
FSML - Financial Services Markup Language

Version 1.50

Written by the members of the FSTC Electronic Check project team
Edited by Jeff Kravitz, IBM Research

First Written February 15 1996
Latest Revision July 14 1999

This copy of the Financial Services Markup Language (“FSML”) is provided for review and comment only.
Contact the Financial Services Technology Consortium (“FSTC”) for details or implementation license

terms.

c
Financial Services Technology Consortium, 1996-99. All rights reserved.

FSTC publishes FSML for your review and comment only at this time. You may reproduce and distribute
this to others to facilitate their review and commentary only. Please note that the FSML specification is not
final.

FSTC DOES NOT MAKE AND WILL NOT BE DEEMED TO HAVE MADE ANY REPRESENTA-
TION OR WARRANTY, EXPRESS OR IMPLIED, AS TO THE CONDITION, MERCHANTABIL-
ITY, DESIGN, OPERATION, OR FITNESS FOR A PARTICULAR PURPOSE OF THE FSML OR
ANY OTHER WARRANTY OR REPRESENTATION WHATSOEVER, EXPRESS OR IMPLIED,
WITH RESPECT TO THE FSML.

“FSML” is the trademark of the Financial Services Technology Consortium and may be used only with the
prior express written permission of the Financial Services Technology Consortium subject to appropriate
license terms.

Please direct all questions or comments to:

Frank Jaffe
FSTC Vice President
c/o BankBoston
100 Federal Street. Mailstop: 01-24-03
Boston, MA 02110
(Voice) 617-434-1838 (Fax) 617-434-9889 (E-mail) fjaffe@netcom.com

i c
Financial Services Technology Consortium, 1996-99. All rights reserved. i

Contents

1 Introduction 1

2 Notation 7

2.1 Notation . 7

2.2 FSML BNF Description . 8

3 Document Formatting Rules 11

4 Generic FSML 14

4.1 Generic Electronic Document Definition 14

4.2 FSML Document Definition .. 14

4.3 Generic Block Common Field Definitions . 15

4.4 Generic Block Definitions . 16

4.4.1 Generic Action Block Definition 16

4.4.2 Generic Signature Block Definition 17

4.4.3 Generic Certificate Block Definition 22

4.4.4 Generic Attachment Block Definition 24

4.4.5 Generic Message Block Definition 26

4.4.6 Private Block Types . 26

5 Combining Documents 28

6 echeck Specific FSML 31

6.1 Electronic Check Document type Definitions . 31

6.2 Electronic Check Document Global Structure . 32

6.2.1 BNF Structure of FSML Electronic Check Documents 32

6.2.2 Global Structure - Signed Electronic Check . 38

ii c
Financial Services Technology Consortium, 1996-99. All rights reserved. ii

6.2.3 Global Structure - Co-Signed Electronic Check . 39

6.2.4 Global Structure - Counter-signed Electronic Check 40

6.2.5 Global Structure - Certified, Signed Electronic Check 41

6.2.6 Global Structure - Endorsed Electronic Check 42

6.2.7 Global Structure - Co-endorsed Electronic Check 43

6.2.8 Global Structure - Counter-endorsed Electronic Check 44

6.2.9 Global Structure - Deposited Electronic Check . 45

6.2.10 Global Structure - Returned Electronic Check . 47

6.2.11 Global Structure - Presentment Item . 47

6.2.12 Global Structure - Bundle document 49

6.2.13 Global Structure - Cgroup document . 49

6.3 Electronic Check Block Definitions . 50

6.3.1 echeck Action Block Definition 51

6.3.2 echeck Signature Block Definition 52

6.3.3 Check Block Definition 57

6.3.4 Deposit Block Definition 61

6.3.5 Endorsement Block Definition. 62

6.3.6 Certification Block Definition . 64

6.3.7 Account Block Definition . .. 65

6.3.8 echeck Certificate Block Definition 69

6.3.9 echeck Attachment Block Definition 69

6.3.10 Invoice Block Definition 70

6.3.11 echeck Message Block Definition 71

6.3.12 Bankstamp Block Definition .. 71

6.3.13 Bundle Block Definition 72

6.3.14 Cashletter Block Definition .. 73

7 Certificate Guidelines 75

8 ASN.1 Definition of X.509 echeck Certificates 79

9 Elliptic Curve cryptographic recommendations 97

iii c
Financial Services Technology Consortium, 1996-99. All rights reserved. iii

10 Field Summary 98

10.1 Field Attributes Table (part 1) . 98

10.2 Field Attributes Table (part 2) . 99

10.3 Field Attributes Table (part 3) . 100

11 Document Verification 101

11.1 Verifying Document Contents . 101

11.2 Verifying Block Contents . 103

11.3 Verifying Signatures . 107

11.4 Payto Verification . 109

11.5 Verifying Certificates . 110

A Bibliography 110

B Example Documents 113

C SGML Document Type Definition 116

D Differences between FSML 1.17 and FSML 1.50 126

D.1 Summary of differences . 126

D.2 Definitions of FSML 1.17 Deprecated Blocks 129

D.2.1 Version 1.0 echeck Signature Block Definition 129

D.2.2 Version 1.0 Check Block Definition 133

D.2.3 Version 1.0 Deposit Block Definition 135

D.2.4 Version 1.0 Endorsement Block Definition. 136

D.2.5 Version 1.0 Account Block Definition 137

D.2.6 Version 1.0 Certificate Block Definition . .. 140

D.2.7 Version 1.0 Invoice Block Definition 142

E E-Mail Transport Recommendations 144

E.1 E-Mail Format . 144

E.2 E-Mail Acknowledgments . 144

E.3 E-Mail Encryption . 145

E.4 E-Mail Registration . 145

E.4.1 Verification Requirements for x:emailreg document 146

E.5 Example E-mail Message . 148

iv c
Financial Services Technology Consortium, 1996-99. All rights reserved. iv

F Base64 Encoding 149

G Acknowledgements 151

v c
Financial Services Technology Consortium, 1996-99. All rights reserved. v

Introduction

A child of five would understand this. Send someone to fetch a child of five.

– Groucho Marx

Anyone who considers arithmetical methods of producing random digits is, of course, in a state
of sin.

– John von Neumann

Make everything as simple as possible, but not simpler.

– Albert Einstein

Research is what I’m doing when I don’t know what I’m doing.

– Wernher Von Braun

PROGRAM: n. A magic spell cast over a computer allowing it to turn one’s input into error
messages. tr.v. To engage in a pastime similar to banging one’s head against a wall, but with
fewer opportunities for reward.

Then anyone who leaves behind him a written manual, and likewise anyone who receives it, in
the belief that such writing will be clear and certain, must be exceedingly simple-minded.

– Plato, Phaedrus 275d

Read over your compositions, and where ever you meet with a passage which you think is par-
ticularly fine, strike it out.

– Samuel Johnson, quoting a college tutor, 1773

The knowledge of Cyphering, hath drawn on with it a knowledge relative unto it, which is the
knowledge of Discyphering, or of Discreting Cyphers ... Certainly it is an Art which requires
great pains and a good wit, and is (as the other wits) consecrate to the Counsels of Princes.

– Sir Francis Bacon, 1623

1 c
Financial Services Technology Consortium, 1996-99. All rights reserved. 1

FSML, the Financial Services Markup Language, is an SGML[1] like mark-up language designed to allow
the creation of electronic financial documents.

FSML can be used for several applications. One is to create, and sign generic financial (or even non-financial)
documents. Another, more specific application, is to create, and process Electronic Checks, and their asso-
ciated documents. One chapter will describe the use of FSML for generic documents. Later chapters will
describe FSML when used to create and process Electronic Checks and associated documents.

Some of the goals and decisions used in the design of FSML were...

� tag the individual text items making up a document,

� group the text items into document parts which can have business meaning and can be signed individ-
ually or together,

� allow document parts to be added and deleted without invalidating previous signatures, and

� allow signing, co-signing, endorsing, co-endorsing, and witnessing operations on documents and doc-
ument parts.

The signatures and associated certificates become part of the FSML document and can be verified by sub-
sequent recipients as the document travels through the business process. FSML does not define privacy
encryption, since privacy encryption is between each sender and receiver in the business process and can
differ for each link depending on the transport used.

When development of FSML began in 1995, HTML was in its early stages of widespread deployment. SGML
had been standardized some years earlier, software tools were readily available, and the use of tagged, read-
able text was attractive for its simplicity, ease of understanding, operational support, and ease of development
and use. FSML was designed so that it could be defined using an SGML Document Type Definitions (see
Appendix A). FSML also defined document formatting rules so that readable text electronic checks could be
sent via electronic mail systems without the risk that the mail systems would modify the electronic check in
ways that invalidate the signatures.

FSML has been implemented by the Electronic Check Project. Cryptographic hardware, in the form of smart
cards, has been developed to contain the private signing keys, perform the hashing and signing operations
and to perform other ”electronic checkbook” functions, such as automatically numbering and logging checks
written or deposited. Advice of payments are attached cryptographically to the checks when sent between
payer and payee, and they are removed by the payee. Similarly, checks are attached cryptographically to
deposit slips when they are sent to the payee’s bank. Bank server systems have been developed to process
the electronic checks, to interface with existing check processing systems in the banks, and to clear and settle
electronic checks between banks. A Certificate Authority hierarchy has been established, and certificates
have been issued to banks and checking account holders in the US.

The Electronic Check project, from its inception, has sought to develop a general solution to the issues
of authentication and integrity associated with creating electronic financial instruments. The technical and
business problems of implementing electronic check payments between payers and payees over the Internet
provided a practical context for developing the solution.

Paper checks have a rich tradition, and support numerous options, check types, attached information, and so-
phisticated processing. Paper checks are fundamentally a signed writing directing a bank to pay money, after
a date, from the payer’s account. The Electronic Check project determined that the essence of the problem to
be solved was to develop a generalized structure for creating, processing, and displaying electronic ”signed
writings”, where cryptographic signatures would substitute for manual signatures and where an electronic

2 c
Financial Services Technology Consortium, 1996-99. All rights reserved. 2

message would take the place of the paper medium. The structure would need to support the same business
operations as signed paper checks, such as signing, co-signing, and witnessing of signatures, and attaching
and removing associated documents such as remittance slips, invoices, advice of payment, and deposit slips.

Since checks are a form of negotiable instruments, and negotiable instruments are a form of contracts, it is
believed that FSML may be used to create signed documents suitable for a wide variety of purposes. For
example, they may be used as messages to initiate electronic funds transfers, as orders and invoices needed
for electronic commerce, or for other forms of signed contracts or agreements.

FSML documents, which are hashed and cryptographically signed using public key signature algorithms, can
have the following security attributes:

Authentication A document recipient can authenticate that the document was created
by a specific person, or institution, and was not forged or created by an
imposter.

Integrity A document recipient can determine that the document was not changed
or corrupted in any way since it was created by the originator.

Non-repudiation A document recipient can provide evidence that a document was def-
initely created by the originator even if the originator “repudiates” the
document, claiming that someone else created it using their name.

The FSML signature mechanism also allows documents to be combined, or added to, without loss of these
security features.

Some of the business objectives that were instrumental in the design of FSML were...

� To develop a general method for creating and verifying business documents at the application level
with integrated digital signatures

– To provide assurance to the application and the customer

– To eliminate the need for paper source documents

– To allow incorporation into a number of different business applications

– To support peer to peer exchanges

– To keep, indeed to require, signatures integrated with the documents

– To identify the individual or organization which created the documents

– To identify the individuals or organizations which process the documents

– To support signing, cosigning, counter signing, endorsing, and witnessing

– To be vendor neutral

– To be cryptographic algorithm neutral

� To provide a high degree of flexibility in the information content and structure of the signed documents

– To support a wide range of different documents

– To allow for efficient processing

– To clearly define the scope of a signature such that different signers could sign different parts of
the same document, or indeed, where needed, could sign someone else’s signature

3 c
Financial Services Technology Consortium, 1996-99. All rights reserved. 3

� To provide for the attachment and removal of auxiliary documents while still maintaining the digital
signature integrity

– To allow binding information together

– To allow removal of information when it reaches its intended recipient to protect privacy and
improve efficiency of later handling

� To be usable through any electronic transport media

– To enable end recipients who do not expect a signed document to understand what they received

– To be independent of the network or electronic communication system used

– To work through online connections, such as provided by the WWW or secure sockets

– To work through any electronic mail system, including those only capable of text transmission.

– To work through legacy communications and computer systems

� To allow documents to be as self contained as possible

– To recognize and support different documents which have different security and time duration
and immediacy requirements

– To enable critical processing to occur in simple devices, such as smart cards, where appropriate
to the application

– To provide reasonable assurance to off-line or off-network processing

– To minimize the reliance on third parties

– To minimize the need for third party directories

– To minimize the need for security databases at the end users

– To simplify auditing and research

� To provide control to the transacting parties

– By providing flexibility in managing transaction risk as needed

– By allowing direct peer to peer exchanges

– By minimizing systemic risk to transacting parties by supporting inexpensive secure processing
devices such as smart cards

– By enabling document semantics to control issues such as transaction effective dating and validity
intervals

– By enabling third party services, such as time stamping, electronic postage, third party processing,
or archival storage as needed by the transacting parties

– By allowing separate control of the privacy requirements

The above business objectives led to a number of technical decisions, based on much thought and discussion
amongst the team members. Some of these technical decisions were...

� An SGML derivative language was chosen because it was an ISO standard, and had the additional
benefit of using standard printable ASCII text. Using a binary encoding method (e.g. ASN.1) would
have meant that all FSML documents required special decoding software just to be viewed or even
detected. This seemed too much of a burden since the uses and platforms envisioned would have been
too many and diverse for such viewing software to become easily available. Using an ASCII text based
language meant that a casual user could still look at and identify an FSML document, with only normal
E-mail, Web, or other ASCII-text viewing capabilities.

4 c
Financial Services Technology Consortium, 1996-99. All rights reserved. 4

� It was decided to subset many of the SGML features (e.g. limited use of SGML end-tags) to allow
FSML documents to be more easily processed by devices and systems of lower complexity. It was
envisioned that some of the processing may be done on electronic tokens meaning PDA’s, PCMCIA
cards or even smart cards, with limited memory and processing capabilities.

� Formatting and encoding rules that are not part of the ISO SGML standard were added to allow FSML
documents to pass, uncorrupted, through a variety of transport mechanisms, especially E-mail, and still
allow the signatures to be valid. This decision has been very useful, and appears to be one of the key
items in FSML.

� It was decided to keep FSML documents independent of the transport mechanism used to transfer them
from party to party. Thus, they can be transported by a large variety of mechanisms, e.g. E-mail, Web
(HTTP), FTP, or even as files on a diskette.

� Although privacy is a very important requirement, it was decided not to incorporate a privacy encoding
scheme into the FSML definition, as a number of privacy encoding methods and systems were being
defined by others, and it was felt that this decision could best be left in the hands of the other groups
who were doing that for the various transport mechanisms, e.g S-MIME, PGP, etc.

� FSML is designed to be extensible. Additional document types and blocks (sub-elements) may be
added for specific applications. In addition, FSML, as defined in this document, allows attachment
and signing of virtually any kind of attached document or file, with no additional FSML changes or
extensions required.

� The basic document signature mechanism was designed to allow attachments to be added to and de-
tached from an FSML document, and for additional signatures to be added after original document was
created. Thus, the signature mechanism was thought of as a kind of ”electronic staple”.

� All of the signature verification information (except for the public key of the root of the certificate hier-
archy) is in the FSML document itself. Thus, any document recipient can perform a full cryptographic
signature verification on the document without the need for access to external networks, directories,
servers or databases. The only external information needed is the root public key, which can be easily
distributed widely.

� It was decided to use X.509 certificates, even though they do not fit in well with other FSML design
goals (e.g. X.509 certificates use binary ASN.1 instead of human-readable ASCII) because they have
become a widely adopted standard for public-key certificates. Note, however, that the FSML language
allows for specification of other certificate types.

� The signature algorithms chosen are the most popular at the time this specification was designed (e.g.
RSA/MD5, DSA/SHA-1 EDSA/SHA-1), however the FSML language allows specification of other
algorithms which may become available in the future.

An FSML document is structured using more specific syntax rules than normal SGML. SGML definesel-
ements, which are delimited bystart tagsand end tags, and which may contain textual content or other
elements. FSML defines several different varieties of SGML elements. FSML defines afield to be an element
with a start tag and with content and with no end tag. (Unlike in SGML, where an end tag may defined to be
optional, in FSML fields must have no end tag.) The content of a field must be purely textual and must not
contain other elements — i.e., the content of a field must not contain SGML markup.

The next level of syntactic definition of FSML is theblock. A block consists of a start tag, one or more fields,
and an end tag. A block must not contain textual content that is not part of a field.

5 c
Financial Services Technology Consortium, 1996-99. All rights reserved. 5

Finally, adocumentconsists of a set of blocks and can contain nested documents. Documents must also have
start and end tags. As with blocks, documents must not contain textual content not part of a field, and they
must not contain fields not part of a block.

FSML is extensible, but this extensibility is defined only in terms of documents, blocks, and fields. Extensions
using arbitrary SGML constructs are not permitted; they must consist of documents, blocks, or fields.

SGML comments are not allowed in FSML documents.

All blocks that must be protected from tampering, and all blocks that must be authenticated are signed using
a digital signature, which is contained in a signature block. The digital signature uses one of the standard
digital signature algorithms, such as MD5/RSA[2][3], SHA/DSS[4][5], or SHA/ECDSA[6], although the use
of MD5 is deprecated. Each signature requires a public key, which also requires a certificate. Certificates are
distributed as X.509 Version 1 or Version 3 certificates[7].

Blocks may also be “bound” together by the signature block, which contains the block names of the blocks
being bound, the digital hashes of these blocks, and a digital signature on these hashes along with the other
contents of the signature block. This binding allows the receiving software to verify that all the blocks that
were bound are present and have not been tampered with.

The concept of the FSML Electronic Document is that it is a flexible structure. Separating signatures, cer-
tificates, actual data, etc. into separate blocks allows a rich, complex document to be built from these “prim-
itives,” while retaining a standard format which can be parsed and verified according to a standard syntax
definition.

A number of features or functions described in this document are said to be deprecated. The use of the word
deprecated in this context means that use of the feature or function isstrongly discouraged, but not forbidden.
Programs which create FSML documents should avoid use of deprecated features, however programs which
receive and process FSML documents should not reject them solely because they use deprecated features.

6 c
Financial Services Technology Consortium, 1996-99. All rights reserved. 6

Notation and Syntax

2.1 Notation

In the definitions below, an attempt is being made to show examples of the format for FSML electronic
documents, rather than to use formal meta-linguistic notations to define them. A more accurate definition is
also in the document using more formal notations (Extended BNF[8][9] and SGML DTD[1]).

In the later definitions, the following simple notations are used to indicate the type of value being used for a
particular field.

namestring a sequence of characters taken from the ASCII subset

abcdefghijlkmnopqrstuvwxyz0123456789

where the first character must be a letter.

dnamestring a sequence of characters taken from the ASCII subset

abcdefghijlkmnopqrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789-.

where the first character must be a letter.

valuestring a sequence of any of the allowed set of ASCII characters (see the Character Encoding
section) except for the tag delimiters ’<’ or ’>’. Line end characters are allowed but are
not considered to be part of the value. Tag delimiters and ASCII characters outside the
allowed set may be included in a value string by using the standard SGML[1] character
entity mechanism. Quote symbols have no special significance, and if contained in a value
string, will be considered part of the value — e.g.,"John Smith" is not the same value
asJohn Smith . In all value strings, mixed-case significance is honored — i.e., the string
John Smith is not equal to the stringjohn smith .

numstring An ASCII character string used to denote an integer numeric string, containing only the
digits 0 - 9. This string may include leading zeros, which are considered significant and are
part of the string and must be used for purposes of comparison.

number An ASCII character string used to denote an integer numeric string, containing only the
digits 0 - 9. This string may include leading zeros, which arenotconsidered significant and
may be ignored for purposes of comparison or calculation using the number.

amountstring An ASCII character string used to denote a decimal (real) number, containing only the
digits 0 - 9 and a single, optional decimal point. Zero, one, or two digits are allowed after
the decimal point, depending on the specific currency conventions. Leading zeros are not
considered significant.

7 c
Financial Services Technology Consortium, 1996-99. All rights reserved. 7

vstring An ASCII character string used to denote a version number containing only the digits 0 -
9 and a single decimal point. There can be one or two digits before the decimal point, and
one digit after the decimal point. Leading zeros are not permitted.

hexstring An ASCII character string used to denote the hexadecimal encoding of a binary string of
octets. It may only contain the ASCII characters 0-9, A-F, and a-f. All legal hexadec-
imal strings must consist of an even number of hex digits. In certain cases, described
when used below, the field is split into two or more portions using a colon":" — e.g.,
0123456789:abcdef . Leading zeros in a binary octet string are significant and should
be present in the hexadecimal representation of that octet string. Note. hexadecimal strings
were used to represent binary data in FSML versions 1.17 and before. FSML 1.50 uses
base64 encoded strings instead.

base64string An ASCII character string used to denote the base64 encoding of a binary string of octets.
It may only contain the ASCII characters “0-9”, “A-Z”, “a-z”, “+”, “/”, and “=”. In certain
cases, described when used below, the field is split into two or more portions using a colon
":" — e.g.,qsdfcx789:abcdef . Leading zeros in a binary octet string are significant
and should be present in the base64 representation of that octet string.

other A string depicted inboldfaceas a value represents itself. All such self-defining-constants
must be in lowercase in all FSML documents.

2.2 FSML BNF Description

The following is an Extended BNF[8][9] description of the structure of FSML Electronic Documents.

BNF Meta-Notation

The meta-symbols of BNF used here are:

::= meaning “is defined as”

j meaning “or”

[] used to enclose optional items

” used to enclose characters or strings that represent themselves

f g used to enclose repeated items (repeated zero or more times)

Names not enclosed in any of the above bracket symbols are callednonterminalsand are used to define
symbols internal to the BNF specification only.

name ::= a sequence of characters taken from the ASCII subset
abcdefghijlkmnopqrstuvwxyz0123456789, where the
first character must be a letter.

dname ::= a sequence of characters taken from the ASCII subset

8 c
Financial Services Technology Consortium, 1996-99. All rights reserved. 8

abcdefghijlkmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789_-
.

where the first character must be a letter.
pname ::= name | ’x:’ name
tvalue ::= ’true’ | ’false’
value ::= a sequence of any ASCII characters

from the set in the range of hex values
20-7E inclusive, excluding ’<’ or ’>’
including spaces and new-line sequences
(new-line sequences are allowed but are not considered
part of the value).

avalue ::= a sequence of any ASCII characters
from the set in the range of hex values
20-7E inclusive, excluding ’<’ or ’>’ or ’"’
and excluding new-line sequences.
but including spaces,

tag ::= ’<’ pname ’>’
fldtag ::= tag | ’<’ pname { name ’=’ ’"’avalue ’"’ } ’>’
endtag ::= ’<’ ’/’ pname ’>’

A tag in FSML is essentially the same as in SGML, but uses a more restricted set of characters. Note that
whitespace is permitted between the angle brackets and the tagname, nor is any permitted inside the tagname
itself. A tag may have one or more optional attributes, which consist of an attribute name, an equal sign,
and an attribute value enclosed in double quotes. A tag may have zero, one, or more than one attributes.
There must be no whitespace between the attribute name, the equals sign, and the attribute value. There must
be exactly one space between the tag name and the first attribute, and exactly one space between multiple
attributes, and no spaces between the last attribute and the closing angle bracket for the tag.

field ::= fldtag value

A field consists of a tag followed by a value. The tagname used in a field identifies the type of the field.
Unlike in SGML, fields may not contain end tags. Spaces between the tag and the value are considered part
of the value. Spaces at the end of a line are not considered part of the value.

block_start_tag ::= tag
block_end_tag: ::= endtag

A block is started by a block start tag, which is a tag with a unique tagname (which identifies the type of
block). A block start tag is never followed by a value string, but must be followed immediately by another
tag. The block is ended by a block end tag, which must have the same tagname as the block start tag.

subblock_start_tag ::= tag
subblock_end_tag: ::= endtag

A subblock is used to enclose a group of fields within a block or another subblock. Subblocks use the same
types of start and end tag syntax as blocks. Subblocks may only appear inside blocks, or other subblock and

9 c
Financial Services Technology Consortium, 1996-99. All rights reserved. 9

are only used for grouping purposes (analogous to parentheses). A subblock start tag is never followed by a
value string, but must be followed immediately by another tag. The subblock is ended by a subblock end tag,
which must have the same tagname as the subblock start tag.

block ::= block-start-tag
field | subblock

{ field | subblock }
block-end-tag

A block consists of a block start tag, one or more fields or subblocks and a block end tag. In most cases the
order of the fields or subblocks is not determined. Some fields must appear in a predetermined order. This is
described when necessary.

docname_attr ::= ’docname="’ dname ’"’
doctype_attr ::= ’type="’ avalue ’"’
doc_start_tag ::= ’<fsml-doc docname="’ docname_attr ’ ’ doctype_attr ’>’ |

’<fsml-doc docname="’ doctype_attr ’ ’ docname_attr ’>’
doc_end_tag ::= ’</fsml-doc>’

A document start-tag is a start-tag with the tagname ’fsml-doc’ and it must contain the two attributes ’doc-
name’ and ’type’, which can appear in any order.

fsmldoc ::= doc_start_tag
block | fsmldoc

{ block | fsmldoc }
doc_end_tag

An FSML document consists of a document start tag, one or more blocks and/or nested FSML documents,
and a document end-tag.

10 c
Financial Services Technology Consortium, 1996-99. All rights reserved. 10

Document Formatting Rules

In order for the FSML Electronic document to be easily transmitted by a variety of methods (E-mail, file
transfer, storage media, etc.) it was designed to be a plain ASCII document. However certain formatting
rules must be adhered to in order to ensure that most of the usual transport mechanisms, in particular E-mail
systems[10], will successfully transport the FSML Electronic document unchanged.

Note that these rules supersede the white space and line end rules for SGML, in order to ensure that signed
documents can be successfully verified. Therefore, the following document formatting rules are considered
mandatory for document generators and receivers.

� Character Encoding

– An FSML document consists of a sequence of octets (eight-bit bytes) whose values are from the
set hex 0A, hex 0D and hex 20-7E. Values outside the permitted set are not allowed. Programs
that process FSML must reject documents that contain values outside the permitted set.

The permitted octet values correspond to characters in the ASCII[11] character encoding. Use of
other character encodings (such as EBCDIC) for the values of characters is not permitted. For
example, the following sequence of octet values (given in hex)

3C 61 6D 6F 75 6E 74 3E 31 32 33 2E 34 35

unambiguously represents the ASCII character string" <amount >$123.45" and vice-versa.

Note that the octet value 9 (which corresponds to the ASCII TAB character) is not permitted in
FSML documents.

– If a character is required that is not displayable as one of the above ASCII printable characters,
it should be encoded in the document using an SGML entity name for the character[1], enclosed
between an ampersand and a semicolon — e.g.,&circumflex; .

This rule applies in particular to the> and< characters, which can only be used as SGML tag
delimiters. If they are to be used in normal text, they must be encoded as > and <

If an FSML implementation chooses to use numeric character entities — i.e.,

CharacterEntity ::= ’&#’ [0-9]+ ’;’ | ’&#x’ [0-9a-fA-F]+ ’;’

Then the decimal or hexadecimal numeric value should refer to the code point in ISO/IEC 10646
Unicode. Characters in the range� through are equivalent to ASCII, and charac-
ters in the range€ throughÿ are equivalent to ISO 8859-1 Latin 1.

11 c
Financial Services Technology Consortium, 1996-99. All rights reserved. 11

Note that these SGML entities will not be translated during the processing and cryptographic
hashing of an FSML Electronic Document. They are only used for the purpose of display or
printing of characters not in the usual ASCII subset.

� Line Formatting

– A line-end sequence usually consists of either an ASCII Carriage Return (hex 0D) or an ASCII
Line Feed (hex 0A) or both; however, this is operating-system specific. Mixed conventions are
permitted.

Consuming systems should be prepared to receive documents with mixed line-end conventions.

– All lines in the document must be less than or equal to 76 characters in length. When it is
necessary to create a line which will continue past 76 characters, a line-end sequence may be
inserted into the line. (this is to protect the FSML document from E-mail systems which break
up lines longer than 76 characters)

A line-end sequence must not be inserted, either during original document creation, or when
attempting to modify a document to protect against E-mail systems, if any of the following would
become true:

� It would create a line consisting of a single period (’.’). (this is to protect FSML documents
from E-mail systems which cease processing documents past a line consisting of a single
period)

� It would create a line consisting of the string’From ’ , starting in the first position of a line.
(this is to protect the line from certain E-mail systems which change such lines)

� It is inserted after spaces, causing those spaces to be trailing spaces on a line.

� It causes a line-end sequence to be inserted into a tag.

– In FSML document receiving programs all line-end sequences will be removed before any pro-
cessing is done on the FSML Electronic document. In particular they are not included in hash
calculations, nor passed in field values to application programs.

� Space Handling

– Any spaces at the end of a line — i.e., trailing spaces will be removed prior to processing the
document. This means that spaces between the last non-space character on a line, and the line-
end sequence for the line are not included in hash calculations and are not passed to applications as
part of the field value. This is also done inside<adata> sub-blocks inside attached documents.
(this is to protect FSML documents from E-mail systems that may truncate lines with trailing
spaces, or may add trailing spaces to lines). A completely blank line — i.e., a line consisting
entirely of white space, will be removed entirely before processing.

– Embedded spaces — i.e., spaces that are not immediately before a line-end are to be processed as
is — i.e., they are not to be removed before processing, hashing, etc. The same is true for leading
spaces on a line — i.e., spaces following a line-end sequence.

– Leading spaces — e.g., indentation, are allowed but not recommended, as leading spaces are
not deleted from processing, and as line-ends are removed, the leading spaces on a line will
be indistinguishable from the data ending the previous line, and thus may cause field length
violations or field data misinterpretation. For example:

<tag1>abcde
<tag2>defghi

12 c
Financial Services Technology Consortium, 1996-99. All rights reserved. 12

would cause the value of tag1 to be‘abcde ’ . This can be used, however, to place trailing
spaces into a value — i.e., if the value if tag1 were desired to contain the trailing spaces.

– White space (either spaces or line-end sequences) may not be inserted into tags, either between
the< and the tag name, or between the tag name and>, or inside the tag name. If a tag has
attributes, white space may not be inserted between the attribute name and the= or between the
= and the attribute value, or inside the attribute name, or between the last character of the attribute
value and the>. Multiple attributes must be separated by exactly one space. Parameter values
must be contained within quotes.

� Tags

In order to allow FSML processing using the limited resources available in the Electronic Token, FSML
requires that certain SGML features for tag handling not be allowed.

– End tags (e.g.,</tag>) are not allowed except for</fsml-doc>, block-end tags (defined below)
and specific sub-block end tags as defined below. All fields that do not have end-tags specified in
the block and field definitions below must not have end-tags.

– SGML tag abbreviation is not supported.

13 c
Financial Services Technology Consortium, 1996-99. All rights reserved. 13

Generic FSML

4.1 Generic Electronic Document Definition

This chapter explains the syntax and semantics of “Generic” FSML documents. Such documents may be
used for any purpose, and need not be used for electronic checking, or even for financial applications. This
chapter contains the specification which was previously published asSDML - The Signed Document Markup
Language. This chapter and the previous chapters supersede that publication.

4.2 FSML Document Definition

Every FSML electronic document consists of one or more enclosed documents. These documents are nested,
with the nesting done by enclosing earlier forms of a document inside later additions to the document. Each
enclosed document is built inside a<fsml-doc> tag structure. Inside a document are one or more blocks.
Blocks may appear in any order, except that the<action> block (defined below) must the first block in
the document. All generic blocks other than the<action> block may occur multiple times in an FSML
document.

<fsml-doc docname=" dnamestring" type=" dnamestring">
a sequence of one or more blocks and/or nested <fsml-doc> documents

</fsml-doc>

Figure 4.1: Document element definition

Thedocname= attribute is a document name, assigned by the software creating the document. This name
will be used when combining documents. (See Combining Documents, below). If multiple FSML documents
are being created at one time, as part of one file or transmission, the creating software must ensure that the
document names are unique, within the file or transmission. This name must contain a maximum of 64
characters. Note: Attribute values must be enclosed in quotes.

The type= attribute is a document type, used to specify the type of document. This type is used by the
receiving software to ensure that it has received the correct type of document — i.e., one that it knows how to
process. The document types are chosen from a list of pre-defined types, or may be types agreed upon by the

14 c
Financial Services Technology Consortium, 1996-99. All rights reserved. 14

sending and receiving parties, except that the latter agreed-upon types may not conflict with any pre-defined
types. Note: Attribute values must be enclosed in quotes.

