

This document proposes a format for storing synthesis diagrams and their supporting
mechanisms. Such a standard format is necessary to allow exchange of virtual musical instru-

ments between several (non-)realtime software synthesizers, and to publish synthesis diagrams
on the WWW.

*Software designers should not rely on this document until the first major version.

Contents

1 Introduction

2 Definitions

3 To chart or not to chart
4 Fundamental concepts

5 Primitive structures

5.1 Inputs e e e e
5.2 Outputs e e e
5.3 Logic. . . . o e
5.4 Arithmetic operatorso e e e e
5.5 Amplifiers, mixers & envelope generators. oL oL L.
5.6 Oscillators e e e e e e e e e
5.7 Discrete oscillators e e e e e e e
5.8 Filters L e
5.9 Effects L
6 Examples
6.1 Orchestra definition e e e e
6.2 Instrument definition e e
6.3 Structure definition L

7 Document Type Descriptions

7.1 Orchestra e
7.2 Instrument i i e e e e e e e e e e e e e e
7.3 Structure e e e e e e e e e

8 Acknowledgements

-~ ot ot 3 [I N N T N w

© 0o o

g
(=)

1 Introduction

This document proposes a standard format for synthesis flow charts. The format will be de-
fined later in this document as a collection of XML DTDs. The primary motivation for such
an exchangeable format was the problem of serializing collections of reusable signal processing
constructs as found in (non-)realtime software synthesizers.

2 Definitions

To be completed

3 To chart or not to chart

When the idea for this universal format first arised, it was obvious that there should be some
primitive structures defined for the format, such that compilers from FlowML to some target
synthesis language would be able to generate code for these primitive structures.

The first idea was to introduce a set of primitives from synthesis languages like SAOL and
CSound: various mathematical operators, along with signal processing operators. It turned out
that this is (probably) not the right solution: these are constructs from a (more or less) sequential
language, and a diagram does not specify a real order on its components, the way a programming
language does (there was the assumption for a while that a synthesis algorithm could be drawn
very easily as a directed graph). Therefore, a collection of primitive synthesis building blocks will
be introduced in this document, and tools who want to support the FlowML format must provide
support for these blocks.

After discussion with several people from the saol-dev mailing-list and various members of
the university where this project is supervised, it would be advisable to introduce a mechanism
in the format which allows for target-language specific building blocks (blocks which cannot be
defined using the primitive blocks introduced in this document). At this time such a mechanism
isn’t included yet, but it is planned for the next version of this document.

4 Fundamental concepts

The format supports two types of signals: audio and control. These signals are not interchangeable
and cannot be converted from one to another. All signals are mono: if a stereo signal is required,
two mono outputs should be used, instead of one stereo signal.

5 Primitive structures

Based on some popular realtime software synthesizers, a few primitive building blocks will now be
presented. The list is by no means complete at this time, and most descriptions are missing.
5.1 Inputs

1. Audio in

2. Constant in

3. Controller in

5.2 Outputs
1. Audio out

2. Controller out

5.3 Logic
1. Switch
2. And
3. Or
4. Not

5.4 Arithmetic operators
1. Add

Takes two control signals and simply adds them.
2. Multiply
3. Substract

4. Divide

5.5 Amplifiers, mixers & envelope generators

1. Crossfade
2. Pan

3. Amplify
4. Mix

Takes two audio signals and mixes them.

5. ADSR

5.6 Oscillators
1. Sawtooth

2. Pulse

3. Sine

5.7 Discrete oscillators
1. LFO

Takes two control signals, frequency and variation. It has one control output.

5.8 Filters
1. High-pass 1-pole

2. Low-pass 1-pole

5.9 Effects
1. Delay

Takes an audio signal (the dry signal) and a control signal ¢ime, and outputs an audio signal
(the delayed version of the input signal).

2. Reverb

3. Spatialize

6 Examples

6.1 Orchestra definition

An example orchestra:

<?xml version="1.0"7>

<t--

FlowML Orchestra

-—>

<!DOCTYPE Orchestra SYSTEM "Orchestra.dtd">

<0rchestra>
<Instruments>
<InstrumentInstance id="flanger" label="Flanger">
<Route target_id="output_bus"/>
</InstrumentInstance>
<InstrumentInstance id="classic_synth" label="Classic Synth">
<Route target_id="dry_bus"/>
</InstrumentInstance>
</Instruments>
<Buses>
<Bus id="dry_bus" label="Dry instruments" width="1">
<Send target_id="flanger"/>
</Bus>
<Bus id="output_bus" label="Output bus" width="2" output="yes">
</Bus>
</Buses>
</0rchestra>

6.2 Instrument definition

The following is a modified version of the flanger circuit from [Roads96], p. 438. The diagram was
redesigned in terms of structures from 5:

—» dday |le— @+

in LFO

—» mix — out

[] primitivestructure

O constant/controller

The corresponding FlowML document would be:

<?xml version="1.0"7>
<t--
FlowML Flanger instrument
-=>
<!DOCTYPE Instrument SYSTEM "Instrument.dtd">

