Preserving modularity in XML encoding of
description logics

Jérdme Euzenat
INRIA Rhone-Alpes
655 avenue de I’Europe, 38330 Montbonnot, France
Jerome.Euzenat@inrialpes.fr

Abstract
Description logics have been designed and studied in a modular way. This
has allowed a methodic approach to complexity evaluation. \We present a way to
preserve this modularity in encoding description logics in XML and show how
it can be used for building modular transformations and assembling them easily.

1 Motivation

In the words of Tim Berners-Lee, the “semantic web” [2] requires a set of languages
of increasing expressiveness such that anyone can pick up the right language for each
particular semantic web application. This is the approach taken by the description
logic community over the years.

We show how the modularity of description logics, that has mainly be used at a
theoretical level, can be turned into an engineering advantage in the context of the
semantic web. For that purpose, we introduce a description logic markup language
(oumi) which encodes description logics in xmL and preserves their modularity. We
then present transformations that are described on individual constructors and can be
composed to form more complex transformations. By factoring out syntactic rules
and processing methods, the same set of transformations can apply to many logics.

The next section presents the syntactic encoding of description logics in xmL. The
third section illustrates the use of transformation of the xmL form in order to achieve
relatively complex transformations.

2 Modular encoding

Description logics are introduced first, before xmL. xmL is presented through a first
application to description logics. Then, the advantage of preserving the modularity of

20

description logics in the encoding is discussed and the corresponding set of Document
Type Descriptions (pTp) is presented.

2.1 Description logics

Description logics manipulate terms. Below are two (concept) term descriptions stat-
ing that a modernfirmis a firm in which all operational employees are bachelor.

modernfirm = firm M (Voperational.bachelor)

startup = firm 1 (Voperational.phD)]|

Two kinds of terms are involved: concepts (such as firm) and roles (such as
operational). Their descriptions are built from sets C' (resp. R) of atomic concept
(resp. role) names and term constructors. Here, the main logic considered is ALC
[5]. ALC contains special atomic terms T and L and makes only use of concept
constructors for conjoining or intersecting two concepts ¢ and ¢ (¢ M ¢ or ¢ U (),
restricting a the codomain of a role r to a concept ¢ (Vr.c), taking the complement of
a concept ¢ (—c) or asserting the existence of a role (3r).

Terms have a set-theoretic model semantics. An interpretation Z over a domain D
isamapping Z : C — 2P and R — 2P*P such that:

(T) = Z(L)=10 Z(—c¢)= D —I(c)
I(cnd) = I(YNZ() I(cud)= Z(c) UZ()
Z(Vr.c) = {o e DNy € D,{o,y) € Z(r) =y € Z(c)}
Z(3r) = {o€ D|3y € D,(o,y) € Z(r)}

A terminology is a set of assertions of type a=c or a<c. They are interpreted as
definitions or descriptions of atomic terms (a). An interpretation Z is said to satisfy
an assertion « (noted =z «) if:

Er a=ciff Z(a) = Z(c),
=7 a<ciff Z(a) C Z(c)

As usual, a model of a terminology is an interpretation Z that satisfies all the
assertions of the terminology.

22 XML

xMmL [4] is a markup language recommended by the “Worldwide web consortium”
(W3C). It aims at being a document exchange format between applications. It is
voluntarily a trade-off between the simplicity of HTmL and the power of semL. Unlike
HTML and like semL, xmL is extensible through a Document Type Description (pTp).

21

The syntax of xmL documents is very simple and can be summarized by: <Ttac
attl=vl ... attn=vn/> OF <TAG attl=vl ... attn=vn>content</TAG> Where
content IS a Sequence of xmL expressions and unparsed character strings, atti is
an attribute identifier and i the value of the corresponding attribute (a string). The
TAG IS called element. An xmL document is seen as a tree whose root is the document
and in which the children of a node are whatever in its content.

Here is the beginning of an xmL document introducing the definition of concept
modernfirm:

<?xml version="1.0"?>
<!DOCTYPE TERMINOLOGY SYSTEM "simple—alc.dtd">

<TERMINOLOGY>. ..
<CDEF>
<CATOM NAME="modernfirm"/>
<AND>
<CATOM NAME="firm"/>
<ALL>
<RATOM NAME="operational"/>
<CATOM NAME="bachelor"/>
</ALL>
</AND>
<CDEF>

</TERMINOLOGY >

The knowledge base (TErMINOLOGY) contains a definition (cper) equating the
concept (caTom) modernfirm to the term made of the conjunction (anp) of the con-
cept (caTom) f£irm With the restriction (anr) of the role (RaToM) operational to the
concept (caTom) bachelor. It is exactly the same definition as above. This document
is governed by a oo (1pocTyPE). A bTp describes each element by specifying:

e Its content as a regular expression using the sequence (,) and alternative (|) in
function of a variable number (1/?/+/*) of other elements ;

e lIts attributes by specifying the kind of value taken (and some other parameters).
The above example can be defined by the following oto fragment:

<!ELEMENT TERMINOLOGY (CDEF|CPRIM)*>

<!ELEMENT CDEF (CATOM, (CATOM|AND|ALL|...))>
<!ELEMENT AND ((CATOM|AND|ALL|...)*)>
<!ELEMENT ALL (RATOM, (CATOM|AND|ALL|...))>

<!ELEMENT CATOM EMPTY>

22

<!ATTLIST CATOM NAME CDATA #REQUIRED>
<!ELEMENT RATOM EMPTY>
<!ATTLIST RATOM NAME CDATA #REQUIRED>

It defines the elements visible in the document: (TERMINOLOGY, CDEF, CATOM, AND
...). Each one is defined by its (possibly empty) content (keyword :ELEMENT) and
its attributes (optional keyword :arTnIsT). A third keyword exTITY, IS used for
introducing text blocks to be reused literally. The content is specified with regard to
other elements and character strings. The attributes can be more complex; here they
are typed by character strings (cpata) and required (#REQUIRED).

An xmL document is said well-formed if it complies with the xmL syntax (i.e. if
the interleaving of opening and closing tags is a well-parenthesized expression). It
is said valid if it satisfies the constraints expressed in its oto. The above example is
valid with regards to its pTo.

2.3 Modular encoding of description logics

If the oo above is usable, it has the drawback of containing the constructor spec-
ifications in its body. Modularity is an important issue for description logics since
various description logics are defined by adding constructors to other ones. It is thus
useful, when designing a system of otp for description logics to preserve that prop-
erty of defining independently concept and role constructors and term definers and
assembling them into a particular logic.

The modular encoding of the description logics is made of three kind of pto: atoms
(introducing the atomic terms), operators (e.g. V, 1, =) and formula constructors (e.g.
<, =). An arbitrary number of these files are put together in order to form a particular
logic.

For instance below is the content of the oo of the 1nv (converse of a role) con-
structor:

< !ELEMENT INV (%RDESC;) >

It refers to the rorsc entity which is a placeholder for all the possible role con-
structors. This placeholder is not defined in the operator pto, but is set, for each
individual logic, to the available role constructors.

We have also defined the notion of Document Semantic Description (psp) which
enables the description the formal semantics of an xmL language (just like the oto or
schemas expresses the syntax). The psp language defined in xmL takes advantage of
Xpath for expressing references to sub-expressions and MathML for expressing the
mathematical gear. To the oo of 1nv is associated a psp describing the semantics of
the operator (i.e. I((invr)) = I(x)™!):

<dsd:DSD>
<dsd:denotation match="dl:INV">

23

<mml:eq/>
<mml :apply>
<mml :inverse/> <!-- converse for binary rels -->
<dsd:apply-interpretation select="*[1]1"/>
</mml :apply>
</dsd:denotations>
</dsd:DSD>

pLmL provides the oo and psp of all the covered operators and is able to build
automatically from the description of a logic those of that logic. This is achieved
through a oumi logic description file which is described as follows:

<?xml version="1.0" encoding="UTF-8" standalone="no" ?>
<!DOCTYPE dlml:logic SYSTEM "dlml.dtd"s>

<dlml:logic version="1.0" name="alc">
<dlml:atoms/>

<dlml:cop name="anything"/>
<dlml:cop name="nothing"/>
<dlml:cop name="and"/>
<dlml:cop name="or"/>
<dlml:cop name="anot"/>
<dlml:cop name="not"/>
<dlml:cop name="all"/>
<dlml:cop name="gome"/>

<dlml:cint name="cdef"/>
<dlml:cint name="cprim"/>
</dlml:logic>

From this description, two xsLt stylesheets are able to generate the oo and psp
corresponding to the language. They can be used for expressing ALC terminologies
in xmL like the one above.

Every constructor is thus defined only once and has just to be mentioned for de-
scribing a new logic. The specification of a particular logic is achieved by declaring
the set of possible constructors and the logic’s oo is automatically build up by just
assembling those of elementary constructors. The actual system contains the descrip-
tion of more than 40 constructors and 25 logics.

puML has been built around pto because there was not much support for other
schema languages in xmL parsers. The xmL Schema language [11] would ease the
implementation of bumc by replacing the use of the rRoesc macro for a class hierarchy
(all the operators being defined in function of abstract classes concept and role
whose possible instanciation would be determined by the current logic).