To prevent such conflict between pre-defined, standardized document types, and privately agreed-upon types,
all privately agreed-upon document types should be prefixed with the characters “x:” (meaning private). For
example, a document type used for auto-loan applications, agreed to be used by a pair or small group of
cooperating banks, could be written astype="x:autoloan" . All pre-defined document types will be
guaranteed not to start with the characters “x:”.

4.3 Generic Block Common Field Definitions

A block contains some common fields, along with other fields specific to the type of block. Except in a few
cases and unless otherwise specified, the order of fields within a block is not predefined. Once a block has
been signed, however, fields may not be moved or rearranged inside a block, nor may fields be added or
removed.

Common Block Field Definitions Each of the blocks contains some field definitions which are common
to all block types, as follows:

<blkname> namestring
<crit> tvalue
<vers> vstring

Figure 4.2: Elements common to all blocks

blkname (required) This is a character string which must contain a block name assigned at the time
the document is created. The creating software must ensure that the block names are unique
within a document. The names are used to refer to the block from other blocks.

Generally, the name chosen for the block may be any unique character string. For certain
blocks a convention or rule applies when creating block names. The rules or conventions
are described in the individual block descriptions.

crit (optional) A boolean (true/false) flag used to determine if a block is critical. If a block is
critical, then the receiving software must be able to process the block, and must be able
to recognize every field in the block. If the software cannot process a critical block,
it must abort processing the entire document, or otherwise determine how to handle the
document as an exceptional case. This flag is used to allow for expansion of the block
types, to allow software to “ignore” block types that it doesn’t recognize, providing that
they are marked non-critical by the software that created them. Certain types of blocks,
such as informational messages, etc. might always be considered non-critical. Other types,
such as signatures, might always be considered critical. The criticality flag is assumed to
have a default oftrue unless otherwise specified asfalse . Thus, it is not required to be
specified in every block.

15 c
Financial Services Technology Consortium, 1996-99. All rights reserved. 15

vers (optional) A number which indicates the Version of the block. New versions may be in-
troduced, and this number is used by receiving software to determine if it is capable of
parsing/processing a block. If the version number is larger than the one understood by the
receiving software, it must assume that it cannot process the block, and must use the crit-
icality flag to determine if it can continue to process the document. If the version number
is not specified, it is assumed to be 1.0. A given FSML document may contain blocks
with different version numbers. The receiving software is responsible for identifying in-
consistencies and conflicts that may arise if FSML blocks with different versions are mixed
inappropriately within the same document.

4.4 Generic Block Definitions

Each Generic FSML block starts and ends with one of the following sets of block tags:

Start Tag End Tag

<action> </action>
<signature> </signature>
<cert> </cert>
<attachment> </attachment>
<message> </message>
<x:name> </ x:name>

Figure 4.3: List of generic block elements

The block types are defined as follows:

action A block describing the action to be performed by the recipient

signature A block with the signatures and hashes of other blocks

cert A public key certificate

attachment An associated document attached to an FSML document

message An informational message, such as an error report

x:name A privately defined block type.

4.4.1 Generic Action Block Definition

This block contains information about the action to be performed by the recipient of the Electronic Document.

16 c
Financial Services Technology Consortium, 1996-99. All rights reserved. 16

<action>
<blkname> namestring
<crit> true
<vers> 1.0
<function> namestring
<reason> namestring
</action>

Figure 4.4: Action block element definition

Action Block Field Definitions

function (required) The function field contains a character string chosen from a set of commands
or verbs specific to the application of the document being sent. Each application will have
a unique set of allowable functions that are supported. (see echeck specific Action block
definition below).

reason (required) The reason field indicates the reason that the document is being transmitted to
the recipient. It must be one of the following character strings.

process This indicates that the document is an original being sent to the recipient
for normal processing.

resend This indicates that the document is a possible duplicate being resent to
the recipient. It should only be processed if it is not a duplicate at the
receiver.

test This indicates that the document is being sent as a test, and should not be
fully processed (e.g., it should not transfer funds).

info This indicates that the document is being sent for informational purposes
only (e.g., as part of the text of an email message) and is not to be pro-
cessed.

return This indicates that the document is being sent back to the originator as
a returned item. The document will usually contain a<message> block
indicating the reason for the return.

4.4.2 Generic Signature Block Definition

This block contains a digital signature for another block, or set of blocks. It is required whenever the origina-
tor or approver of a block must be authenticated, or the block tamper-proofed. It also contains the reference
to the certificate block containing the public key used to verify the signature. It is also used to “bind” multiple
blocks together, so that the resulting compound document can be verified.

Unless otherwise specified, the data being signed consists of the entire contents of the subject block, which
is defined to be everything including the start and end tagsfor the block. The signature must include the
blockname, criticality, and version fields, if present, as well as the contents, begin, and end tags of the block.

17 c
Financial Services Technology Consortium, 1996-99. All rights reserved. 17

The actual hashes of the signed blocks are included to allow verification of the binding even if the actual
contents of the bound blocks are not available.

<signature>
<blkname> namestring
<crit> true
<vers> 1.5
<sigdata>
<blockref req="true"> dnamestring
<hash alg="sha"> base64string
<blockref req="true"> dnamestring
<hash alg="sha"> base64string

...
<blockref req="true"> dnamestring
<hash alg="sha"> base64string
<nonce> valuestring
<sigref> namestring
<sigtype> namestring
<certissuer> valuestring
<certserial> number
<algorithm> valuestring
<timestamp> valuestring
<location> valuestring
<username> valuestring
<useraddr> valuestring
<userphone> valuestring
<useremail> valuestring
<useridnum> valuestring
<userotherid> valuestring
</sigdata>
<sig> base64string
</signature>

Figure 4.5: Generic Signature block element definition

Generic Signature Block Field Definitions

vers (required) The<signature> block is now at version 1.5, which is not the default and thus
the<vers> field must be present and must contain the value1.5.

blockref (required) The signature block contains one or more<blockref> fields, each of which
contains the unique block name of the associated block being signed. All of the block refer-
ences must appear immediately before their respective hashes (See below). The<blockref>
and<hash> pairs may be repeated multiple times to sign multiple blocks. An attributereq
is optional in the<blockref> element. If<blockref req="true" > then removal of

18 c
Financial Services Technology Consortium, 1996-99. All rights reserved. 18

the referenced block invalidates the signature. If<blockref req="false" > then re-
moval of the referenced block is permitted. The default, if thereq attribute is not present, is
true. As in other aspects of judging document and signature validity, the verifier’s business
rules may override the signer’s assertions.

hash (required) This field contains the actual hash of the respective block. Each<hash> start
tag must have an attribute which specifies the algorithm used to perform the hash. The
currently allowed attribute values aremd5[2] or sha[4]. The alg= attribute is required.
The use ofmd5 is deprecated. Other hash algorithms may be supported in the future. It
is not required that the same hash algorithm be used for each of the blockrefs in a signa-
ture block. All hashes are encoded in “network byte order”, which means that the most
significant bytes are leftmost (first). Note: Attribute values must be enclosed in quotes.

nonce (required) This is a nonce, or one-time random number, used to “salt” the hashed data
to discourage cryptanalysis attacks. See the section below on Signature Calculation. The
nonce value can be any string of random ASCII characters from within the set of allowed
FSML characters (see Character Encoding above), not including whitespace.

Note to Implementors:

Although any FSML character except whitespace is allowed in the<nonce> value, it is
permitted, and implementors may find it convenient, to generate a random number and
include it in the<nonce> field represented as a decimal integer, a floating-point number, a
hexadecimal-encoded octet string, or as a base64-encoded octet string. Note that the use of
this string in the hash is purely as a sequence of ASCII octets. The fact that it may have been
created as an ASCII representation of a floating point number or integer, or hexadecimal
number is irrelevant to its use in the hash data.

sigref (optional) This is the block name of the<cert> block which contains the public key that
can be used to verify the signature. This field, although optional, is only optional when
an agreement is in place indicating that the recipient of the document does not need the
certificate in order to process the document.

sigtype (required) This field contains an indication of the type of signature. It must contain one of
the following values for generic documents

generic This indicates a generic signature, with no attached semantics.

co-sign This indicates a co-signature, where more than one signer is signing the
same document. Neither signature has precedence over the other. Each
is independent.

counter-sign This indicates a counter-signature, where more than one signer is signing
the same document. The counter-signer is signing the document as well
as the signature(s) of the other signer(s), and is attesting to the fact that
the signer has seen and agreed to, or approved the previously applied
signatures.

witness This indicates a signature attesting to another signature, but not to the
contents being signed.

Additional sigtype values may be defined by applications that require new signature classi-
fications.

19 c
Financial Services Technology Consortium, 1996-99. All rights reserved. 19

certissuer (optional) This field contains the unique distinguished name of the issuer of the certificate[7].
It should only be specified if the<cert> blocks are not being sent with this document. See
the description of the<certissuer> field in the<cert> block for the syntax used to specify
this field.

certserial (optional) This field contains the unique certificate serial number assigned by the issuer of
the certificate. It should only be specified if the<cert> blocks are not being sent with this
document.

algorithm (required) This string indicates the algorithm used to sign the signature block. It may be
md5/rsa[3] or sha/dsa[5] or sha/rsaor sha/ecdsa[6]. Note: Implementors of code that is
used to sign FSML Electronic Documents may choose to support only one of the above
possible signing algorithms. Implementors of code that is used to verify FSML Electronic
Documents must support all algorithms. This ensures interoperablity. The use of md5 is
deprecated.

timestamp (optional) This field specifies the time that the document was signed. It must be in Universal
time[12] (i.e., GMT) specified as CCYYMMDDThhmmssZ, where theT andZ are literal
characters, and where “CC” is the century (currently 19, soon 20), “YY” is the year, “MM”
is the month, “DD” is the day, “hh” is the hour, “mm” is the minute and “ss” is the second.

username (optional) This is an identification string containing the certificate user’s name. It is option-
ally inserted into the document by the electronic hardware token.

This field, and the 5 following fields are optional identification data. This data is supplied
by the electronic token owner to the token issuer at the time the token is initialized, but it
is not certified to be correct or accurate by the token issuer. The data is inserted into the
electronic token when the token is initialized, and may also be corrected or updated later
by the issuer using administrative token functions and passwords.

This data is then inserted, under control of the user, into the document by the electronic
token, however the data cannot be changed or deleted by the user once the document is
created. The user may select, when writing a document, which of the 6 identification fields
are to be inserted into the document, in any combination, or may select none of them.

useraddr (optional) This is an identification string containing the certificate user’s address. It is
optionally inserted into the document by the electronic hardware token.

userphone (optional) This is an identification string containing the certificate user’s phone number. It
is optionally inserted into the document by the electronic hardware token.

useremail (optional) This is an identification string containing the certificate user’s email address. It
is optionally inserted into the document by the electronic hardware token.

useridnum (optional) This is an identification string containing the certificate user’s identification num-
ber. It is optionally inserted into the document by the electronic hardware token.

userotherid (optional) This is an identification string containing any user identification the user wishes
(e.g., company name). It is optionally inserted into the document by the electronic hardware
token.

location (optional) This field specifies location/country where the document was signed. The loca-
tion is used to define the jurisdiction where the document was legally considered to have
been signed. It is only used in circumstances where that matters.

20 c
Financial Services Technology Consortium, 1996-99. All rights reserved. 20

sig (required) This is a base64 encoding of the actual signature data. For certain algorithms,
the field is split into two portions using a colon":" . For DSA or ECDSA, the field contains
the two portions of a DSA signature as r:s, where r and s are long base64 strings. For RSA,
only a single string is specified, with no colon separator. All signatures are encoded in
“network byte order”, which means that the most significant bytes are leftmost (first).

Signature Calculation

The calculation of the Signature is performed as follows...

1. The<nonce> value is created as a random number. The nonce value can be any string of random
ASCII characters from within the set of allowed FSML characters (see Character Encoding above) not
including whitespace.

Note to Implementors:

Although any FSML character except whitespace is allowed in the<nonce> value, it is permitted,
and implementors may find it convenient, to generate a random number and include it in the<nonce>
field represented as a decimal integer, a floating-point number, a hexadecimal-encoded octet string, or
as a base64-encoded octet string. Note that the use of this string in the hash is purely as a sequence
of ASCII octets. The fact that it may have been created as an ASCII representation of a floating point
number or integer, or hexadecimal number is irrelevant to its use in the hash data.

2. The<nonce> value is logically prepended to the subject block contents before hashing. This includes
the tag string “<nonce>” — e.g., if the nonce value is 12345, the characters<nonce >12345 are
logically prepended to the subject block before hashing.

3. The hash is calculated using the contents of the subject block, (with the<nonce> prepended) including
the block start tag and block end tag,with the exception of all carriage returns, line feeds, and trailing
spaces on a line. Leading and embedded spaces in a line are included in the hash. SGML entities (i.e.,
character names enclosed between an ampersand and a semicolon) are left untranslated when hashing.

4. The resulting hash value is inserted into the<hash> entry (as base64-encoded ASCII) in the signature
block. If the signature algorithm is DSA or ECDSA, the hash may be inserted without additional
padding or encoding. If the signature algorithm is RSA, the hash should be padded and encoded using
the specifications in the PKCS#1[13] standard.

5. Steps 2 through 4 are repeated for each block to be signed.

6. A second hash calculation is performed on the contents of the<sigdata> sub-block, which contains
the previously calculated hashes, their block references, and the<nonce>. This should include all
characters between the<sigdata> tag and the</sigdata> tag, not including the tags themselves, again
omitting all carriage returns, line feeds, and trailing spaces. If the signature algorithm is DSA or
ECDSA, the hash may be inserted without additional padding or encoding. If the signature algorithm
is RSA, the hash should be padded and encoded using the specifications in the PKCS#1[13] standard.
This second hash is then encrypted using the private key. The result is the signature which is inserted
(as base64 encoded ASCII)into the signature block as the value for the<sig> tag.

Signature Verification

The verification of the Signature is performed as follows...

21 c
Financial Services Technology Consortium, 1996-99. All rights reserved. 21

1. The following steps are repeated for each block referenced by a<blockref> tag in the signature. If
the referenced block is not present, and<blockref req="false" > was specified, the block is
assumed to have been detached. The following steps are not performed for this block, and this block’s
absence is not considered to invalidate the document.

(a) The<nonce> value from the signature block is logically prepended to the referenced blocks con-
tents before hashing. This includes the tag string “<nonce>” — e.g., if the nonce value is 12345,
the characters<nonce >12345 are logically prepended to the referenced blocks contents before
hashing.

(b) A hash is calculated using the contents of the referenced block, (with the<nonce> prepended)
including the block start tag and block end tag, withall characters in between, with the exception
of all carriage returns, line feeds, and trailing spaces on a line. Leading and embedded spaces
in a line are included in the hash. SGML entities (i.e., character names enclosed between an
ampersand and a semicolon) are left untranslated when hashing. The hash algorithm to be used
is specified in thehash = attribute in the<hash> tag for the referenced block.

(c) The resulting hash value is compared to the<hash> entry in the signature block.

(d) If the hashes do not match exactly, the signature fails verification.

2. The contents of the<sig> field are processed using the public key found by following the<sigref>
tag, which will point (by name) to a<cert> block. Parsing of the<certdata> field in this block may
be required to extract the public key — e.g. an X.509 certificate parser may be required. The signature
algorithm to be used is specified in the<algorithm> field.

3. A second hash calculation is performed on the contents of the<sigdata> sub-block, which contains
the previously calculated hashes, their block references, and the<nonce>. This should include all
characters between the<sigdata> tag and the</sigdata> tag, not including the tags themselves, again
omitting all carriage returns, line feeds, and trailing spaces. The hash algorithm to be used is specified
in the<algorithm> field.

4. The processed<sig> field is compared to the hash calculated in the previous step. If this comparison
fails, the signature fails verification. If the comparison succeeds, the signature has verified successfully.

4.4.3 Generic Certificate Block Definition

This block contains an encoded X.509 certificate[7].

22 c
Financial Services Technology Consortium, 1996-99. All rights reserved. 22

<cert>
<blkname> namestring
<crit> true
<vers> 1.5
<certtype> valuestring
<certissuer> valuestring
<certserial> number
<certdata> base64string
</cert>

Figure 4.6: Generic Certificate block element definition

Generic Certificate Block Field Definitions

blkname (required) The <blkname> field in a <cert> is slightly different from the “generic”
<blkname>. Since the<cert> block is signed by the authority issuing the electronic to-
ken, and is probably stored in the token, it is not changeable at runtime by FSML generating
software. Thus the<blkname> chosen must be guaranteed to be unique for all subsequent
documents. It is recommended (but not required) that a block naming convention be used
to allow this.

vers (required) The<cert> block is now at version 1.5, which is not the default and thus the
<vers> field must be present and must contain the value1.5.

certtype (required) This field indicates the type of certificate contained in the block. The possible
values arex509v1orx509v3. This value must correspond to the data in the actual certificate
contained in the<certdata> field.

certissuer (required) This field contains the unique distinguished name of the issuer of the certificate.
The certificate issuer string uses the fields from the distinguished name in the ASN.1 X509
certificate, separated by slashes, and using a TAG= identification of the name field type.
The different name fields use the following identification tags:

Country C=
DMDName DMD=
Commonname CN=
Orgname O=
Orgunit OU=
Title T=

Thus, an example of an issuer string would be...

/C=US/ST=New York/O=FIRSTBANK_ANYTOWN/OU=checking/

23 c
Financial Services Technology Consortium, 1996-99. All rights reserved. 23

This value must correspond to the data in the actual certificate contained in the<certdata>
field. Although X.509 distinguished names allow additional fields, FSML only supports
the ones named above.

certserial (required) This field contains the unique certificate serial number assigned by the issuer of
the certificate. This value must correspond to the data in the actual certificate contained in
the<certdata> field.

certdata (required) This contains the base64-encoded binary value of the ASN.1 DER[14][15] en-
coded X.509 certificate.

4.4.4 Generic Attachment Block Definition

This block contains any document that is to be attached to the FSML Electronic Document (e.g., a Remittance
notice, Contract, etc.).

<attachment>
<crit> false
<vers> 1.0
<blkname> namestring
<astatus> valuestring
<adata encoding=" namestring">
...
</adata>
</attachment>

Figure 4.7: Generic Attachment block element definition

astatus (optional) This field indicates whether the attachment is temporary or permanent. A tem-
porary attachment is intended to be transmitted from the document creator to the first recip-
ient. It is stripped before transmission to any subsequent recipients. A permanent attach-
ment is intended to be kept with the document permanently and should not be removed by
any recipient of the document. The contents of the field may be the wordtemporary or the
word permanent. If the field is omitted, it defaults totemporary. Note: The<astatus>
field is advisory only. An FSML document is not considered invalid if it is received by
later recipients containing atemporary attachment, nor is the document invalid if a re-
ceiver strips off apermanentattachment.

adata (required) Any data may be contained in the Attachment block, between the<adata> and
</adata> tags.

Theencoding= attribute for the<adata> tag is used to specify the encoding method for the data in the
sub-block. It can have the following values:

24 c
Financial Services Technology Consortium, 1996-99. All rights reserved. 24

mime If themime encoding value is selected, then the following three MIME headers are required
to be placed in the next 3 lines of the<adata> sub-block, immediately followed by a blank
line. The header lines may appear in any order.

Mime-Version 1.0
Content-Type: aaaaaa/bbbbbbbb
Content-Transfer-Encoding: xxxxx

Any legal MIME header values may be used for aaaaaa or bbbbbbbb [10][16].

The ’xxxxx’ string used to specify the Content-Transfer-Encoding value must be one of

� 7bit

� base64

� quoted-printable

If the contents of the attached document cannot be encoded using the FSML document for-
matting rules, described earlier, then the Content-Transfer-Encoding specification base64
should be used to “armor” the document against E-mail systems.

In addition, the encoded document may not contain the ASCII string</adata > so that
the FSML parser will not interpret any portion of the attached document as the ending
SGML tag for the<adata> sub-block.

The actual encoded data follows the three MIME headers, separated by an empty line (i.e.,
a line containing only a new-line sequence, with no other characters).

An example of a MIME-encoded<attachment> block:

<attachment>
<blkname>att0123
<adata encoding="mime">
Mime-Version 1.0
Content-Type: application/octet-stream
Content-Transfer-Encoding: base64

0M8R4KGxGuEAAAAAAAAAAAAAAAAAAAAAPgADAP7/C
AAAAEAAA/v///wAAAAD+////AAAAAAAAAAB7AAAA/
</adata>
</attachment>

text This allows a simple ASCII document to be inserted as an attached document without need
for MIME headers or encoding/decoding software. This attribute value can only be used
if the attached document inside the<adata> sub-block conforms to the FSML document
formatting rules. If theencoding attribute is not specified, it defaults to thetext value.

25 c
Financial Services Technology Consortium, 1996-99. All rights reserved. 25

4.4.5 Generic Message Block Definition

This block contains error messages and return information that indicates the reason that the attached FSML
Document was not processed successfully or it may contain other information about the attached document.

<message>
<blkname> namestring
<crit> true
<vers> 1.0
<retcode> valuestring
<msgtext> valuestring
<msgdata>
...
</msgdata>
</message>

Figure 4.8: Generic Message block element definition

Generic Message Block Field Definitions

retcode (required) This field contains a return code indicating the reason why the attached docu-
ment was returned.

msgtext (required) This field contains a textual message explaining why the document was re-
turned.

msgdata (optional) This field contains any other data that may be associated with the message —
e.g., a report or bank statement.

4.4.6 Private Block Types

To support extension of the FSML specification, agreeing parties (document creators and document receivers)
may agree to support Private Block Types. These are blocks with block start and end tags that are not defined
explicitly in the FSML specification, but are created and agreed to by all communicating parties. All private
block types must have start and end tags that begin with the character string" <x:" to distinguish them from
standard block types. (e.g.,<x:myblock>).

Rules for processing such blocks are as follows...

� If the private block type is not recognized by the receiving program, and the<crit> field in the block
is true, or missing (default is true), then the entire document must be rejected.

� If the private block type is not recognized by the receiving program, and the<crit> field in the block
is false, then the contents of the block up to the end tag is to be skipped and ignored by the receiving
program.

26 c
Financial Services Technology Consortium, 1996-99. All rights reserved. 26

The rules for creating such blocks are...

� If the private block is intended to be processed by the first (or nth) recipient(s) only, then the block
should either have a<crit> value of false, or should be detachable by having the<blockref
req="false" > in all <signature> blocks that sign it, and the block should be detached by the
first or (nth) recipient.

� The ultimate recipient will then ignore the block (if<crit> is false) or never receive it.

<x: name>
<blkname> namestring
<crit> true
<vers> vstring

(Other tags to be defined by application designers)

</x: name>

Figure 4.9: Private block type element definition

Private Block Field Definitions Private blocks may contain any fields that the Private block definers
choose. Field tag names may be chosen from those already defined for other FSML blocks, or may be
new. Existing field tag names should be used only if they have the same encoding and general semantics as
defined in FSML.

The<blkname>,<crit>, and<vers> fields are to be defined and used in the same manner as with all other
FSML blocks.

27 c
Financial Services Technology Consortium, 1996-99. All rights reserved. 27

Combining Documents

As an FSML document passes through the various processing steps at different institutions, information
will need to be added to and removed from the document. This section defines a technique for combining
documents such that allowable changes may be made to the document while preserving the integrity of the
digital signature mechanism.

To add new information to a document, the existing document is enclosed in a<fsml-doc> tag structure,
which may also enclose new blocks containing the new information. New<signature> blocks may also be
contained in the new information and may sign blocks in the inner nested documents. Each new, surrounding,
<fsml-doc>must also have a new<action> block, andtype attribute, and the<action> block andtype
belonging to the outermost<fsml-doc> are used by the receiving system to determine the method used to
process the modified document.

When combining original FSML documents into a larger, compound document (e.g., combining checks into
a deposit), the names of the original blocks may not be unique. A document combining process must be used
to handle naming conflicts when a number of documents are being combined (i.e., embedded) into a new
document.

The document combining process is as follows:

1. All of the original<fsml-doc> elements are enclosed in a single new<fsml-doc> element. The
original docname attributes are kept with the same contents, unless all of the combined document
names are not unique. If they are not unique, new, unique names should be assigned by the combining
software.

2. Any time a block name reference is required to refer to a block which is not part of the same<fsml-
doc> as the one containing the reference (i.e., inter-document references) then the reference consists
of the DOCNAME of the<fsml-doc> element concatenated with a period “.” and then with the
<blkname> of the inner block being referred to.

This is extended if the nesting is continued to more than two levels — e.g.,’outerdoc.innerdoc.block’ .

3. Any block references inside a given<fsml-doc> must use the block name without any qualifying
document name, to ensure that future document combining will not be prevented.

As an example:

If there are two original documents:

28 c
Financial Services Technology Consortium, 1996-99. All rights reserved. 28

<fsml-doc docname="doc1">
<attachment>

<blkname>block1
....

</attachment>
</fsml-doc>

<fsml-doc docname="doc2">
<attachment>

<blkname>block1
....

</attachment>
</fsml-doc>

Figure 5.10: Example of combining documents - before

When they are combined, the result is:

<fsml-doc docname="newdoc">

<fsml-doc docname="doc1">
<attachment>

<blkname>block1
...

</attachment>
</fsml-doc>

<fsml-doc docname="doc2">
<attachment>

<blkname>block1
...

</attachment>
</fsml-doc>

<signature>
<blockref>doc1.block1
...
<blockref>doc2.block1
...
</signature>

</fsml-doc>

Figure 5.11: Example of combining documents - after

Any outer-document references to the<attachment>block in the first document would be’doc1.block1’ ,
and the<attachment> block in the second document would be’doc2.block1’ . References inside doc1

29 c
Financial Services Technology Consortium, 1996-99. All rights reserved. 29

to any blocks in doc1 must still use the original, single level names. Similarly for internal references inside
doc2.

This is extended if the nesting is continued to more than two levels — e.g.,’outerdoc.innerdoc.block’ .

30 c
Financial Services Technology Consortium, 1996-99. All rights reserved. 30

echeck Specific FSML

This chapter describes the use of FSML for Electronic Checks and associated documents. All of the Generic
FSML formats and rules are applicable, except that new block types are added, and certain blocks have
additional fields (e.g., signature blocks).

6.1 Electronic Check Document type Definitions

The type attribute in the<fsml-doc> tag must be one of the following values for an echeck or related
document ...

check This indicates that the document is a signed electronic check, which is usable as a payment.

endcheck This indicates that the document is a signed, endorsed check, which is usable for deposit
or transfer to a third party.

certcheck This indicates that the document is a signed, certified check, which is usable as a payment
and contains bank certification information certifying that the funds are available and held.

deposit This indicates that the document is a group of one or more endorsed, signed electronic
checks, combined with one or more deposit slips, intended as a deposit.

return This indicates that the document is a deposit item being returned by the bank for some
reason. It will contain a<message> block indicating the reason for the return.

presentment This indicates that the document is an echeck item being transmitted from one bank to
another for purposes of clearing or presentment. This type of document is only valid for
such inter-bank transmission. It need not be created by or processed by payer or payee
applications.

cgroup This indicates that the document contains a<cashletter> block and a number of bundle
and presentment subdocuments being transmitted from one bank to another for purposes of
clearing or presentment. This type of document is only valid for such inter-bank transmis-
sion. It need not be created by or processed by payer or payee applications.

31 c
Financial Services Technology Consortium, 1996-99. All rights reserved. 31

6.2 Electronic Check Document Global Structure

6.2.1 BNF Structure of FSML Electronic Check Documents

The following is an Extended BNF[8][9] description of the global block structure of FSML echeck Electronic
Documents.

BNF Meta-Notation

The meta-symbols of BNF are:

::= meaning “is defined as”

j meaning “or”

[] used to enclose optional items

” used to enclose characters or strings that represent themselves

f g used to enclose repeated items (repeated zero or more times)

< > used to enclose specific FSML tags.

< () > used to specify FSML blocks.

Names not enclosed in any of the above bracket symbols are callednonterminalsand are used to define
symbols internal to the BNF specification only.

Note: Blocks are not required to be in the exact order specified below, except that the<action> block must
always appear as the first block in any<fsml-doc>.

Subgroup BNF definitions

First, some lower-level nonterminal definitions of signature groups, which contain<signature> blocks and
their associated<account> and<cert> blocks.

acct_sig_group ::= <(signature)> <(account)> [<(cert)>]

cert_sig_group ::= <(signature)> [<(cert)>]

bank_sig_group ::= <(signature)> [<(cert)>]

tell_sig_group ::= <(signature)> <(account)> [<(cert)>]

The acctsig group includes the<signature>, <account>, and<cert> blocks for a user signature that re-
quires an account — e.g., check signer, depositor.

The certsig group includes the<signature>, and<cert> blocks for a user signature that does not require
an account — e.g., check endorser, or Generic FSML document.

32 c
Financial Services Technology Consortium, 1996-99. All rights reserved. 32

The banksig group includes the<signature> and<cert> blocks used by the bank to sign the user’s account
and certificate, or a returned item, or some other document signed by the Bank.

The tell sig group includes the<signature>,<account>, and<cert> blocks for a teller’s or bank officer’s
signature that requires an account — e.g., certified check.

The cert blocks are shown above as being optional, since...

� They may be referred to but not included in the FSML Document (by prior arrangement only).

� A second cert block which contains a second redundant instance of the same certificate need not be
added.

Signed Electronic Check BNF definitions

signed_echeck_doc ::=
’<fsml-doc docname="’ dname ’" type="check">’
<(action)>
<(check)>
acct_sig_group bank_sig_group

{ acct_sig_group bank_sig_group }
{ <(attachment)> }
{ <(invoice)> }

’</fsml-doc>’

If a check is co-signed, an additionalacct sig group is added by the co-signer. The co-signer’s signature
signs the same blocks as the original signer. If a check is counter-signed, an additionalacct sig group
is added by the counter-signer. The counter-signer’s signature signs the same blocks as the original signer,
along with the original signer’s<signature> block, which indicates that the counter-signer is attesting and
agreeing with the original signature.

Certified, Signed Electronic Check BNF definitions

certified_echeck_doc ::=
’<fsml-doc docname="’ dname ’" type="certcheck">’
<(action)>
<(certification)> tell_sig_group bank_sig_group
signed_echeck_doc
’</fsml-doc>’

Endorsed, Signed Electronic Check BNF definitions

33 c
Financial Services Technology Consortium, 1996-99. All rights reserved. 33

check_doc_list ::=
signed_echeck_doc | certified_echeck_doc

endorsed_echeck_doc ::=
’<fsml-doc docname="’ dname ’" type="endcheck">’

<(action)>
<(endorsement)>
cert_sig_group <(cert)> | acct_sig_group

{ cert_sig_group <(cert)> }
check_doc_list

{ <(attachment)> }
’</fsml-doc>’

If an endorsement document contains a check that has either the<paytoacct> or<paytocustno> fields in the
<check> block, then the endorsement document must contain an acctsig group instead of a certsig group
and the associated bank certificate.If a check is co-endorsed, an additionalcert sig group and possibly
a bank cert (if not already present) is added by the co-endorser. The co-endorsed signature signs the same
blocks as the original endorser. If a check is counter-endorsed, an additionalcert sig group and possi-
bly a bank cert (if not already present) is added by the counter-endorser. The counter-endorser’s signature
signs the same blocks as the original endorser, along with the original endorser’s<signature> block, which
indicates that the counter-endorser is attesting and agreeing with the original signature.

Note: The<cert> block specified after the certsig group above is the bank’s certificate specifying the bank’s
public key for verification of the bank’s signature on the endorser’s x509 certificate.

Deposited Electronic Check BNF definitions

deposit_doc ::=
’<fsml-doc docname="’ dname ’" type="deposit">’

<(action)>
<(deposit)>

{ <(deposit)> }
acct_sig_group bank_sig_group

{ acct_sig_group bank_sig_group }
endorsed_echeck_doc

{ endorsed_echeck_doc }
’</fsml-doc>’

Note: The depositdoc can have multiple<deposit> blocks if it contains multiple accountsig groups to
specify the account data for each account being deposited into.

34 c
Financial Services Technology Consortium, 1996-99. All rights reserved. 34

Returned Electronic Check BNF definitions

returned_item_doc ::=
’<fsml-doc docname="’ dname ’" type="return">’

<(action)>
endorsed_echeck_doc | check_doc_list

{ bankstamp }
’</fsml-doc>’

In a return, bankstamps are added by each bank which the return item has passed through during process-
ing. Each bank stamp is added as another<bankstamp> block inside the original return document. New
<bankstamp> blocks must be added after the earlier ones. If a bank has to change the contents of the
<action> block, then the original return is wrapped in a new document and the bankstamp is placed in the
new document, along with the new<action> block.

