

ISO/IEC JTC1/SG29/WG1 N1017
October 30, 1998

Title DIG2000 file format proposal

Source Digital Imaging Group
J. Scott Houchin, Chair, DIG2000 Working Group
901 Elmgrove Road, Rochester, NY 14653–5555
Tel: +1 716 726 7984; Fax: +1 716 726 7295; E-mail: houchin@kodak.com

The contents of this document represents a consensus of opinion from the
following DIG member companies: Agfa, Canon, Corbis, Eastman Kodak, Fuji,
Hewlett-Packard, Intel, Interactive Pictures, Iterated Systems, Konica, Live
Picture, and TrueSpectra.

Project JPEG 2000

Status Proposal

Requested action Recipients of this document are invited to review this proposal and submit any
comments to the DIG2000 Working Group Chair. Recipients of this document are
also invited to submit, with their comments, notification of any relevant patent
rights of which they are aware and to provide supporting documentation. The
DIG2000 Working Group intents to meet in January 1999 to resolve all com-
ments with the existing proposal.

Distribution JPEG 2000 Community

Contact
ISO/IEC JTC 1/SC 29/WG 1 Convener—Dr. Daniel Lee
Hewlett–Packard Company, 11000 Wolfe Road, MS42U0, Cupertino, CA 95014, USA
Tel: +1 408 447 4160, Fax: +1 408 447 2842, E-mail: daniel_lee@hp.com

ISO/IEC JTC1/SC29/WG1
(ITU–T SG8)

Coding of Still Pictures

JBIG
Joint Bi-level Image

Experts Group

JPEG
Joint Photographic

Experts Group

Contents

Chapter 1 Introducing DIG2000 1

1.1 The goals of the DIG2000 file format 1

1.1.1 DIG2000 vision 1

1.1.2 DIG2000 features 2
1.1.2.1 Efficient access to the JPEG 2000 bitstream 2
1.1.2.2 Unambiguous specification of color 2
1.1.2.3 Flexible metadata architecture 2

1.1.3 DIG2000 reference implementation 3

1.2 About the Digital Imaging Group 3

1.3 About this document 4

1.3.1 Document sections 4

1.3.2 Typographical conventions 4

1.4 Path forward 5

Chapter 2 Coordinate systems 7

2.1 Resolution independent coordinates 7

2.2 Resolution dependent coordinates 8

2.3 Translating coordinates between resolutions 9

2.3.1 Guaranteeing alignment between resolutions 9

2.3.2 Resolution sizes 10

Chapter 3 Binary container 11
ISO/IEC JTC1/SG29/WG1 N1017 iii

3.1 Required functionality of the binary container 11

3.1.1 Efficient random access 11

3.1.2 Size extensibility 11

3.1.3 Streamability 12

3.2 Structured storage 12

3.2.1 Structured storage as a virtual file system 12

3.2.2 Class ID’s 13

3.3 File identification 14

3.3.1 DIG2000 class ID 14

3.4 Standard entities in a DIG2000 file 14

Chapter 4 Metadata organization 17

4.1 Requirements for a metadata architecture 17

4.1.1 Extensibility independent of a standardization process 17

4.1.2 Rapid access to a catalog of metadata 17

4.1.3 Standard metadata block descriptions 18

4.1.4 Image data as metadata 18

4.1.5 Adding and updating metadata 18

4.2 Standard representations of data types in CDATA attributes 18

4.3 Metadata Root structure specification 19

4.4 Metadata Root element descriptions 20

4.4.1 DIG2000ImgSpec 20

4.4.2 ImgSize 20

4.4.3 DefaultDisplaySize 20

4.4.4 InputColor 21

4.4.5 ChannelList 21

4.4.6 Channel 22

4.4.7 DIG2000MetadataSpec 22

4.5 The Image Stream metadata block 24

4.6 Defining new metadata blocks 25

4.7 Example Metadata Root 25
iv October 30, 1998

DIG2000 file format proposal

Chapter 5 Standard metadata fields 29

5.1 Digital Image Source block 30

5.1.1 Metadata block structure values 30

5.1.2 Document type definition 30

5.1.3 Element definitions 34
5.1.3.1 DigitalImageSource 34
5.1.3.2 CameraCapture 35
5.1.3.3 CameraInformation 35
5.1.3.4 DigitalCaptureDeviceCharacterization 35
5.1.3.5 SpatialFrequencyResponse 36
5.1.3.6 SFRRow 36
5.1.3.7 CFAPattern 36
5.1.3.8 CFARow 36
5.1.3.9 Red, Green, Blue, Cyan, Magenta, Yellow, White 37
5.1.3.10 OECF 37
5.1.3.11 OECFRow 37
5.1.3.12 CameraCaptureSettings 37
5.1.3.13 SpecialEffects 40
5.1.3.14 SpEfUnidentified, SpEfNone, SpEfColored, SpEfDiffusion,

SpEfMultiImage, SpEfPolarizing, SpEfSplitField and SpEfStar 40
5.1.3.15 Notes 41
5.1.3.16 CapturedItem 41
5.1.3.17 OriginalScene 41
5.1.3.18 ReflectionPrint 41
5.1.3.19 PrintedItem 41
5.1.3.20 Film 41
5.1.3.21 ComputerGenerated 42
5.1.3.22 OtherItem 42
5.1.3.23 ScannerCapture 42
5.1.3.24 ScannerInformation 42

5.1.4 Examples 43
5.1.4.1 A simple DigitalImageSource 43
5.1.4.2 A complex DigitalImageSource 44

5.2 Intellectual Property block 45

5.2.1 Metadata block structure values 45

5.2.2 Document type definition 45

5.2.3 Element definitions 46
5.2.3.1 IntellectualProperty element 46
5.2.3.2 Copyright 46
5.2.3.3 Pricing 46
5.2.3.4 Notes 46