24

3 Transformations

What can such a pto for description logics be good for? Once a language is encoded
in xMmL it is very convenient to use xstLt [6] in order to transform syntactically a rep-
resentation into another one. The first application is the import and export of termi-
nologies from a description logic system. We have developed several transformation
stylesheets for importing and exporting ontologies from ract [1], oL [7], bAML-ONT
[10] and syllogistic representation. We are concerned here with the transformations
that are tied to the oLmL encoding and which takes advantage of this modularity.

3.1 Modular transformations

The first kind of transformation is the transformation from xmL to layout. This is
exactly what has been implemented providing the layout of the terminology given
above (between [and |). The IATEX has been generated automatically from the xmL
document describing the terminology through an xsct stylesheet. Moreover, the de-
scription of the transformation is given in the same modular way as above. Below is
the template corresponding to the translation of the ar.1. constructor:

<xsl:template match="dl:ALL">
<xsl:text>\forall </xsl:text>
<xsl:apply-templates mode="gset-role" select="*[1]"/>
<xsl:text>.</xsl:text>
<xsl:apply-templates mode="set-concept" select="*[2]"/>
</xsl:template>

It only tells that when it has to transform a document fragment tagged by arr, it
generates the IATEX for V (\ forall) applies the transformation to its role argument
generates a dot (.) and then applies the transformation to its second argument.

Transformation from a knowledge representation formalism to another is the most
important application. Considering the description logics expressed in pLmL as a fam-
ily of languages has the advantage that many such transformation are simple to define
because constructors can be shared and they have the same semantics. The next sec-
tion will present some of these transformations.

Normalization (used in “normalize and compare” subsumption test strategies [3])
can also be attempted through xmc transformations. However, normalization is dif-
ficult to implement with xsLt which attempts to prohibits (non structure-based) re-
cursive operations (and thus closure). However, this could be implemented through
another language.

3.2 Proof-based transfor mations

In some restricted context, transformations can be forged directly from proofs. In the
pLML context, the languages have the same syntactic structure and the semantics of

25

the operators remains the same across languages so it is easier to do it. The ALC
and ALUE languages are known to be equivalent. The proof of equivalence is a
demonstration that any operator missing in one language can be expressed in the
other language (preserving interpretations). This iterative proof can be expressed, by
a human being, as:

V(D, 1), ...
I((not Nothing))) = I(Anything)
I((not ¢)) = I((anot ¢)) forc € N¢
I((not (anot ¢))) = I(c)
I((not (allrc))) = I((csome r (not ¢))) ...

It is straightforward to transform that proof into the following xsLt templates:

<xsl:template mode="process-not" match="dl:NOTHING" >
<dl:ANYTHING/ >
</xsl:template>

<xsl:template mode="process-not" match="dl:CATOM" >
<dl:ANOT><xsl:apply-templates select="."/></dl:ANOT>
</xsl:template>

<xsl:template mode="process-not" match="dl:ANOT">
<xsl:apply-templates select="*"/>
</xsl:template>

<xsl:template mode="process-not" match="dl:ALL">
<dl :CSOME>
<xsl:apply-templates select="*[1]"/>
<xsl:apply-templates mode="process-not" select="*[2]"/>
</dl:CSOME>
</xsl:template>

The last rule tells that when encountering a arL in the scope of a negation
(mode="process-not"), it is replaced by a csome with the non-negated transforma-
tion of the first argument and the negated transformation of the second one.

This can be made even more modular. With Heiner Stuckenschmidt, we have
developed a transformation flow for importing pamL-onT and oi ontologies in the
SHZQ logic. In addition to importing the formalisms in pum, this flow composes
four transformations:

e a merging transformation that combine both ontologies (by adding the two ter-
minologies syntactically);

¢ atransformation that convert the expression using boMAIN into expression using
ALL and INV;

26

e a transformation that converts the expressions using oNeor and INDIVIDUAL
into expressions using or, catom and cexcL (B);

e a transformation that converts the expressions using cexcr into expressions
using cprIM and NOT.

It can be proved that each of these unit transformations preserve the consequences
of the initial terminology (either through model preservation or model homomor-
phism). Moreover, these transformations, since they are not particularly tied to some
logic, can be reused in other transformation flows.

3.3 Toward proof-checking of transformations
psp can be used for a variety of purposes:

documenting language semantics for the user or the application developer who will
require a precise knowledge of the semantics of constructs. This is eased by a
transformation from psp to IATEX.

computing interpretations from the input of the base assignment of the variables.

checking proof of transformations is a very promising application in the line of the
“web of trust” idea [2].

proving transformations in an assisted or automatic way;

inferring transformations from the semantics description is a very hard problem.
However, from a given proof, it can be easier.

One of the more promising use is proof-checking. We said above that transforma-
tions could be build from proofs. It is useful to be able to represent these proofs. So,
the equivalence between two logics can be established by proving that a transforma-
tion from one logic to another preserves the models (in the sense of model theory).
Having the description of the semantics of both languages and the proof of a trans-
formation enables the application of the proof-carrying code framework [8] to the
importation of knowledge written in a language into another. This ensures that the
resulting knowledge is equivalent to the initial representation (or satisfies the proved
properties).