Presentment Item BNF definitions

35 c
Financial Services Technology Consortium, 1996-99. All rights reserved. 35

presentment_item_doc ::=
’<fsml-doc docname="’ dname ’" type="presentment">’

<(action)>
endorsed_echeck_doc

{ bankstamp }
’</fsml-doc>’

modified_presentment_item_doc ::=
’<fsml-doc docname="’ dname ’" type="presentment">’

<(action)>
presentment_item_doc | modified_presentment_item_doc

{ bankstamp }
’</fsml-doc>’

In a presentment, bankstamps are added by each bank which the presentment item has passed through
during processing. Each bank stamp is added as another<bankstamp> block inside the original present-
ment document. New<bankstamp> blocks must be added after the earlier ones. If a bank has to change
the contents of the<action> block, then the original presentment is wrapped in a new document (modi-
fied presentmentitem doc, above) and the bankstamp is placed in the new document, along with the new
<action> block.

Cashletter group BNF definitions

bundle_doc ::=
’<fsml-doc docname="’ dname ’" type="bundle">’

<(bundle)>
presentment_item_doc | modified_presentment_item_doc
{ presentment_item_doc }
’</fsml-doc>’

cgroup_doc ::=
’<fsml-doc docname="’ dname ’" type="cgroup">’

<(action)>
<(cashletter)>
bundle-doc

{ bundle-doc }
’</fsml-doc>’

Note: A cgroup document contains a cashletter, and a number of bundles, each of which contain a number
of presentment items. Bundle documents are not usable FSML documents outside of a cgroup. They are

36 c
Financial Services Technology Consortium, 1996-99. All rights reserved. 36

used for purposes of grouping presentment items only. No signatures or certificates are added to cgroups or
bundles, and no action blocks are needed in bundle documents.

37 c
Financial Services Technology Consortium, 1996-99. All rights reserved. 37

6.2.2 Global Structure - Signed Electronic Check

Global Block Structure Detail - Signed Electronic Check
Blocks Block Block References Ref Block Function

No. and Contents Block

<action> C1 payment/process
<check> C2
<signature> C3 hash of<action> C1 signer’s signature

hash of<check> C2
hash of signer’s<account> C4
hashes of any<attachments> C6
hash of any<invoice>
reference to<account> C4
<sigtype>check

<account> C4 issuer/serial of<cert> C5 signer’s account block
<cert> C5 signer’s certificate
<attachment> C6 attachments, invoice
<signature> C7 hash of signer’s<account> block C4 bank’s signature

hash of signer’s<cert> block C5
reference to bank’s<cert> C8
<sigtype>bankacct

<cert> C8 bank’s certificate

<fsml-doc docname="C" type="check">
<action> <blkname>C1 ... </action>
<check> <blkname>C2 ... </check>
<signature> <blkname>C3 ... </signature>
<account> <blkname>C4 ... </account>
<cert> <blkname>C5 ... </cert>
<attachment> <blkname>C6 ... </attachment> (optional)
<signature> <blkname>C7 ... </signature>
<cert> <blkname>C8 ... </cert>

</fsml-doc>

38 c
Financial Services Technology Consortium, 1996-99. All rights reserved. 38

6.2.3 Global Structure - Co-Signed Electronic Check

Global Block Structure Detail - Co-signed Electronic Check
Blocks Block Block References Ref Block Function

No. and Contents Block

signed echeck Cn original echeck
<signature> S1 hash of<action> C1 co-signer’s signature

hash of co-signer’s<account> S2
hash of any original<invoice>
hash of any original<attachment> C6
hash of original<check> C2
reference to co-signer’s<account> S2
<sigtype>co-sign

<account> S2 issuer/serial of co-signer’s<cert> S3 co-signer’s account block
<cert> S3 co-signer’s certificate
<signature> S4 hash of co-signer’s<account> block S2 bank’s signature

hash of co-signer’s<cert> block S3
reference to bank’s<cert> S5
<sigtype>bankacct

<cert> S5 bank’s certificate

<fsml-doc docname="S" type="check">
<action> <blkname>C1 ... </action>
<check> <blkname>C2 ... </check>
<signature> <blkname>C3 ... </signature>
<account> <blkname>C4 ... </account>
<cert> <blkname>C5 ... </cert>
<attachment> <blkname>C6 ... </attachment> (optional)
<signature> <blkname>C7 ... </signature>
<cert> <blkname>C8 ... </cert>
<signature> <blkname>S1 ... </signature>
<account> <blkname>S2 ... </account>
<cert> <blkname>S3 ... </cert>
<signature> <blkname>S4 ... </signature>
<cert> <blkname>S5 ... </cert>

</fsml-doc>

39 c
Financial Services Technology Consortium, 1996-99. All rights reserved. 39

6.2.4 Global Structure - Counter-signed Electronic Check

Global Block Structure Detail - Counter-signed Electronic Check
Blocks Block Block References Ref Block Function

No. and Contents Block

signed echeck Cn original echeck
<signature> S1 hash of<action> C1 counter-signer’s signature

hash of counter-signer’s<account> S2
hash of any original<invoice>
hash of any original<attachment> C6
hash of original<check> C2
hash of original<signature> C3
reference to counter-signer’s<account> S2
<sigtype>counter-sign

<account> S2 issuer/serial of counter-signer’s<cert> S3 co-signer’s account block
<cert> S3 counter-signer’s certificate
<signature> S4 hash of counter-signer’s<account> block S2 bank’s signature

hash of counter-signer’s<cert> block S3
reference to bank’s<cert> S5
<sigtype>bankacct

<cert> S5 bank’s certificate

<fsml-doc docname="S" type="check">
<action> <blkname>C1 ... </action>
<check> <blkname>C2 ... </check>
<signature> <blkname>C3 ... </signature>
<account> <blkname>C4 ... </account>
<cert> <blkname>C5 ... </cert>
<attachment> <blkname>C6 ... </attachment> (optional)
<signature> <blkname>C7 ... </signature>
<cert> <blkname>C8 ... </cert>
<signature> <blkname>S1 ... </signature>
<account> <blkname>S2 ... </account>
<cert> <blkname>S3 ... </cert>
<signature> <blkname>S4 ... </signature>
<cert> <blkname>S5 ... </cert>

</fsml-doc>

40 c
Financial Services Technology Consortium, 1996-99. All rights reserved. 40

6.2.5 Global Structure - Certified, Signed Electronic Check

Global Block Structure Detail - Certified Signed Electronic Check
Blocks Block Block References Ref Block Function

No. and Contents Block

<action> Q1 payment/process
<certification> Q2 certification block
<signature> Q3 hash of<action> Q1 certifier’s signature

hash of original<check> C2
hash of original<signature> C3
hash of new<certification> Q2
reference to bank’s<account> Q5
<sigtype>certification

<cert> Q4 certifier’s certificate
<account> Q5 issuer/serial of<cert> Q4 certifier’s account block
<signature> Q6 hash of certifier’s<account> block Q5 bank’s signature

hash of certifier’s<cert> block Q4
reference to bank’s<cert> Q7
<sigtype>bankacct

<cert> Q7 bank’s certificate
signed echeck Cn original echeck

<fsml-doc docname="Q" type="certcheck">
<action> <blkname>Q1 ... </action>
<certification><blkname>Q2 ... </certification>
<signature> <blkname>Q3 ... </signature>
<cert> <blkname>Q4 ... </cert>
<account> <blkname>Q5 ... </account>
<signature> <blkname>Q6 ... </signature>
<cert> <blkname>Q7 ... </cert>
<fsml-doc docname="C" type="check">

<action> <blkname>C1 ... </action>
<check> <blkname>C2 ... </check>
<signature> <blkname>C3 ... </signature>
<account> <blkname>C4 ... </account>
<cert> <blkname>C5 ... </cert>
<attachment> <blkname>C6 ... </attachment> (optional)
<signature> <blkname>C7 ... </signature>
<cert> <blkname>C8 ... </cert>

</fsml-doc>
</fsml-doc>

41 c
Financial Services Technology Consortium, 1996-99. All rights reserved. 41

6.2.6 Global Structure - Endorsed Electronic Check

Global Block Structure Detail - Endorsed Electronic Check
Blocks Block Block References Ref Block Function

No. and Contents Block

<action> E1 payment/process
<endorsement> E2 endorsement block
<signature> E3 hash of<action> E1 endorser’s signature

hash of original<check> C2
hash of original<signature> C3
hash of new<endorsement> E2
hashes of any new<attachments> E5
reference to endorser’s<cert> E4
<sigtype>endorsement

<cert> E4 endorser’s certificate
<attachment> E5 new attachments
<cert> E6 bank’s certificate
signed echeck Cn original echeck

<fsml-doc docname="E" type="endcheck">
<action> <blkname>E1 ... </action>
<endorsement><blkname>E2 ... </endorsement>
<signature> <blkname>E3 ... </signature>
<cert> <blkname>E4 ... </cert>
<attachment> <blkname>E5 ... </attachment> (optional)
<cert> <blkname>E6 ... </cert>
<fsml-doc docname="C" type="check">

<action> <blkname>C1 ... </action>
<check> <blkname>C2 ... </check>
<signature> <blkname>C3 ... </signature>
<account> <blkname>C4 ... </account>
<cert> <blkname>C5 ... </cert>
<attachment> <blkname>C6 ... </attachment> (optional)
<signature> <blkname>C7 ... </signature>
<cert> <blkname>C8 ... </cert>

</fsml-doc>
</fsml-doc>

42 c
Financial Services Technology Consortium, 1996-99. All rights reserved. 42

6.2.7 Global Structure - Co-endorsed Electronic Check

Global Block Structure Detail - Co-endorsed Electronic Check
Blocks Block Block References Ref Block Function

No. and Contents Block

endorsed echeck En original endorsed echeck
<signature> M1 hash of<action> E1 co-endorser’s signature

hash of original<endorsement> E2
hash of original<check> C2
hash of original<signature> C3
hashes of original<attachments> E5
reference to co-endorser’s<cert> M2
<sigtype>co-endorse

<cert> M2 co-endorser’s certificate
<cert> M3 bank’s certificate

<fsml-doc docname="E" type="endcheck">
<action> <blkname>E1 ... </action>
<endorsement><blkname>E2 ... </endorsement>
<signature> <blkname>E3 ... </signature>
<cert> <blkname>E4 ... </cert>
<attachment> <blkname>E5 ... </attachment> (optional)
<cert> <blkname>E6 ... </cert>
<signature> <blkname>M1 ... </signature>
<cert> <blkname>M2 ... </cert>
<cert> <blkname>M3 ... </cert>
<fsml-doc docname="C" type="check">

<action> <blkname>C1 ... </action>
<check> <blkname>C2 ... </check>
<signature> <blkname>C3 ... </signature>
<account> <blkname>C4 ... </account>
<cert> <blkname>C5 ... </cert>
<attachment> <blkname>C6 ... </attachment> (optional)
<signature> <blkname>C7 ... </signature>
<cert> <blkname>C8 ... </cert>

</fsml-doc>
</fsml-doc>

43 c
Financial Services Technology Consortium, 1996-99. All rights reserved. 43

6.2.8 Global Structure - Counter-endorsed Electronic Check

Global Block Structure Detail - Counter-endorsed Electronic Check
Blocks Block Block References Ref Block Function

No. and Contents Block

endorsed echeck En original endorsed echeck
<signature> M1 hash of<action> E1 co-endorser’s signature

hash of original<endorsement> E2
hash of original endorser’s<signature> E3
hash of original<check> C2
hash of original<signature> C3
hashes of original<attachments> E5
reference to co-endorser’s<cert> M2
<sigtype>counter-endorse

<cert> M2 co-endorser’s certificate
<cert> M3 bank’s certificate

<fsml-doc docname="E" type="endcheck">
<action> <blkname>E1 ... </action>
<endorsement><blkname>E2 ... </endorsement>
<signature> <blkname>E3 ... </signature>
<cert> <blkname>E4 ... </cert>
<attachment> <blkname>E5 ... </attachment> (optional)
<cert> <blkname>E6 ... </cert>
<signature> <blkname>M1 ... </signature>
<cert> <blkname>M2 ... </cert>
<cert> <blkname>M3 ... </cert>
<fsml-doc docname="C" type="check">

<action> <blkname>C1 ... </action>
<check> <blkname>C2 ... </check>
<signature> <blkname>C3 ... </signature>
<account> <blkname>C4 ... </account>
<cert> <blkname>C5 ... </cert>
<attachment> <blkname>C6 ... </attachment> (optional)
<signature> <blkname>C7 ... </signature>
<cert> <blkname>C8 ... </cert>

</fsml-doc>
</fsml-doc>

44 c
Financial Services Technology Consortium, 1996-99. All rights reserved. 44

6.2.9 Global Structure - Deposited Electronic Check

Global Block Structure Detail - Deposited Electronic Check
Blocks Block Block References Ref Block Function

No. and Contents Block

<action> D1 deposit/process
<deposit> D2 deposit slip
<deposit> D2.n deposit block for split deposits deposit slip (may be multiple)
<signature> D3 hash of<action> D1 depositor’s signature

hashes of original<endorsement> E2
hash of original endorser’s<signature> E3
hash of new<deposit> block(s) D2
hash of new<deposit> block(s) D2.n for split deposits (may be multiple)
hash of depositor’s<account> D4
reference to depositor’s<account> D4
<sigtype>deposit

<account> D4 issuer/serial of<cert> D5 depositor’s account block
<account> D4.n issuer/serial of<cert> D5.n split account block (may be multiple)
<cert> D5 depositor’s certificate
<cert> D5.n depositor’s certificate (may be multiple)
<signature> D6 hash of depositor’s<account> block D4 bank’s signature

hash of depositor’s<cert> block D5
reference to bank’s<cert> D7
<sigtype>bankacct

<signature> D6.n hash of depositor’s<account> block D4.n bank’s signature (may be multiple)
hash of depositor’s<cert> block D5.n
reference to bank’s<cert> D7
<sigtype>bankacct

<cert> D7 bank’s certificate
endorsed echecks Cn,En original echecks, endorsements

<fsml-doc docname="D" type="deposit">
<action> <blkname>D1 ... </action>
<deposit> <blkname>D2 ... </deposit>
<signature> <blkname>D3 ... </signature>
<account> <blkname>D4 ... </account>
<cert> <blkname>D5 ... </cert>
<signature> <blkname>D6 ... </signature>
<cert> <blkname>D7 ... </cert>
<fsml-doc docname="E" type="endcheck">

<action> <blkname>E1 ... </action>
<endorsement><blkname>E2 ... </endorsement>
<signature> <blkname>E3 ... </signature>
<cert> <blkname>E4 ... </cert>
<attachment> <blkname>E5 ... </attachment> (optional)
<signature> <blkname>E6 ... </signature>
<cert> <blkname>E7 ... </cert>
<fsml-doc docname="C" type="check">

<action> <blkname>C1 ... </action>
<check> <blkname>C2 ... </check>
<signature> <blkname>C3 ... </signature>
<account> <blkname>C4 ... </account>
<cert> <blkname>C5 ... </cert>
<attachment> <blkname>C6 ... </attachment> (optional)

45 c
Financial Services Technology Consortium, 1996-99. All rights reserved. 45

<signature> <blkname>C7 ... </signature>
<cert> <blkname>C8 ... </cert>

</fsml-doc>
</fsml-doc>

</fsml-doc>

46 c
Financial Services Technology Consortium, 1996-99. All rights reserved. 46

6.2.10 Global Structure - Returned Electronic Check

Global Block Structure Detail - Returned Electronic Check
Blocks Block Block References Ref Block Function

No. and Contents Block

<action> R1 payment/return
returned echecks E endorsed echecks
<bankstamp> R2

<fsml-doc docname="R" type="return">
<action> <blkname>R1 ... </action>
<bankstamp> <blkname>R2 ... </bankstamp>
<fsml-doc docname="E" type="endcheck">

<action> <blkname>E1 ... </action>
<endorsement><blkname>E2 ... </endorsement>
<signature> <blkname>E3 ... </signature>
<cert> <blkname>E4 ... </cert>
<attachment> <blkname>E5 ... </attachment> (optional)
<signature> <blkname>E6 ... </signature>
<cert> <blkname>E7 ... </cert>
<fsml-doc docname="C" type="check">

<action> <blkname>C1 ... </action>
<check> <blkname>C2 ... </check>
<signature> <blkname>C3 ... </signature>
<account> <blkname>C4 ... </account>
<cert> <blkname>C5 ... </cert>
<attachment> <blkname>C6 ... </attachment> (optional)
<signature> <blkname>C7 ... </signature>
<cert> <blkname>C8 ... </cert>

</fsml-doc>
</fsml-doc>

</fsml-doc>

6.2.11 Global Structure - Presentment Item

Global Block Structure Detail - Presentment Item
Blocks Block Block References Ref Block Function

No. and Contents Block

<action> P1 present/process
echeck C echeck
<bankstamp> P2

<fsml-doc docname="P" type="presentment">
<action> <blkname>P1 ... </action>
<bankstamp> <blkname>P2 ... </bankstamp>
<fsml-doc docname="C" type="check">

<action> <blkname>C1 ... </action>
<check> <blkname>C2 ... </check>
<signature> <blkname>C3 ... </signature>
<account> <blkname>C4 ... </account>
<cert> <blkname>C5 ... </cert>
<attachment> <blkname>C6 ... </attachment> (optional)

47 c
Financial Services Technology Consortium, 1996-99. All rights reserved. 47

<signature> <blkname>C7 ... </signature>
<cert> <blkname>C8 ... </cert>

</fsml-doc>
</fsml-doc>

48 c
Financial Services Technology Consortium, 1996-99. All rights reserved. 48

6.2.12 Global Structure - Bundle document

Global Block Structure Detail - Bundle Document
Blocks Block Block References Ref Block Function

No. and Contents Block

<action> B1 present/process
<bundle> B2 bundle totals
Presentment Docs Pn echecks in bundle

<fsml-doc docname="B" type="bundle">
<action> <blkname>B1 ... </action>
<bundle> <blkname>B2 ... </bundle>
<fsml-doc docname="P1" type="presentment">
</fsml-doc>
<fsml-doc docname="P2" type="presentment">
</fsml-doc>
<fsml-doc docname="P3" type="presentment">
</fsml-doc>

</fsml-doc>

6.2.13 Global Structure - Cgroup document

Global Block Structure Detail - Cgroup Document
Blocks Block Block References Ref Block Function

No. and Contents Block

<action> L1 present/process
<cashletter> L2 cgroup totals
Bundle Docs Bn bundles of checks

<fsml-doc docname="B" type="cgroup">
<action> <blkname>L1 ... </action>
<cashletter> <blkname>L2 ... </cashletter>
<fsml-doc docname="B1" type="bundle">
</fsml-doc>
<fsml-doc docname="B2" type="bundle">
</fsml-doc>
<fsml-doc docname="B3" type="bundle">
</fsml-doc>

</fsml-doc>

49 c
Financial Services Technology Consortium, 1996-99. All rights reserved. 49

6.3 Electronic Check Block Definitions

This section describes the blocks, fields, and other information specific to the use of FSML for Electronic
Check documents.

Each echeck Specific FSML block element starts and ends with one of the following sets of block tags:

Start Tag End Tag

<action> </action>
<signature> </signature>
<check> </check>
<deposit> </deposit>
<endorsement> </endorsement>
<certification> </certification>
<account> </account>
<cert> </cert>
<attachment> </attachment>
<invoice> </invoice>
<message> </message>
<bankstamp> </bankstamp>
<bundle> </bundle>
<cashletter> </cashletter>
<x:name> </ x:name>

Figure 6.12: List of block elements

The block types are defined as follows:

action A block describing the action to be performed by the recipient

signature A block with the signatures and hashes of other blocks

check An electronic check

deposit A deposit slip, attached to one or more checks

endorsement An electronic endorsement, attached to a check

certification A certification, used to create a certified check

account A block containing account information

cert A public key certificate

attachment An associated document attached to an FSML document

invoice An invoice/remittance document containing payment information

50 c
Financial Services Technology Consortium, 1996-99. All rights reserved. 50

message A message in a returned document

bankstamp A block containing processing status information

bundle A block containing bundle totals

cashletter A block containing cashletter totals

x:name A Private Extension block

6.3.1 echeck Action Block Definition

echeck action blocks are the same as Generic Action blocks. The function field definition for the echeck
application must be one of the following character strings ...

payment This indicates that the document is a check being sent as payment to a payee.

transfer This indicates that the document is a check being sent to a bank to be cashed and trans-
ferred.1

deposit This indicates that the document is a deposit containing a check or group of checks being
sent to a bank for deposit.

certify This indicates that the document is a check being sent to a bank for certification.

stop This indicates that the document is a stop payment being sent to a bank.

inquiry This indicates that the document is an inquiry being sent to a bank or other Electronic
document processing entity.2

present This indicates that the document is being transmitted from one bank to another for present-
ment (clearing).

re-present This indicates that the document is being transmitted from one bank to another for present-
ment a second time.3

1To be described in a later edition of this specification
2To be described in a later edition of this specification
3To be described in a later edition of this specification

51 c
Financial Services Technology Consortium, 1996-99. All rights reserved. 51

6.3.2 echeck Signature Block Definition

The echeck Signature Block is the same as the Generic Signature Block, except for the descriptions of some
of the fields.

<signature>
<blkname> namestring
<crit> true
<vers> 1.5
<sigdata>
<blockref req="true"> dnamestring
<hash alg="sha"> base64string
<blockref req="true"> dnamestring
<hash alg="sha"> base64string

...
<blockref req="true"> dnamestring
<hash alg="sha"> base64string
<nonce> valuestring
<sigref> namestring
<sigtype> valuestring
<certissuer> namestring
<certserial> number
<algorithm> namestring
<timestamp> valuestring
<location> valuestring
<username> valuestring
<useraddr> valuestring
<userphone> valuestring
<useremail> valuestring
<useridnum> valuestring
<userotherid> valuestring
</sigdata>
<sig> base64string
</signature>

Figure 6.13: echeck Signature block element definition

echeck Signature Block Field Definitions

vers (required) The<signature> block is now at version 1.5, which is not the default and thus
the<vers> field must be present and must contain the value “1.5”.

blockref (required) The signature block contains one or more<blockref> fields, each of which
contains the unique block name of the associated block being signed. All of the block refer-
ences must appear immediately before their respective hashes (see below). The<blockref>

52 c
Financial Services Technology Consortium, 1996-99. All rights reserved. 52

and<hash> pairs may be repeated multiple times to sign multiple blocks. An attributereq
is optional in the<blockref> element. If<blockref req="true" > then removal
of the referenced block invalidates the signature. If<blockref req="false" > then
removal of the referenced block is permitted. The default if “req” is not present is “true”.
As in other aspects of judging document and signature validity, the verifier’s business rules
may override the signer’s assertions.

hash (required) This field contains the actual hash of the respective block. Each<hash> start
tag must have an attribute which specifies the algorithm used to perform the hash. The
currently allowed attribute values aremd5[2] or sha[4]. The alg= attribute is required.
The use ofmd5 is deprecated. Other hash algorithms may be supported in future. It is not
required that the same hash algorithm be used for each of the blockrefs in a signature block.
All hashes are encoded in “network byte order”, which means that the most significant bytes
are leftmost (first). Note: Attribute values must be enclosed in quotes.

nonce (required) This is a nonce, or one-time random number, used to “salt” the hashed data
to discourage cryptanalysis attacks. The nonce value can be any string of random ASCII
characters from within the set of allowed FSML characters (see Character Encoding above)
not including whitespace.

Note to Implementors:

Although any FSML character except whitespace is allowed in the<nonce> value, it is
permitted, and implementors may find it convenient, to generate a random number and
include it in the<nonce> field represented as a decimal integer, a floating-point number, a
hexadecimal-encoded octet string, or as a base64-encoded octet string. Note that the use of
this string in the hash is purely as a sequence of ASCII octets. The fact that it may have been
created as an ASCII representation of a floating point number or integer, or hexadecimal
number is irrelevant to its use in the hash data.

sigref (optional) This is the block name of the<account> block which contains a reference to the
certificate block, or it is the block name of the<cert> block itself, for signatures that don’t
need account blocks. This field, although optional, is only optional when an agreement is
in place indicating that the recipient of the document does not need the certificate in order
to process the document.

sigtype (required) This field contains a indication of the type of signature. It must contain one of
the following values...

check This indicates that the signer is the originator of a check, and is the only
signer, or the first signer.

endorsement This indicates that the signer is the endorser of a check, and is the only
endorser, or the first endorser.

deposit This indicates that the signer is the depositor of a check.

co-sign This indicates a co-signature, where more than one signer is signing the
same document. Neither signature has precedence over the other. Each
is independent.

counter-sign This indicates a counter-signature, where more than one signer is signing
the same document. The counter-signer is signing the document as well
as the signature of the other signers, and is attesting to the fact that the
signer has seen and agreed to the previous signatures.

53 c
Financial Services Technology Consortium, 1996-99. All rights reserved. 53

co-endorse This indicates a co-endorsement, where more than one endorser is sign-
ing the same document. Neither signature has precedence over the other.
Each is independent.

counter-endorse This indicates a counter-endorsement, where more than one endorser is
signing the same document. The counter-endorser is signing the docu-
ment as well as the signature of the other endorsers, and is attesting to
the fact that the signer has seen and agreed to the previous endorsement
signatures.

log-signature This indicates that the signature is generated by the Electronic Check-
book when signing the checkbook log.

bankacct This indicates that the signature is generated by the Bank and is sign-
ing the account credentials (i.e., The customers<account> and<cert>
blocks).

bank This indicates that the signature is generated by the Bank and is signing
a bank-generated document, such as a return.<account> and<cert>
blocks).

certification This indicates that the signature is generated by the Bank and is signing
a certified check.

endorse-over This indicates that the signature is an endorsement to a third party.

certissuer (optional) This field contains the unique distinguished name of the issuer of the certificate[7].
It should only be specified if the<account> and<cert> blocks are not being sent with
this document, and only when the blocks being signed do not require an account — e.g.,
an endorsement. See the description of the<certissuer> field in the<cert> block for the
syntax used to specify this field.

certserial (optional) This field contains the unique certificate serial number assigned by the issuer of
the certificate. It should only be specified if the<account> and<cert> blocks are not
being sent with this document, and only when the blocks being signed do not require an
account — e.g., an endorsement.

algorithm (required) This string indicates the algorithm used to sign the signature block. It may be
md5/rsa[3] or sha/dsa[5] or sha/rsaor sha/ecdsa[6]. Note: Implementors of code that is
used to sign FSML Electronic Documents may choose to support only one of the above
possible signing algorithms. Implementors of code that is used to verify FSML Electronic
Documents must support all algorithms. This ensures interoperablity. The use of md5 is
deprecated.

timestamp (optional) This field specifies the time that the document was signed. It must be in Univer-
sal time (i.e., GMT) specified as CCYYMMDDThhmmssZ, where theT andZ are literal
characters, and where “CC” is the century (currently 19, soon 20), “YY” is the year, “MM”
is the month, “DD” is the day, “hh” is the hour, “mm” is the minute and ss is the second[12].

location (optional) This field specifies location/country where the document was signed. The loca-
tion is used to define the jurisdiction where the document was legally considered to have
been signed. It is only used in circumstances where that matters.

username (optional) This is an identification string containing the account user’s name. It is optionally
inserted into the check by the Electronic Checkbook hardware token.

54 c
Financial Services Technology Consortium, 1996-99. All rights reserved. 54

This field, and the 5 following fields are considered the electronic equivalent of the data
usually printed on a paper check by the Check Printing company. This data is supplied by
the checkbook owner to the bank at the time the electronic checking account is established
but it is not certified to be correct or accurate by the bank. The data is inserted into the Elec-
tronic Checkbook when the Checkbook is initialized at the bank, and may also be corrected
or updated later by the bank using administrative checkbook functions and passwords.

This data is then inserted, under control of the user, into the check by the Electronic Check-
book, however the data cannot be changed or deleted by the user once the check is created.
It therefore supplies a form of identification sometimes required by check guarantee or-
ganizations or merchants. The user may select, when writing a check, which of the 6
identification fields are to be inserted into the check, in any combination, or may select
none of them.

useraddr (optional) This is an identification string containing the account user’s address. It is option-
ally inserted into the check by the Electronic Checkbook hardware token.

userphone (optional) This is an identification string containing the account user’s phone number. It is
optionally inserted into the check by the Electronic Checkbook hardware token.

useremail (optional) This is an identification string containing the account user’s email address. It is
optionally inserted into the check by the Electronic Checkbook hardware token.

useridnum (optional) This is an identification string containing the account user’s identification num-
ber. It is optionally inserted into the check by the Electronic Checkbook hardware token.

userotherid (optional) This is an identification string containing any user identification the user wishes
(e.g., company name). It is optionally inserted into the check by the Electronic Checkbook
hardware token.

sig (required) This is a base64 encoding of the actual signature data. For certain algorithms,
the field is split into two portions using a colon":" . For DSA or ECDSA, the field contains
the two portions of the signature as r:s, where r and s are long base64 strings. For RSA,
only a single string is specified, with no colon separator. All signatures are encoded in
“network byte order”, which means that the most significant bytes are leftmost (first).

Signature Calculation

The calculation of the Signature is performed as follows...

1. The<nonce> value is created (by the electronic checkbook) as a random number. The nonce value
can be any string of random ASCII characters from within the set of allowed FSML characters (see
Character Encoding above) not including whitespace.

Note to Implementors:

Although any FSML character except whitespace is allowed in the<nonce> value, it is permitted,
and implementors may find it convenient, to generate a random number and include it in the<nonce>
field represented as a decimal integer, a floating-point number, a hexadecimal-encoded octet string, or
as a base64-encoded octet string. Note that the use of this string in the hash is purely as a sequence
of ASCII octets. The fact that it may have been created as an ASCII representation of a floating point
number or integer, or hexadecimal number is irrelevant to its use in the hash data.

55 c
Financial Services Technology Consortium, 1996-99. All rights reserved. 55

2. The<nonce> value is logically prepended to the subject block contents before hashing. This includes
the tag string “<nonce>” — e.g., if the nonce value is 12345, the characters<nonce >12345 are
logically prepended to the subject block before hashing.

3. The hash is calculated using the contents of the subject block, (with the<nonce> prepended) including
the block start tag and block end tag, with the exception ofall carriage returns, line feeds, and trailing
spaces on a line. Leading and embedded spaces in a line are included in the hash. SGML entities (i.e.,
character names enclosed between an ampersand and a semicolon) are left untranslated when hashing.

4. The resulting hash value is inserted into the<hash> entry (as base64-encoded ASCII) in the signature
block.

5. Steps 2 through 4 are repeated for each block to be signed.

6. A second hash calculation is performed on the contents of the<sigdata> sub-block, which contains
the previously calculated hashes, their block references, and the<nonce>. This should include all
characters between the<sigdata> tag and the</sigdata> tag, not including the tags themselves, again
omitting all carriage returns, line feeds, and trailing spaces. If the signature algorithm is DSA or
ECDSA, the hash may be inserted without additional padding or encoding. If the signature algorithm
is RSA, the hash should be padded and encoded using the specifications in the PKCS#1[13] standard.
This second hash is then signed using the private key in the electronic checkbook. The result is the
signature which is inserted (as base64-encoded ASCII)into the signature block as the value for the
<sig> tag.

Signature Verification

The verification of the Signature is performed as follows...

1. The following steps are repeated for each block referenced by a<blockref> tag in the signature. If
the referenced block is not present, and<blockref req="false" > was specified, the block is
assumed to have been detached. The following steps are not performed for this block, and this block’s
absence is not considered to invalidate the document.

(a) The<nonce> value from the signature block is logically prepended to the referenced blocks con-
tents before hashing. This includes the tag string “<nonce>” — e.g., if the nonce value is 12345,
the characters<nonce >12345 are logically prepended to the referenced blocks contents before
hashing.

(b) A hash is calculated using the contents of the referenced block, (with the<nonce> prepended)
including the block start tag and block end tag, withall characters in between, with the exception
of all carriage returns, line feeds, and trailing spaces on a line. Leading and embedded spaces
in a line are included in the hash. SGML entities (i.e., character names enclosed between an
ampersand and a semicolon) are left untranslated when hashing. The hash algorithm to be used
is specified in thehash = attribute in the<hash> tag for the referenced block.

(c) The resulting hash value is compared to the<hash> entry in the signature block.

(d) If the hashes do not match exactly, the signature fails verification.