5.2.4 Example 46

5.2.5 Intellectual property issues 47
ISO/IEC JTC1/SG29/WG1 N1017 v

5.3 Content Description block 48

5.3.1 Metadata block structure values 48

5.3.2 Document type definition 48

5.3.3 Element definitions 48
5.3.3.1 ContentDescription 48
5.3.3.2 RollCaption 49
5.3.3.3 Caption 49
5.3.3.4 People 49
5.3.3.5 Places 49
5.3.3.6 Things 49
5.3.3.7 Events 49
5.3.3.8 Notes 49

5.3.4 Example 50

5.4 GPS Information block 50

5.4.1 Metadata block structure values 50

5.4.2 Document type definition 50

5.4.3 Element descriptions 51
5.4.3.1 GPSInformation 51

5.4.4 Example 53

Chapter 6 Color representation 55

6.1 Introduction 55

6.2 sRGB 56

6.2.1 Introduction 56

6.2.2 Reference conditions 56
6.2.2.1 Reference display conditions 56
6.2.2.2 Reference viewing conditions 57
6.2.2.3 Reference observer conditions 57

6.2.3 Encoding characteristics 57
6.2.3.1 Introduction 57
6.2.3.2 Transformation from RGB values to 1931 CIE xyz values 58
6.2.3.3 Transformation from 1931 CIE xyz values to RGB values 58

6.3 International Color Consortium (ICC) profiles 59

6.3.1 Intended audience of the ICC profile specification 60

6.3.2 ICC device profiles 60

6.3.3 ICC profile structure 60

6.3.4 Embedded ICC profiles 61

6.4 Color representation specification 61
vi October 30, 1998

DIG2000 file format proposal

Appendices

Appendix A Structured Storage 65

A.1 Compound file binary format 65

A.1.1 Overview 65

A.1.2 Sector types 66
A.1.2.1 Header 66
A.1.2.2 Fat sectors 67
A.1.2.3 MiniFat sectors 68
A.1.2.4 DIF sectors 69
A.1.2.5 Directory sectors 69

A.1.2.5.1 Root Directory Entry 71
A.1.2.5.2 Other Directory Entries 72

A.1.2.6 Storage sectors 72

A.1.3 Examples 72
A.1.3.1 Sector 0: Header 72
A.1.3.2 SECT 0: First (only) FAT sector 73
A.1.3.3 SECT 1: First (only) Directory sector 73

A.1.3.3.1 SID 0: Root Directory Entry 73
A.1.3.3.2 SID 1: “Storage 1” 74
A.1.3.3.3 SID 2: “Stream 1” 74
A.1.3.3.4 SID 3: Unused 75

A.1.3.4 SECT 3: MiniFat sector 75
A.1.3.5 SECT 4: MiniStream (data of “Stream 1”) 75

A.2 OLE Property Set binary format 76

A.2.1 Document properties in storage 76

A.2.2 Format of the primary property set stream 77
A.2.2.1 Property Set header 78
A.2.2.2 Format ID/Offset pairs 78
A.2.2.3 Sections 79

A.2.3 Special property ids 79
A.2.3.1 Property ID zero: Dictionary of property names 79
A.2.3.2 Property ID one: Code Page Indicator 80
A.2.3.3 Property ID 0x80000000: Locale Indicator 81
A.2.3.4 Reserved property ID’s 82

A.2.4 Property type representations 82
ISO/IEC JTC1/SG29/WG1 N1017 vii

A.3 CompObj stream binary format 85

A.3.1 Overview 85

A.3.2 Format 86
A.3.2.1 Mandatory part 86

A.3.2.1.1 Stream name 86
A.3.2.1.2 Header 86
A.3.2.1.3 User Type 86
A.3.2.1.4 Clipboard Format (ANSI) 87

A.3.2.2 Optional: ProgID (ANSI) 87
A.3.2.3 Optional: Unicode versions 87

A.3.2.3.1 Magic Number 87
A.3.2.3.2 User Type (Unicode) 87
A.3.2.3.3 Clipboard Format (Unicode) 88
A.3.2.3.4 ProgID (Unicode) 88

Appendix B Example API 89

B.1 Using the ImageSource interface 89

B.1.1 Introduction 89

B.1.2 Image representation 90
B.1.2.1 Multiple resolutions 90
B.1.2.2 Tiles 90
B.1.2.3 Example 90

B.1.3 Loading an image 90

B.1.4 Getting tiles 91

B.2 C++ documentation 92

B.2.1 .fpx-format related interfaces 92
B.2.1.1 Interfaces 92
6.4.0.1 See Also 93

B.2.2 ImageSource related Interfaces 93
B.2.2.1 Interfaces 93
B.2.2.2 See Also 94

B.2.3 Property Set related Interfaces 94
B.2.3.1 Interfaces 94

B.2.4 Render2D Base Types 94

B.2.5 Hierarchy of C++ Classes 95

Appendix C Enhancements for Windows 97

C.1 Property sets 97
viii October 30, 1998

DIG2000 file format proposal

C.2 Summary Information property set 98

C.3 CompObj stream 100

Appendix D References 103
ISO/IEC JTC1/SG29/WG1 N1017 ix

1: Introducing
DIG2000

The JPEG 2000 compression standard is shaping up to be a great way to compress
raw image data. It is expected to contain features that will enable applications to
access and decompress the image data in many different forms and scenarios. This
will enable many new digital imaging applications and help to make digital images
as ubiquitous as scalable fonts.

