LEVERAGING XML AND WEB TECHNOLOGIES
FOR BOUNDARY SCAN TEST DEBUG

David E. Rolince
Teradyne, Inc.

Introduction

There is no denying that the World Wide Web has spread to every corner
of our technological cultural. Web browsers are used to carry us through the
Internet and serve as the user interface to a wide array of applications. As its
usage has increased, the data carrying capabilities of the web have been
strained to the point where new data structuring methodologies were required to
overcome the “world wide wait” and enable a whole new class of data to be
transported over the web. This was a key motivation for the emergence of XML
as means for dealing with the representation and transmission of complex and
highly interrelated sets of data.

While the data produced by commercially available boundary scan test
generation tools is not normally associated with web applications, it represents
an excellent example of large amounts of highly interrelated data that can exploit
XML and web browser technology. Most boundary scan test products provide
automatic diagnostics that indicate the source of failures to a test operator during
production testing. However, these diagnostics can be incorrect or misleading if
invoked during initial test integration and program debug when the source of
program failures is more likely to be unrelated to a physical defect on the unit
under test (UUT). Nonetheless, the test engineer debugging the problem needs
to refer to the boundary scan test database in the process of resolving it. By
knowing the expected response of the test, the observed response of the test,
and the state of other device leads, clues as to the source of the problem can be
obtained. All the necessary data is normally available, but not in a form that is
quickly and easily understood. By representing boundary scan data in XML and
using a web browser to display the data, debugging failures encountered in
testing electronic modules that incorporate boundary scan can be significantly
simplified.

XML Background

Extensible Markup Language (XML) is a meta language that was
developed by the World Wide Web Consortium in response to a growing need to
increase the efficiency and speed of web-based applications, especially those
that involved the processing and transfer of information. XML is human-readable,
machine-understandable, and is applicable to a wide range of applications
(databases, e-commerce, Java, web development, searching, etc.). The power of

XML is in its support for custom tags that enable the definition, transmission,
validation, and interpretation of data between applications and between
organizations.

Before XML was introduced in 1998, HTML was the primary language of
the Web. HTML does an excellent job at defining the structure of a document as
well as the style of its presentation in a web browser. It does a rather poor job of
information exchange and does not allow for semantic interpretation of the
contents of a Web page. XML was designed to make information self-describing
through the use of specific tags that define what the information is. In this way,
searches and organization of specific information can be performed quickly and
without having to peruse through a mountain of unrelated or tangentially related
data that often occurs in HTML-based searches.

Coupled with XML is XSL (Extensible Stylesheet Language). XSL is used
to target database-neutral and device-neutral data marked up in XML to specific
output devices, such as web browsers, for display. Linking abilities in XML allow
for multi-way links. This is useful when you want to display multiple, related
attributes of a characteristic specified in the link each in its own browser window.
Links are defined in the XSL stylesheet.

Characteristics of Boundary Scan Test Data

The data used and generated in the process of developing boundary scan
tests for opens and shorts at and between device leads, and wrong components
for Unit Under Test (UUT) can be grouped into three sets:

Topology — the physical layout and electronic component composition
of the UUT

Position — the arrangement of boundary scan data registers and
associated device leads

Test pattern — the serial vectors used to propagate faults in the UUT to
tester channels for detection

The topology and position data sets provide a vast array of information
about the interrelationships among boundary registers cells, physical
components and their leads, and the input/output characteristics of
interconnected device leads on nets. Boundary scan device chains are formed
when the TDO lead of one device is connected to the TDI lead of another
boundary scan device. Chains can consist of several devices thereby forming a
continuous path extending from the TDI lead of the first device to the TDO lead of
the last device. It is the position data set that contains the information about the
order of scan cells in the chain, which can reach into the thousands for a UUT
with several VLSI type devices. It is clear to see that a strict accounting of the
position of scan cells in the chain and their functionality is important if faulty
circuit activity is to be accurately diagnosed.

When topology and position data sets are merged with the test pattern
data set, the state of each boundary register cell for a given test vector is known.
When presented to a graphical display application, the juxtaposition of test
pattern data with physical leads and boundary scan data registers is enormously
valuable to a test engineer or test operator who is trying to debug a state
mismatch problem when the test is applied to a UUT. In most cases, probing
device leads on the UUT is not possible due to the lack of physical access, or, as
in the case of control cells, the register of interest is internal to the device,
thereby underscoring the value of a visual rendition.