2. The contents of the<sig> field are processed using the public key found by following the<sigref>
tag. This tag will either point to an<account> block, or a<cert> block. If the<sigref> tag points (by
name) to a<cert> block, the public key will be found in the<certdata> field in that block. (Parsing of
the<certdata> field may be required to extract the public key — e.g., an X.509 certificate parser may

56 c
Financial Services Technology Consortium, 1996-99. All rights reserved. 56

be required). If the<sigref> field points to an account block, the account block will, in turn, point to
a<cert> block via the<certissuer> and<certserial> fields. The<cert> block whose<certissuer>
and<certserial> fields match those in the<account> block contains the public key. The signature
algorithm to be used is specified in the<algorithm> field.

3. A second hash calculation is performed on the contents of the<sigdata> sub-block, which contains
the previously calculated hashes, their block references, and the<nonce>. This should include all
characters between the<sigdata> tag and the</sigdata> tag, not including the tags themselves, again
omitting all carriage returns, line feeds, and trailing spaces. The hash algorithm to be used is specified
in the<algorithm> field.

4. The processed<sig> field is compared to the hash calculated in the previous step. If this comparison
fails, the signature fails verification. If the comparison succeeds, the signature has verified successfully.

6.3.3 Check Block Definition

This block contains the key data for an FSML Electronic Check.

Multiple signers/certificates may be required, as determined by the restrictions field in the signer’s account
block.

57 c
Financial Services Technology Consortium, 1996-99. All rights reserved. 57

<check>
<blkname> namestring
<crit> true
<vers> 1.5
<checkdata>
<checknum> numstring
<dateissued> valuestring
<datevalid> valuestring
<country> namestring
<amount> amountstring
<currency> valuestring
<payto> valuestring
<paytobank> valuestring
<paytoacct> valuestring
<paytocustno> valuestring
<paytoid> valuestring
<paytoidns> valuestring
</checkdata>
<checkbook> numstring
<restrictions> valuestring
<payeracct> valuestring
<memo>valuestring
<info> valuestring
<conditions> valuestring
<legalnotice> valuestring
<vara> valuestring
<varb> valuestring
<varc> valuestring
<vard> valuestring
<vare> valuestring
<varf> valuestring
<varg> valuestring
<varh> valuestring
<vari> valuestring
</check>

Figure 6.14: Check block element definition

Check Block Field Definitions

vers (required) The<check> block is now at version 1.5, which is not the default and thus the
<vers> field must be present and must contain the value “1.5”.

checkdata (required) This is an enclosing sub-block. It is used to contain all of the check fields that
will be interpreted and/or logged by the Electronic Checkbook hardware token. To simplify
parsing by this token, the<checkdata> sub-block contents must be in the order specified.

58 c
Financial Services Technology Consortium, 1996-99. All rights reserved. 58

checknum (required) This is the unique check number created by the Electronic Checkbook hardware
token.

dateissued (required) This is the effective date of the check, supplied by the check issuer. It is not nec-
essarily the date the check was written. The date must be specified in the ISO standard[12]
format CCYYMMDD, where “CC” is the century (currently 19, soon 20), “YY” is the
year, “MM” is the month and “DD” is the day. Document recipients are free to process or
ignore this date as they choose.

datevalid (required) This is the effective date of validity for the check, supplied by the check issuer.
It is not necessarily the date the check was written. Currently, it should always be the
same date as the<dateissued>. Other uses and values for this field will be described in
a later edition of this specification. The date must be specified in the ISO standard[12]
format CCYYMMDD, where “CC” is the century (currently 19, soon 20), “YY” is the
year, “MM” is the month and “DD” is the day.

country (optional) This is the 2 letter ISO country code[17] of the location where the check is to be
considered written.

amount (required) A decimal number containing the amount of the check.

currency (required) A 3 letter ISO currency code[18].

payto (required) This is a string which is the name or other check-issuer specified identifica-
tion of the payee. This field is used for informational purposes only, — i.e., creation of
statement information. It is not verified against other data.

The following five fields form a subunit which identifies one of the possible payees for the
check. If multiple payees are being specified, then the subunit may be repeated, with the
fields in the same order for each payee (excluding optional fields). See the section on payto
verification for an explanation of the use of these fields.

paytobank (optional) This is a field which if specified must be accompanied by either the<paytoacct>
field, or the<paytocustno> field, and which contains the bank code of the payee.

paytoacct (optional) This is a field which if specified must be accompanied by the<paytobank>
field, and which contains the account number of the payee.

paytocustno (optional) This is a field which if specified must be accompanied by the<paytobank>
field. It contains the customer number of the payee at the payees bank. Some banks may
use this in lieu of an account number.

paytoid (optional) This is a field which contains a unique identification of the payee.

paytoidns (optional) This is a field which, if specified, must be accompanied by the<paytoid> field,
and which specifies the namespace in which the<paytoid¿> field is unique. If omitted,
the<paytoid> field must be globally unique.

checkbook (required) This is an integer, supplied by the Electronic Checkbook hardware token, which
is the bank-unique serial number of the checkbook.

restrictions (optional) This is a string containing restriction information about the specific check. The
field may be repeated. It must be one of the following character strings.

� duration pnynmnd

59 c
Financial Services Technology Consortium, 1996-99. All rights reserved. 59

� for deposit only

� all payees must endorse

Thepnynmnd is an ISO standard[12] method of representing duration, where each “n” is
a one or two digit number, and thep character is required. The numbers beforey, m, and
d, represent years, months and days, respectively. The duration (valid lifetime of a check)
defaults to 60 days if not otherwise specified here.

payeracct (optional) This is a field containing a character string which is the account information of
the payer at the payees business — i.e., the number that the payee uses to determine who is
paying, or why it is being paid. This is not a bank account number. As an example, this is
the payer’s account number at the electric utility, on a check used to pay an electricity bill.

memo (optional) A character string field, used for any purpose the check issuer wishes. It is not
processed by the bank.

info (optional) A character string field, used for any purpose the check issuing software wishes.
It is not usually set or seen by the user, but may be used by the issuing software to commu-
nicate information to the receiving software; For example, the version of the software that
created the document. It is not processed by the bank.

conditions (optional) A character string field, used to specify any conditions between the check issuer
and endorser. Not processed by the bank.

legalnotice (optional) If present, this field must be inserted by any software that creates a new<check>
block as containing one of the following two character strings....This instrument subject
to check lawfor normal echecks, orThis instrument subject to U.S Treasury check law
for Treasury echecks. Software that receives and processes echecks may check that the
field is non-blank if present, but must not check that the strings contain the above values,
as other values may be possible in future. This field is for legal notification purposes.

vara (optional)

varb (optional)

varc (optional)

vard (optional)

vare (optional)

varf (optional)

varg (optional)

varh (optional)

vari (optional) These fields may contain data which may be substituted into the MICR informa-
tion used by the back-end systems at the bank or financial institution. The<micrmaskc>
field in the<account> block determines which fields can be substituted, where they occur
in the MICR line, and what format the data will take after substitution. The creator of the
check determines the contents of the fields. Examples might be a location, or a special ac-
count number, or any other information that the check creator wishes to place in the MICR
line and which the bank allows. One example is that certain U.S. Treasury checks place the
check duration in the MICR line.

60 c
Financial Services Technology Consortium, 1996-99. All rights reserved. 60

6.3.4 Deposit Block Definition

This block contains a electronic deposit slip, which is bound (via a signature block) to one or more endorse-
ment blocks before being sent to a bank or other financial institution for deposit. The associated endorsement
blocks must also have check blocks bound to them.

<deposit>
<blkname> namestring
<crit> true
<vers> 1.5
<amount> amountstring
<currency> valuestring
<date> valuestring
<country> valuestring
<items> number
<bankacct> valuestring
<vara> valuestring
<varb> valuestring
<varc> valuestring
<vard> valuestring
<vare> valuestring
<varf> valuestring
<varg> valuestring
<varh> valuestring
<vari> valuestring
</deposit>

Figure 6.15: Deposit block element definition

Deposit Block Field Definitions

vers (required) The<deposit> block is now at version 1.5, which is not the default and thus
the<vers> field must be present and must contain the value1.5.

date (required) This is the effective date of the deposit slip, supplied by the depositor. It is not
necessarily the date the deposit slip was created. The date must be specified in the ISO
standard[12] format CCYYMMDD, where “CC” is the century (currently 19, soon 20),
“YY” is the year, “MM” is the month and “DD” is the day.

amount (required) A decimal number containing the total amount of the deposit.

currency (required) A 3 letter ISO currency code[18].

items (required) An integer specifying the total number of checks or other items being deposited.

country (optional) A 2 letter ISO Country code[17].

61 c
Financial Services Technology Consortium, 1996-99. All rights reserved. 61

bankacct (required) This is a string containing the account number of this account in the issuing
bank. This indicates the account that the funds are being deposited into.

vara (optional)

varb (optional)

varc (optional)

vard (optional)

vare (optional)

varf (optional)

varg (optional)

varh (optional)

vari (optional) These fields may contain data which may be substituted into the MICR informa-
tion used by the back-end systems at the bank or financial institution. The<micrmaskd>
field in the<account> block determines which fields can be substituted, where they occur
in the MICR line, and what format the data will take after substitution. The creator of the
deposit determines the contents of the fields. Examples might be a location, or a special
account number, or any other information that the deposit creator wishes to place in the
MICR line and which the bank allows.

6.3.5 Endorsement Block Definition

This block contains a digital endorsement of a financial document, usually a check. It must be bound (via a
signature block) to the check it endorses.

62 c
Financial Services Technology Consortium, 1996-99. All rights reserved. 62

<endorsement>
<blkname> namestring
<crit> true
<vers> 1.5
<endorsedata>
<date> valuestring
<country> valuestring
<payto> valuestring
<paytobank> valuestring
<paytoacct> valuestring
<paytocustno> valuestring
<paytoid> valuestring
<paytoidns> valuestring
</endorsedata>
<checkbook> numstring
<restrictions> valuestring
<memo>valuestring
</endorsement>

Figure 6.16: Endorsement block element definition

Endorsement Block Field Definitions

vers (required) The<endorsement> block is now at version 1.5, which is not the default and
thus the<vers> field must be present and must contain the value “1.5”.

endorsedata (required) This is an enclosing sub-block. It is used to contain all of the endorsement fields
that will be interpreted and/or logged by the Electronic Checkbook hardware token. To
simplify parsing by this token, the<endorsedata> sub-block contents must be in the order
specified. Since all of the fields enclosed in the<endorsedata> sub-block are optional, the
sub-block may be empty. It is required to have the<endorsedata> and</endorsedata>
tags in any case.

date (optional) This is the effective date of the endorsement, supplied by the endorser. It is not
necessarily the date the endorsement was created. The date must be specified in the ISO
standard[12] format CCYYMMDD, where “CC” is the century (currently 19, soon 20),
“YY” is the year, “MM” is the month and “DD” is the day.

country (optional) This is the 2 letter ISO country code of the location where the endorsement is to
be considered written[17].

payto (optional) This is a string which is the name or other endorser identification of the ultimate
payee or next holder in due course. This field is used for informational purposes only —
i.e., creation of statement information. It is not verified against other data.

The following five fields form a subunit which identifies one of the possible payees for the
check. If multiple payees are being specified, then the subunit may be repeated, with the 4

63 c
Financial Services Technology Consortium, 1996-99. All rights reserved. 63

fields in the same order for each payee (excluding optional fields). See the section on payto
verification for an explanation of the use of these fields.

paytobank (optional) This field if specified must be accompanied by either the<paytoacct> field, or
the<paytocustno> field, and which contains the bank code of the ultimate payee.

paytoacct (optional) This field if specified must be accompanied by the<paytobank> field, and
which contains the account number of the ultimate payee.

paytocustno (optional) This field if specified must be accompanied by the<paytobank> field. It con-
tains the customer number of the ultimate payee at the their bank. Some banks may use
this in lieu of an account number.

paytoid (optional) This is a field which contains a unique identification of the payee.

paytoidns (optional) This is a field which, if specified, must be accompanied by the<paytoid> field,
and which specifies the namespace in which the<paytoid¿> field is unique. If omitted,
the<paytoid> field must be globally unique.

checkbook (required) This is an integer, supplied by the Electronic Checkbook hardware token, which
is the bank-unique serial number of the checkbook.

restrictions (optional) This is a string containing restriction information about the specific check being
endorsed. The field may be repeated. It must be one of the following character strings.

� for deposit only

memo (optional) A character string field, used for any purpose the endorsement issuer wishes.

6.3.6 Certification Block Definition

This block contains a digital certification of a check — i.e., a statement by the bank that the funds are available
and are held in the account until the check clears. It is created by a bank officer or teller and must be bound
by a signature block to the check that it certifies.

<certification>
<blkname> namestring
<crit> true
<vers> 1.0
<date> valuestring
<country> valuestring
<checkbook> numstring
<cserial> numstring
</certification>

Figure 6.17: Certification block element definition

64 c
Financial Services Technology Consortium, 1996-99. All rights reserved. 64

Certification Block Field Definitions

date (required) This is the effective date of the certification, supplied by the certifier — i.e., the
bank. The date must be specified in the ISO standard[12] format CCYYMMDD, where
“CC” is the century (currently 19, soon 20), “YY” is the year, “MM” is the month and
“DD” is the day.

country (optional) This is the 2 letter ISO country code of the location where the certification is to
be considered written[17].

checkbook (required) This is an integer, supplied by the Electronic Checkbook hardware token, which
is the bank-unique serial number of the hardware token that is signing the certified check.

cserial (optional) This is a bank-unique serial number of the certified check, used for audit-trail
and identification purposes in the issuing bank.

6.3.7 Account Block Definition

This block contains information about the account of the check issuer, or endorser. It is always used in
combination with a certificate block.

<account>
<blkname> namestring
<crit> true
<vers> 1.5
<bankcode> valuestring
<bankacct> valuestring
<bankser> numstring
<custno> numstring
<expdate> valuestring
<accttitle> valuestring
<accttype> valuestring
<bankname> valuestring
<bankaddr> valuestring
<bankphone> valuestring
<bankfax> valuestring
<bankemail> valuestring
<acctrest> valuestring
<sigrest> valuestring
<certissuer> valuestring
<certserial> number
<micrmaskc> valuestring
<micrmaskd> valuestring
</account>

Figure 6.18: Account block element definition

65 c
Financial Services Technology Consortium, 1996-99. All rights reserved. 65

Account Block Field Definitions

blkname (required) The<blkname> field in an<account> block is slightly different than the
“generic”<blkname>. Since the<account> block is signed by the bank issuing the elec-
tronic token, and is stored in the token, it is not changeable at runtime by FSML generating
software. Thus the<blkname> chosen must be guaranteed to be unique for all subsequent
documents. It is recommended (but not required) that a block naming convention be used
to allow this. The recommended convention is that the name be suffixed with information
that is unique to the account block, so that the same name would never be used by other
account blocks in the same FSML document. As an example, an account block issued by
a bank whose Bank Routing Code is 123456789, for a customer whose account number is
987654321 might have a blockname ofacct-123456789-987654321 .

vers (required) The<account> block is now at version 1.5, which is not the default and thus
the<vers> field must be present and must contain the value “1.5”.

bankcode (required) This is a string containing the unique bank routing code of the issuing bank.

bankacct (required) This is a string containing the account number of this account in the issuing
bank.

bankser (required) This is a number containing the account block serial number of this account in
the issuing bank. This must be unique for all account blocks within an issuing bank code.

custno (optional) This is a bank-issued unique number that identifies the customer. This number
may be used by the payer to uniquely specify the payee, without specifying the individual
account, and thus may be assigned to several accounts for the same customer.

expdate (required) This is the expiration date of this account block. The date must be specified in
the ISO standard[12] format CCYYMMDD, where “CC” is the century (currently 19, soon
20), “YY” is the year, “MM” is the month and “DD” is the day.

accttitle (optional) This is a string containing the account title.

accttype (optional) This is a string containing the account type.

bankname (optional) This is a string containing the bank’s name.

bankaddr (optional) This is a string containing the bank’s address.

bankphone (optional) This is a string containing the bank’s phone number.

bankfax (optional) This is a string containing the bank’s fax number.

bankemail (optional) This is a string containing the bank’s email address.

acctrest (optional) This is a string containing any restrictions on the account. It must be one of the
following character strings. The field may be repeated.

� minimum amount nnnnnnn.nn ccc

� maximum amount nnnnnnn.nn ccc

� n signatures required

� n signatures required above amountnnnnn.nn ccc

66 c
Financial Services Technology Consortium, 1996-99. All rights reserved. 66

� special processing

� currency ccc

� duration pnynmnd

The “n” in the above restrictions represents anumber. The “nnnnnnnn.nn” in the above
restrictions represents anamountstring. The “ccc” is a 3 letter ISO currency code[18].
This indicates the currency being specified in theamount, or the currency that checks are
being restricted to by the bank (in thecurrency ccc restriction). Thepnynmnd is an ISO
standard[12] method of representing duration, where each “n” is a one or two digit number,
and thep character is required. The Numbers beforey, m, andd, represent years, months
and days, respectively. The duration (valid lifetime of a check) defaults to 60 days if not
otherwise specified here or in the<restrictions> field in the<check> block. If specified
in both places, the shortest duration takes precedence.

certissuer (required) This field contains the unique distinguished name of the issuer of the certificate[7]
which can be used to verify signatures on FSML documents containing this account block.
See the description of the<certissuer> field in the<cert> block for the syntax used to
specify this field.

certserial (required) This field contains the unique certificate serial number assigned by the issuer of
the certificate which can be used to verify signatures on FSML documents containing this
account block.

sigrest (optional) This field specifies what types of signatures are allowed to be created using this
account block as credentials. If the field is not present, then any type of signature may be
made, but signature verifiers may use other business rules in judging the validity of such
signatures. One or more of the following codes may be specified, separated by colons
":" ...

chk Allows a signature with a<sigtype> of check

end Allows a signature with a<sigtype> of endorsement

dep Allows a signature with a<sigtype> of deposit

cos Allows a signature with a<sigtype> of co-sign

cts Allows a signature with a<sigtype> of counter-sign

coe Allows a signature with a<sigtype> of co-endorse

cte Allows a signature with a<sigtype> of counter-endorse

log Allows a signature with a<sigtype> of log-signature

act Allows a signature with a<sigtype> of bankacct

crt Allows a signature with a<sigtype> of certification

edo Allows a signature with a<sigtype> of endorse-over

bnk Allows a signature with a<sigtype> of bank

gen Allows a signature with a<sigtype> of generic

micrmaskc (optional) This field is used when creating the MICR-line data for an echeck. The<micrmaskc>
field must be present if the<sigrest> field is absent or if it is present and contains ”chk”.

67 c
Financial Services Technology Consortium, 1996-99. All rights reserved. 67

micrmaskd (optional) This field is used when creating the MICR-line data for an edeposit. The<micrmaskd>
field must be present if the<sigrest> field is absent or if it is present and contains ”dep”.

These two fields contain information created by the Issuing Bank that enables a program receiving the echeck
(usually at the Bank of First Deposit) to build the equivalent of the MICR line on paper checks. These
MICR-line fields are defined in ANSI X9.13-1990[19]. This transmission information is also defined in
ANSI X9.37-1994[20]. These fields contain a set of characters that encode the rules used to combine variable
information from the other areas of the FSML (echeck or edeposit) with fixed information in these fields to
create the bank-specific MICR line information.

Each field contains exactly 7 subfields separated by colons. Each subfield represents the desired format for
the respective MICR field. The fields are specified in the order...

field7:field6:field5:field4:field3:field2:field1

which corresponds to the order in which the fields appear on a paper check. All 7 fields must be specified
— i.e.,there must be exactly 6 colon separators, however fields may be left empty, — i.e., two colons may
be adjacent. Any characters from the set"0123456790/-+abcdefghijklmnopqrstuvwxyz" and
space, may be in the subfield, and represent themselves. MICR separator characters may be represented via
a backslash escape mechanism...

� na represents the MICR Amount Symbol

� nu represents the MICR OnUs/Account/Aux On Us/Serial symbol

� nt represents the ABA symbol

� nn represents a backslash

� n% represents a percent symbol

If a %character is present in the subfield, it begins a substitution specification. Substitution specifications
have the syntax%[[-|0][field-length] field-specifierwhere:

� An optional leading - indicates that the result is to be left justified or ...

� An optional leading 0 indicates that the result is to be zero padded (on the left).

If neither a leading ”-” or ”0” is specified, then the data is inserted right justified into the micr line field,
padded on the left (if padding is necessary) with spaces.

� An optional field length of one or two digits. If the field length is omitted, the actual size of the data
determines the size to be inserted, and no padding or justification is performed.

� A field-specifier, which can be one of the following...

m This indicates that the amount is to be inserted into the MICR field.
When amounts are substituted into the MICR line, the decimal
points (if any) are removed, and the amount is expressed in a cur-
rency dependent format. For USD, the amount is in integer cents.

n This specifies that the check number is to be inserted into the
MICR field.

68 c
Financial Services Technology Consortium, 1996-99. All rights reserved. 68

t This specifies that the account number is to be inserted into the
MICR field.

a This specifies that the contents of the<vara> field in the<check>
or the<deposit> block be substituted into the MICR field.

b This specifies that the contents of the<varb> field in the<check>
or the<deposit> block be substituted into the MICR field.

c This specifies that the contents of the<varc> field in the<check>
or the<deposit> block be substituted into the MICR field.

d This specifies that the contents of the<vard> field in the<check>
or the<deposit> block be substituted into the MICR field.

e This specifies that the contents of the<vare> field in the<check>
or the<deposit> block be substituted into the MICR field.

f This specifies that the contents of the<varf> field in the<check>
or the<deposit> block be substituted into the MICR field.

g This specifies that the contents of the<varg> field in the<check>
or the<deposit> block be substituted into the MICR field.

h This specifies that the contents of the<varh> field in the<check>
or the<deposit> block be substituted into the MICR field.

i This specifies that the contents of the<vari> field in the<check>
or the<deposit> block be substituted into the MICR field.

The<micrmaskc> and<micrmaskd> fields may only be broken (have a newline inserted) immediately after
a colon — i.e., between subfields. They must not be broken inside a subfield.

Some examples of a<micrmaskc> specification would be....

::343242424::8653903030:%n:%m
77432423234::31234990::98878%n:88898890:%05s:%m

If a document is counter-signed, then the micrmask fields from
the account block of the original signer are used when generating
a MICR line. If a document is co-signed, then either signer’s
account block micrmask fields may be used. It is assumed that
they will be the same, or equivalent.

6.3.8 echeck Certificate Block Definition

This block contains an encoded X.509 certificate[7]. It is identical to the Generic Certificate Block.

6.3.9 echeck Attachment Block Definition

This block contains any document that is to be attached to the FSML Electronic Document (e.g., a Remittance
notice, Contract, etc.). It is identical to the Generic Attachment Block.

69 c
Financial Services Technology Consortium, 1996-99. All rights reserved. 69

6.3.10 Invoice Block Definition

This block contains invoice information used by a merchant or other payee to request that the payer create a
check using the information contained in the invoice. It is also used as remittance information by the payer
to be attached to the check being used to pay the invoice.

<invoice>
<blkname> namestring
<crit> true
<vers> 1.5
<custacct> valuestring
<amount> amountstring
<currency> valuestring
<payto> valuestring
<paytobank> valuestring
<paytoacct> valuestring
<paytocustno> valuestring
<paytoid> valuestring
<paytoidns> valuestring
<date> valuestring
<remittance> valuestring
<invdata>
...
</invdata>
</invoice>

Figure 6.19: Invoice block element definition

Invoice Block Field Definitions

vers (required) The<invoice> block is now at version 1.5, which is not the default and thus
the<vers> field must be present and must contain the value “1.5”.

custacct (optional) This field contains the customers account number or code in the merchants (pay-
ees) accounting system. It should be returned in the<payeracct> field in the check used
to pay the invoice.

amount (required) A decimal number containing the amount being invoiced, or the amount due.

currency (required) A 3 letter ISO currency code[18].

payto (required) This is a string which is the name or other check-issuer specified identification
of the payee. This field is used for informational purposes only — i.e., creation of statement
information. It is not verified against other data.

The following five fields form a subunit which identifies one of the possible payees for the
check. If multiple payees are being specified, then the subunit may be repeated, with the

70 c
Financial Services Technology Consortium, 1996-99. All rights reserved. 70

fields in the same order for each payee (excluding optional fields). See the section on payto
verification for an explanation of the use of these fields.

paytobank (optional) This is a field which if specified must be accompanied by either the<paytoacct>
field, or the<paytocustno> field, and which contains the bank code of the payee.

paytoacct (optional) This is a field which if specified must be accompanied by the<paytobank>
field, and which contains the account number of the payee.

paytocustno (optional) This is a field which if specified must be accompanied by the<paytobank>
field. It contains the customer number of the payee at the payees bank. Some banks may
use this in lieu of an account number.

paytoid (optional) This is a field which contains a unique identification of the payee.

paytoidns (optional) This is a field which, if specified, must be accompanied by the<paytoid> field,
and which specifies the namespace in which the<paytoid¿> field is unique. If omitted,
the<paytoid> field must be globally unique.

date (optional) The date that the payment is due. The date must be specified in the ISO standard[12]
format CCYYMMDD, where “CC” is the century (currently 19, soon 20), “YY” is the year,
“MM” is the month and “DD” is the day.

remittance (optional) This field contains any remittance identification number or string that is being
used to correlate this payment with other systems. It may contain any number or other
identifier that would indicate to the recipient which invoice or which remittance item is
associated with this FSML document.

invdata (optional) This field contains any other data that may be associated with the invoice — e.g.,
an purchase order or other purchase information.

6.3.11 echeck Message Block Definition

This block contains error messages and return information that indicate the reason that the attached FSML
Document was not processed successfully or it may contain other information about the attached document.
It is identical to the Generic Message Block.

6.3.12 Bankstamp Block Definition

This block contains processing information analogous to the bank stamps placed on the back of a paper check
as it is processed by the banks and other institutions as it flows through the processing infrastructure.

71 c
Financial Services Technology Consortium, 1996-99. All rights reserved. 71

<bankstamp>
<blkname> namestring
<crit> true
<vers> 1.0
<date> valuestring
<timestamp> valuestring
<stampserial> numstring
<bankcode> valuestring
<serverid> valuestring
<stampdata> valuestring
</bankstamp>

Figure 6.20: Bankstamp block element definition

Bankstamp Block Field Definitions

date (required) This is the effective date of the bank stamp. The date must be specified in the
ISO standard[12] format CCYYMMDD, where “CC” is the century (currently 19, soon
20), “YY” is the year, “MM” is the month and “DD” is the day.

timestamp (required) This field specifies the time that the document was stamped. It must be in
Universal time (i.e., GMT) specified as CCYYMMDDThhmmssZ, where theT andZ are
literal characters, and where “CC” is the century (currently 19, soon 20), “YY” is the year,
“MM” is the month, “DD” is the day, “hh” is the hour, “mm” is the minute and ss is the
second[12].

stampserial (required) This field contains a bank-unique serial number, used for tracking purposes
within the bank that creates the<bankstamp> block.

bankcode (required) This is a string containing the unique bank routing code of the bank.

serverid (optional) This is a string containing the unique bank echeck server identification, which
may be used if a bank has more than one echeck server and needs to identify which one
processed the document and created the bank stamp.

stampdata (optional) This is a string containing any additional information the bank wishes to include
in its bank stamps.

6.3.13 Bundle Block Definition

This block contains totals for bundles of presentment items. It is used within a bundle document, which must
also be enclosed in a cgroup document. These documents are only used for presentment of echecks between
banks. Payer and Payee software need never generate or parse<bundle> blocks.

72 c
Financial Services Technology Consortium, 1996-99. All rights reserved. 72

<bundle>
<blkname> namestring
<crit> true
<vers> 1.0
<items> number
<amount> amountstring
</bundle>

Figure 6.21: Bundle block element definition

Bundle Block Field Definitions

items (required) An integer specifying the total number of echecks contained in this bundle.

amount (required) A decimal number containing the total of all of the<amount> fields in all of
the echecks contained in this bundle.

6.3.14 Cashletter Block Definition

This block contains totals for cgroup documents, which contain a number of bundle documents, which in turn
contain a number of presentment items. These documents are only used for presentment of echecks between
banks. Payer and Payee software need never generate or parse<cashletter> blocks.

<cashletter>
<blkname> namestring
<crit> true
<vers> 1.0
<items> number
<amount> amountstring
<bundles> number
</cashletter>

Figure 6.22: Cashletter block element definition

Cashletter Block Field Definitions

items (required) An integer specifying the total number of echecks contained in all of the bundles
in this document.

73 c
Financial Services Technology Consortium, 1996-99. All rights reserved. 73

amount (required) A decimal number containing the total of all of the<amount> fields in all of
the echecks contained in all of the bundles in this document.

bundles (required) A decimal number containing the number of bundle documents contained in
this document.

74 c
Financial Services Technology Consortium, 1996-99. All rights reserved. 74

Certificate Guidelines

Public key certificates (a.k.a., certificates) used in the FSTC echeck application space are industry standard
X.509 certificates. X.509 certificates are specified using the ASN.1 abstract syntax specification language
[14][21][22][23] with a default concrete syntax defined by the Distinguished Encoding Rules (DER)[15].
The primary purpose of an X.509 certificate is to bind the name of some entity to a public key. Certification
Authorities (CA’s) are used to issue certificates by digitally signing each certificate issued. A third party that
uses a certificate to match a public key to a named entity can rely on the binding between key and name by
checking the CA’s digital signature.

Certificates can be used for authentication purposes (e.g., digital signatures) or for data encryption (i.e., key
exchange). However, the only use for certificates in echeck documents defined by FSML is in determining
the authenticity of digital signatures.

The Public Key Infrastructure used to issue and manage echeck-related certificates is currently defined as a
pure hierarchy with a single root CA issuing certificates to subordinate CA’s which in turn issue certificates
to either end entities (e.g., users) or other CA’s.

Within the FSTC echeck application context, there are two broad categories of certificates: CA certifi-
cates used to authenticate Certification Authorities, and end-entity certificates used to authenticate signers
of echecks and related documents. Typically, there will be at least one Policy Certification Authority (PCA)
that will issue certificates to CA’s representing financial institutions. The PCA certificate will often be self-
signed (i.e., a root certificate) since the PCA may not have any higher-level PCA from which it would receive
a certificate. CA’s operated by fianancial institutions will only issue end-entity certificates while PCA’s will
only issue certificates to subordinate CA’s.

All X.509 certificates contain Distinguished Names (DNs) for both the issuing CA and the subject of the
certificate (either another CA or end entitity). Certificates are uniquely identified by the Distinguished Name
of the issuing CA and a certificate serial number supplied by the issuer. The echeck application uses a
shortened version of the generalized DN employing only the following four fields:

countryName a 2-letter code for the country where the certificates are issued

organizationName name of the organization responsible for the PCA or CA

organizationUnitName designates application context for certificate

dmdName used to indicate the name space for the commonName

commonName identifier of the end entity, not used in echeck CA certificates

Distinguished Names for the various categories of certificates currently defined for use in the echeck appli-
cation are described as follows:

75 c
Financial Services Technology Consortium, 1996-99. All rights reserved. 75

Policy CA (issuer of CA certificates to financial institutions)
countryName per ISO standard for 2-letter country codes
organizationName name of authority, typically a regulatory body
organizationUnitName ”eCheck PCA”

Financial Institution CA
countryName per ISO standard for 2-letter country codes
organizationName name of financial institution operating CA
organizationUnitName ”eCheck CA”

Authorized electronic checking account user or owner
countryName per ISO standard for 2-letter country codes
organizationName name of financial institution that issued cert
organizationUnitName ”checking”
dmdName defines name space for commonName (optional)
commonName identifier for account user or owner

Officer or teller authorized to sign certified echecks
countryName per ISO standard for 2-letter country codes
organizationName name of financial institution that issued cert
organizationUnitName ”operations”
dmdName defines name space for commonName (optional)
commonName identifier for officer or teller

It is important to note that the subject Distinguished Name for an end entity cert differs from the Distinguished
Name of the issuing CA only by the addition of the dmdName and commonName elements. While this is
not true for certificates in general, it is a convention adhered to within the echeck application space. In other
words, end entity certificatesubject Distinguished Names inherit the countryName, organizationName and
organizationUnitName from the issuing CA.

All CA Distinguished Names must be globally unique to comply with X.509 standards. Similarly, CA’s
should issue end entity certificates with globally unique subject Distinguished Names. However, a CA can
issue multiple certificates for the same subject, as would be the case for a renewed certificate or a certificate
that replaces the public key for a subject.