However, a compression standard solves only part of the problem. For an applica-
tion to be able to use a digital image effectively, the compressed image data must
be wrapped in a complete file format that tells the application about the raw
image data. This information can range from unambiguously specifying the color-
space of the image data, to specifying the names of the people, places and things
that are pictured in the image.

This document proposes a file format that meets the needs of present and future
imaging applications to fully describe digital images. This file format is affection-
ately known as the DIG2000 file format.

1.1 The goals of the DIG2000 file format

1.1.1 DIG2000 vision
The DIG2000 file format was designed as a way to completely specify a digital image
while still allowing effective access to both the digital image data and the meta-
data. The vision of the DIG2000 working group is as follows:

To create a digital image file format that embodies a tightly-integrated set of essen-
tial features for specifying digital images and provides the needed mechanisms for
images to be used effectively.

There are several important aspects to the vision. First and most importantly, the
DIG2000 format should be a format for storing digital images. Although many other
formats provide additional functionality, there is often a price to be paid, and there
is often a better way to achieve the same result by concatenating the digital image
file format standard with other standards as opposed to trying to convolve multi-
ple standards. This means that as the DIG2000 working group evaluated features to
add to the standard, they were measured as to how essential they were to the spec-
ification of digital images.

Secondly, it was important to develop features in such a way as to maximize the
performance of imaging applications that use these image files. An application
ISO/IEC JTC1/SG29/WG1 N1017 1

The goals of the DIG2000 file format

must be able to create an image file that effectively answers the needs set forth by
that application’s scenarios.

For example, if an image file is being used as part of a page layout being designed
in DTP software, it may be very important for that application to write the file in
such a way as to maximize performance in a progressive-by-resolution mode. In
other applications, it may be very important that the application can add addi-
tional metadata to the file without requiring that the entire file be rewritten.

1.1.2 DIG2000 features
The DIG2000 format embodies the following features, each of which is considered
essential to the specification of a digital image and essential for the image file to be
used effectively.

1.1.2.1 Efficient access to the JPEG 2000 bitstream
The JPEG 2000 bitstream is stored in a DIG2000 file as an independent and unadulter-
ated object. It must be possible for an application to quickly gain access to the
bitstream, to either load the bitstream in a random fashion or to stream it to a
client.

1.1.2.2 Unambiguous specification of color
The file format must be able to unambiguously specify the colorspace of the raw
image data stored in the JPEG 2000 bitstream. This can be accomplished by using the
default assumption of the standard sRGB colorspace, or by storing an ICC input pro-
file in the file.

1.1.2.3 Flexible metadata architecture
The ability to store metadata in the file is very important. However, it is not possi-
ble to determine today all of the types of metadata that applications will deem as
essential in the future. Thus it is important that the file format contain a mecha-
nism to add new types of metadata to the file without going through a
standardization or tag registration process.

Also, as images files are used, existing metadata fields will continually be updated
and new metadata fields will be added to the file. For example, when the scene is
digitized, an image file is created that contains information about the digitization
environment. In many professional workflows, the image file will be loaded into an
application and the digitized scene will be examined. The image file will then be
updated with new information about the scene, such as the names of the people
in the scene, where the scene was captured, and when it was captured. As copy-
rights are often very fluid and change over time, the copyright and intellectual
property information in the file may change several times over the life of the digi-
tal image file. At a later point, the image file may again be updated with new
metadata. For metadata to be efficiently added to the image file, it must be possi-
ble to add additional blocks of data to the file without rewriting a large portion of
the file. If an image file contains 20MB of compressed image data, rewriting the
image file becomes a costly step in many workflows.
2 October 30, 1998

DIG2000 file format proposal

It is also important to provide a means to dynamically update the metadata in the
file. For example, in today’s systems, it is impossible to update the metadata in a
file on a user’s system from a server without downloading a new copy of the file. A
dynamic updating mechanism would allow an application to check a server for just
the updated portions of an image file and download those that have changed since
the user’s copy of the file was last written.

1.1.3 DIG2000 reference implementation
The Digital Imaging Group intents to begin work on a reference implementation of
the DIG2000 proposal for the JPEG 2000 effort. As part of this effort, TrueSpectra
intends to release the source code for their Flashpix™ file format and Internet
Imaging Protocol (IIP) client software license and royalty free. This software includes
a custom implementation of the Microsoft Structured Storage container document
format. This software will be released upon resolution of the intellectual property
issues with Microsoft around the Structured Storage format, and provided that the
technology is positively received by the JPEG 2000 committee.

1.2 About the Digital Imaging Group

The Digital Imaging Group (DIG) is an imaging industry consortium that was
founded in 1997 by Adobe, Canon, Eastman Kodak, Fuji, Hewlett-Packard, IBM,
Intel, Live Picture and Microsoft. Since that time, the organization has grown to
over 50 members at three different levels of membership.

The organization was formed to provide the industry a forum for the exploration,
implementation, and stewardship of technologies and methods for expanding the
digital imaging market. The DIG has been very active in the area of resolution-inde-
pendent image access and transmission with its first two digital imaging solutions,
Flashpix and the Internet Imaging Protocol (IIP). The organization’s success can be
measured by the fact that over the past 18 months, DIG member companies have
released over 100 products supporting its initiatives.

The attractive capabilities of the JPEG 2000 bitstream were recognized by DIG mem-
ber companies. To respond to the need for a standard file format to wrap JPEG 2000
compressed image data, the DIG formed a working group (the DIG2000 working
group) in late summer 1998 to address the issue. The members of this working
group are Agfa, Canon, Corbis, Eastman Kodak, Fuji, Hewlett-Packard, Intel, Interac-
tive Pictures, Iterated Systems, Konica, Live Picture, Microsoft, and TrueSpectra.