<Instrument id="flanger">
<Description>
A classic flanger effect.
</Description>
<Implementation>
<Structurelnstance id="delay" label="delay" type="delay">
<Connection from="audio_out" to="inl" target_id="mix"/>
</Structurelnstance>
<StructureInstance id="in" label="input" type="audio_input'>
<Connection from="out" to="audio_in" target_id="delay"/>
<Connection from="out" to="in2" target_id=“mix"/>
</Structurelnstance>
<Structurelnstance id="mix" label="mix" type="mixer">
<Connection from="out" to="in" target_id="out"/>
</Structurelnstance>
<Structurelnstance id="out" label="output" type="audio_output">
</Structurelnstance>
<Structurelnstance id="f" label="frequency" type='"constant">
<Connection from="out" to="frequency_in" target_id="LF0"/>
</Structurelnstance>
<Structurelnstance id="cdt" label="central time" type="constant">

<Connection from="out" to="inl" target_id="plus"/>

</Structurelnstance>

<Structurelnstance id="plus" label="add" type="addition">
<Connection from="out" to="time_in" target_id="delay"/>

</Structurelnstance>

<Structurelnstance id="V" label="Variance" type="constant'>
<Connection from="out" to="variation_in" target_id="LF0"/>

</Structurelnstance>

<Structurelnstance id="LF0" label="LF0" type="1fo">
<Connection from="out" to="in2" target_id="plus"/>

</Structurelnstance>

</Implementation>
</Instrument>

6.3 Structure definition

An example structure definition:

<?xml version="1.0"7>
<!--
FlowML Structure
-=>
<!DOCTYPE Structure SYSTEM "Structure.dtd">

<Structure id="flanger">
<Description>
A classic flanger effect.
</Description>
<Implementation>
<PrimitiveInstance id="delay" label="delay" type="delay">
<Connection from="audio_out" to="inl" target_id="mix"/>
</PrimitiveInstance>
<Primitivelnstance id="in" label="input" type="audio_input">
<Connection from="out" to="audio_in" target_id="delay"/>
<Connection from="out" to="in2" target_id="mix"/>
</PrimitiveInstance>
<Primitivelnstance id="mix" label="mix" type="mixer">
<Connection from="out" to="in" target_id="out"/>
</PrimitiveInstance>
<Primitivelnstance id="out" label="output" type="audio_output">
</Primitivelnstance>
<Primitivelnstance id="f" label="frequency" type="constant'">
<Connection from="out" to="frequency_in" target_id="LF0"/>
</Primitivelnstance>
<PrimitiveInstance id="cdt" label="central time" type='"constant'>
<Connection from="out" to="inl" target_id="plus"/>
</PrimitiveInstance>
<Primitivelnstance id="plus" label="add" type="addition">
<Connection from="out" to="time_in" target_id="delay"/>

</PrimitiveInstance>

<Primitivelnstance id="V" label="Variance" type='"constant'>
<Connection from="out" to="variation_in" target_id="LF0"/>

</Primitivelnstance>

<Structurelnstance id="LF0" label="LF0" type="1lfo">
<Connection from="out" to="in2" target_id="plus"/>

</Structurelnstance>

</Implementation>
</Structure>

7 Document Type Descriptions

Below are the formal specifications for the format.

7.1 Orchestra

<t--

FlowML Orchestra DTD
-—>
<VELEMENT Orchestra (Instruments, Buses)>
<V'ELEMENT Instruments (InstrumentInstance)+>
<VELEMENT Buses (Bus)+>

<1ELEMENT InstrumentInstance (Route)+>
<!ATTLIST InstrumentInstance

id ID #REQUIRED

label CDATA #REQUIRED>

<!'ELEMENT Route EMPTY>
<!ATTLIST Route
target_id IDREF #REQUIRED>

<!ELEMENT Bus (Send)x*>
<!ATTLIST Bus

id ID #REQUIRED

label CDATA #REQUIRED
width CDATA #REQUIRED
output (yes|no) "no">

<!ELEMENT Send EMPTY>
<!ATTLIST Send
target_id IDREF #REQUIRED>

7.2 Instrument

<t--

FlowML Instrument DTD
-—>

<!ELEMENT Instrument (Description, Implementation)>
<!ATTLIST Instrument id ID #REQUIRED>

<!ELEMENT Description (#PCDATA)>
<!ELEMENT Implementation (StructureInstance)+>

<1ELEMENT StructureInstance (Connection)x*>
<!ATTLIST Structurelnstance

id ID #REQUIRED

label CDATA #REQUIRED

type CDATA #REQUIRED>

<!ELEMENT Connection EMPTY>
<!ATTLIST Connection

from CDATA #REQUIRED

to CDATA #REQUIRED
target_id IDREF #REQUIRED>

7.3 Structure

<t--
FlowML Structure DTD
->

<!ELEMENT Structure (Description, Implementation)>
<!'ATTLIST Structure id ID #REQUIRED>

<!ELEMENT Description (#PCDATA)>
<!ELEMENT Implementation (Structurelnstance|PrimitiveInstance)+>

<1ELEMENT StructurelInstance (Connection)x*>
<!'ATTLIST Structurelnstance

id ID #REQUIRED

label CDATA #REQUIRED

type CDATA #REQUIRED>

<!ELEMENT PrimitiveInstance (Connection)*>
<!ATTLIST Primitivelnstance

id ID #REQUIRED

label CDATA #REQUIRED

type CDATA #REQUIRED>

<!'ELEMENT Connection EMPTY>
<!ATTLIST Connection

from CDATA #REQUIRED

to CDATA #REQUIRED

target_id IDREF #REQUIRED>

8 Acknowledgements

To be completed

References

[Roads96] C. Roads. The Computer Music Tutorial. 1996, MIT Press.

10