For CA’s operated by financial institutions, use of the dmdName is optional. If the dmdName field is not used,
then the commonName must be unique across all subjects for which certificates are issued by a given CA.
Typically, the financial institution will enter the electronic checking account number into the commonName
field when dmdName is not used. However, it is strongly recommended that this echeck account number not
be the same as the associated true checking account (e.g., DDA) number. Since the commonName element
will be visible to any party that can read an echeck, it is recommended from a fraud prevention perspective
that disclosure of the commonName element not betray the true account number.

The intent of using the combination of dmdNamd and commonName is to allow financial institutions to
issue end entity certificates with subject Distinguished Names that use a more universally recognized com-
monName. The dmdName field specifies what name space the commonName (uniquely) belongs to. For
example, the dmdName field could specify that the name space is the Internet Domain Name system, thereby
allowing the commonName to be a domain name or URL. Since domain names are guaranteed to be glob-
ally unique by the Internet naming authorities, the resulting subject Distinguished Name would certainly be
unique.

A specific use for the combination of dmdName and commonName is to enable payers to characterize in-
tended payees using the<paytoidns> and<paytoid> values within echecks. The dmdName field would
map to<paytoidns>, while the commonName field would map to<paytoid>. Payees could prove that they

76 c
Financial Services Technology Consortium, 1996-99. All rights reserved. 76

are the intended recipient of the echeck payment by endorsing the echeck or signing a deposit slip using a
certificate that contains identical matches for the payto values in the subject Distinguished Name dmdName
and commonName fields.

The approach to forming names of subjects in echeck certificates (and FSML account blocks) aims to achieve
flexibility and compliance with existing regulations and business practices. For example, individuals may
need or desire anonymity in some of their payment transactions. Businesses, on the other hand, may need to
be named using a widely recognized brand or company name. At the same time, disclosure of names, such
as account numbers, should not introduce new opportunities for fraud or other abuse. This is why no one
naming convention can be employed for all subjects in echeck certificates.

Within FSML, certificates are treated as binary data that is encapsulated within a Certificate Block. The
<cert> block repeats the Distinguished Name of the certificate issuer and the serial number for the actual
certificate, which together, uniquely identify the certificate.

For an electronic checking account to be established, an end-entity certificate must be issued along with an
FSML Account Block that will in turn refer back to the certificate by referencing the issuer Distinguished
Name and certificate serial number. The current convention is that certificates and account blocks will be
issued together, and will stay in a one-to-one correspondence. The CA that issues the certificate will also
sign the certificate block and account block using FSML signature rules, which will result in a third FSML
block, the<signature> block. It is sometimes useful to refer collectively to the<cert>, <account> and
<signature> blocks as the electronic checking “account credentials.”

A set of account credentials are typically associated with an electronic checkbook–i.e., a “crypto token”–
that securely stores the corresponding private key and performs signature operations on echecks and other
FSML documents. Where crypto tokens are used as electronic checkbooks, the process of issuing account
credentials must be integrated with the production of the electronic checkbook, since the private/public key
pair will be generated within the crypto token. Only the public key will be disclosed by the crypto token in
order to include it in a request to the CA to issue account credentials for the electronic checkbook.

The X.509 standards also define mechanisms for revoking certificates. A certificate might have to be revoked
if the corresponding private key is lost or compromised, if the user (subject) of the certificate has not complied
with stated policies, or if the user wishes to terminate use of the certificate (e.g., they close their electronic
checking account). Within the echeck application context, different approaches to revocation are taken for
CA certificates vs. end entity certificates.

If a CA certificate must be revoked, then a standard X.509 (v2) Certificate Revocation List (CRL) will be
published by the PCA that issued the CA cert. Since the total number of financial institutions that any one
PCA would issue certificates for is on the order of 10,000; and since the number of CA certificate revocations
is likely to be a small percentage, CRL’s should serve as an effective means for informing the financial
industry of revoked CA certificates.

For end entity echeck certificates, though, the problem of certificate revocation is quite different. In reality,
the certificate represents rights to use a specific checking account (e.g., DDA). More precisely, an echeck ac-
count certificate reflects authorization to use a specific electronic checking account, where multiple electronic
checking accounts may map into a single traditional checking account, or DDA.

From the perspective of the financial institution that issues certificates for electronic checking accounts, the
critical revocation issue is preventing further unauthorized use of the echeck account. This requires that steps
to deactivate the account be taken on the various echeck server systems and legacy check processing systems
that actually process transactions against the implicated account. In other words, the necessary condition is
that the electronic checking account be revoked, and the consequential revocation of the account holder’s cert
is essentially a housekeeping task.

77 c
Financial Services Technology Consortium, 1996-99. All rights reserved. 77

The ability for financial institutions to directly control the status of the accounts they manage in nearly a
real-time manner–even for paper checks–provides effective mechanisms for revoking electronic checking
accounts. If an echeck account is closed, then no further deposits or echeck payments will be accepted for the
account, although most financial institutions will treat outstanding transactions already in the pipeline on an
exception basis. For example, should an account holder lose their private key (perhaps because the smartcard
containing their electronic checkbook is lost or stolen) prudent behavior would be to immediately notify their
financial institution so that the echeck account will be closed. Once, closed, the account holder is protected
since no further payments will be processed against the account.

The implication of this approach is that there is no absolute requirement based on current practices to actively
revoke echeck account certificates. Even if echeck certificates are revoked, no mechanisms currently exist to
notify everyone who might receive an echeck from the revoked account. This situation is directly analogous
to use of paper checks, where a traditional checking account can be closed, but the financial institution is not
in a position to receive back all blank checks previously delivered to the account holder.

While CRL’s could be published by financial institution echeck CA’s, the scale of the potential echeck user
base makes this infeasible in the short term. However, existing services used in the paper check context–such
as check verification or check guarantee services–could easily be enhanced to provide similar risk mitigation
for recipients of echecks. Furthermore, the Internet makes if feasible for recipients of echecks to contact the
financial institution where the account resides to determine if a given echeck is drawn on a valid account.
Financial institutions are also able to indicate funds availability for echecks drawn on their accounts.

Life cycle management of certificates, account credentials and electronic checkbooks (a.k.a., crypto tokens)
is a complex topic that is beyond the scope of this document on FSML. Suffice it to say that certificates are
always issued with defined validity periods (expressed as start and expiration dates), and will hence have to
be renewed or replaced on a regular basis. Furthermore, life cycle management of end entity certificates will
be intertwined with the management of electronic checking accounts. Because echeck account credentials
contain a rich set of features and options, it is likely that they will be updated on a regular basis to allow
for changes in parameters. Financial institutions will have considerable flexibility in deciding how to man-
age account credentials for their customers, providing that they adhere to policies established by the PCA,
regulators and supervisors.

78 c
Financial Services Technology Consortium, 1996-99. All rights reserved. 78

ASN.1 Definition of X.509 Certificates

This section provides a listing of the ASN.1[14][21][22][23] source code used to define certificates and
CRLs for use within the echeck application context. This source code may be compiled to produce working
certificate parsers and concrete encoders using DER or an equivalent concrete encoding specification (e.g.,
PER). In-line comments are used to further clarify the intended scope and use of ASN.1 code modules and
associated data fields.

Both version 1 and 3 certificates are defined by the provided ASN.1 source code. Version 1 certificates would
not use any version 3 extensions, nor would they include the optional issuerUniqueID and subjectUniqueID.
Only version 2 CRLs are defined.

The ASN.1 source follows...

-- Modules
--
-- 507 ANSI-X9-62
-- 16 FSMLCertificates
-- 740 FSMLCertificateManagement
-- 796 FSMLCertificateRevocationList
-- 183 FSMLExtensions
-- 779 FSML-PKCSPlus
-- 381 SupportingDefinitions

-- Last updated June 15, 1999
-- Prior update March 9, 1999
-- Prior update February 21, 1999

FSMLCertificates DEFINITIONS EXPLICIT TAGS ::= BEGIN

--
-- This FSMLCertificates module provides a collection of ASN.1
-- notation needed to support the management of X.509 public
-- key certificates in an electronic checking environment.
--

-- EXPORTS All;

IMPORTS

79 c
Financial Services Technology Consortium, 1996-99. All rights reserved. 79

ecdsa-with-SHA1, id-ecPublicKey, Parameters
FROM ANSI-X9-62

DSAParameters, DSAPublicKey, id-dsa, id-dsa-with-sha1
FROM FSMLCertificateManagement

authorityKeyIdentifier, basicConstraints, certificatePolicies,
cRLNumber, issuerAltName, keyUsage, nameConstraints,
privateKeyUsagePeriod, subjectAltName

FROM FSMLExtensions

id-sha1-with-rsa-signature, id-rsaEncryption
FROM FSML-PKCSPlus

Name, UniqueIdentifier
FROM SupportingDefinitions;

-- basic certificate definition

Certificate ::= SIGNED { EncodedCertificateInfo }

EncodedCertificateInfo ::= TYPE-IDENTIFIER.&Type(CertificateInfo)

CertificateInfo ::= SEQUENCE {
version [0] Version DEFAULT v1,
serialNumber CertificateSerialNumber,
signature AlgorithmIdentifier{{SignatureAlgorithms}},
issuer Name,
validity Validity,
subject Name,
subjectPublicKeyInfo SubjectPublicKeyInfo,
issuerUniqueID [1] IMPLICIT UniqueIdentifier OPTIONAL,
subjectUniqueID [2] IMPLICIT UniqueIdentifier OPTIONAL,
extensions [3] Extensions { CertExtensions } OPTIONAL

}

Version ::= INTEGER { v1(0), v3(2) } (v1 | v3) -- No v2 support

CertificateSerialNumber ::= INTEGER

AlgorithmIdentifier { ALGORITHM-ID:IOSet } ::= SEQUENCE {
algorithm ALGORITHM-ID.&id({IOSet}),
parameters ALGORITHM-ID.&Type({IOSet}{@algorithm}) OPTIONAL

}

SignatureAlgorithms ALGORITHM-ID ::= {
sha1WithRSAsignature |
ecdsaWithSHA1 |

80 c
Financial Services Technology Consortium, 1996-99. All rights reserved. 80

dsa-with-sha1,
...

}

Validity ::= SEQUENCE {
notBefore Time,
notAfter Time

}

SubjectPublicKeyInfo ::= SEQUENCE {
algorithm AlgorithmIdentifier {{SupportedAlgorithms}},
subjectPublicKey BIT STRING

}

SupportedAlgorithms ALGORITHM-ID ::= {
rsaEncryption |
ecPublicKeyType |
dsa,
...

}

Time ::= CHOICE {
utcTime UTCTime,
generalizedTime GeneralizedTime

}

Extensions { IOSet } ::= SEQUENCE OF Extension { IOSet }

Extension { IOSet } ::= SEQUENCE {
extnID EXTENSION.&id({IOSet}),
critical EXTENSION.&critical({IOSet}{@extnID}) DEFAULT FALSE,
extnValue OCTET STRING

-- An "octet hole", the value of extnValue contains the DER
-- encoding of a value of type &ExtnType, an open type, for
-- the extension object identified by extnId.

}

EXTENSION ::= CLASS {
&id OBJECT IDENTIFIER UNIQUE,
&critical BOOLEAN DEFAULT FALSE,
&ExtnType

}
WITH SYNTAX

{ SYNTAX &ExtnType [CRITICAL &critical] IDENTIFIED BY &id }

CertExtensions EXTENSION ::= {
authorityKeyIdentifier |
basicConstraints |
certificatePolicies |

81 c
Financial Services Technology Consortium, 1996-99. All rights reserved. 81

issuerAltName |
keyUsage |
nameConstraints |
privateKeyUsagePeriod |
subjectAltName,
... -- Expect others in future revisions of this standard --

}

-- information object classes --

ALGORITHM-ID ::= CLASS {
&id OBJECT IDENTIFIER UNIQUE,
&Type OPTIONAL

}
WITH SYNTAX { OID &id [PARMS &Type] }

-- parameterized types --

SIGNED { ToBeSigned } ::= SEQUENCE {
toBeSigned ToBeSigned,
algorithm AlgorithmIdentifier{{SignatureAlgorithms}},
signature BIT STRING

}

-- supported cryptosystem key type information objects

dsa ALGORITHM-ID ::= {
OID id-dsa PARMS DSAParameters

}

ecPublicKeyType ALGORITHM-ID ::= {
OID id-ecPublicKey PARMS Parameters

}

rsaEncryption ALGORITHM-ID ::= {
OID id-rsaEncryption PARMS NULL

}

-- signature algorithm information objects

dsa-with-sha1 ALGORITHM-ID ::= {
OID id-dsa-with-sha1 PARMS NULL

}

ecdsaWithSHA1 ALGORITHM-ID ::= {
OID ecdsa-with-SHA1 PARMS Parameters

}

82 c
Financial Services Technology Consortium, 1996-99. All rights reserved. 82

sha1WithRSAsignature ALGORITHM-ID ::= {
OID id-sha1-with-rsa-signature PARMS NULL

}

END -- FSMLCertificates --

FSMLExtensions DEFINITIONS IMPLICIT TAGS ::= BEGIN

-- EXPORTS All; --

IMPORTS

CertificateSerialNumber, EXTENSION
FROM FSMLCertificates

DirectoryString {}, id-ce, Name, ub-name
FROM SupportingDefinitions;

-- key and policy information extensions

authorityKeyIdentifier EXTENSION ::= { -- Criticality:false
SYNTAX AuthorityKeyIdentifier
IDENTIFIED BY id-ce-authorityKeyIdentifier

}

AuthorityKeyIdentifier ::= SEQUENCE {
keyIdentifier [0] KeyIdentifier OPTIONAL,
authorityCertIssuer [1] GeneralNames OPTIONAL,
authorityCertSerialNumber [2] CertificateSerialNumber OPTIONAL

}
(WITH COMPONENTS { ...,

authorityCertIssuer PRESENT,
authorityCertSerialNumber PRESENT } |

WITH COMPONENTS {...,
authorityCertIssuer ABSENT,
authorityCertSerialNumber ABSENT })

KeyIdentifier ::= OCTET STRING

keyUsage EXTENSION ::= { -- Criticality:true
SYNTAX KeyUsage
CRITICAL TRUE
IDENTIFIED BY id-ce-keyUsage

}

83 c
Financial Services Technology Consortium, 1996-99. All rights reserved. 83

KeyUsage ::= BIT STRING {
digitalSignature (0),

-- nonRepudiation (1), not used --
keyEncipherment (2),
dataEncipherment (3),
keyAgreement (4),
keyCertSign (5),
cRLSign (6),
encipherOnly (7),
decipherOnly (8)

}

privateKeyUsagePeriod EXTENSION ::= { -- Criticality:true
SYNTAX PrivateKeyUsagePeriod
CRITICAL TRUE
IDENTIFIED BY id-ce-privateKeyUsagePeriod

}

PrivateKeyUsagePeriod ::= SEQUENCE {
notBefore [0] GeneralizedTime OPTIONAL,
notAfter [1] GeneralizedTime OPTIONAL

}
(WITH COMPONENTS {..., notBefore PRESENT} |

WITH COMPONENTS {..., notAfter PRESENT})

certificatePolicies EXTENSION ::= { -- Criticality:false
SYNTAX CertificatePoliciesSyntax
IDENTIFIED BY id-ce-certificatePolicies

}

CertificatePoliciesSyntax ::=
SEQUENCE SIZE(1..MAX) OF PolicyInformation

PolicyInformation ::= SEQUENCE {
policyIdentifier CertPolicyId,
policyQualifiers PolicyQualifiers OPTIONAL

}

PolicyQualifiers ::= SEQUENCE SIZE(1..MAX) OF PolicyQualifierInfo

CertPolicyId ::= OBJECT IDENTIFIER

PolicyQualifierInfo ::= SEQUENCE {
policyQualifierId

CERT-POLICY-QUALIFIER.&id({SupportedPolicyQualifiers}),
qualifier

CERT-POLICY-QUALIFIER.&Qualifier({SupportedPolicyQualifiers}
{@policyQualifierId}) OPTIONAL

}

84 c
Financial Services Technology Consortium, 1996-99. All rights reserved. 84

SupportedPolicyQualifiers CERT-POLICY-QUALIFIER ::= {
...

}

CERT-POLICY-QUALIFIER ::= CLASS {
&id OBJECT IDENTIFIER UNIQUE,
&Qualifier OPTIONAL

}
WITH SYNTAX

{ POLICY-QUALIFIER-ID &id [QUALIFIER-TYPE &Qualifier] }

-- certificate subject and issuer attributes extensions

subjectAltName EXTENSION ::= { -- Criticality:false (or true)
SYNTAX GeneralNames

-- CRITICAL TRUE --
IDENTIFIED BY id-ce-subjectAltName

}

GeneralNames ::= SEQUENCE SIZE (1..MAX) OF GeneralName

GeneralName ::= CHOICE {
otherName [0] INSTANCE OF OTHER-NAME,
rfc822Name [1] IA5String,
dNSName [2] IA5String,
-- x400Address [3] ORAddress, (not used)
directoryName [4] EXPLICIT Name,
ediPartyName [5] EDIPartyName,
uniformResourceIdentifier [6] IA5String,
iPAddress [7] OCTET STRING,
registeredID [8] OBJECT IDENTIFIER

}

OTHER-NAME ::= TYPE-IDENTIFIER

EDIPartyName ::= SEQUENCE {
nameAssigner [0] DirectoryString {ub-name} OPTIONAL,
partyName [1] DirectoryString {ub-name}

}

issuerAltName EXTENSION ::= { -- Criticality:false (or true)
SYNTAX GeneralNames

-- CRITICAL TRUE --
IDENTIFIED BY id-ce-issuerAltName

}

-- certification path constraints extensions

85 c
Financial Services Technology Consortium, 1996-99. All rights reserved. 85

basicConstraints EXTENSION ::= { -- Criticality:true
SYNTAX BasicConstraintsSyntax
CRITICAL TRUE
IDENTIFIED BY id-ce-basicConstraints

}

BasicConstraintsSyntax ::= SEQUENCE {
cA BOOLEAN DEFAULT FALSE,
pathLenConstraint INTEGER (0..MAX) OPTIONAL

}

-- Basic CRL extensions --

cRLNumber EXTENSION ::= { -- Criticality:false
SYNTAX CRLNumber
IDENTIFIED BY id-ce-cRLNumber

}

CRLNumber ::= INTEGER (0..MAX)

nameConstraints EXTENSION ::= { -- Criticality:true
SYNTAX NameConstraintsSyntax
CRITICAL TRUE
IDENTIFIED BY id-ce-nameConstraints

}

NameConstraintsSyntax ::= SEQUENCE {
permittedSubtrees [0] GeneralSubtrees OPTIONAL,
excludedSubtrees [1] GeneralSubtrees OPTIONAL

}

GeneralSubtrees ::= SEQUENCE SIZE(1..MAX) OF GeneralSubtree

GeneralSubtree ::= SEQUENCE {
base GeneralName,
minimum [0] BaseDistance DEFAULT 0,
maximum [1] BaseDistance OPTIONAL

}

BaseDistance ::= INTEGER (0..MAX)

-- object identifier assignments --

id-ce-subjectKeyIdentifier OBJECT IDENTIFIER ::= { id-ce 14 }
id-ce-keyUsage OBJECT IDENTIFIER ::= { id-ce 15 }
id-ce-privateKeyUsagePeriod OBJECT IDENTIFIER ::= { id-ce 16 }
id-ce-subjectAltName OBJECT IDENTIFIER ::= { id-ce 17 }

86 c
Financial Services Technology Consortium, 1996-99. All rights reserved. 86

id-ce-issuerAltName OBJECT IDENTIFIER ::= { id-ce 18 }
id-ce-basicConstraints OBJECT IDENTIFIER ::= { id-ce 19 }
id-ce-cRLNumber OBJECT IDENTIFIER ::= { id-ce 20 }
id-ce-nameConstraints OBJECT IDENTIFIER ::= { id-ce 30 }
id-ce-certificatePolicies OBJECT IDENTIFIER ::= { id-ce 32 }
id-ce-authorityKeyIdentifier OBJECT IDENTIFIER ::= { id-ce 35 }

END -- FSMLExtensions --

SupportingDefinitions DEFINITIONS EXPLICIT TAGS ::= BEGIN

--
-- This SupportingDefinitions module provides a collection of
-- ASN.1 notation needed to support the management of public
-- key certificates in a financial services environment.
--

-- EXPORTS All;

-- IMPORTS None;

--
-- Defined in ISO/IEC 9594-6|X.520 module SelectedAttributeTypes
--

DirectoryString { INTEGER:maxSize } ::= CHOICE {
teletexString TeletexString (SIZE(1..maxSize)),
printableString PrintableString (SIZE(1..maxSize)),
universalString UniversalString (SIZE(1..maxSize)),
bmpString BMPString (SIZE(1..maxSize)),
utf8String UTF8String (SIZE(1..maxSize))

}

UniqueIdentifier ::= BIT STRING

commonName ATTRIBUTE ::= {
WITH SYNTAX DirectoryString { ub-common-name }
ID id-at-commonName

}

countryName ATTRIBUTE ::= {
WITH SYNTAX CountryName
ID id-at-countryName

}

CountryName ::= PrintableString (SIZE(2)) -- IS 3166 codes only

87 c
Financial Services Technology Consortium, 1996-99. All rights reserved. 87

organizationName ATTRIBUTE ::= {
WITH SYNTAX DirectoryString { ub-organization-name }
ID id-at-organizationName

}

organizationalUnitName ATTRIBUTE ::= {
WITH SYNTAX DirectoryString { ub-organizational-unit-name }
ID id-at-organizationalUnitName

}

dmdName ATTRIBUTE ::= {
WITH SYNTAX DirectoryString{ ub-common-name }
ID id-at-dmdName

}

RDNameAttributes ATTRIBUTE ::= {
commonName |
countryName |
organizationName |
organizationalUnitName |
dmdName
--
-- Expect no other DN components
--

}

--
-- Defined in ISO/IEC 9594-6|X.520 module UpperBounds
--

ub-name INTEGER ::= 32768

ub-common-name INTEGER ::= 64
ub-organization-name INTEGER ::= 64
ub-organizational-unit-name INTEGER ::= 64

--
-- Defined in ISO/IEC 9594-2|X.501 module InformationFramework
--

Name ::= CHOICE { -- only one possibility for now --
rdnSequence RDNSequence

}

RDNSequence ::= SEQUENCE OF RelativeDistinguishedName

RelativeDistinguishedName ::= SET SIZE(1..MAX) OF
AttributeTypeAndValue

88 c
Financial Services Technology Consortium, 1996-99. All rights reserved. 88

AttributeTypeAndValue ::= SEQUENCE {
type ATTRIBUTE.&id({RDNameAttributes}),
value ATTRIBUTE.&Type({RDNameAttributes}{@type})

}

--
-- This simplified version of the ATTRIBUTE class defined in
-- ISO/IEC 9594-2|X.501 module InformationFramework produces
-- syntax conformant with that Directory standard, but only
-- includes those fields needed for public key certificates.
--

ATTRIBUTE ::= CLASS {
&Type,
&id OBJECT IDENTIFIER UNIQUE

}
WITH SYNTAX { WITH SYNTAX &Type ID &id }

--
-- Defined in ISO/IEC 9594-2|X.501 module UsefulDefinitions
--

ds OBJECT IDENTIFIER ::= {
joint-iso-ccitt ds(5) } -- Directory Services

id-ce OBJECT IDENTIFIER ::= { ds 29 } -- Certificate Extension

id-at OBJECT IDENTIFIER ::= { ds 4 } -- Attribute Type

id-at-commonName OBJECT IDENTIFIER ::= { id-at 3 }
id-at-countryName OBJECT IDENTIFIER ::= { id-at 6 }
id-at-organizationName OBJECT IDENTIFIER ::= { id-at 10 }
id-at-organizationalUnitName OBJECT IDENTIFIER ::= { id-at 11 }
id-at-dmdName OBJECT IDENTIFIER ::= { id-at 54 }

END -- SupportingDefinitions --

ANSI-X9-62 { iso(1) member-body(2) us(840) 10045 module(4) 1 }
DEFINITIONS EXPLICIT TAGS ::= BEGIN

-- EXPORTS All;

-- IMPORTS None;

ansi-X9-62 OBJECT IDENTIFIER ::= {
iso(1) member-body(2) us(840) 10045

}

89 c
Financial Services Technology Consortium, 1996-99. All rights reserved. 89

FieldID { FIELD-ID:IOSet } ::= SEQUENCE { -- Finite field
fieldType FIELD-ID.&id({IOSet}),
parameters FIELD-ID.&Type({IOSet}{@fieldType})

}

FieldTypes FIELD-ID ::= {
{ Prime-p IDENTIFIED BY prime-field } |
{ Characteristic-two IDENTIFIED BY characteristic-two-field },
...

}

FIELD-ID ::= TYPE-IDENTIFIER -- ISO/IEC 8824-2:1995(E), Annex A

id-fieldType OBJECT IDENTIFIER ::= { ansi-X9-62 fieldType(1) }

prime-field OBJECT IDENTIFIER ::= { id-fieldType 1 }

characteristic-two-field OBJECT IDENTIFIER ::= { id-fieldType 2 }

Prime-p ::= INTEGER -- Finite field F(p), p is an odd prime

Characteristic-two ::= SEQUENCE {
m INTEGER, -- Field size 2ˆm
basis CHARACTERISTIC-TWO.&id({BasisTypes}),
parameters CHARACTERISTIC-TWO.&Type({BasisTypes}{@basis})

}

BasisTypes CHARACTERISTIC-TWO::= {
{ NULL IDENTIFIED BY gnBasis } |
{ Trinomial IDENTIFIED BY tpBasis } |
{ Pentanomial IDENTIFIED BY ppBasis },
...

}

-- Trinomial basis representation of F2ˆm
-- Integer k for reduction polynomial xm + xk + 1
--
Trinomial ::= INTEGER

Pentanomial ::= SEQUENCE {
--
-- Pentanomial basis representation of F2ˆm
-- reduction polynomial integers k1, k2, k3
-- f(x) = x**m + x**k3 + x**k2 + x**k1 + 1
--

k1 INTEGER,
k2 INTEGER,
k3 INTEGER

90 c
Financial Services Technology Consortium, 1996-99. All rights reserved. 90

}

CHARACTERISTIC-TWO ::= TYPE-IDENTIFIER

id-characteristic-two-basis OBJECT IDENTIFIER ::= {
characteristic-two-field basisType(3) }

-- The object identifiers gnBasis, tpBasis and ppBasis name
-- three kinds of basis for characteristic-two finite fields

gnBasis OBJECT IDENTIFIER ::= { id-characteristic-two-basis 1 }
tpBasis OBJECT IDENTIFIER ::= { id-characteristic-two-basis 2 }
ppBasis OBJECT IDENTIFIER ::= { id-characteristic-two-basis 3 }

FieldElement ::= OCTET STRING -- Finite field element

ECPoint ::= OCTET STRING -- Elliptic curve point

ECParameters ::= SEQUENCE { -- Elliptic curve parameters
version INTEGER { ecpVer1(1) } (ecpVer1),
fieldID FieldID {{FieldTypes}},
curve Curve,
base ECPoint, -- Base point G
order INTEGER, -- Order n of the base point
cofactor INTEGER OPTIONAL, -- The integer h = #E(Fq)/n
...

}

Curve ::= SEQUENCE {
a FieldElement, -- Elliptic curve coefficient a
b FieldElement, -- Elliptic curve coefficient b
seed BIT STRING OPTIONAL

}

-- When a digital signature is identified by the object identifier
-- ecdsa-with-SHA1 (as in module FSMLCertificates), the digital
-- signature shall be encoded as a value of type ECDSA-Sig-Value.
-- Objects such as X.509 certificates and CRLs represent digital
-- signatures as a bit string. Where a certificate or CRL is
-- signed with ECDSA and SHA-1, the entire encoding of a value
-- of type ECDSA-Sig-Value shall be the value (in ASN.1 TLV format)
-- of the bit string signature.

ECDSA-Sig-Value ::= SEQUENCE {
r INTEGER,
s INTEGER

}

id-ecSigType OBJECT IDENTIFIER ::= { ansi-X9-62 signatures(4) }

91 c
Financial Services Technology Consortium, 1996-99. All rights reserved. 91

ecdsa-with-SHA1 OBJECT IDENTIFIER ::= { id-ecSigType 1 }

-- An elliptic curve public key value of ECPoint, an OCTET
-- STRING value, is mapped to BIT STRING value subjectPublicKey
-- as follows: the most significant octet of the octet string
-- value becomes the most significant bits of the bit string
-- value and the least significant octet of the octet string
-- value becomes the least significant bits of the bit string.

SubjectPublicKeyInfo ::= SEQUENCE {
algorithm AlgorithmIdentifier {{ECPKAlgorithms}},
subjectPublicKey BIT STRING

}

AlgorithmIdentifier { ALGORITHM:IOSet } ::= SEQUENCE {
algorithm ALGORITHM.&id({IOSet}),
parameters ALGORITHM.&Type({IOSet}{@algorithm})

}

ECPKAlgorithms ALGORITHM ::= {
ecPublicKeyType,
...

}

ecPublicKeyType ALGORITHM ::= {
Parameters IDENTIFIED BY id-ecPublicKey

}

ALGORITHM ::= TYPE-IDENTIFIER

id-publicKeyType OBJECT IDENTIFIER ::= { ansi-X9-62 keyType(2) }

id-ecPublicKey OBJECT IDENTIFIER ::= { id-publicKeyType 1 }

-- The public key Parameters are defined in X9.62 as a choice of
-- three alternatives. This allows detailed specification of all
-- possible required values using choice alternative ecParameters,
-- the use of an efficient namedCurve as an object identifier
-- substitute for a particular set of elliptic curve domain
-- parameters, or implicitlyCA in specific domains to indicate
-- that the parameters are explicitly defined elsewhere.