Specifications and proposals are approved within the DIG2000 working group using
methods similar to those used in ISO. All proposals are voted on by all voting eligi-
ble members of the group, which is determined by the level at which each
company has joined the DIG. In the DIG2000 working group, all members are eligible
to vote with the exception of Microsoft.

The proposal contained within this document represents the opinion of the work-
ing group, and thus the DIG as a whole. Each aspect of this proposal has been
approved by a majority of members of the working group, and the proposal as a
whole has been approved by the DIG management committee.
ISO/IEC JTC1/SG29/WG1 N1017 3

About this document

1.3 About this document

1.3.1 Document sections
This document is organized into the following sections:

Chapter 1: Introducing DIG2000. This chapter introduces the Digital Imaging
Group, the DIG2000 working group, and the goals of this proposal.

Chapter 2: Coordinate systems. This chapter describes the standard coordi-
nate system for both resolution dependent and resolution independent
measurement of the image.

Chapter 3: Binary container. This chapter describes the binary container for-
mat for the DIG2000 file format.

Chapter 4: Metadata organization. This chapter describes the metadata
architecture of the DIG2000 file format.

Chapter 5: Standard metadata fields. This chapter describes the standard
metadata fields in a DIG2000 file.

Chapter 6: Color representation. This chapter describes how the colorspace
of decompressed data is specified and how that color information should be inter-
preted when loading and processing the image.

Appendix A: Structured Storage. This appendix defines the binary format for
the Microsoft Structured Storage container document format.

Appendix B: Example API. This appendix shows an example API for using
DIG2000 files.

Appendix C: Enhancements for Windows. This appendix defines specific
enhancements that can be made to a DIG2000 file for use in Windows platforms.

Appendix D: References. This appendix lists all documents referenced by this
proposal, as well as other documents that the reader of this proposal may find
interesting or helpful.

1.3.2 Typographical conventions
The following typographical conventions are used throughout this document:

◆ Syntax, and code examples are shown in fixed width font.

◆ Octal encoding of characters within this text will be shown in bold , with the
octal value preceded by a \ (i.e. \040 is the space character). For example, the
text Metadata \040 Root refers to the literal string “Metadata Root” where
the blank refers to exactly one space character.
4 October 30, 1998

DIG2000 file format proposal
◆ Italic strings are used for emphasis and to identify words representing variable
entities in the text.

◆ Bold strings are used to identify the first instance of a word requiring
definition.

1.4 Path forward

This document represents a consensus opinion of the DIG. It integrates those tech-
nologies that the DIG believes are most essential for a successful digital image
format.

However, due to time constraints, the DIG was not able to fully investigate all tech-
nologies that could augment the DIG2000 format. As part of the effort to resolve
comments received on this version of the proposal, the DIG will continue to investi-
gate other technologies, including:

◆ Specifying hot-spots in the image
◆ Universal Transverse Mercator (UTM) coordinates for GPS data
◆ The use of XML-data, RDF and WIDL for the storage of metadata
◆ Bézier clipping paths
◆ A standard naming scheme for metadata blocks to minimize conflicts

The DIG2000 working group plans on meeting in January 1999 to resolve all com-
ments received and to integrate other investigated technologies. All comments on
this proposal should be sent to J. Scott Houchin at houchin@kodak.com.
ISO/IEC JTC1/SG29/WG1 N1017 5

2: Coordinate
systems

DIG2000 files allow the image data to be accessed at several different resolutions. To
effectively use the image, it is very important to be able to specify the location of
features in the image both independently of any particular resolution, and on a
pixel neighborhood basis within a particular resolution.

The DIG2000 format defines two different, yet related coordinate systems: a resolu-
tion independent system and a resolution dependent system.

2.1 Resolution independent coordinates

In many situations, the scene must be described by a coordinate system indepen-
dent of the pixel. For example, in a graphic illustration application, an artist may
have specified that a piece of vector based art be aligned with a particular feature
in a raster based object. Over its life, the illustration may be rendered at many dif-
ferent resolutions: it may be drawn to the computer screen at 72 DPI, rendered for
a laser proof at 300 DPI, and rendered for final printing plates at 2400 DPI, for
example. It is very important that the application be able to easily and consistently
specify the location of features in the image.

Figure 2.1 shows a resolution independent coordinate system. The image is
described in a Cartesian system, with the x-axis horizontal and pointing to the right,
the y-axis vertical and pointing downward, and the origin at the upper left corner.
The scale is such that the height of the image is normalized to 1.0. To keep the
scale of the x-axis and the y-axis the same, the image width is its aspect ratio
(width/height). Thus, a square portion of any image has equal width and height in
this coordinate system.
ISO/IEC JTC1/SG29/WG1 N1017 7

Resolution dependent coordinates
FIGURE 2.1 Resolution independent coordinates

2.2 Resolution dependent coordinates

At a given resolution, the normalized coordinate system described above must be
converted to a set of discrete pixels neighborhoods. To do this, the continuous reso-
lution dependent coordinate system in Figure 2.2 is used. This is simply a scaled
version of the resolution independent coordinates. Each coordinate value The val-
ues (x, y) in this coordinate system are still real (floating point) numbers.

To define the actual pixels of the image, an integer grid is overlaid on the coordi-
nate system. The discrete pixel referred to by (i, j), where i and j are integers, is
centered at location (i+0.5, j+0.5). The half-unit shift makes the conversion
between discrete and continuous descriptions simple. The point (x, y) falls in the
unit square labelled (,) and containing the pixel at (+0.5, +0.5).
No rounding is required.