This approach leads directly to a framework in which transformations from one
representation language to another are available from the network and proofs of vari-
ous properties of these languages are attached to them. It is noteworthy that transfor-
mations and proofs do not have to come from the same origin.

The transformation system engineer can gather these transformations and their
proofs, check the proofs before importing them in its transformation development
environment. She will then be able to create a new transformation flow and generate

27

the proofs of the properties that she requires. Finally, she will be able to release the
transformation and its proof on the network.

4 Related work

Encoding description logics in xmL is not a very original neither a very difficult task.
What is slightly more original is the encoding of description logics that preserve their
modularity in a useful way.

There has been some interest in the description logics community about interop-
erability through xmL. In particular the racT system has offered some encoding of its
language into xmL [1]. The o language [7] which stemmed from that effort is ex-
pressed in xmL and ror (we have used the xmc version for developing transformations,
but as soon as ror is encoded in xmL as in pamL-oNT, it is not problematic to transform
them). The ract and oL pTo are similar to the kind of oto developed in §2.2. However
these pto aim at exchanging knowledge between several FacT or oL reasoners instead
of various systems as advocated here. As a consequence, the modularity and semantic
description issues discussed here have not been taken into account. Of course, one
can refrain from using some constructors, thus using a sub-logic in another one but
no oTo exists for the sub-language.

The krss specification [9] has been created for being the interlingua of description
logics. Itis not expressed in xmc but could easily be. It constrains the krss-compatible
processors to accept the complete (very expressive) set of krss constructors and to
raise a warning when some of them are not supported. It is thus not really modular
in the sense that no specific sub-language is defined (a core language is defined in [9]
but has no particular instanciation).

Conclusion

The oumL framework offers a general encoding of description logics in xmL such that
the modularity of description logics can be used in xmL (for extending the language,
building transformation stylesheets ...). Although it has been illustrated only by
restricted examples, such an encoding has great potential for the interoperability of
knowledge representation systems. In particular, it allows the implementation of the
"family of languages’ approach to semantic interoperability which takes advantage
of a group of comparable languages (here description logics) in order to select the
best suited for a particular task. We are currently experimenting the proof-carrying
transformation idea in this context.

Some of the work described here is accessible from the web site
http://co4.inrialpes.fr/xml/dlml/.

28

References

[1] Sean Bechhofer, lan Horrocks, Peter Patel-Schneider, and Sergio Tes-
saris. A proposal for a description logic interface. In Proc.
Description logics workshop, Linkoping (SE), number CEUR-WS-22,
1999. http://SunSITE.Informatik. RWTH-Aachen.DE/Publications/ CEUR-
WS/\Vol-22/bechhofer.ps.

[2] Tim Berners-Lee. Semantic web roadmap, 1998.
http://www.w3.0rg/Designlssues/Semantic.html.

[3] Alexander Borgida. Extensible knowledge representation: the case of descrip-
tion reasoners. Journal of artificial intelligence research, 10:399-434, 1999.

[4] Tim Bray, Jean Paoli, and C. M. Sperberg-McQueen (eds.). Exten-
sible Markup Language (XML) 1.0. Recommendation, W3C, 1998.
http://www.w3.0rg/TR/REC-XML/.

[5] Francesco Donini, Maurizio Lenzerini, Daniele Nardi, and Andrea Schaerf. De-
duction in concept languages: from subsumption to instance checking. Journal
of logic and computation, 4(4):423-452, 1994.

[6] James Clark (ed.). XSL transformations (XSLT) version 1.0. Recommendation,
W3C, 1999. http://www.w3.0rg/TR/xslt.

[7] Dieter Fensel, lan Horrocks, Frank Van Harmelen, Stefan Decker, Michael Erd-
mann, and Michael Klein. Oil in a nutshell. In 12th International Conference
on Knowl edge Engineering and Knowledge Management EKAW 2000, Juan-les-
Pins, France, 2000.

[8] George Necula and Peter Lee. Efficient representation and validation of proofs.
In Proceedings of the 13th LiCS Indianapolis (IN US), pages 93-104, 1998.

[9] Peter Patel-Schneider and William Swartout (eds.). Description-logic knowl-
edge representation system specification, 1993.

[10] Lynn Andrea Stein, Dan Connolly, and Deborah McGuinness (eds.). Daml-ont
initial release, 2000.

[11] Henry Thompson, David Beech, Murray Maloney, and Noah Mendelsohn
(eds.). XML Schema part 1. structures. Recommendation, W3C, 2001.
http://ww.w3.0rg/TR/xmlschema-1/.

29