Parameters ::= CHOICE {
ecParameters ECParameters,
namedCurve CURVES.&id({CurveNames}),
implicitlyCA NULL

}

92 c
Financial Services Technology Consortium, 1996-99. All rights reserved. 92

CurveNames CURVES ::= {
{ ID c2pnb163v1 } | -- J.4.1, example 1 --
{ ID c2pnb163v2 } | -- J.4.1, example 2 --
{ ID c2pnb163v3 } | -- J.4.1, example 3 --
{ ID c2pnb176w1 } | -- J.4.2, example 1 --
{ ID c2tnb191v1 } | -- J.4.3, example 1 --
{ ID c2tnb191v2 } | -- J.4.3, example 2 --
{ ID c2tnb191v3 } | -- J.4.3, example 3 --
{ ID c2onb191v4 } | -- J.4.3, example 4 --
{ ID c2onb191v5 } | -- J.4.3, example 5 --
{ ID c2pnb208w1 } | -- J.4.4, example 1 --
{ ID c2tnb239v1 } | -- J.4.5, example 1 --
{ ID c2tnb239v2 } | -- J.4.5, example 2 --
{ ID c2tnb239v3 } | -- J.4.5, example 3 --
{ ID c2onb239v4 } | -- J.4.5, example 4 --
{ ID c2onb239v5 } | -- J.4.5, example 5 --
{ ID c2pnb272w1 } | -- J.4.6, example 1 --
{ ID c2pnb304w1 } | -- J.4.7, example 1 --
{ ID c2tnb359v1 } | -- J.4.8, example 1 --
{ ID c2pnb368w1 } | -- J.4.9, example 1 --
{ ID c2tnb431r1 } | -- J.4.10, example 1 --
{ ID prime192v1 } | -- J.5.1, example 1 --
{ ID prime192v2 } | -- J.5.1, example 2 --
{ ID prime192v3 } | -- J.5.1, example 3 --
{ ID prime239v1 } | -- J.5.2, example 1 --
{ ID prime239v2 } | -- J.5.2, example 2 --
{ ID prime239v3 } | -- J.5.2, example 3 --
{ ID prime256v1 }, -- J.5.3, example 1 --
... -- others --

}

CURVES ::= CLASS {
&id OBJECT IDENTIFIER UNIQUE

}
WITH SYNTAX { ID &id }

ellipticCurve OBJECT IDENTIFIER ::= { ansi-X9-62 curves(3) }

c-TwoCurve OBJECT IDENTIFIER ::= {
ellipticCurve characteristicTwo(0) }

primeCurve OBJECT IDENTIFIER ::= { ellipticCurve prime(1) }

c2pnb163v1 OBJECT IDENTIFIER ::= { c-TwoCurve 1 }
c2pnb163v2 OBJECT IDENTIFIER ::= { c-TwoCurve 2 }
c2pnb163v3 OBJECT IDENTIFIER ::= { c-TwoCurve 3 }
c2pnb176w1 OBJECT IDENTIFIER ::= { c-TwoCurve 4 }
c2tnb191v1 OBJECT IDENTIFIER ::= { c-TwoCurve 5 }

93 c
Financial Services Technology Consortium, 1996-99. All rights reserved. 93

c2tnb191v2 OBJECT IDENTIFIER ::= { c-TwoCurve 6 }
c2tnb191v3 OBJECT IDENTIFIER ::= { c-TwoCurve 7 }
c2onb191v4 OBJECT IDENTIFIER ::= { c-TwoCurve 8 }
c2onb191v5 OBJECT IDENTIFIER ::= { c-TwoCurve 9 }
c2pnb208w1 OBJECT IDENTIFIER ::= { c-TwoCurve 10 }
c2tnb239v1 OBJECT IDENTIFIER ::= { c-TwoCurve 11 }
c2tnb239v2 OBJECT IDENTIFIER ::= { c-TwoCurve 12 }
c2tnb239v3 OBJECT IDENTIFIER ::= { c-TwoCurve 13 }
c2onb239v4 OBJECT IDENTIFIER ::= { c-TwoCurve 14 }
c2onb239v5 OBJECT IDENTIFIER ::= { c-TwoCurve 15 }
c2pnb272w1 OBJECT IDENTIFIER ::= { c-TwoCurve 16 }
c2pnb304w1 OBJECT IDENTIFIER ::= { c-TwoCurve 17 }
c2tnb359v1 OBJECT IDENTIFIER ::= { c-TwoCurve 18 }
c2pnb368w1 OBJECT IDENTIFIER ::= { c-TwoCurve 19 }
c2tnb431r1 OBJECT IDENTIFIER ::= { c-TwoCurve 20 }
prime192v1 OBJECT IDENTIFIER ::= { primeCurve 1 }
prime192v2 OBJECT IDENTIFIER ::= { primeCurve 2 }
prime192v3 OBJECT IDENTIFIER ::= { primeCurve 3 }
prime239v1 OBJECT IDENTIFIER ::= { primeCurve 4 }
prime239v2 OBJECT IDENTIFIER ::= { primeCurve 5 }
prime239v3 OBJECT IDENTIFIER ::= { primeCurve 6 }
prime256v1 OBJECT IDENTIFIER ::= { primeCurve 7 }

END -- ANSI-X9-62 --

FSMLCertificateManagement DEFINITIONS IMPLICIT TAGS ::= BEGIN

--
-- This module is a subset of ISO 15782-1 ASN.1 module named
-- CertificateManagement { iso(1) member-body(2) us(840)
-- x9-57(10040) module(1) certificateManagement(1) }
--

-- EXPORTS All

-- IMPORTS None

DSAPublicKey ::= INTEGER -- public key y

DSAParameters ::= SEQUENCE {
prime1 INTEGER, -- modulus p
prime2 INTEGER, -- modulus q
base INTEGER -- base g

}

-- object identifier assignments

94 c
Financial Services Technology Consortium, 1996-99. All rights reserved. 94

x9-57Algorithm OBJECT IDENTIFIER ::= {
iso(1) member-body(2) us(840) x9-57(10040) algorithm(4)

}

id-dsa OBJECT IDENTIFIER ::= {
x9-57Algorithm dsa(1)

}

id-dsa-with-sha1 OBJECT IDENTIFIER ::= {
x9-57Algorithm dsa-with-sha1(3)

}

END -- FSMLCertificateManagement --

FSML-PKCSPlus DEFINITIONS EXPLICIT TAGS ::= BEGIN

-- The following definitions are taken from the SET
-- ASN.1 module named SetPKCS7Plus.

pkcs-1 OBJECT IDENTIFIER ::= {
iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) 1 }

id-rsaEncryption OBJECT IDENTIFIER ::= { pkcs-1 1 }

id-sha1-with-rsa-signature OBJECT IDENTIFIER ::= { pkcs-1 5 }

END

FSMLCertificateRevocationList
DEFINITIONS EXPLICIT TAGS ::= BEGIN

-- EXPORTS All;

IMPORTS

AlgorithmIdentifier{}, CertificateSerialNumber, EXTENSION,
Extensions {}, SignatureAlgorithms, SIGNED {}, Time

FROM FSMLCertificates

authorityKeyIdentifier, cRLNumber
FROM FSMLExtensions

Name

95 c
Financial Services Technology Consortium, 1996-99. All rights reserved. 95

FROM SupportingDefinitions;

CRL ::= SIGNED { EncodedCRLInfo }

EncodedCRLInfo ::=
TYPE-IDENTIFIER.&Type(CertificateRevocationListInfo)

CertificateRevocationListInfo ::= SEQUENCE {
version INTEGER { crliVer2(1) } (crliVer2),
signature AlgorithmIdentifier {{SignatureAlgorithms}},
issuer Name,
thisUpdate Time,
nextUpdate Time,
revokedCertificates CRLEntryList OPTIONAL,
crlExtensions [0] CRLExtensions OPTIONAL

}

CRLExtensions ::= Extensions { CRLSet }

CRLSet EXTENSION ::= {
authorityKeyIdentifier |
cRLNumber,
...

}

CRLEntryList ::= SEQUENCE OF CRLEntry

CRLEntry ::= SEQUENCE{
userCertificate CertificateSerialNumber,
revocationDate Time,
crlEntryExtensions CRLEntryExtensions OPTIONAL

}

CRLEntryExtensions ::= Extensions { CRLEntrySet }

CRLEntrySet EXTENSION ::= { ... } -- None defined for FSML use

END -- FSMLCertificateRevocationList --

96 c
Financial Services Technology Consortium, 1996-99. All rights reserved. 96

Elliptic Curve cryptographic
recommendations

The key sizes recommended are 163-bit and 283-bit. 163-bit is recommended for user key sizes, but 283-bit
may be desirable for certificate creation. The availability of OIDs for both key sizes enables a choice of
security strengths now and in the future.

Two curve recommendations for 163-bit ECC, already assigned OIDs, are...

sect163k1 = 1 3 132 0 1
sect163r1 = 1 3 132 0 2

A new OID which will be assigned for 163-bit ECC is...

sect163r2 = 1 3 132 0 15

Two new OIDs which will be assigned for 283-bit ECC are...

sect283k1 = 1 3 132 0 16
sect283r1 = 1 3 132 0 17

The parameters corresponding to all the OIDs above can be found in [6]. sect163k1, sect163r2, sect283k1,
and sect283r1 are among the curves recommended by NIST for federal government use in [24]. sect163r1 is
currently available more widely than sect163r2 in COTS products.

97 c
Financial Services Technology Consortium, 1996-99. All rights reserved. 97

Field Summary

Below is a summary of the attributes of each of the entities or fields allowed in an FSML Electronic Document

10.1 Field Attributes Table (part 1)

Field Attribute Summary - Part One
Field Containing Min Max Size Opt Logged Notes
Name Blocks Size Size Code

blkname all 1 64 P
crit all 4 5 F Yes
vers all 1 8 P Yes
acctrest <account> 1 256 P Yes
accttitle <account> 1 76 P Yes
accttype <account> 1 76 P Yes
adata <attachment> 1 N/A Yes
algorithm <signature> 7 9 F
amount multiple types 1 21 B Yes
astatus <attachment> 9 9 F Yes
bankacct <account> <deposit> 1 20 B
bankaddr <account> 1 76 P Yes
bankcode <account> <bankstamp> 9 9 B Yes
bankemail <account> 1 76 P Yes
bankfax <account> 1 76 P Yes
bankname <account> 1 76 P Yes
bankphone <account> 1 76 P Yes
bankser <account> 1 16 B
bundles <cashletter> 1 8 P
blockref <signature> 1 76 P
certdata <cert> 1 N/A
certissuer multiple types 1 256 P Yes
certserial multiple types 1 16 P Yes
certtype <cert> 6 6 F
checkbook multiple types 1 16 B
checknum <checkdata> 1 19 B Yes
conditions <check> 1 76 P Yes
country multiple types 2 2 F Yes Yes
cserial <certification> 1 16 P Yes
currency multiple types 3 3 F Yes Yes
custno <account> 1 76 P Yes

98 c
Financial Services Technology Consortium, 1996-99. All rights reserved. 98

10.2 Field Attributes Table (part 2)

Field Attribute Summary - Part Two
Field Containing Min Max Size Opt Logged Notes
Name Blocks Size Size Code

custacct <invoice> 1 76 P Yes
date multiple types 8 8 F Yes Yes
dateissued <checkdata> 8 8 F Yes
datevalid <checkdata> 8 8 F Yes
expdate <account> 8 8 F
function <action> 1 16 F
hash <signature> 1 256 F
info <check> 1 76 P Yes
invdata <invoice> 1 N/A Yes
items multiple types 1 8 P
legalnotice <check> 1 76 P
location <signature> 1 76 P Yes
memo <check> 1 76 P Yes
micrmaskc <account> 1 128 B Yes
micrmaskd <account> 1 128 B Yes
msgtext <message> 1 76 P
msgdata <message> 1 N/A Yes
nonce <signature> 8 16 P
payeracct <check> 1 76 P Yes
payto multiple types 1 76 L Yes 1
paytoacct multiple types 1 20 B Yes Yes
paytobank multiple types 9 9 B Yes Yes
paytocustno multiple types 1 76 L Yes Yes
paytoid multiple types 1 76 P Yes Yes
paytoidns multiple types 1 76 P Yes Yes
reason <action> 1 16 F
remittance <invoice> 1 76 P Yes
restrictions <check> <endorsement> 1 256 P
retcode <message> 1 8 F
serverid <bankstamp> 1 8 P
sig <signature> 42 256 F
sigref <signature> 1 76 P Yes
sigrest <account> 1 76 P Yes
sigtype <signature> 1 16 P Yes
stampdata <bankstamp> N/A N/A
stampserial <bankstamp> 1 15 P
timestamp <signature> <bankstamp> 16 16 F Yes

99 c
Financial Services Technology Consortium, 1996-99. All rights reserved. 99

10.3 Field Attributes Table (part 3)

Field Attribute Summary - Part Three
Field Containing Min Max Size Opt Logged Notes
Name Blocks Size Size Code

useraddr <signature> 1 76 P Yes
useremail <signature> 1 76 P Yes
useridnum <signature> 1 76 P Yes
username <signature> 1 76 P Yes
userotherid <signature> 1 76 P Yes
userotherid <signature> 1 76 P Yes
vara <check> 1 76 P Yes
varb <check> 1 76 P Yes
varc <check> 1 76 P Yes
vard <check> 1 76 P Yes
vare <check> 1 76 P Yes
varf <check> 1 76 P Yes
varg <check> 1 76 P Yes
varh <check> 1 76 P Yes
vari <check> 1 76 P Yes

Notes:

1 Only the first 16 bytes are logged.

The Size Code column in the above tables indicates the reason that the specified Max Sizes were chosen, as
follows:

Max Size Reason codes
Code Rationale
B Required by Banking standards
F Format of data dictates size
L Limited by Logging area size limitations
P Practicality considerations limit size

100 c
Financial Services Technology Consortium, 1996-99. All rights reserved. 100

Document Verification

The steps required to verify an FSML document, both syntactically and cryptographically are discussed in
this chapter.

11.1 Verifying Document Contents

The following tables describe the verification requirements for Document Contents.

101 c
Financial Services Technology Consortium, 1996-99. All rights reserved. 101

Verification Table - Document Verification Rules - Part One
Document <Block>/Document Required Notes
checkdoc <action> x Function must bepayment . Reason must beprocess ,

test , resend , or info . If reason is notprocess or re-
send , don’t process financially.

<check> x
<signature> x Signer’s signature. See Signature Rules table.
<signature> Co-signer’s (or counter-signer’s) signature. See Signature Rules

table.
<account> x Signer’s account. Refers to signer’s certificate.
<cert> Signer’s certificate. See Certificate Verification rules.
<account> co-signer’s (or counter-signer’s) account. Refers to co-signer’s

certificate.
<cert> co-signer’s (or counter-signer’s) certificate. See Certificate Ver-

ification rules.
<signature> x Bank’s signature on signer’s account. See Signature Rules table.
<signature> Bank’s signature on co-signer’s (or counter-signer’s account.

See Signature Rules table.
<cert> Bank’s certificate. See Certificate Verification Rules
<attachment> 0 or more. Must be signed.
<invoice> 0 or more. Must be signed.

depositdoc <action> x Function must bedeposit . Reason must beprocess , re-
send or test . If reason isresend process if not a duplicate,
otherwise ignore. If reason istest , don’t process financially.

<deposit> x One for each account being deposited into
<signature> x Depositor’s signature. See Signature Rules table.
<account> x Depositor’s account. Refers to depositor’s certificate.
<cert> Depositor’s certificate. See Cert Verification rules
<account> Second account. Refers to depositor’s certificate.
<cert> Second certificate. See Cert Verification rules
<signature> x Bank’s signature. See Signature Rules table.
<cert> Bank’s certificate. See Certificate Verification Rules
<signature> Bank’s signature on second account. See Signature Rules table.
endcheck x Same number of endchecks as described in deposit block. Total

of amounts must be same as amount in deposit block.

102 c
Financial Services Technology Consortium, 1996-99. All rights reserved. 102

Verification Table - Document Verification Rules - Part Two
Document <Block>/Document Required Notes
endcheck <action> x Function must bepayment . Reason must beprocess ,

test , resend , or info . If reason is notprocess or re-
send , don’t process financially.

<endorsement> x
<signature> x Endorser’s signature. See Signature Rules table.
<signature> Co-endorser’s (or counter-endorser’s) signature. See Signature

Rules table.
<account> Endorser’s account. Required if check has paytobank
<cert> Endorser’s certificate. See Certificate Verification Rules
<cert> co-endorser’s (or counter-endorser’s) certificate. See Certificate

Verification rules.
<signature> Bank’s signature. Required if account block present.
<cert> Bank’s certificate. See Certificate Verification Rules Note:

There are no direct FSML references to this block, if the bank’s
signature is omitted

checkdoc x
<attachment> 0 or more. Must be signed.

certcheck <action> x Function must bepayment . Reason must beprocess ,
test , resend , or info . If reason is notprocess or re-
send , don’t process financially.

<certification> x
<signature> x certifier’s signature. See Signature Rules table.
<account> x certifier’s account. Refers to certifier’s certificate.
<cert> certifier’s certificate. See Certificate Verification Rules
<signature> x Bank’s signature. See Signature Rules table.
<cert> Bank’s certificate. See Certificate Verification Rules
checkdoc x

presentment <action> x Function must bepresent . Reason must beprocess ,
test , resend , or info . If reason is notprocess or re-
send , don’t process financially.

doclist x
<bankstamp> Should match the bank that the document was received from,

but the server can’t find out.
return <action> x Function must bepresent . Reason must beinfo , test ,

resend , or return . If reason is notresend or return ,
don’t process financially.

doclist x
<bankstamp>

11.2 Verifying Block Contents

The following tables describe the verification requirements for Block Contents.

103 c
Financial Services Technology Consortium, 1996-99. All rights reserved. 103

Verification Table - Block Verification Rules - Part One
Block Field Type Notes
account bankcode string Component of duplicate detection when in checkdoc

bankacct string Verify against customer DB, if on-us check or deposit.
Component of duplicate detection when in checkdoc

bankser integer Verify against customer DB, if on-us check or deposit.
custno string See payto verification section
expdate ISO date Verify against customer DB, if on-us check or deposit.

Test for stale date (date< current date is invalid).
accttitle string Verify against customer DB if present, if on-us check or

deposit.
accttype string Verify against customer DB if present, if on-us check or

deposit.
bankname string Verify against customer DB if present, if on-us check or

deposit.
bankaddr string Verify against customer DB if present, if on-us check or

deposit.
bankphone string Verify against customer DB if present, if on-us check or

deposit.
bankfax string Verify against customer DB if present, if on-us check or

deposit.
bankemail string Verify against customer DB if present, if on-us check or

deposit.
acctrest string
sigrest string Verify against sigtype in sig block
certissuer string
certserial integer
micrmaskc string Verify according to encoding rules.
micrmaskd string Verify according to encoding rules.

action function string Note:<action> block must be the first block in a doc-
ument.

reason string
attachment astatus string value must betemporary or permanent

adata string Parameter"encoding" must be mime or text. If
encoding is mime, and if verifying the field, must
verify the adata field contains the 3 required MIME
header lines: (mime-version , content-type ,
content-transfer-encoding)

104 c
Financial Services Technology Consortium, 1996-99. All rights reserved. 104

Verification Table - Block Verification Rules - Part Two
Block Field Type Notes
bankstamp date ISO date

timestamp UCT string
stampserial integer
bankcode integer
serverid string
stampdata string

cert certtype string x509v1 or x509v3
certissuer string must match any references to this
certserial integer must match any references to this
certdata b64string ASN.1/X.509

certification date ISO date
country ISO country
checkbook integer
cserial integer

check Checkdata components are ordered.
checknum integer Component of Duplicate Detection
dateissued ISO date Sanity verification
datevalid ISO date
country ISO country
amount decimal Non-negative value.
currency ISO currency
payto string This and following payto’s form a subunit. For multi-

ple payees these appear in repeated checkdatas for each
payee. See Payto Verification

paytobank string Payee bank code. If present, must be accompanied by
paytoacct or paytocustno.

paytoacct string Must be accompanied by paytobank.
paytocustno string Must be accompanied by paytobank.
paytoid string Must be accompanied by paytoidns.
paytoidns t string Must be accompanied by paytoid.
checkbook integer Component of duplicate detection.
restrictions string Must be one of: duration pnynmnd for de-

posit only all payees must endorse
payeracct string Unverified at payee.
memo string Unverified
info string Unverified
conditions string
legalnotice string Don’t verify content; just non-blank if present

105 c
Financial Services Technology Consortium, 1996-99. All rights reserved. 105

Verification Table - Block Verification Rules - Part Three
Block Field Type Notes
deposit amount decimal must match sum of amount fields in checks, must be

non-negative.
currency ISO currency
date ISO date
country ISO country
bankacct string
items integer must match actual number of endorsed check items

endorsement Endorsedata components are ordered.
date ISO date
country ISO country
checkbook integer
restrictions string Must be blank orfor deposit only
memo string
payto string This and following payto’s form a subunit. For multi-

ple payees these appear in repeated checkdatas for each
payee. See Payto Verification

paytobank string Must be accompanied by paytoacct or paytocustno
paytoacct string Must be accompanied by paytobank
paytocustno string Must be accompanied by paytobank
paytoid string Must be accompanied by paytoidns.
paytoidns t string Must be accompanied by paytoid.

106 c
Financial Services Technology Consortium, 1996-99. All rights reserved. 106

Verification Table - Block Verification Rules - Part Four
Block Field Type Notes
invoice custacct string

amount decimal
currency ISO currency
payto string
paytobank string See check/paytobank. The bank has no responsibility

for comparing this and the remaining payto items to
those in the check or endorsement.

paytoacct string See check/paytoacct
paytocustno string See check/paytocustno
paytoid string See check/paytoid
paytoidns t string See check/paytoidns
date ISO date
remittance string Content only of concern to recipient.
invdata string

message retcode string
msgtext string
msgdata string

signature blockref string Length limits depth of document nesting.
hash b64string Paramalg must be one of legal choices (Legal choices

aresha or md5)
nonce integer Must have at least 8 ascii characters. Spaces are not

allowed.
sigref string
sigtype string Must be from list.
certissuer string
certserial integer
algorithm string md5/rsa or sha/dsa or sha/rsa or sha/ecdsa .

Verifiers must support all.
timestamp UCT string
location string
username string Unverified field
useraddr string Unverified field
userphone string Unverified field
useremail string Unverified field
useridnum string Unverified field
userotherid string Unverified field
sig b64string with colon “:” delimiter for DSA or ECDSA

(private) blkname string
crit string true or false . Defaults totrue .
vers decimal defaults to1.0

11.3 Verifying Signatures

The following tables describe the verification requirements for Signatures.

107 c
Financial Services Technology Consortium, 1996-99. All rights reserved. 107

Signature Rules Table
Document Signer Sigref sigtype Blocks hashed
check user account check <action>

<check>
<account>
<attachment>
<invoice>

co-signed check co-signer account co-sign <action>
<account>
<attachment>
<invoice>
1.<check>

counter-signed check counter-signer account counter-sign <action>
<account>
<attachment>
<invoice>
1.<check>
1.<signature>

certified check bank-teller account certification <action>
<certification>
<account>
1.<check>
1. <signature>

endorsement endorser account endorse <action>
cert <endorsement>

<account>
<attachment>
1.<check>
1.<signature>

co-endorsed check co-endorser account co-endorse <action>
cert <endorsement>

<attachment>
1.<endorsement>

counter-endorsed check counter-endorser account counter-endorse <action>
cert <endorsement>

<attachment>
1.<endorsement>
1.<signature>

deposit depositor account deposit <action>
<deposit>
<account>
1.<endorsement>
1.<signature>
.
.

all bank cert bankacct <account>
<cert>

Notation. 1.<block>means<block> in document nested one below this one.

108 c
Financial Services Technology Consortium, 1996-99. All rights reserved. 108

11.4 Payto Verification

There are three pairs of fields that may be used in a check, endorsement, or invoice to uniquely specify the
person or institution being paid. These pairs of fields are...

� The<paytobank>/<paytoacct> pair

� The<paytobank>/<paytocustno> pair

� The<paytoid>/<paytoidsn> pair

A check can be written using any of the above 3 identification pairs. If it does not contain any of them, then
no payto verification can occur, and the check may be endorsed and deposited by anybody.

There are sets of rules for payto verification of the endorsement document and rules for payto verification of
the deposit document, as follows...

� If the<check> block contains any of the above 3 pairs then when the check is endorsed the informa-
tion in the check must be verified by matching related information in the endorsement document, as
follows...

– If the <check> block in the check document contains<paytoacct>/<paytobank> fields then
the endorsement document must contain an<account> block, and the<paytoacct> field in
the<check> block in the check document must match the<bankacct> field in the<account>
block in the endorsement document Similarly the<paytobank> field in the<check> block in the
check document must match the<bankcode> field in the<account> block in the endorsement
document

– If the<check> block in the check document contains<paytocustno>/<paytobank> fields then
the endorsement document must contain an<account> block, and the<paytocustno>field in the
<check> block in the check document must match the<custno> field in the<account> block
in the endorsement document Similarly the<paytobank> field in the<check> block in the
check document must match the<bankcode> field in the<account> block in the endorsement
document

– If the <check> block in the check document contains<paytoid>/<paytoidns> fields then the
endorsement document does not have to contain an account block, and the<paytoid>/<paytoidns>
fields have to match fields in the Subject Distinguished Name in the X.509 certificate in the
<cert> block used to sign the endorsement. The<paytoid> field must match the “Common
Name” portion of the Subject Distinguished Name, and the<paytons> field must match the
“DMDName” portion of the Subject Distinguished Name. If the<paytoidns> field is omitted,
then the<paytoid> field and the “Common Name” which it matches must be globally unique,
and the “DMDName” portion of the Subject Distinguished Name must not be present.

� When the endorsed check is deposited, there are two possible scenarios for verification of the deposit.

1. The<endorsement> block in the endorsement document being deposited does not contain any of
the three payto field pairs. This is the normal case, and implies that the money is being deposited
to the same bank and account specified by the payto information in the check document. In this
case, the payto information in the check document, which has been matched against information
in the endorsement document, must also match the same information in the deposit document

109 c
Financial Services Technology Consortium, 1996-99. All rights reserved. 109

2. The<endorsement> block in the endorsement document contains one of the above payto field
pairs, e.g.<paytoacct>/<paytobank>,<paytocustno>/<paytobank>,<paytoid>/<paytoidns>.
This indicates an “endorsement for transfer” is being performed. Then the above matching rules
for matching between the check document and the endorsement document must be applied again
but this time between the endorsement document and the deposit document. Note. This “endorse-
ment for transfer” mechanism can only be applied once — i.e., a check “endorsed for transfer”
cannot be further transferred but must be deposited.

11.5 Verifying Certificates

The rules for verifying certificates are...

1. Any certificates omitted (with prior agreement) must be obtained from local database or other means,
using<certissuer> and<certserial> fields in referring block (<signature> or<account>).

2. Certificates may be verified by bytewise compare against copies kept in bank database, or cryptograph-
ically using public key of root, or via both methods.

3. effective date of document must fall between not-before and not-after dates in X509 certificate.

4. bank certificates must be checked to determine whether they have been revoked.

The cryptographic verification process for certificates in an FSML Document is as follows.

For each subdocument in the FSML document, perform the following steps...

1. Locate all the<cert> blocks in the subdocument. Extract the<certdata> field contents, convert the
base64string to binary, and parse and extract the x509 contents.

2. For each certificate in the subdocument, perform the following steps...

(a) If the<certissuer> field contents in the<cert> block to be verified is the name of the root, skip
step 2b, and use the root public key as the public key in step 2d.

(b) Find another certificate in the same subdocument whose x509 “subject” distinguished name
matches the “issuer” name in the certificate being verified(the<certissuer> field contents in
the FSML must be the same as the issuer name in the X509, either one may be used). If it cannot
be found in the same subdocument, a local cache or database of certificates may be used. Extract
its subject public key for use in step 2d.

(c) Extract the Signed Certificate data from the x509 in the certificate to be verified.

(d) Calculate the hash on the data obtained in step 2c, using the hash algorithm specified in the X509
algorithm field.

(e) Verify that the hash obtained in step 2d, when signed using the public key (obtained in step 2b or
2c), matches the claimed signature from the X509.

(f) Verify that the current date falls between the notBefore and notAfter dates in the X509 certificate.

(g) Verify that the certificate is not in a certificate revocation list (if appropriate).

110 c
Financial Services Technology Consortium, 1996-99. All rights reserved. 110

Bibliography

[1] ISO, International Organization for Standardization, 1, rue de Varembe, Case Postale 56, CH-1211,
Geneva 20, Switzerland http://www.itu.org.ISO 8879 Information Processing Systems - Text and Office
Systems - Standard Generalized Markup Language (SGML), 1988.

[2] R. Rivest.RFC 1321 The MD5 Message-Digest Algorithm. IETF, http://www.ietf.org, April 1992.

[3] R.L. Rivest, A. Shamir, and L.M. Adleman. A method for obtaining digital signatures and public-key
cryptosystems.Communications of the ACM, 21(2):120–126, February 1978.

[4] U.S. Department of Commerce / National Institute of Standards and Technology, http://www.nist.gov.
FIPS Pub 180-1 - Secure Hash Standard, April 1995.

[5] U.S. Department of Commerce / National Institute of Standards and Technology, http://www.nist.gov.
FIPS Pub 186 - Digital Signature Standard, May 1993.

[6] Standards for Efficient Cryptography Group, http://www.secg.org/.GEC1: Recommended Elliptic
Curve Domain Parameters, February 1999.

[7] CCITT, International Telegraphic Union, General Secretariat, Place Des Nations, CH-1211, Geneva
20, Switzerland. http://www.itu.org.CCITT X.509 The Directory - Authentication Framework, January
1995.

[8] Nicklaus Wirth. What can we do about the unnecessary diversity of notation for syntactic definitions.
Communications of the ACM, 22(11):822–823, November 1977.

[9] John Backus and Peter Naur. The syntax and semantics of the proposed international algebraic language
of the Zurich ACM-GAMM conference.Proceedings of the International Conference on Information
Processing, June 1959.

[10] N. Borenstein and N. Freed.RFC 2045 MIME (Multipurpose Internet Mail Extensions) - Part One:
Format of Internet Message Bodies. IETF, http://www.ietf.org, November 1996.

[11] American National Standards Institute, X3.4.US-ASCII. Coded Character Set – 7-bit American Stan-
dard Code for Information Interchange, 1986.

[12] ISO, International Organization for Standardization, 1, rue de Varembe, Case Postale 56, CH-1211,
Geneva 20, Switzerland http://www.iso.ch.ISO 8601 Data elements and interchange formats - Infor-
mation interchange - Representation of dates and times, 1988.

[13] RSA Laboratories, 2955 Campus Drive, Suite 400, San Mateo, CA 94403-2507 -
http://www.rsa.com/rsalabs/.PKCS1: RSA Encryption Standard - Version 1.5, November 1993.

111 c
Financial Services Technology Consortium, 1996-99. All rights reserved. 111

[14] ITU, International Telecommunications Union Place des Nations, CH-1211, Geneva 20, Switzerland.
http://www.itu.org. ISO/IEC 8824-1:1998 Information Technology - Abstract Syntax Notation One
(ASN.1): Specification of Basic Notation, 1998.

[15] ITU, International Telecommunications Union Place des Nations, CH-1211, Geneva 20, Switzerland.
http://www.itu.org. ISO/IEC 8825-1:1998 Information Technology - Abstract Syntax Notation One
(ASN.1): Encoding Rules: Specification of Basic Encoding Rules (BER), Canonical Encoding Rules
(CER) and Distinguished Encoding Rules (DER), 1998.

[16] N. Borenstein and N. Freed.RFC 2046 MIME (Multipurpose Internet Mail Extensions) - Part Two:
Media Types. IETF, http://www.ietf.org, November 1996.

[17] ISO, International Organization for Standardization, 1, rue de Varembe, Case Postale 56, CH-1211,
Geneva 20, Switzerland http://www.iso.ch.ISO 3166 Codes for the representations of names of coun-
tries, 1993.

[18] ISO, International Organization for Standardization, 1, rue de Varembe, Case Postale 56, CH-1211,
Geneva 20, Switzerland http://www.iso.ch.ISO 4217 Codes for the representations of currencies and
funds, 1995.

[19] American National Standards Institute, http://www.ansi.org.X9.13 Placement and location of MICR
Printing, 1990.

[20] American National Standards Institute, http://www.ansi.org.X9.37 Specification for Electronic Check
Interchange, 1994.

[21] ITU, International Telecommunications Union Place des Nations, CH-1211, Geneva 20, Switzerland.
http://www.itu.org. ISO/IEC 8824-2:1998 Information Technology - Abstract Syntax Notation One
(ASN.1): Information Object Specification, 1998.

[22] ITU, International Telecommunications Union Place des Nations, CH-1211, Geneva 20, Switzerland.
http://www.itu.org. ISO/IEC 8824-3:1998 Information Technology - Abstract Syntax Notation One
(ASN.1): Constraint Specification, 1998.

[23] ITU, International Telecommunications Union Place des Nations, CH-1211, Geneva 20, Switzerland.
http://www.itu.org. ISO/IEC 8824-4:1998 Information Technology - Abstract Syntax Notation One
(ASN.1): Parameterization of ASN.1 Specifications, 1998.

[24] National Institute for Standards and Technology, http://csrc.nist.gov/encryption/.Recommended Elliptic
Curves for Federal Government Use, May 1999.

[25] K. Moore. RFC 2047 MIME (Multipurpose Internet Mail Extensions) - Part Three: Message Header
Extensions for Non-ASCII Text. IETF, http://www.ietf.org, November 1996.

[26] N. Borenstein and N. Freed.RFC 2049 MIME (Multipurpose Internet Mail Extensions) - Part Five:
Conformance Criteria and Examples. IETF, http://www.ietf.org, November 1996.

112 c
Financial Services Technology Consortium, 1996-99. All rights reserved. 112

Example Documents

Below is an example of an Electronic Check.