X

Y

(0,0)

(R, 1)

(R, 0)

(0,1)

R
W
H
----=

x y x y
8 October 30, 1998

DIG2000 file format proposal
FIGURE 2.2 Resolution-dependent coordinates

2.3 Translating coordinates between resolutions

In a DIG2000 file, each resolution in the full hierarchy is separated from the next
higher resolution by a spatial factor of 2× in both the x and y directions.

In Figure 2.3, the full resolution image is W rows × H columns. The actual spatial
resolution (in pixels per inch, for example) is irrelevant, since neither the desired
output size nor the output resolution is known. Each successively smaller resolu-
tion has half the number of rows and columns as the previous resolution. In this
example, the second resolution is rows × columns (the quotient
must be rounded up because the image cannot have fractional pixels).

FIGURE 2.3 Sample resolution hierarchy

2.3.1 Guaranteeing alignment between resolutions
In a DIG2000 file, it is required that the decomposition process use centered align-
ment when subsampling the image to create lower resolution levels, as shown in

X

Y

(0,0) (W,0)

(W,H)(H,0)

1 2

1
2

…

…

W 2⁄ H 2⁄

W
2
---- H

2
---×

W H×

…
W

2n 1–
------------ H

2n 1–
------------×
ISO/IEC JTC1/SG29/WG1 N1017 9

Translating coordinates between resolutions
Figure 2.4. A pixel in resolution i+1 is centered on the pixels in resolution i that
contributed to the lower resolution pixel.

FIGURE 2.4 Subsampling an image using centered alignment

This significantly simplifies the computations needed to keep track of the location
of image features between resolutions; using the coordinate system described in
Section 2.1, the resolution independent coordinates of a feature do not change
from resolution to resolution. If cosited alignment is used, the location of image
features does change from resolution to resolution, and it can be very difficult to
explain how they change and to implement a system to maintain alignment of
multiple resolutions.

2.3.2 Resolution sizes
The size of a decimated image is determined from Equation 2.1, where (w0,h0) is
the width and height of the larger resolution and (w1,h1) are the width and height
of the smaller resolution:

(2.1)

Note that this rounding affects the size of the image in resolution independent
coordinates. The height of the largest resolution image is defined to be 1.0. Using
the rounding method in Equation 2.1, the height of one resolution given the height
of the next largest resolution can be determined as follows, where h0 is the height
of the larger resolution in resolution independent coordinates, p0 is the height of
the larger resolution in pixels, h1 is the height of the next smaller resolution in res-
olution independent coordinates, and p1 is the height of the next smaller
resolution in pixels, as defined by Equation 2.1:

(2.2)

Failing to make this correction to the height and width of the image (in resolution
independent coordinates), as further illustrated in [8], when dealing with resolu-
tions other than the largest resolution may cause slight errors in the alignment of
the multiple resolutions of the image.

X

Y

Resolution i pixels

Resolution i+1 pixels

w1 h1,() w0

2

h0

2
-----, 

 =

h1

2p1

p0
--------- h0×=
10 October 30, 1998

3: Binary container

Although the JPEG 2000 bitstream goes far toward organizing the image data in a
file, and has a large effect on the value of the image file, it is up to the binary con-
tainer of the image to wrap together the image data with all of the other pieces of
information that enhance the value of that image. The DIG2000 file format uses
Microsoft Structured Storage as the binary container. The complete Structured Stor-
age binary format specification can be found in Appendix A.

3.1 Required functionality of the binary container

When selecting a binary container format for the DIG2000 file format, the following
functionalities were deemed as required for the format to be successful in typical
DIG applications.

3.1.1 Efficient random access
The binary container must minimize the sequential processing of the image file
required to gain random access to individual objects (including objects within the
JPEG 2000 bitstream) in the file.

For example, a marker segment architecture like in baseline JPEG can be problem-
atic because an application is required to jump from one marker segment to the
next, until the desired segment is found. The reader is also required to read a small
amount of data from each segment in order to determine the location of the next
segment. If there are a large number of segments, it can become very inefficient
for a reader to locate a segment toward the end of the file.

It would be much more efficient for the binary format to provide some form of
standard “table of contents” that a reader can use quickly determine the exact loca-
tion of individual objects in the file.

For example, an IIP server must be able to efficiently access the file in a mode
where particular blocks from the image data will be loaded (independently of
other blocks) and sent to the client. The client may then request additional blocks
of the image to increase the displayed resolution or quality, which the server must
again be able to efficiently access and send to the client.

3.1.2 Size extensibility
The binary container must provide a means to extend the length of individual
objects in the file without requiring large portions of the file to be rewritten.

For example, consider a large standard TIFF image with over 20MB of image data.
This file contains a comment tag listing most of the people shown in the image. If a
ISO/IEC JTC1/SG29/WG1 N1017 11

Structured storage
user wishes to add a small amount of additional information to the comment tag,
the application must rewrite the entire file (over 20MB of data).

This required functionality could be achieved by defining some form of file alloca-
tion table within the file format. This would allow a single independent object to
be stored across multiple, non-contiguous sections of the image file, much like how
a file on a computer hard disk can be stored over multiple, non-contiguous sectors
of the disk.

Note that “optimized” files can be written where all objects are stored in sequen-
tial, contiguous blocks. In fact, most files when originally written will be optimized.
It is only after files are changed that data begins to be organized in a non-optimal
fashion. However, it is quite possible to write an application to optimize the objects
within a file (like disk optimization applications).

Which brings up the topic of streamability…

3.1.3 Streamability
It must be possible to produce a file that is suitable for streaming from a server to a
client. This means that the client begins processing the file upon receipt of the first
byte and can make effective use of the file as it arrives. The client should never be
required to wait for additional data to arrive before it can process data that has
already arrived from the file.