Compounding the boundary scan test debugging effort is the enormous
number of test vectors that typically exist. The length of a boundary scan test
vector is directly related to the number of boundary register cells there are in the
chain. At a minimum there is one boundary register cell for every boundary scan
lead on a device. For bi-directional leads there are three, one for the lead as an
input, one for the lead as an output and one control cell that determines the
directionality of the lead. For optimum fault coverage and control, every bi-
directional boundary lead should have its own control cell. On CPLD devices and
other VLSI circuits, it is common to have 500 - 1000 boundary scan register cells.
String several of these devices together and single scan vector can be tens of
thousands of bits long.

The total number of test patterns will equal the number of boundary scan
test vectors times the length of each vector. The Wagner algorithm (counting
patterns and their complement) is a popular method used for automatically
generating high fault coverage test patterns for detecting device interconnect
failures. The number of vectors required to attain 100% interconnect fault
coverage is related to the total number of boundary scan nets, and follows the
formula

of vectors = log 2 (n+2) where n = # of boundary scan nets

For example, a circuit board with 1000 boundary scan nets would require
20 vectors (10 counting vectors + their complement) to get 100% opens and
shorts pin coverage. If there are 5000 boundary scan register cells associated
with the complete scan chain, there would be 100,000 test patterns required. In
practice, large numbers of device leads changing state simultaneously, which is
the case with a boundary scan test when an update Data Register command is
executed, can cause instability in a circuit board due to ground bounce. To
reduce the effects of ground bounce, the test can be forced to toggle fewer nets
during each vector. While this effectively increases the stability of the test, it also
increases the total number of test patterns that need to be applied to attain the
same level of high fault coverage.

Keeping track of a stream of 100,000+ test patterns and accurately
correlating them with their associated boundary scan register cells and physical
device leads, then displaying that information in a fast and simplified way
requires a great deal of database organization.

Boundary scan test patterns can be expressed in many formats, but SVF
(Serial Vector Format) is the most prevalent in the industry. One advantage of
SVF is pattern compression — each SVF “bit” in a pattern stream is a
hexadecimal digit. The disadvantage of this is readability and association of bits
in the serial pattern stream with physical device leads or boundary register cells.
All is well until a test fails, then the problem becomes trying to determine the
cause of the failure. During the integration phase of a test program any number
of things can contribute to the apparent failure — patterns out of sequence,
electrical noise, incorrect BSDL, cabling or fixture errors, or other things
unrelated to the UUT. Having the test pattern, UUT topology and boundary scan
cell position data in a form that is easily displayed and easy to visualize
interrelationships would be extremely helpful.

Applying XML to Boundary Scan Test Integration and Debug

Given the inherent flexibility and data-neutrality of XML, applying it to the
large amount and diverse nature of boundary scan test would seem to help
simplify the presentation of that data for initial test integration and debug. Since
XML is a language for creating a markup language, the first step to harnessing
XML is to develop an “instance document” which defines the XML schema for
the specific information in your application. The instance document provides the
rules that define the elements and structure of the new markup language. It will
also serve as the guidelines for other developers to interface with the application.

In our application example, the schema for boundary scan test data is
organized in three instance documents with main elements <circuit> for topology
data, <boundary_scan_data> for position data, and <SerialVectors> for pattern
data. Under each main element are sub-elements that further define the
information contained in each schema. In this way XML allows the
interrelationships of these schema to be expressed so that collections of related
data can be easily located and displayed in a web browser. This is possible
because the XML tags in the elements and sub-elements are defined to indicate
specific information types. Let’s look at how data is tagged in each of the three
instance documents identified for boundary scan test data.

The Circuit instance document contains information about the physical
composition of the UUT and is typically derived from CAD or netlist files. It is
used to identify the components making up the UUT by reference designator and
component type or class. It also can contain information about the leads of every
component as well as connectivity between a particular lead and other leads that

share the same net. The XML language syntax and tag identifiers for topology
data might look like this:

<Circuit>
<Devices>
<Device> Name="U_17" Class="digital" LeadCount="84"
<Leads>

<Lead Name="2" Type="I">
<Net>Datal4</Net>

</Lead>

<Lead Name="34" Type="0">
<Net>AddrO7</Net>

</Lead>

</Leads>

If the device is a boundary scan device, there could be additional tags for
the lead as a virtual primary input or output relative to the other non-scan device
leads on the net, or as a tri-state control lead.

<Device> Name="U_10" Class="digital" LeadCount="24"
<Leads>
<Lead Name="2" Type="0OT">
<Net>Ctrlbit01</Net>
<Vpi>243</Vpi>
<Control Path="1" Position="135" >
</Lead>
</Leads>
</Device>

A key advantage of XML is that additional tags may be created to make
reference to other information types that may be deemed to have importance.