<fsml-doc docname="echeck187" type="check">
<action>
<blkname>act1
<crit>true
<vers>1.0
<function>payment
<reason>process
</action>
<check>
<blkname>check2
<crit>true
<vers>1.0
<checkdata>
<checknum>187
<dateissued>19970519
<datevalid>19970519
<country>us
<amount>100000.00
<currency>usd
<payto>Chili Pepper
</checkdata>
<checkbook>2048
<legalnotice>This instrument subject to check law
</check>
<signature>
<blkname>sig7
<crit>true
<vers>1.5
<sigdata>
<blockref>act1
<hash alg="sha">J4t/NI7s44IqSMTRl/1bkgABwug=
<blockref>check2
<hash alg="sha">vFnS/lVm9QaRDFAgtijkE24cazk=
<blockref>acct-111111111-00000001
<hash alg="sha">fF51C8MwtSVgeCQPOmzDTBjy1Zg=
<nonce>9D9BC5AA75

113 c
Financial Services Technology Consortium, 1996-99. All rights reserved. 113

<sigref>acct-111111111-00000001
<sigtype>check
<algorithm>sha/dsa
<location>us
</sigdata>
<sig>
JInh43b1zYIydAELCmAo6j8nY/I=:KQuV+PAs9mFrnDoD3wtQKVoWIpU=
</signature>
<account>
<blkname>acct-111111111-00000001
<crit>true
<vers>1.5
<bankcode>111111111
<bankacct>00000001
<bankser>00000001
<expdate>19971231
<accttitle>John Q. Echecker
<accttype>checking
<bankname>BankA
<bankaddr>123 BankA Blvd, New York NY
<bankphone>(212)555-1234
<bankfax>(212)555-1235
<bankemail>echeck@banka.com
<acctrest>maximum amount 1.00 usd
<sigrest>chk:dep
<certissuer>/C=US/ST=MD/O=BANKA/OU=checking/
<certserial>1
<micrmaskc>:::111111111:00000001:%05n:%21m
<micrmaskd>:::111111111:00000001::%21m
</account>
<cert>
<blkname>cert-111111111-00000001
<crit>true
<vers>1.5
<certtype>x509v1
<certissuer>/C=US/ST=MD/O=BANKA/OU=checking/
<certserial>1
<certdata>
MIIB8DCCAbACAQEwCQYHKoZIzjgEAzA9MQswCQYDVQQGEwJVUzELMAkGA1UECBMC
TUQxDjAMBgNVBAoTBUJBTktBMREwDwYDVQQLEwhjaGVja2luZzAeFw05NzA0MTQw
MTU5MDBaFw05NzEwMTEwMTU5MDBaMFAxCzAJBgNVBAYTAlVTMQswCQYDVQQIEwJN
RDEOMAwGA1UEChMFQkFOS0ExETAPBgNVBAsTCGNoZWNraW5nMREwDwYDVQQDEwgx
MTExMDBBMTCB7jCBpgYHKoZIzjgEATCBmgJAjfKklEkidqo9JXWbsGhpy+rA2Dr7
jQz3y7gyTw14guXQdi/FtyEOr8Lprawyq3qsSWk9+/g3JMLsBzbuMcgCkQIUx3Mh
jHN+yO6ZO08t7TD0jtrOkV8CQGJtAng56goTQTFjpVtMtQApnVUilWzvyzv/EPOZ
ziwuccud5fokur9Y5beVIZJcnMQun29GSwiMxXKvU+bXiAIDQwACQGvv+18gw5/+
4ulXRZnrYGvOmRAIb5/38i+qci58sCjx0vrbzX+/T9Fq/8kNS6grKBn7p1SHPy9J
tvyMiVKK5ZEwCQYHKoZIzjgEAwMvADAsAhRST3iIPK/BCqc77R3cJPL06CEEKQIU
HIk1bb56d3VfEB51AxCRDOMl234=

114 c
Financial Services Technology Consortium, 1996-99. All rights reserved. 114

</cert>
<signature>
<blkname>banksig6
<crit>true
<vers>1.5
<sigdata>
<blockref>acct-111111111-00000001
<hash alg="sha">fF51C8MwtSVgeCQPOmzDTBjy1Zg=
<blockref>cert-111111111-00000001
<hash alg="sha">1xzwMBQg7/rXMxC8k79xyotRTVY=
<nonce>9D9BC5AA75
<sigref>cert-111111111
<sigtype>bankacct
<algorithm>sha/dsa
<location>us
</sigdata>
<sig>
JInh43b1zYIydAELCmAo6j8nY/I=:mBnAYXvAb7Pm+EWU865jlQvEr7A=
</signature>
<cert>
<blkname>cert-111111111
<crit>true
<vers>1.0
<certtype>x509v1
<certissuer>/C=US/ST=MD/O=FSTC/OU=checking CA/
<certserial>1
<certdata>
MIIB3zCCAZ8CAQEwCQYHKoZIzjgEAzA/MQswCQYDVQQGEwJVUzELMAkGA1UECBMC
TUQxDTALBgNVBAoTBEZTVEMxFDASBgNVBAsTC2NoZWNraW5nIENBMB4XDTk3MDQx
NDAxNTEwMFoXDTk3MTAxMTAxNTEwMFowPTELMAkGA1UEBhMCVVMxCzAJBgNVBAgT
Ak1EMQ4wDAYDVQQKEwVCQU5LQTERMA8GA1UECxMIY2hlY2tpbmcwge4wgaYGByqG
SM44BAEwgZoCQI3ypJRJInaqPSV1m7BoacvqwNg6+40M98u4Mk8NeILl0HYvxbch
Dq/C6a2sMqt6rElpPfv4NyTC7Ac27jHIApECFMdzIYxzfsjumTtPLe0w9I7azpFf
AkBibQJ4OeoKE0ExY6VbTLUAKZ1VIpVs78s7/xDzmc4sLnHLneX6JLq/WOW3lSGS
XJzELp9vRksIjMVyr1Pm14gCA0MAAkBzJYSvMZO5CPQdOqaGgEIcZmHqJZ1BRtSP
IlhmmhiUYzddTDgEAniQOZLRii7Km2b0BGliunomQzymYhIxS9vrMAkGByqGSM44
BAMDLwAwLAIUVqCoTpl+sHct1ZJ1Mzjp1lsHlXUCFCaarpGAHZ6AuABKiSJeJ5FQ
ROpA
</cert>
</fsml-doc>

115 c
Financial Services Technology Consortium, 1996-99. All rights reserved. 115

SGML Document Type Definition (DTD)

<!SGML "ISO 8879:1986"
-- --
-- DTD for FSML Electronic Documents --
-- First Draft 27 Feb 1996 --
-- Written by J. Kravitz IBM Research --
-- Last Revision 02 Apr 1999 --
-- Version 1.50.0 --
-- --

CHARSET
BASESET "ISO 646:1983//CHARSET

International Reference Version (IRV)//ESC 2/5 4/0"
DESCSET 0 9 UNUSED

9 2 9
11 2 UNUSED
13 1 13
14 18 UNUSED
32 95 32
127 1 UNUSED

BASESET "ISO Registration Number 100//CHARSET
ECMA-94 Right Part of Latin Alphabet Nr. 1//ESC 2/13 4/1"

DESCSET 128 32 UNUSED
160 95 32
255 1 UNUSED

CAPACITY SGMLREF
TOTALCAP 150000
GRPCAP 150000

SCOPE DOCUMENT
SYNTAX

SHUNCHAR CONTROLS 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
19 20 21 22 23 24 25 26 27 28 29 30 31 127 255

BASESET "ISO 646:1983//CHARSET
International Reference Version (IRV)//ESC 2/5 4/0"

DESCSET 0 128 0
FUNCTION RE 13

116 c
Financial Services Technology Consortium, 1996-99. All rights reserved. 116

RS 10
SPACE 32
TAB SEPCHAR 9

NAMING LCNMSTRT ""
UCNMSTRT ""
LCNMCHAR "-"
UCNMCHAR "-"
NAMECASE GENERAL YES

ENTITY NO
DELIM GENERAL SGMLREF

SHORTREF SGMLREF
NAMES SGMLREF
QUANTITY SGMLREF

NAMELEN 34
TAGLVL 100
LITLEN 1024
GRPGTCNT 150
GRPCNT 64

FEATURES
MINIMIZE

DATATAG NO
OMITTAG YES
RANK NO
SHORTTAG NO

LINK
SIMPLE NO
IMPLICIT NO
EXPLICIT NO

OTHER
CONCUR NO
SUBDOC NO
FORMAL YES

APPINFO NONE
>

<!DOCTYPE fsml [

<!ELEMENT fsml o o (fsml-doc)>

<!ELEMENT fsml-doc - - (
(
action ,
(

fsml-doc |
signature |
check |
deposit |
endorsement |

117 c
Financial Services Technology Consortium, 1996-99. All rights reserved. 117

account |
cert |
attachment |
invoice |
message |
bankstamp |
bundle |
cashletter
)+

)
)>

<!ATTLIST fsml-doc docname CDATA #REQUIRED
type CDATA #REQUIRED >

<!ELEMENT action - - (
(
blkname ,
crit? ,
vers?
),(
function &
reason
)
)>

<!ELEMENT signature - - (
(
blkname ,
crit? ,
vers?
),(
sigdata ,
sig

)
)>

<!ELEMENT sigdata - - (
(blockref , hash)+ &
nonce &
sigref? &
sigtype &
(certissuer , certserial)? &
algorithm &
timestamp? &
location? &
username? &
useraddr? &
userphone? &

118 c
Financial Services Technology Consortium, 1996-99. All rights reserved. 118

useremail? &
useridnum? &
userotherid?

)>

<!ELEMENT check - - (
(
blkname ,
crit? ,
vers?
),(
checkdata &
checkbook &
restrictions* &
payeracct? &
memo? &
info? &
conditions? &
vara? &
varb? &
varc? &
vard? &
vare? &
varf? &
varg? &
varh? &
vari? &
legalnotice
)

)>

<!ELEMENT checkdata - - (
checknum ,
dateissued ,
datevalid ,
country? ,
amount ,
currency ,
(
payto ,
(paytobank , (paytoacct | paytocustno))*
(paytoid , paytoidns)*
)+

)>

<!ELEMENT deposit - - (
(
blkname ,
crit? ,

119 c
Financial Services Technology Consortium, 1996-99. All rights reserved. 119

vers?
),(
amount &
currency &
date &
country? &
items &
bankacct &
vara? &
varb? &
varc? &
vard? &
vare? &
varf? &
varg? &
varh? &
vari?
)

)>

<!ELEMENT endorsement - - (
(
blkname ,
crit? ,
vers?
),(
endorsedata &
checkbook &
restrictions* &
memo?
)

)>

<!ELEMENT endorsedata - - (
date? ,
country? ,
amount? ,
currency? ,
(
payto ,
(paytobank , (paytoacct | paytocustno))*
(paytoid , paytoidns)*
)*

)>

<!ELEMENT certification - - (
(
blkname ,
crit? ,

120 c
Financial Services Technology Consortium, 1996-99. All rights reserved. 120

vers?
),(
date &
country? &
checkbook &
cserial?
)

)>

<!ELEMENT account - - (
(
blkname ,
crit? ,
vers?
),(
bankcode &
bankacct &
bankser &
custno &
expdate &
accttitle? &
accttype? &
bankname? &
bankaddr? &
bankphone? &
bankfax? &
bankemail? &
acctrest* &
sigrest? &
certissuer &
certserial &
micrmaskc? &
micrmaskd? &
)

)>

<!ELEMENT cert - - (
(
blkname ,
crit? ,
vers?
),(
certtype &
(certissuer , certserial) &
certdata
)

)>

<!ELEMENT attachment - - (

121 c
Financial Services Technology Consortium, 1996-99. All rights reserved. 121

(
blkname ,
crit? ,
vers?
),(
astatus? ,
adata

)>

<!ELEMENT invoice - - (
(
blkname ,
crit? ,
vers?
),(
custacct &
amount &
currency),
(
payto ,
(paytobank , (paytoacct | paytocustno))*
(paytoid , paytoidns)*
)+, (
date? &
remittance? &
invdata?
)

)>

<!ELEMENT message - - (
(
blkname ,
crit? ,
vers?
),(
retcode &
msgtext &
msgdata?
)

)>

<!ELEMENT bankstamp - - (
(
blkname ,
crit? ,
vers?
),(
date &
timestamp &

122 c
Financial Services Technology Consortium, 1996-99. All rights reserved. 122

stampserial &
serverid? &
stampdata? &
bankcode
)

)>

<!ELEMENT bundle - - (
(
blkname ,
crit? ,
vers?
),(
items &
amount
)

)>

<!ELEMENT cashletter - - (
(
blkname ,
crit? ,
vers?
),(
items &
amount &
bundles
)

)>

<!ELEMENT blkname - O (#PCDATA)>
<!ELEMENT crit - O (#PCDATA)>
<!ELEMENT vers - O (#PCDATA)>

<!ELEMENT acctrest - O (#PCDATA)>
<!ELEMENT accttitle - O (#PCDATA)>
<!ELEMENT accttype - O (#PCDATA)>
<!ELEMENT adata - - (#CDATA)>
<!ATTLIST adata encoding (mime | text) text >
<!ELEMENT algorithm - O (#PCDATA)>
<!ELEMENT amount - O (#PCDATA)>
<!ELEMENT astatus - O (#PCDATA)>
<!ELEMENT bankacct - O (#PCDATA)>
<!ELEMENT bankaddr - O (#PCDATA)>
<!ELEMENT bankcode - O (#PCDATA)>
<!ELEMENT bankemail - O (#PCDATA)>
<!ELEMENT bankfax - O (#PCDATA)>
<!ELEMENT bankname - O (#PCDATA)>
<!ELEMENT bankphone - O (#PCDATA)>

123 c
Financial Services Technology Consortium, 1996-99. All rights reserved. 123

<!ELEMENT bankser - O (#PCDATA)>
<!ELEMENT blockref - O (#PCDATA)>
<!ATTLIST blockref req (true | false) true >
<!ELEMENT bundles - O (#PCDATA)>
<!ELEMENT certdata - O (#PCDATA)>
<!ELEMENT certissuer - O (#PCDATA)>
<!ELEMENT certserial - O (#PCDATA)>
<!ELEMENT certtype - O (#PCDATA)>
<!ELEMENT checkbook - O (#PCDATA)>
<!ELEMENT checknum - O (#PCDATA)>
<!ELEMENT conditions - O (#PCDATA)>
<!ELEMENT country - O (#PCDATA)>
<!ELEMENT cserial - O (#PCDATA)>
<!ELEMENT currency - O (#PCDATA)>
<!ELEMENT custacct - O (#PCDATA)>
<!ELEMENT custno - O (#PCDATA)>
<!ELEMENT date - O (#PCDATA)>
<!ELEMENT dateissued - O (#PCDATA)>
<!ELEMENT datevalid - O (#PCDATA)>
<!ELEMENT expdate - O (#PCDATA)>
<!ELEMENT function - O (#PCDATA)>
<!ELEMENT hash - O (#PCDATA)>
<!ATTLIST hash alg (md5 | sha) #REQUIRED >
<!ELEMENT info - O (#PCDATA)>
<!ELEMENT invdata - - (#PCDATA)>
<!ELEMENT items - O (#PCDATA)>
<!ELEMENT legalnotice - O (#PCDATA)>
<!ELEMENT location - O (#PCDATA)>
<!ELEMENT memo - O (#PCDATA)>
<!ELEMENT micrmaskc - O (#PCDATA)>
<!ELEMENT micrmaskd - O (#PCDATA)>
<!ELEMENT msgtext - O (#PCDATA)>
<!ELEMENT msgdata - - (#PCDATA)>
<!ELEMENT nonce - O (#PCDATA)>
<!ELEMENT payeracct - O (#PCDATA)>
<!ELEMENT payto - O (#PCDATA)>
<!ELEMENT paytoacct - O (#PCDATA)>
<!ELEMENT paytobank - O (#PCDATA)>
<!ELEMENT paytocustno - O (#PCDATA)>
<!ELEMENT paytoid - O (#PCDATA)>
<!ELEMENT paytoidns - O (#PCDATA)>
<!ELEMENT reason - O (#PCDATA)>
<!ELEMENT remittance - O (#PCDATA)>
<!ELEMENT restrictions - O (#PCDATA)>
<!ELEMENT retcode - O (#PCDATA)>
<!ELEMENT serverid - O (#PCDATA)>
<!ELEMENT sig - O (#PCDATA)>
<!ELEMENT sigref - O (#PCDATA)>
<!ELEMENT sigrest - O (#PCDATA)>

124 c
Financial Services Technology Consortium, 1996-99. All rights reserved. 124

<!ELEMENT sigtype - O (#PCDATA)>
<!ELEMENT stampdata - O (#PCDATA)>
<!ELEMENT stampserial - O (#PCDATA)>
<!ELEMENT timestamp - O (#PCDATA)>
<!ELEMENT useraddr - O (#PCDATA)>
<!ELEMENT useremail - O (#PCDATA)>
<!ELEMENT useridnum - O (#PCDATA)>
<!ELEMENT username - O (#PCDATA)>
<!ELEMENT userotherid - O (#PCDATA)>
<!ELEMENT userphone - O (#PCDATA)>
<!ELEMENT vara - O (#PCDATA)>
<!ELEMENT varb - O (#PCDATA)>
<!ELEMENT varc - O (#PCDATA)>
<!ELEMENT vard - O (#PCDATA)>
<!ELEMENT vare - O (#PCDATA)>
<!ELEMENT varf - O (#PCDATA)>
<!ELEMENT varg - O (#PCDATA)>
<!ELEMENT varh - O (#PCDATA)>
<!ELEMENT vari - O (#PCDATA)>

]>

125 c
Financial Services Technology Consortium, 1996-99. All rights reserved. 125

Differences between FSML 1.17 and
FSML 1.50

D.1 Summary of differences

FSML 1.17 had significant syntactic and semantic differences from FSML 1.50, which are summarized here.

The following rules and specifications describe the differences between version 1.17 and version 1.50 FSML
syntax and semantics. Note that mixture of FSML 1.50 and FSML 1.17 blocks in a single document is
supported. In most cases this has no effect on the correctness of the document.

The only instance where mixing of FSML 1.17 blocks and FSML 1.50 blocks can have an impact on the
verification of a document is when one of the pair of<signature> and<account> blocks is of one version
and one is of the other version. Since the<sigtype> field in the<signature> block may be verified against
the<sigrest> field in the<account> block, the following rules should be used....

sigrest/sigtype matching rules
<signature> <account> Rule
FSML 1.17 FSML 1.50 Verifier cannot determine type of

signature, except by context (which
blocks are signed). This may be
used to determine if<sigrest> al-
lows this type of signature.

FSML 1.50 FSML 1.17 No verification is possible.
<account> block allows any
type of signature.

Hex Encoding FSML 1.17 syntax used hexadecimal ASCII encoding to encode binary
data. All binary data in FSML 1.50 syntax is now encoded using base64
encoding. This includes the<hash>, <sig>, and<certdata> fields.
Any block containing hexadecimal-encodedbinary datamusthave a<vers>
lower than 1.5. Blocks whose version is 1.5 or later and which contain
binary datamustencode the data using base64 instead of hex ASCII.

Hash Contents FSML 1.17 signature semantics calculated block hashes without includ-
ing the block start and block end tags in the hash calculation. The hashed
data consisted of all the bytes (ASCII octets) between the ending> of the
start tag and the starting< of the end tag, exclusive of the angle brackets.
FSML 1.50 signature semantics include the block start and block end tags

126 c
Financial Services Technology Consortium, 1996-99. All rights reserved. 126

in the hash calculations, including the angle brackets and the tag name
strings they enclose. Any<signature> block containing<hash> values
calculated without inclusion of the referenced block begin and end tags
must have a<vers> lower than 1.5.

blockref attribute FSML 1.50 syntax for the<blockref> tag now supports the “req=” at-
tribute. This was not supported by FSML 1.17 syntax. Any signature
block containing a<blockref> tag with a “req=” attribute must not have
a<vers> lower than 1.5.

Private Blocks Private blocks (blocks whose begin tags start with “x:” were not sup-
ported prior to FSML 1.50. However, since mixing of FSML 1.17 blocks
and FSML 1.50 blocks is permitted, private blocks may be generated in
a document where all other blocks use FSML 1.17 syntax.

New Fields A number of fields were added in FSML 1.50. The following fields were
not supported in FSML 1.17. Blocks containing these fields must not
have a<vers> lower than 1.5.

� The<sigtype> field in the<signature> block.

� The<info> field in the<check> block.

� The<sigrest> field in the<account> block.

� The<paytoid>and<paytoidns> fields in the<check>,<endorsement>
and<invoice> blocks.

� The<custno> field in the<account> block.

� The <micrmaskc> and<micrmaskd> fields in the<account>
block, which replace the<micrmaskc1>,<micrmaskc2>,<micrmaskc3>,
<micrmaskd1>,<micrmaskd2>,<micrmaskd3>fields which were
used in the the FSML 1.17 version of the<account> block.

� the<vara> through<vari> fields in the<check>block or<deposit>
block.

Deleted Fields A number of fields were deleted in FSML 1.50. The following fields
were defined in FSML 1.17 but never used. The are no longer allowed in
any FSML document.

� The<paytokey>field in the<check>,<endorsement>and<invoice>
blocks.

� The<amount>and<currency>fields in the<endorsement>block.

co-signing Nesting of documents to add co-signers and co-endorsers is no longer
supported in FSML 1.50 syntax. Co-signatures and counter-signatures
are added as blocks into the existing document. The FSML 1.17 syntax
for co-signatures, counter-signatures, co-endorsers and counter-endorsers
was never fully defined or implemented, and is therefore deprecated.

bankstamps Nesting of documents to add new bankstamps is no longer used in FSML
1.50 syntax. Additional bankstamps are added as blocks into the existing
document. FSML 1.17 syntax used an outer document to contain new
bankstamps.

127 c
Financial Services Technology Consortium, 1996-99. All rights reserved. 127

certificates FSML 1.17<cert> blocks only allowed X.509 Version 1 certificates.
FSML 1.50<cert> blocks allow either X.509 Version 1 or X.509 Ver-
sion 3 certificates.

algorithms Support for the Elliptic Curve cryptographic signature algorithm ECDSA
was added to FSML 1.50.

128 c
Financial Services Technology Consortium, 1996-99. All rights reserved. 128

D.2 Definitions of FSML 1.17 Deprecated Blocks

This section describes the blocks which have been changed from FSML 1.17 to FSML 1.50. Use of these
blocks, while deprecated, is still allowed.

D.2.1 Version 1.0 echeck Signature Block Definition

<signature>
<blkname> namestring
<crit> true
<vers> 1.0
<sigdata>
<blockref> dnamestring
<hash alg="sha"> hexstring
<blockref> dnamestring
<hash alg="sha"> hexstring

...
<blockref> dnamestring
<hash alg="sha"> hexstring
<nonce> valuestring
<sigref> namestring
<certissuer> namestring
<certserial> number
<algorithm> namestring
<timestamp> valuestring
<location> valuestring
<username> valuestring
<useraddr> valuestring
<userphone> valuestring
<useremail> valuestring
<useridnum> valuestring
<userotherid> valuestring
</sigdata>
<sig> hexstring
</signature>

Figure D.23: Version 1.0 echeck Signature block element definition

Version 1.0 echeck Signature Block Field Definitions

blockref (required) The signature block contains one or more<blockref> fields, each of which
contains the unique block name of the associated block being signed. All of the block refer-
ences must appear immediately before their respective hashes (see below). The<blockref>
and<hash> pairs may be repeated multiple times to sign multiple blocks.

129 c
Financial Services Technology Consortium, 1996-99. All rights reserved. 129

hash (required) This field contains the actual hash of the respective block. Each<hash> start
tag must have an attribute which specifies the algorithm used to perform the hash. The
currently allowed attribute values aremd5[2] or sha[4]. The alg= attribute is required.
The use ofmd5 is deprecated. Other hash algorithms may be supported in future. It is not
required that the same hash algorithm be used for each of the blockrefs in a signature block.
All hashes are encoded in “network byte order”, which means that the most significant bytes
are leftmost (first). Note: Attribute values must be enclosed in quotes.

nonce (required) This is a nonce, or one-time random number, used to “salt” the hashed data
to discourage cryptanalysis attacks. The nonce value can be any string of random ASCII
characters from within the set of allowed FSML characters (see Character Encoding above)
not including whitespace.

Note to Implementors:

Although any FSML character except whitespace is allowed in the<nonce> value, it is
permitted, and implementors may find it convenient, to generate a random number and
include it in the<nonce> field represented as a decimal integer, a floating-point number, a
hexadecimal-encoded octet string, or as a base64-encoded octet string. Note that the use of
this string in the hash is purely as a sequence of ASCII octets. The fact that it may have been
created as an ASCII representation of a floating point number or integer, or hexadecimal
number is irrelevant to its use in the hash data.

sigref (optional) This is the block name of the<account> block which contains a reference to the
certificate block, or it is the block name of the<cert> block itself, for signatures that don’t
need account blocks. This field, although optional, is only optional when an agreement is
in place indicating that the recipient of the document does not need the certificate in order
to process the document.

certissuer (optional) This field contains the unique distinguished name of the issuer of the certificate[7].
It should only be specified if the<account> and<cert> blocks are not being sent with
this document, and only when the blocks being signed do not require an account — e.g.,
an endorsement. See the description of the<certissuer> field in the<cert> block for the
syntax used to specify this field.

certserial (optional) This field contains the unique certificate serial number assigned by the issuer of
the certificate. It should only be specified if the<account> and<cert> blocks are not
being sent with this document, and only when the blocks being signed do not require an
account — e.g., an endorsement.

algorithm (required) This string indicates the algorithm used to sign the signature block. It may
be md5/rsa[3] or sha/dsa[5] or sha/rsa or sha/ecdsa[6]. Note: Implementors of code
that is used to sign FSML Electronic Documents may choose to support only one of the
above three possible signing algorithms. Implementors of code that is used to verify FSML
Electronic Documents must support all three algorithms. This ensures interoperablity. The
use of md5 is deprecated.

timestamp (optional) This field specifies the time that the document was signed. It must be in Univer-
sal time (i.e., GMT) specified as CCYYMMDDThhmmssZ, where theT andZ are literal
characters, and where “CC” is the century (currently 19, soon 20), “YY” is the year, “MM”
is the month, “DD” is the day, “hh” is the hour, “mm” is the minute and ss is the second[12].

location (optional) This field specifies location/country where the document was signed.

130 c
Financial Services Technology Consortium, 1996-99. All rights reserved. 130

username (optional) This is an identification string containing the account user’s name. It is optionally
inserted into the check by the Electronic Checkbook hardware token.

This field, and the 5 following fields are considered the electronic equivalent of the data
usually printed on a paper check by the Check Printing company. This data is supplied by
the checkbook owner to the bank at the time the electronic checking account is established
but it is not certified to be correct or accurate by the bank. The data is inserted into the Elec-
tronic Checkbook when the Checkbook is initialized at the bank, and may also be corrected
or updated later by the bank using administrative checkbook functions and passwords.

This data is then inserted, under control of the user, into the check by the Electronic Check-
book, however the data cannot be changed or deleted by the user once the check is created.
It therefore supplies a form of identification sometimes required by check guarantee or-
ganizations or merchants. The user may select, when writing a check, which of the 6
identification fields are to be inserted into the check, in any combination, or may select
none of them.

useraddr (optional) This is an identification string containing the account user’s address. It is option-
ally inserted into the check by the Electronic Checkbook hardware token.

userphone (optional) This is an identification string containing the account user’s phone number. It is
optionally inserted into the check by the Electronic Checkbook hardware token.

useremail (optional) This is an identification string containing the account user’s email address. It is
optionally inserted into the check by the Electronic Checkbook hardware token.

useridnum (optional) This is an identification string containing the account user’s identification num-
ber. It is optionally inserted into the check by the Electronic Checkbook hardware token.

userotherid (optional) This is an identification string containing any user identification the user wishes
(e.g., company name). It is optionally inserted into the check by the Electronic Checkbook
hardware token.

sig (required) This is a hexadecimal encoding of the actual signature data. For certain algo-
rithms, the field is split into two portions using a colon":" . For DSA or ECDSA, the
field contains the two portions of the signature as r:s, where r and s are long hexdecimal
ASCII strings. For RSA, only a single string is specified, with no colon separator. All sig-
natures are encoded in “network byte order”, which means that the most significant bytes
are leftmost (first).

Signature Calculation

The calculation of the Signature is performed as follows...

1. The<nonce> value is created (by the electronic checkbook) as a random number. The nonce value
can be any string of random ASCII characters from within the set of allowed FSML characters (see
Character Encoding above) not including whitespace.

Note to Implementors:

Although any FSML character except whitespace is allowed in the<nonce> value, it is permitted,
and implementors may find it convenient, to generate a random number and include it in the<nonce>
field represented as a decimal integer, a floating-point number, a hexadecimal-encoded octet string, or

131 c
Financial Services Technology Consortium, 1996-99. All rights reserved. 131

as a base64-encoded octet string. Note that the use of this string in the hash is purely as a sequence
of ASCII octets. The fact that it may have been created as an ASCII representation of a floating point
number or integer, or hexadecimal number is irrelevant to its use in the hash data.

2. The<nonce> value is logically prepended to the subject block contents before hashing. This includes
the tag string “<nonce>” — e.g., if the nonce value is 12345, the characters<nonce >12345 are
logically prepended to the subject block before hashing.

3. The hash is calculated using the contents of the subject block, (with the<nonce> prepended) excluding
the block start tag and block end tag, with the exception of all carriage returns, line feeds, and trailing
spaces on a line. Leading and embedded spaces in a line are included in the hash. SGML entities (i.e.,
character names enclosed between an ampersand and a semicolon) are left untranslated when hashing.

4. The resulting hash value is inserted into the<hash> entry (encoded as hexadecimal ASCII) in the
signature block.

5. Steps 2 through 4 are repeated for each block to be signed.

6. A second hash calculation is performed on the contents of the<sigdata> sub-block, which contains
the previously calculated hashes, their block references, and the<nonce>. This should include all
characters between the<sigdata> tag and the</sigdata> tag, not including the tags themselves, again
omitting all carriage returns, line feeds, and trailing spaces. This second hash is then signed using
the private key in the electronic checkbook. The result is the signature which is inserted (encoded as
hexadecimal ASCII) into the signature block as the value for the<sig> tag.

Signature Verification

The verification of the Signature is performed as follows...

1. The following steps are repeated for each block referenced by a<blockref> tag in the signature. If
the referenced block is not present, and<blockref req="false" > was specified, the block is
assumed to have been detached. The following steps are not performed for this block, and this block’s
absence is not considered to invalidate the document.

(a) The<nonce> value from the signature block is logically prepended to the referenced blocks con-
tents before hashing. This includes the tag string “<nonce>” — e.g., if the nonce value is 12345,
the characters<nonce >12345 are logically prepended to the referenced blocks contents before
hashing.

(b) A hash is calculated using the contents of the referenced block, (with the<nonce> prepended)
excluding the block start tag and block end tag, with all characters in between, with the exception
of all carriage returns, line feeds, and trailing spaces on a line. Leading and embedded spaces
in a line are included in the hash. SGML entities (i.e., character names enclosed between an
ampersand and a semicolon) are left untranslated when hashing. The hash algorithm to be used
is specified in thehash = attribute in the<hash> tag for the referenced block.

(c) The resulting hash value is compared to the<hash> entry in the signature block.

(d) If the hashes do not match exactly, the signature fails verification.

2. The contents of the<sig> field are processed using the public key found by following the<sigref>
tag. This tag will either point to an<account> block, or a<cert> block. If the<sigref> tag points (by
name) to a<cert> block, the public key will be found in the<certdata> field in that block. (Parsing of

132 c
Financial Services Technology Consortium, 1996-99. All rights reserved. 132

the<certdata> field may be required to extract the public key — e.g., an X.509 certificate parser may
be required). If the<sigref> field points to an account block, the account block will, in turn, point to
a<cert> block via the<certissuer> and<certserial> fields. The<cert> block whose<certissuer>
and<certserial> fields match those in the<account> block contains the public key. The signature
algorithm to be used is specified in the<algorithm> field.

3. A second hash calculation is performed on the contents of the<sigdata> sub-block, which contains
the previously calculated hashes, their block references, and the<nonce>. This should include all
characters between the<sigdata> tag and the</sigdata> tag, not including the tags themselves, again
omitting all carriage returns, line feeds, and trailing spaces. The hash algorithm to be used is specified
in the<algorithm> field.

4. The processed<sig> field is compared to the hash calculated in the previous step. If this comparison
fails, the signature fails verification. If the comparison succeeds, the signature has verified successfully.

D.2.2 Version 1.0 Check Block Definition

This block contains the key data for an FSML Electronic Check.

Multiple signers/certificates may be required, as determined by the restrictions field in the signer’s account
block.

<check>
<blkname> namestring
<crit> true
<vers> 1.0
<checkdata>
<checknum> numstring
<dateissued> valuestring
<datevalid> valuestring
<country> namestring
<amount> amountstring
<currency> valuestring
<payto> valuestring
<paytobank> valuestring
<paytoacct> valuestring
<paytocustno> valuestring
</checkdata>
<checkbook> numstring
<restrictions> valuestring
<payeracct> valuestring
<memo>valuestring
<conditions> valuestring
<legalnotice> valuestring
</check>

Figure D.24: Version 1.0 Check block element definition

133 c
Financial Services Technology Consortium, 1996-99. All rights reserved. 133

Version 1.0 Check Block Field Definitions

checkdata (required) This is an enclosing sub-block. It is used to contain all of the check fields that
will be interpreted and/or logged by the Electronic Checkbook hardware token. To simplify
parsing by this token, the<checkdata> sub-block contents must be in the order specified.

checknum (required) This is the unique check number created by the Electronic Checkbook hardware
token.

dateissued (required) This is the effective date of the check, supplied by the check issuer. It is not nec-
essarily the date the check was written. The date must be specified in the ISO standard[12]
format CCYYMMDD, where “CC” is the century (currently 19, soon 20), “YY” is the
year, “MM” is the month and “DD” is the day. Document recipients are free to process or
ignore this date as they choose.

datevalid (required) This is the effective date of validity for the check, supplied by the check issuer.
It is not necessarily the date the check was written. Currently, it should always be the
same date as the<dateissued>. Other uses and values for this field will be described in
a later edition of this specification. The date must be specified in the ISO standard[12]
format CCYYMMDD, where “CC” is the century (currently 19, soon 20), “YY” is the
year, “MM” is the month and “DD” is the day.

country (optional) This is the 2 letter ISO country code[17] of the location where the check is to be
considered written.

amount (required) A decimal number containing the amount of the check.

currency (required) A 3 letter ISO currency code[18].

payto (required) This is a string which is the name or other check-issuer specified identification
of the payee. This field is used for informational purposes only — i.e., creation of statement
information. It is not verified against other data.