In some ways, the requirement of streamability conflicts with the requirements of
random access and size extensibility. It will not be possible to traditionally stream
all files from a server to a client. For example, as a file is edited and its organiza-
tion becomes non-optimal, an application may be required to optimize the file
before it can be streamed.

For other applications, a server could be designed to pull portions of different ele-
ments of the DIG200 file and interleave the data elements for streaming as per some
other standard; the file data is optimized at a protocol layer above the file access
layer. For example, a multimedia streaming server might load pieces of the image
data and audio data stored in a DIG2000 file and combine them as per the stream-
ing protocol for annotated slideshow playback on the client. Another example
might be an IIP server where the server extracts different image resolution from
arbitrary locations in the file to facilitate client-side zooming and panning.

3.2 Structured storage

3.2.1 Structured storage as a virtual file system
The DIG2000 digital image format is based on a compound object storage model
called Structured Storage. A file in Structured Storage format contains two types of
objects: storages and streams. Storages are analogous to directories in a file sys-
tem; streams are analogous to files. A storage may contain both zero or more
additional storages and zero or more streams. The streams and storages in a
12 October 30, 1998

DIG2000 file format proposal
DIG2000 file are individually addressable. Figure 3.1 shows the convention used in
this document to illustrate storages and streams:

FIGURE 3.1 Conventions for storages and streams in illustrations

In illustrations in this document, mandatory streams and storages are shown con-
nected by solid lines and with their names in Roman characters, and optional
streams and storages are shown connected by dotted lines and with their names in
Italics.

The entire structured storage file appears in the host file system as one file. In this
example, Storage 1 represents the root storage. It is the highest level storage of the
file and is the entity that is visible in the host file system. It contains two storages (2
and 3) and one stream (4). Storage 2 contains one empty storage (5). Storage 3 con-
tains two mandatory streams (6 and 7). and one optional stream (8).

3.2.2 Class ID’s
Many entities in a DIG2000 file (i.e., the file itself, each block of metadata) have a
class ID that identifies the type of the object. Class ID’s are defined as Globally
Unique Identifiers (GUID’s). They are represented as 128 bit numbers that are con-
sidered unique across platforms and time. GUID’s are generated using the algorithm
specified for the generation of Universal Unique Identifiers for Remote Procedure
Calls [3].

Note that the term class ID is used differently than in the COM/OLE world. In the
COM/OLE world, a class ID specifies a component class (the application code itself)
that understands the data stored in the entity, not the binary format of the data. In
DIG2000, conversely, class ID’s only serve to specify the binary format of each of the
entities in a file. These class ID’s could then be used as OLE intended in a COM imple-
mentation or could simply be used as globally unique identifiers in an alternate
implementation.

Storage 1

Stream 6

Storage 5Storage 2

Storage 3

Stream 4

Stream 7

Stream 8
ISO/IEC JTC1/SG29/WG1 N1017 13

File identification
3.3 File identification

3.3.1 DIG2000 class ID
DIG2000 files can be identified by the class ID 00000000-5E0C-11D2-9D44-
00A0C933BB7F. This class ID must be stored in the header of the root storage of
the file (see Appendix A.1.2.1). Many object based systems (e.g. OLE), as well as
many Magic Number based systems, will use the class ID found in the header of the
root storage as a key for launching an application. In this way an application can
be designated to handle all files of this object type by default, regardless of their
creator.

On the MacOS, the file type of a DIG2000 file should be set to D2KI 1. On file exten-
sion based systems, the file extension should be set to .d2k .

3.4 Standard entities in a DIG2000 file

The following illustration shows the standard entities in a DIG2000 file (Figure 3.2),
each of which are stored in a separate stream within the root storage.

FIGURE 3.2 Standard entities in a DIG2000 file

Root storage. This storage represents the DIG2000 file itself. It must have the class
ID 00000000-5E0C-11D2-9D44-00A0C933BB7F .

1. It is expected that these values for the MacOS file type and file extension be changed when the
final file format name is selected.

Root storage

Summary
Information

CompObj

Metadata
Root

Image Stream

Metadata
Block 1

Metadata
Block 2

Metadata
Block n–1

Input Color
ICC Profile …
14 October 30, 1998

DIG2000 file format proposal
Metadata Root. This stream contains the root structure for all metadata. The
structure provides a list of all of the blocks of metadata in the file, as well as
directly specifying the values of several required metadata fields (i.e. colorspace,
image size). This stream is defined in Section 4.3. The name of this stream must be
Metadata \040 Root and it must be located in the root storage of the file. This
stream must exist in all valid DIG2000 files.

Image Stream. This stream contains the actual JPEG 2000 encoded bitstream, as
defined by other activities in WG1. The name of this stream must be
Image \040 Stream and it must be located in the root storage of the file. This
stream must exist in all valid DIG2000 files.

Input Color ICC Profile. This stream contains an input color ICC profile, which
specifies how colors, as they are actually specified in the decompressed image
data, should be converted to the Profile Connection Space (PCS). The name of this
stream must be Input \040 Color \040 ICC\040 Profile , and it must be
located in the root storage of the file. The data in this stream is in the exact format
for input profiles as specified by [2]. A greater discussion of input colorspaces is
given in Chapter 6.

Metadata Blocks 1 to n–1. These blocks contain assorted sets of metadata
fields. A set of standard blocks are defined in Chapter 5. However, other blocks will
be defined by applications independently to the JPEG 2000 standardization process.
The names of each of these blocks is defined by the block specification itself.