The boundary_scan_data instance document, or position data, contains
detailed information about the boundary scan components on the UUT and how
the boundary register cells are arranged in the serial chain created by connecting
the devices together. Position data is generally derived from the BSDL file of
every boundary scan component type and the chain description file. The types of
information contained in the BSDL files that is useful for test generation and
debug include instruction and data cell attributes, relationships between data
cells and physical device leads, and supported instructions and their op codes. A
very important bit of information contained in BSDL files is the behavior of control
cells on tri-state and bi-directional data registers. Tagging control cells and the
leads they control makes this information, which is internal to the boundary scan

device, available for applications used in debugging boundary scan tests. The
chain description file defines the relative position each boundary scan component
on the UUT occupies in the chain of components. When this information is
provided as part of the position data set, the relative position of every boundary
register cell can also be derived.

The example below illustrates a sample of XML language syntax and tag
identifiers for the boundary_scan_data instance document. Note the organization
of the information into sub-elements instruction_cells and data_cells. This was
done because the end application generates a TAPIT test to verify the integrity of
the boundary scan chain as well as tests for interconnected boundary scan
devices and non-scan devices. This illustrates once again the power of XML to
create tags that precisely specify information that can be exported to another
application.

<boundary_scan_data>
<position_data>
<instruction_cells length="49">
<device id="u_12" type="ti374" package="dw_package"
length="8">
<instruction id="bypass">
<opcode>11111111</opcode>
<opcode>10001000</opcode>
<opcode>00000001</opcode>
</instruction>
<instruction id="extest">
<opcode>00000000</opcode>
<opcode>10000000</opcode>
</instruction>
<instruction id="highz">
<opcode>00000110</opcode>
<opcode>10000110</opcode>
</instruction>
<instruction id="clamp">
<opcode>00000111</opcode>
<opcode>10000111</opcode>
</instruction>
</device>
</instruction_cells>

<data_cells length="532">
<device id="u_12" type="ti374" package="dw_package"
length="532">
<cell pos="64">
<output lead="10" type="controlled" control="80"
on="0" />

</cell>
<cell pos="72">
<input lead="15" type="simple" />
</cell>
<cell pos="80">
<input lead="24" type="simple" />
<control on="0">
<controlled_output lead="2" />
<controlled_output lead="3" />
<controlled_output lead="4" />
<controlled_output lead="5" />
<controlled_output lead="7" />
<controlled_output lead="8" />
<controlled_output lead="9" />
<controlled_output lead="10" />
</control>
</cell>
</device>
/data_cells>
</position_data>
</boundary_scan_data>

Test pattern data is defined in the SerialVectors schema. Sub-elements
with the tags iscan and dscan, identify data scanned into the instruction registers
of all devices in the chain, and data scanned into and out of the data registers.
The tags on sub-elements <tdi> and <tdo> represent data clocked into the UUT
Test Data In port and the expected response from the UUT Test Data Out port,
respectively. In the interest of saving space in the example below, the actual
one’s and zero’s data at the <tdi> and <tdo> tags are only provided in the first
scan vector.

<SerialVectors>
<major_comment>TAP reset sequence</major_comment>
<iscan length="49">
<tdi>1000100000001000000010000000100000010001001000000
</tdi>
S(0[039.9.0.0.0.0.0.0.9.0.0.0.0.9.9.9.9.9.999999999.9.9.9999.9.99.99900
XXXXXXXX</tdo>
</iscan>
<dscan length="532">
<tdi> 1110010010000011101100111110111... (532 bhits of data
scanned in ...</tdi>
<tdo> XXXX XXX X XXX XXX XXXXXXX ... (532 bits of data scanned
out) ...</tdo>
</dscan>
<iscan length="49">

<tdi>000
</tdi>
1S(0[039.0.0.0.0.0.0.0.9.0.0.0.0.9.0.9.9.9.999999.999.9.99999999.99900
XXXXXXXX</tdo>

</iscan>

<dscan length="532">
<tdi> (....... 532 bits of test data scanned in) </tdi>

<tdo> (........ 532 bits of test data scanned out...) </tdo>
</dscan>
<dscan length="532">

<tdi> (....... Next 532 bits of test data scanned in) </tdi>

<tdo> (........ Next 532 bits of test data scanned out...) </tdo>
</dscan>

</SerialVectors>

How can boundary scan test data represented in XML help in diagnostics?
Consider a test where pattern 1477 in scan vector 2 has failed. Fig. 1 illustrates
how we get more information to help diagnose this failure. The test pattern
database can tell us the expected response at pattern 1477 in scan 2 is a logic 1.
This pattern corresponds to boundary scan cell position 388. The position
database tells us that the scan cell associated with bit position 388 is an input
cell of a bi-directional lead, U_16 145, and that control cell 386 is associated
with the scan cell register.