This field, and the following three fields form a subunit which identifies one of the possible
payees for the check. If multiple payees are being specified, then the subunit may be
repeated, with the fields in the same order for each payee (excluding optional fields).

paytobank (optional) This is a field which if specified must be accompanied by either the<paytoacct>
field, or the<paytocustno> field, and which contains the bank code of the payee.

paytoacct (optional) This is a field which if specified must be accompanied by the<paytobank>
field, and which contains the account number of the payee.

paytocustno (optional) This is a field which if specified must be accompanied by the<paytobank>
field. It contains the customer number of the payee at the payees bank. Some banks may
use this in lieu of an account number.

checkbook (required) This is an integer, supplied by the Electronic Checkbook hardware token, which
is the bank-unique serial number of the checkbook.

restrictions (optional) This is a string containing restriction information about the specific check. The
field may be repeated. It must be one of the following character strings.

� duration pnynmnd

134 c
Financial Services Technology Consortium, 1996-99. All rights reserved. 134

� for deposit only

� all payees must endorse

Thepnynmnd is an ISO standard[12] method of representing duration, where each “n” is
a one or two digit number, and thep character is required. The numbers beforey, m, and
d, represent years, months and days, respectively. The duration (valid lifetime of a check)
defaults to 60 days if not otherwise specified here.

payeracct (optional) This is a field containing a character string which is the account information of
the payer at the payees business — i.e., the number that the payee uses to determine who is
paying, or why it is being paid. This is not a bank account number. As an example, this is
the payer’s account number at the electric utility, on a check used to pay an electricity bill.

memo (optional) A character string field, used for any purpose the check issuer wishes. It is not
processed by the bank.

conditions (optional) A character string field, used to specify any conditions between the check issuer
and endorser. Not processed by the bank.

legalnotice (optional) If present, this field must be inserted by any software that creates a new<check>
block as containing one of the following two character strings....This instrument subject
to check lawfor normal echecks, orThis instrument subject to U.S Treasury check law
for Treasury echecks. Software that receives and processes echecks may check that the
field is non-blank if present, but must not check that the strings contain the above values,
as other values may be possible in future. This field is for legal notification purposes.

D.2.3 Version 1.0 Deposit Block Definition

This block contains a electronic deposit slip, which is bound (via a signature block) to one or more endorse-
ment blocks before being sent to a bank or other financial institution for deposit. The associated endorsement
blocks must also have check blocks bound to them.

<deposit>
<blkname> namestring
<crit> true
<vers> 1.0
<amount> amountstring
<currency> valuestring
<date> valuestring
<country> valuestring
<items> number
<bankacct> valuestring
</deposit>

Figure D.25: Version 1.0 Deposit block element definition

135 c
Financial Services Technology Consortium, 1996-99. All rights reserved. 135

Version 1.0 Deposit Block Field Definitions

date (required) This is the effective date of the deposit slip, supplied by the depositor. It is not
necessarily the date the deposit slip was created. The date must be specified in the ISO
standard[12] format CCYYMMDD, where “CC” is the century (currently 19, soon 20),
“YY” is the year, “MM” is the month and “DD” is the day.

amount (required) A decimal number containing the total amount of the deposit.

currency (required) A 3 letter ISO currency code[18].

items (required) An integer specifying the total number of checks or other items being deposited.

country (optional) A 2 letter ISO Country code[17].

bankacct (required) This is a string containing the account number of this account in the issuing
bank. This indicates the account that the funds are being deposited into.

D.2.4 Version 1.0 Endorsement Block Definition

This block contains a digital endorsement of a financial document, usually a check. It must be bound (via a
signature block) to the check it endorses.

<endorsement>
<blkname> namestring
<crit> true
<vers> 1.0
<endorsedata>
<date> valuestring
<country> valuestring
<payto> valuestring
<paytobank> valuestring
<paytoacct> valuestring
<paytocustno> valuestring
</endorsedata>
<checkbook> numstring
<restrictions> valuestring
<memo>valuestring
</endorsement>

Figure D.26: Version 1.0 Endorsement block element definition

Version 1.0 Endorsement Block Field Definitions

136 c
Financial Services Technology Consortium, 1996-99. All rights reserved. 136

endorsedata (required) This is an enclosing sub-block. It is used to contain all of the endorsement fields
that will be interpreted and/or logged by the Electronic Checkbook hardware token. To
simplify parsing by this token, the<endorsedata> sub-block contents must be in the order
specified. Since all of the fields enclosed in the<endorsedata> sub-block are optional, the
sub-block may be empty. It is required to have the<endorsedata> and</endorsedata>
tags in any case.

date (optional) This is the effective date of the endorsement, supplied by the endorser. It is not
necessarily the date the endorsement was created. The date must be specified in the ISO
standard[12] format CCYYMMDD, where “CC” is the century (currently 19, soon 20),
“YY” is the year, “MM” is the month and “DD” is the day.

country (optional) This is the 2 letter ISO country code of the location where the endorsement is to
be considered written[17].

payto (optional) This is a string which is the name or other endorser identification of the ultimate
payee or next holder in due course. This field is used for informational purposes only —
i.e., creation of statement information. It is not verified against other data.

This field, and the following 3 fields form a subunit which identifies one of the possible
payees for the check. If multiple payees are being specified, then the subunit may be
repeated, with the 4 fields in the same order for each payee (excluding optional fields).

paytobank (optional) This field if specified must be accompanied by either the<paytoacct> field, or
the<paytocustno> field, and which contains the bank code of the ultimate payee.

paytoacct (optional) This field if specified must be accompanied by the<paytobank> field, and
which contains the account number of the ultimate payee.

paytocustno (optional) This field if specified must be accompanied by the<paytobank> field. It con-
tains the customer number of the ultimate payee at the their bank. Some banks may use
this in lieu of an account number.

checkbook (required) This is an integer, supplied by the Electronic Checkbook hardware token, which
is the bank-unique serial number of the checkbook.

restrictions (optional) This is a string containing restriction information about the specific check being
endorsed. The field may be repeated. It must be one of the following character strings.

� for deposit only

memo (optional) A character string field, used for any purpose the endorsement issuer wishes.

D.2.5 Version 1.0 Account Block Definition

This block contains information about the account of the check issuer, or endorser. It is always used in
combination with a certificate block.

137 c
Financial Services Technology Consortium, 1996-99. All rights reserved. 137

<account>
<blkname> namestring
<crit> true
<vers> 1.0
<bankcode> valuestring
<bankacct> valuestring
<bankser> numstring
<expdate> valuestring
<accttitle> valuestring
<accttype> valuestring
<bankname> valuestring
<bankaddr> valuestring
<bankphone> valuestring
<bankfax> valuestring
<bankemail> valuestring
<acctrest> valuestring
<sigrest> valuestring
<certissuer> valuestring
<certserial> number
<micrmaskc1> valuestring
<micrmaskc2> valuestring
<micrmaskc3> valuestring
<micrmaskd1> valuestring
<micrmaskd2> valuestring
<micrmaskd3> valuestring
</account>

Figure D.27: Version 1.0 Account block element definition

Version 1.0 Account Block Field Definitions

blkname (required) The<blkname> field in an<account> block is slightly different than the
“generic”<blkname>. Since the<account> block is signed by the bank issuing the elec-
tronic token, and is stored in the token, it is not changeable at runtime by FSML generating
software. Thus the<blkname> chosen must be guaranteed to be unique for all subsequent
documents. It is recommended (but not required) that a block naming convention be used
to allow this. The recommended convention is that the name be suffixed with information
that is unique to the account block, so that the same name would never be used by other
account blocks in the same FSML document. As an example, an account block issued by
a bank whose Bank Routing Code is 123456789, for a customer whose account number is
987654321 might have a blockname ofacct-123456789-987654321 .

bankcode (required) This is a string containing the unique bank routing code of the issuing bank.

bankacct (required) This is a string containing the account number of this account in the issuing
bank.

138 c
Financial Services Technology Consortium, 1996-99. All rights reserved. 138

bankser (required) This is a number containing the account block serial number of this account in
the issuing bank. This must be unique for all account blocks within an issuing bank code.

expdate (required) This is the expiration date of this account block. The date must be specified in
the ISO standard[12] format CCYYMMDD, where “CC” is the century (currently 19, soon
20), “YY” is the year, “MM” is the month and “DD” is the day.

accttitle (optional) This is a string containing the account title.

accttype (optional) This is a string containing the account type.

bankname (optional) This is a string containing the bank’s name.

bankaddr (optional) This is a string containing the bank’s address.

bankphone (optional) This is a string containing the bank’s phone number.

bankfax (optional) This is a string containing the bank’s fax number.

bankemail (optional) This is a string containing the bank’s email address.

acctrest (optional) This is a string containing any restrictions on the account. It must be one of the
following character strings. The field may be repeated.

� minimum amount nnnnnnn.nn ccc

� maximum amount nnnnnnn.nn ccc

� n signatures required

� n signatures required above amountnnnnn.nn ccc

� special processing

� currency ccc

� duration pnynmnd

The “n” in the above restrictions represents anumber. The “nnnnnnnn.nn” in the above
restrictions represents anamountstring. The “ccc” is a 3 letter ISO currency code[18].
This indicates the currency being specified in theamount, or the currency that checks are
being restricted to by the bank (in thecurrency ccc restriction). Thepnynmnd is an ISO
standard[12] method of representing duration, where each “n” is a one or two digit number,
and thep character is required. The Numbers beforey, m, andd, represent years, months
and days, respectively. The duration (valid lifetime of a check) defaults to 60 days if not
otherwise specified here or in the<restrictions> field in the<check> block. If specified
in both places, the shortest duration takes precedence.

certissuer (required) This field contains the unique distinguished name of the issuer of the certificate[7]
which can be used to verify signatures on FSML documents containing this account block.
See the description of the<certissuer> field in the<cert> block for the syntax used to
specify this field.

certserial (required) This field contains the unique certificate serial number assigned by the issuer of
the certificate which can be used to verify signatures on FSML documents containing this
account block.

139 c
Financial Services Technology Consortium, 1996-99. All rights reserved. 139

micrmaskc1 (optional) This field is used when creating the MICR-line data for an E-check. This field
corresponds to the field known as the “aux on us” field, called Field 2 in ANSI X9.37-1994,
record type 25, also known as Field 7 in ANSI X9.13-1990. The encoding string must
specify the locations for 15 characters, which is the size of the field. The field is allowed
to contain fixed characters from the set “0123456789/-b”, and may optionally contain the
specifier (“n” or “nnn..”) for Check serial number.

micrmaskc2 (optional) This field is used when creating the MICR-line data for an E-check. This field
corresponds to the field known as the “on us” field, Field 6 in ANSI X9.37-1994, record
type 25, which corresponds to Fields 2, 3, and 4 of the MICR line, in ANSI X9.13-1990.
The encoding string must specify the locations for 20 characters, which is the size of the
field. The field is allowed to contain fixed characters from the set “0123456789/-b”, and
may optionally contain the specifier (“n” or “nnn..”) for Check serial number, or the speci-
fier (“a” or “aaa...”) for Account number, or both.

micrmaskc3 (optional) This field is used when creating the MICR-line data for an E-check. This field
corresponds to the field known as the “external processing code” field, Field 3 in ANSI
X9.37-1994, record type 25, also known as Optional Field 6 (and sometimes known as
Position 44), in ANSI X9.13-1990. The field is encoded as a single character from the set
“0123456789/-b”.

micrmaskd1 (optional) This field is used when creating the MICR-line data for an E-deposit. This field
corresponds to the field known as the “aux on us” field, called Field 2 in ANSI X9.37-
1994, record type 25, also known as Field 7 in ANSI X9.13-1990. The encoding string
must specify the locations for 15 characters, which is the size of the field. The field is
allowed to contain fixed characters from the set “0123456789/-b”.

micrmaskd2 (optional) This field is used when creating the MICR-line data for an E-deposit. This field
corresponds to the field known as the “on us” field, Field 6 in ANSI X9.37-1994, record
type 25, which corresponds to Fields 2, 3, and 4 of the MICR line, in ANSI X9.13-1990.
The encoding string must specify the locations for 20 characters, which is the size of the
field. The field is allowed to contain fixed characters from the set “0123456789/-b”, and
may optionally contain the specifier (“a” or “aaa...”) for Account number.

micrmaskd3 (optional) This field is used when creating the MICR-line data for an E-deposit. This field
corresponds to the field known as the “external processing code” field, Field 3 in ANSI
X9.37-1994, record type 25, also known as Optional Field 6 (and sometimes known as
Position 44), in ANSI X9.13-1990. The field is encoded as a single character from the set
“0123456789/-b”.

D.2.6 Version 1.0 Certificate Block Definition

This block contains an encoded X.509 certificate[7].

140 c
Financial Services Technology Consortium, 1996-99. All rights reserved. 140

<cert>
<blkname> namestring
<crit> true
<vers> 1.0
<certtype> valuestring
<certissuer> valuestring
<certserial> number
<certdata> hexstring
</cert>

Figure D.28: Version 1.0 Certificate block element definition

Version 1.0 Certificate Block Field Definitions

blkname (required) The <blkname> field in a <cert> is slightly different from the “generic”
<blkname>. Since the<cert> block is signed by the authority issuing the electronic to-
ken, and is probably stored in the token, it is not changeable at runtime by FSML generating
software. Thus the<blkname> chosen must be guaranteed to be unique for all subsequent
documents. It is recommended (but not required) that a block naming convention be used
to allow this.

certtype (required) This field indicates the type of certificate contained in the block. The only
supported value for version 1.0<cert> blocks isx509v1This value must correspond to
the data in the actual certificate contained in the<certdata> field.

certissuer (required) This field contains the unique distinguished name of the issuer of the certificate.
The certificate issuer string uses the fields from the distinguished name in the ASN.1 X509
certificate, separated by slashes, and using a TAG= identification of the name field type.
The different name fields use the following identification tags:

Country C=
DMDName DMD=
Commonname CN=
Orgname O=
Orgunit OU=
Title T=

Thus, an example of an issuer string would be...

/C=US/ST=New York/O=FIRSTBANK_ANYTOWN/OU=checking/

This value must correspond to the data in the actual certificate contained in the<certdata>
field. Although X.509 distinguished names allow additional fields, FSML only supports
the ones named above.

141 c
Financial Services Technology Consortium, 1996-99. All rights reserved. 141

certserial (required) This field contains the unique certificate serial number assigned by the issuer of
the certificate. This value must correspond to the data in the actual certificate contained in
the<certdata> field.

certdata (required) This contains the hexadecimal ASCII-encoded binary value of the ASN.1 DER[14][15]
encoded X.509 certificate.

D.2.7 Version 1.0 Invoice Block Definition

This block contains invoice information used by a merchant or other payee to request that the payer create a
check using the information contained in the invoice. It is also used as remittance information by the payer
to be attached to the check being used to pay the invoice.

<invoice>
<blkname> namestring
<crit> true
<vers> 1.0
<custacct> valuestring
<amount> amountstring
<currency> valuestring
<payto> valuestring
<paytobank> valuestring
<paytoacct> valuestring
<paytocustno> valuestring
<date> valuestring
<remittance> valuestring
<invdata>
...
</invdata>
</invoice>

Figure D.29: Version 1.0 Invoice block element definition

Version 1.0 Invoice Block Field Definitions

custacct (optional) This field contains the customers account number or code in the merchants (pay-
ees) accounting system. It should be returned in the<payeracct> field in the check used
to pay the invoice.

amount (required) A decimal number containing the amount being invoiced, or the amount due.

currency (required) A 3 letter ISO currency code[18].

payto (required) This is a string which is the name or other check-issuer specified identification
of the payee. This field is used for informational purposes only — i.e., creation of statement
information. It is not verified against other data.

142 c
Financial Services Technology Consortium, 1996-99. All rights reserved. 142

This field, and the following 3 fields form a subunit which identifies one of the possible
payees for the check. If multiple payees are being specified, then the subunit may be
repeated, with the fields in the same order for each payee (excluding optional fields).

paytobank (optional) This is a field which if specified must be accompanied by either the<paytoacct>
field, or the<paytocustno> field, and which contains the bank code of the payee.

paytoacct (optional) This is a field which if specified must be accompanied by the<paytobank>
field, and which contains the account number of the payee.

paytocustno (optional) This is a field which if specified must be accompanied by the<paytobank>
field. It contains the customer number of the payee at the payees bank. Some banks may
use this in lieu of an account number.

date (optional) The date that the payment is due. The date must be specified in the ISO standard[12]
format CCYYMMDD, where “CC” is the century (currently 19, soon 20), “YY” is the year,
“MM” is the month and “DD” is the day.

remittance (optional) This field contains any remittance identification number or string that is being
used to correlate this payment with other systems. It may contain any number or other
identifier that would indicate to the recipient which invoice or which remittance item is
associated with this FSML document.

invdata (optional) This field contains any other data that may be associated with the invoice — e.g.,
an purchase order or other purchase information.

143 c
Financial Services Technology Consortium, 1996-99. All rights reserved. 143

E-Mail Transport Recommendations

This document describes the E-mail transport recommendations that should be used for transporting FSML
documents via E-mail. These specifications are not required, but merely recommended.

These specifications are for automatically processed E-mail messages — e.g., FSML Documents (echecks,
Deposits, E-mail Registration messages).

Human interaction E-mail messages, such as notices, queries, etc. may deviate from the specifications.

E.1 E-Mail Format

All E-Mail messages being transmitted should adhere to the Internet E-mail specifications in RFC822 (Mes-
sage Header Format), RFC2045[10], RFC2046[16], and RFC2047[25][26] (MIME).

All Messages will consist of single-part MIME messages (no multi-part MIME attachments should be used),
and thus will contain the following headers (in addition to the required RFC822 headers)...

Mime-Version: 1.0
Content-Type: application/x- cccccc
Content-Transfer-Encoding: yyyyyy

Theccccccandyyyyyyin the above headers will contain various values.

Theyyyyyvalue may be either7bit for E-Mail messages that contain normal, readable ASCII text, orbase64
for binary information (i.e., Encrypted data).

Theccccccvalue is discussed below.

If the Content-Type header containsapplication/x-fsml or application/x-fsml- xxxxthen the
E-mail message is considered to be an FSML Document which can be processed automatically by FSML
processing software. Any other Content-Type will be considered “normal” E-mail, and will be handled
accordingly. The”xxxx” suffix is used to specify mail format information, such as an encryption algorithm.

E.2 E-Mail Acknowledgments

In order to provide feedback to the Bank Customers that their E-mailed echecks have not been lost dur-
ing transport over the Internet, the Bank Servers will issue acknowledgment E-mail messages whenever an
appropriate FSML document is received by the Bank Servers.

144 c
Financial Services Technology Consortium, 1996-99. All rights reserved. 144

These acknowledgment messages are intended solely to indicate to the customer that the E-mail that they
sent has arrived at the bank. The acknowledgment messages do not indicate that the E-mail being acknowl-
edged has passed thru any processing steps, or been verified as being correct syntactically, semantically, or
cryptographically.

The acknowledgment will consist of an E-mail message being returned to the sender, with a subject header
consisting ofRe: followed by the contents of the subject header from the E-mail message being acknowl-
edged.

The body of the acknowledgment message may contain any fixed language or message desired by the bank,
as long as it does not contain any variable information, or require privacy encryption.

The acknowledgment message will be sent to the originator, using the rules in Internet RFC822 to determine
the originator (from among the Reply-to, From, and Sender headers).

E.3 E-Mail Encryption

The privacy encryption technique will be specified by appending the characters-enc1 (for encryption
method 1) or other values, to theContent-Type E-mail header. Thus, for such encrypted messages,
using encryption method 1, the full MIME header set will read...

Mime-Version: 1.0
Content-Type: application/x-fsml-enc1
Content-Transfer-Encoding: base64

Alternatively, a non-encrypted message will contain the headers...

Mime-Version: 1.0
Content-Type: application/x-fsml
Content-Transfer-Encoding: 7bit

E.4 E-Mail Registration

In order to simplify the process of registering new E-mail users, an automatic registration mechanism will be
used.

The format of the E-mail registration message is an FSML document, as follows....

<fsml-doc docname=" dnamestring" type=" x:emailreg">
<action>
<function> register
<reason> process
</action>
<x:emailreg>
<crit> true
<vers> 1.0
<publickey type=" namestring"> valuestring

145 c
Financial Services Technology Consortium, 1996-99. All rights reserved. 145

<idnumber> valuestring
<bankacct> valuestring
<emailaddr> valuestring
<replaces> valuestring
</x:emailreg>
<sig>
...
</sig>
<cert>
... signer’s certificate goes here
</cert>
<cert>
... bank’s certificate goes here
</cert>
</fsml-doc>

The<publickey> tag contains a value that is the base64 encoded Encryption public key, which is to be
used when sending encrypted information to the e-mail address specified. The tag attributetype="name"
is to specify the type of public key being registered. Values of this attribute are determined by the E-mail
encryption method used (e.g., pgp, s-mime, etc).

The<emailaddr> tag specifies the new E-mail address being registered. This address is to be considered a
valid echeck customer

The tag<idnumber>will contain an optional identification number. The tag<bankacct>will be used when
communicating the payees public key to the bank. It contains the Electronic Account Number at the bank.

The<replaces> tag is optional, and is used during re-registration. It contains the original E-mail address
from the previous registration. If the tag is present, it indicates that the new registration information is a
replacement for the original, If omitted, the new registration is a first-time registration or is an addition to the
first one, not a replacement (some Customers may require multiple E-mail addresses and public keys). Note:
a deletion function may be required later.

The<x:emailreg> block is signed using the Generic signing function of the Electronic Checkbook. The
resulting<sig> and<cert> blocks are added to the document. The bank’s certificate needed to verify the
signature in the X509 portion of the signer’s certificate should also be included in the document.The
receiving system should verify the signatures before processing the registration.

E.4.1 Verification Requirements for x:emailreg document

The x:emailreg document must have the following blocks and fields...

146 c
Financial Services Technology Consortium, 1996-99. All rights reserved. 146

Verification Table - Document Verification Rules
Document <Block>/Document Required Notes
x:emailreg <action> x Function must beregister . Reason must beprocess ,

test , resend , or info . If reason is notprocess or re-
send , don’t process document.

<x:emailreg> x
<signature> x User’s signature.
<cert> x User’s certificate.
<cert> x Bank’s certificate.

Verification Table - Block Verification Rules
Block Field Type Notes
action function string Note: <action> block must be the first block in the

document.
reason string

x:emailreg publickey string Parametertype="namestring" required
idnumber string Optional
bankacct integer Required for emailreg to bank
emailaddr string
replaces string Required for replacement registration

Signature Rules Table
Document Signer Sigref sigtype Blocks hashed
x:emailreg user cert generic <action>

<x:emailreg>

147 c
Financial Services Technology Consortium, 1996-99. All rights reserved. 147

E.5 Example E-mail Message

From: morbius@altair5.watson.ibm.com
Date: Fri, 16 May 1997 09:54:19 -0400
Message-Id: <9705161354.AA22234@altair5.watson.ibm.com>
Mime-Version: 1.0
To: echeck1@watson.ibm.com
Subject: Sample Encoded E-Mail Message
Content-Type: application/x-fsml-enc1
Content-Transfer-Encoding: base64

SGVsbG8uICBUaGlzIGlzIGEgdGVzdCBtZXNzYWdlLgoKIEplZmYgS3Jhdml0eiAgICAgICAg
ICAgICAgICAgICAgICAiSWYgSSBjb3VsZCB0ZWxsIHRoZSBzdG9yeSBpbiB3b3JkcywKIElC
TSBULkouIFdhdHNvbiBSZXNlYXJjaCBDZW50ZXIgICAgSSB3b3VsZG4ndCBuZWVkIHRvIGx1
ZyBhIGNhbWVyYS4iCiBJbnRlcm5ldDptb3JiaXVzQHdhdHNvbi5pYm0uY29tICAgICAgICAg
ICAtIExld2lzIEhpbmUK

148 c
Financial Services Technology Consortium, 1996-99. All rights reserved. 148

Base64 Encoding

The Base64 encoding and decoding process is described elsewhere [10], however a brief description follows...

The encoding process represents 24-bit groups of input bits as output strings of 4 encoded characters. Pro-
ceeding from left to right, a 24-bit input group is formed by concatenating 3 8-bit input groups. These 24 bits
are then treated as 4 concatenated 6-bit groups, each of which is translated into a single digit in the base64
alphabet. When encoding a bit stream via the base64 encoding, the bit stream must be presumed to be ordered
with the most-significant-bit first. That is, the first bit in the stream will be the high-order bit in the first byte,
and the eighth bit will be the low-order bit in the first byte, and so on.

Each 6-bit group is used as an index into an array of 64 printable characters. The character referenced by the
index is placed in the output string. These characters, identified in the table below, are selected so as to be
universally representable, and the set excludes characters with particular significance to SMTP (e.g.,".",
CR, LF) and to the encapsulation boundaries defined in this document (e.g.,"-").

Base64 Alphabet
Val Encode Value Encode Value Encode Value Encode
0 A 17 R 34 i 51 z
1 B 18 S 35 j 52 0
2 C 19 T 36 k 53 1
3 D 20 U 37 l 54 2
4 E 21 V 38 m 55 3
5 F 22 W 39 n 56 4
6 G 23 X 40 o 57 5
7 H 24 Y 41 p 58 6
8 I 25 Z 42 q 59 7
9 J 26 a 43 r 60 8
10 K 27 b 44 s 61 9
11 L 28 c 45 t 62 +
12 M 29 d 46 u 63 /
13 N 30 e 47 v
14 O 31 f 48 w (pad) =
15 P 32 g 49 x
16 Q 33 h 50 y

Special processing is performed if fewer than 24 bits are available at the end of the data being encoded. A
full encoding quantum is always completed at the end of a body. When fewer than 24 input bits are available
in an input group, zero bits are added (on the right) to form an integral number of 6-bit groups. Padding at the
end of the data is performed using the’=’ character. Since all base64 input is an integral number of octets,
only the following cases can arise:

1. the final quantum of encoding input is an integral multiple of 24 bits; here, the final unit of encoded
output will be an integral multiple of 4 characters with no"=" padding,

149 c
Financial Services Technology Consortium, 1996-99. All rights reserved. 149

2. the final quantum of encoding input is exactly 8 bits; here, the final unit of encoded output will be two
characters followed by two"=" padding characters, or

3. the final quantum of encoding input is exactly 16 bits; here, the final unit of encoded output will be
three characters followed by one"=" padding character.

Because it is used only for padding at the end of the data, the occurrence of any’=’ characters may be taken
as evidence that the end of the data has been reached (without truncation in transit). No such assurance is
possible, however, when the number of octets transmitted was a multiple of three.

Any characters outside of the base64 alphabet are to be ignored in base64-encoded data. The same applies to
any illegal sequence of characters in the base64 encoding, such as"=====" .

150 c
Financial Services Technology Consortium, 1996-99. All rights reserved. 150

Acknowledgements

The creation and continued enhancement of this document was greatly assisted by many people, including
the following contributors from the FSTC echeck Technical Team:

Jim Akister RDM
Milt Anderson FSTC
Sheueling Chang Sun Microsystems
Greg Dunne Telequip
Norb Dusyn Bank of America
Mark Feldman CommerceNet
Nikki Fischer Huntington Banks
John Fricke Chase Manhattan Bank
Michael Halperin GTE Internetworking
Chris Hibbert Agorics
Eric Hill Agorics
Frank Jaffe BankBoston
David Lant RDM
An Le National Semiconductor
Stuart Marks Sun Microsystems
Cyndi Mills GTE Internetworking
Elaine Palmer IBM Research
Craig Rector IBM
Brian Risman Bank of Montreal
Robert Rocchetti Sun Microsystems
Jim Seck Unisys
Mark Smith Oak Ridge National Lab
Sean Smith IBM Research
Tony Smith IntraNet
Dave Solo GTE Internetworking
Andrew Sutton IBM
Kurt Thams Agorics
Gene Tsudik USC-ISI
Jennifer Vancini Certicom
Paridhi Verma IBM Research
Mike Versace Federal Reserve Bank
Jyri Virkki Sun Microsystems
Chuck Wade GTE Internetworking
Gary Werner Unisys

151 c
Financial Services Technology Consortium, 1996-99. All rights reserved. 151

152 c
Financial Services Technology Consortium, 1996-99. All rights reserved. 152

	Title Page
	Table of Contents
	1 Introduction
	2 Notation and Syntax
	2.1 Notation
	2.2 FSML BNF Description

	3 Document Formatting Rules
	4 Generic FSML
	4.1 Generic Electronic Document Definition
	4.2 FSML Document Definition
	4.3 Generic Block Common Field Definitions
	4.4 Generic Block Definitions
	4.4.1 Generic Action Block Definition
	4.4.2 Generic Signature Block Definition
	4.4.3 Generic Certificate Block Definition
	4.4.4 Generic Attachment Block Definition
	4.4.5 Generic Message Block Definition
	4.4.6 Private Block Types

	5 Combining Documents
	6 eCheck Specific FSML
	6.1 Electronic Check Document type Definitions
	6.2 Electronic Check Document Global Structure
	6.2.1 BNF Structure of FSML Electronic Check Documents
	6.2.2 Global Structure - Signed Electronic Check
	6.2.3 Global Structure - Co-Signed Electronic Check
	6.2.4 Global Structure - Counter-signed Electronic Check
	6.2.5 Global Structure - Certified, Signed Electronic Check
	6.2.6 Global Structure - Endorsed Electronic Check
	6.2.7 Global Structure - Co-endorsed Electronic Check
	6.2.8 Global Structure - Counter-endorsed Electronic Check
	6.2.9 Global Structure - Deposited Electronic Check
	6.2.10 Global Structure - Returned Electronic Check
	6.2.11 Global Structure - Presentment Item
	6.2.12 Global Structure - Bundle document
	6.2.13 Global Structure - Cgroup document

	6.3 Electronic Check Block Definitions
	6.3.1 echeck Action Block Definition
	6.3.2 echeck Signature Block Definition
	6.3.3 Check Block Definition
	6.3.4 Deposit Block Definition
	6.3.5 Endorsement Block Definition
	6.3.6 Certification Block Definition
	6.3.7 Account Block Definition
	6.3.8 echeck Certificate Block Definition
	6.3.9 echeck Attachment Block Definition
	6.3.10 Invoice Block Definition
	6.3.11 echeck Message Block Definition
	6.3.12 Bankstamp Block Definition
	6.3.13 Bundle Block Definition
	6.3.14 Cashletter Block Definition

	7 Certificate Guidelines
	8 ASN.1 Definition of X.509 Certificates
	[ASN.1 source listing]

	9 Elliptic Curve cryptographic
recommendations
	10 Field Summary
	10.1 Field Attributes Table (part 1)
	10.2 Field Attributes Table (part 2)
	10.3 Field Attributes Table (part 3)

	11 Document Verification
	11.1 Verifying Document Contents
	11.2 Verifying Block Contents
	11.3 Verifying Signatures
	11.4 Payto Verification
	11.5 Verifying Certificates

	Apdx A: Bibliography
	Apdx B: Example Documents
	Apdx C: SGML Document Type Definition (DTD)
	Apdx D: Differences between FSML 1.17 and FSML 1.50
	D.1 Summary of differences
	D.2 Definitions of FSML 1.17 Deprecated Blocks
	D.2.1 Version 1.0 echeck Signature Block Definition
	D.2.2 Version 1.0 Check Block Definition
	D.2.3 Version 1.0 Deposit Block Definition
	D.2.4 Version 1.0 Endorsement Block Definition
	D.2.5 Version 1.0 Account Block Definition
	D.2.6 Version 1.0 Certificate Block Definition
	D.2.7 Version 1.0 Invoice Block Definition

	Apdx E: E-Mail Transport Recommendations
	E.1 E-Mail Format
	E.2 E-Mail Acknowledgments
	E.3 E-Mail Encryption
	E.4 E-Mail Registration
	E.5 Example E-mail Message

	Apdx F: Base64 Encoding
	Apdx G: Acknowledgements