Summary Information. This stream contains the Summary Information prop-
erty set as described in Appendix C.2. This stream is optional, but highly
recommended for Windows platforms. However, if this stream exists, the name of
this stream must be \005 SummaryInformation and it must be located in the
root storage of the file.

CompObj. This stream contains the CompObj information as defined in
Appendix C.3. This stream is optional, but highly recommended for Windows plat-
forms. However, if this stream exists, the name of this stream must be CompObj
and it must be located in the root storage of the file.
ISO/IEC JTC1/SG29/WG1 N1017 15

4: Metadata
organization

In some ways, metadata is the most important aspect of a image file format, pri-
marily because in many ways, all data in the file, including the image data, is
metadata. Thus it is absolutely essential for a digital image file format to have a
good architecture for storing, adding and updating metadata.

4.1 Requirements for a metadata architecture

When defining a metadata architecture for the DIG2000 file format, the following
functionalities were deemed as required for the format to be successful in typical
DIG applications:

4.1.1 Extensibility independent of a standardization process
It must be possible for new metadata properties and groups of properties to be
defined and written to files without involving a standardization or registration
process.

4.1.2 Rapid access to a catalog of metadata
In many applications, metadata is used in some form of interactive process.
Whether that process is controlled by a human user or a computer application,
access to metadata is generally requested in a multiple stage process; a list of the
types of metadata present is requested first, followed my multiple requests for par-
ticular pieces of the data.

For example, an application might first load the catalog of metadata and discover
that the image was captured by a digital camera. If the application was interested
in the details of the capture (such as the CFA pattern of the camera or the exposure
settings), the application would make a second request for that information. How-
ever, if the application was not interested in that information, it would not be
encumbered by accesses to that data.

As the perceived value of metadata grows, access to metadata will switch from
something that is primarily user driven to something that is frequently application
driven. It will become essential for an application to be able to quickly load a cata-
log or list of the types of metadata stored in the file without requiring that the data
itself be loaded or parsed through.
ISO/IEC JTC1/SG29/WG1 N1017 17

Standard representations of data types in CDATA attributes
4.1.3 Standard metadata block descriptions
In addition to listing each block of metadata in a catalog, it is also important to list
attributes of the block of data itself, such as the MIME type of the actual data or the
time that data was written to the file.

4.1.4 Image data as metadata
A lot of the attributes of a metadata block can be applied to the encoded image
data as well. For example, it may be important to reflect the modification date and
time of the image data itself independently from the modification date of the file.
This functionality would allow an application to judge the validity of particular
metadata fields by determining if data on which that field is dependent has
changed since the field was written.

4.1.5 Adding and updating metadata
It must be possible to add new metadata to the file or to extend the length of exist-
ing metadata blocks without rewriting large portions of the image file. As the value
of metadata increases, it will be accessed more and edited and updated more. As
this happens, typical image sizes will also be growing. Rewriting nearly an entire
large image file when only a few bytes of metadata have changed will cause unac-
ceptable performance degradation in many applications.

4.2 Standard representations of
data types in CDATA attributes

In the DIG2000 format, all metadata is stored using XML. Unfortunately, there are
very few standard data types defined in XML. This section defines several atomic
data types as they would be stored in a CDATA attribute in an XML element.

Int. The ASCII string representation of a legal integer i.

PosInt. An Int where i ≥ 0.

CountInt. An Int where i > 0.

Real. The ASCII string representation of a legal real number r.

PosReal. A Real where r ≥ 0.

CountReal. A Real where r > 0.

Timestamp. A string of the form defined by ISO 8601:1998(E) [14].
18 October 30, 1998

DIG2000 file format proposal
4.3 Metadata Root structure specification

The first step in accessing the metadata contained in a DIG2000 file will be loading
the Metadata Root stream. This stream provides the application with information
about the types and locations of the metadata stored in the file. It also provides
information about the image data itself which will be required for acceptable pro-
cessing of the image.

The Metadata Root structure is stored as an XML stream. The DTD for the Metadata
Root structure is as follows1:

<?xml version="1.0"?>
<!DOCTYPE DIG2000MetadataRoot [

<!ELEMENT DIG2000MetadataRoot
(DIG2000ImgSpec, DIG2000MetadataSpec*)

>

<!ELEMENT DIG2000ImgSpec
(ImgSize, DefaultDisplaySize?, InputColor, ColorChannelList)

>

<!ELEMENT ImgSize EMPTY>
<!ATTLIST ImgWidth

w CDATA #REQUIRED
h CDATA #REQUIRED

>

<!ELEMENT DefaultDisplaySize EMPTY>
<!ATTLIST DefaultDisplaySize

w CDATA #REQUIRED
h CDATA #REQUIRED
unit (Inches | Meters | Centimeters | Millimeters | Picas |

Points) "Inches"
>

<!ELEMENT InputColor EMPTY>
<!ATTLIST InputColor

colorspace (sRGB | Unspecified) #REQUIRED
>

<!ELEMENT ChannelList (Channel+)>
<!ATTLIST ChannelList

n CDATA #REQUIRED
pm (True | False) "False"

>

<!ELEMENT Channel EMPTY>
<!ATTLIST Channel

name CDATA #REQUIRED
size (bit8 | bit16) "bit8"

>

1. The token “DIG2000” is used throughout the XML specifications in this document. However, it is
expected that this will be changed to a standard JPEG 2000 name before final specification of the
standard.
ISO/IEC JTC1/SG29/WG1 N1017 19