Cell-Pos |Tdi |Tdo |Input |Dutput |Contro|ling—Ce|I |Ctr|d—Leads |Pattern# |Scan
EED 1 [[--- lu 16 139 [za7 [--- [1460 |z
[a81 [x [|u 16 139 [--- [--- [--- [1470 [z
[as2 [x [|u 16 143 [--- [--- [--- [1471 [2
[za3 [x [== == = [1Lead(s) [1a72 [2
R 1 [[--- |u 16 144 [EEE] [--- [1473 |z
[z85 [x [x |u 16 144 [--- [[--- [1474 [z
[z86 [x [[--- [--- [--- [1Lead(s) [1475 [z
|za7 [x [== |u 16 145 |26 == [1476 [2
EEE 1 l1 lu 16 145 [--- [[--- [1477 |z
EEE) 1 [[--- [--- [--- |1Leadisy [1478 |z
[z90 o [[--- |u 16 146 [as9 [--- [1479 [z
[z91 [x [x |u 16 146 = [= [1480 [2
EEE 1 [[--- [--- [--- [1Leadisy [1481 |z
EEE [[[--- |u 16 147 |70z [--- [1482 |z
[394 [x [x |u 16 147 [--- [[--- [1483 [z
[z95 [x [= = E= [1Lead(s) [1484 [2
206 1 [[--- |u 16 148 |zos [--- |1485 |z
707 1 l1 lu 16 148 [--- [- [--- [1486 |z
[a98 [x [[--- [--- [-- |1Leadis) [1487 [z
[ags [x [[--- |u 16 149 [ags [[1488 [2

Fig 1. Information from a boundary test database with XML tags displayed in a web
browser window.

By clicking on the hyperlink U_16 145, we see in Fig. 2 that U_17 24, an
input lead, is also on this net named ADBIO16. By clicking on the hyperlinks, we
can follow the information paths for this lead to find out about the scan cells and
register states associated with them. It is easy to see how these
interrelationships can be revealed using XML tags and XSL stylesheets to
display the data in a way that is clear and familiar for the end application, which
in this case is a web browser window.

EDevice Table - O] =]
F
Device | # of Leads | Class |
[0 11 |24 |digital
[4z |24 |digital
U 13 E |digital
[14 |24 |digital
[u 45 |za |digital
[U 16 [1e0 |digital
[u 47 |34 |digital -
T 18 |digital
T |24 |digital
U= |za |digital =]
75 Cild Cell Table =] B
=
Controlling Cell: 386 I Enable ¥alue: 1 I
Controlled Cells |Leads |
|a87 lu 16 145
I«lﬂﬂ »ll Clone | =
I Lock Window =l

ELeads Table =[O =]
=
Device: u_16 I
——
Lead |Type |NetName |
145 [roT |sDBIO1E
146 [roT |aDBIOL
147 [toT |aDBIO17 -
148 [roT |aDBIOZ
142 [roT |aoEIOLE
|150 [toT |aDBI1O3
151 10T ADBEIO1
= fror jaDe10 |
BNEI Elements T able O] =}
=
Net#: 28 I Net Name: ADBIO16 I
Leads |T~_.r|:|e |
U 17 24 i
lu 16 145 0T |
I«lﬂﬂ »Il CIDnel =

Fig. 2 Interrelationships among device and lead characteristics with XML tags can be
displayed in multiple web browser windows. XSL stylesheets support multi-way links.

Conclusion

The use of XML to tag key elements of data found in boundary scan test
databases can aid significantly in the way information important to debugging
boundary scan tests is made available to test engineers and operators. XML
offers the advantage of expressing information and complex interrelationships
among it in a human-readable, data-neutral format that is compatible with web
browsers. More importantly it provides a means for expressing information in a
non-proprietary format for use between different applications dependent on the

same data.

References

1. XML: Structuring Data for the Web: An Introduction. Web Developer’s Virtual
Library, http://www.wdvl.com/Authoring/Languages/XML/Intro . May 1998

2. XML and the Second-Generation Web. Jon Bosak and Tim Bray. Scientific
American, http://www.sciam.com/1999/0599issue/0599bosak.html . 1999

3. XML Schema Part 0: Primer. http://www.w3.0rg/TR/2000/CR-xmlschema-0-

20001024 . October 2000.