Metadata Root element descriptions
<!ELEMENT DIG2000MetadataSpec ANY>
<!ATTLIST DIG2000MetadataSpec

name CDATA #REQUIRED
mimeType CDATA #REQUIRED
specID CDATA #REQUIRED
instance ID #IMPLIED
editable (Edit | Locked) "Edit"

downloadPriority (Immediate | Delayed | OnRequest)
"OnRequest"

creationDate CDATA #REQUIRED
modificationDate CDATA #REQUIRED
stream CDATA #IMPLIED
remote CDATA #IMPLIED

>
]>

4.4 Metadata Root element descriptions

The Metadata Root structure (an element of DIG2000MetadataRoot) contains
two types of elements: one DIG2000ImgSpec , followed by zero or more
DIG2000MetadataSpec ’s. The file must contain one DIG2000MetadataSpec
for every block of metadata in the file, and may also optionally contain one
DIG2000MetadataSpec for the JPEG 2000 compressed bitstream itself. The fol-
lowing sections describe the meaning of these two structures and their attributes,
and the legal values for each attribute.

The types of CDATA typed attributes are defined in Section 4.2.

4.4.1 DIG2000ImgSpec
This element specifies any information that is required for acceptable display of the
image data. It contains the following elements: ImgSize (Section 4.4.2),
DefaultDisplaySize (Section 4.4.3), InputColor (Section 4.4.4), and Chan-
nelList (Section 4.4.5).

4.4.2 ImgSize
This element specifies the size of the image. This element is required. It has two
attributes:

w. This attribute specifies the width, in pixels, or the image. The value of this
attribute must be a CountInt. This attribute is required.

h. This attribute specifies the height, in pixels, or the image. The value of this
attribute must be a CountInt. This attribute is required.

4.4.3 DefaultDisplaySize
This element specifies the default height and width, respectively, for displaying the
image. Note that in many applications, this information should be ignored. For
20 October 30, 1998

DIG2000 file format proposal
example, this information is generally not used to affect the display of an image in
a photo-editing application.

This element is optional. It has three attributes:

w. This attribute specifies the default width of the image, in the unit specified by
the unit attribute. The value of this attribute must be a CountReal. If this ele-
ment is present, this attribute is required.

h. This attribute specifies the default height of the image, in the unit specified by
the unit attribute. The value of this attribute must be a CountReal. If this ele-
ment is present, this attribute is required.

unit. This attribute specifies the unit of measure for the w and h attributes of the
DefaultDisplaySize element. Legal values for this attribute are Inches ,
Meters , Millimeters , Centimeters , Picas and Points . This element is
optional. If it is not present, the default value is Inches .

4.4.4 InputColor
This element specifies the colorspace of the decompressed image data. Note that
internal to the compression process, the JPEG 2000 coder may convert the data to a
different colorspace. However, this process is considered a black box at the file for-
mat level, and that internal colorspace is not exposed to the end user. This element
is required. It has one attribute:

colorspace. This attribute specifies whether the colorspace of the image data is
in the standard DIG2000 colorspace. Legal values of this attribute are sRGB and
ICCProfile . If the value is sRGB, the image data is in the sRGB colorspace. If the
value is ICCProfile , then the colorspace of the image data is specified by an
input ICC profile (Section 3.4), which must be used to process the image. This
attribute is required.

4.4.5 ChannelList
This element contains the names and bit-depths of the individual channels of the
image. For each channel in the image, this element contains an element of type
Channel which specifies the information for one particular channel. The order of
the Channel elements (specified in Section 4.4.6) in the ChannelList element
must be the same as the order of the channels in the JPEG 2000 compressed bit-
stream. The ChannelList element is required, and contains two attributes:

n. This attribute specifies the number of channels in the image. The value of this
attribute must be the same as the number of Channel elements contained in this
ChannelList element. The attribute value must be the ASCII string representa-
tion of a legal integer i, where i > 0. This attribute is required.

pm. This attribute specifies whether the opacity channel of the image has been
premultiplied into the color channels. Legal values of this attribute are True and
False . If the value of this attribute is True , then the opacity channel has been
ISO/IEC JTC1/SG29/WG1 N1017 21

Metadata Root element descriptions
premultiplied into all of the other channels. If the value of this attribute is False ,
then the opacity channel has not been premultiplied into any channels. This
attribute is optional. If it is not present, the default value is False .

4.4.6 Channel
This element specifies the name and bit-depth of a single channel from the image.
The ChannelList element (Section 4.4.5) in the DIG2000ImgSpec element
(Section 4.4.1) must contain one Channel element for each channel in the image,
and the Channel elements must be in the same order as the channels in the
image data. The Channel element contains two attributes:

name. This attribute specifies the name of the channel. For red, green, blue, cyan,
magenta, yellow, black or opacity channels, the value of this attribute must be R, G,
B, C, M, Y, K or A, respectively. For other channel types, such as are often found in
medical or multi-spectral images, it is up to the application to standardize on a set
of channel names. This attribute is required.

size. This attribute specifies the bit-depth of the channel. Legal values of this
attribute are bit8 and bit16 , indicating that the channel is 8-bit or 16-bit,
respectively. This attribute is optional. If it is not present, the default value is bit8 .

4.4.7 DIG2000MetadataSpec
This element specifies high-level information about a single block of metadata
stored in the file. For each block of metadata in the file, there must be one
DIG2000MetadataSpec element in the Metadata Root structure. There may
also optionally be one DIG2000MetadataSpec element for the JPGE 2000 com-
pressed image data itself. This element may optionally contain contents other than
its attributes. Any contents of the element must be in XML and are to be considered
a portion of the value of the block of metadata; however, this data should be kept
small, such as one or two empty XML elements with only a couple attributes.

The DIG2000MetadataSpec element contains the following attributes:

name. This attribute specifies the name of this metadata block or a very short
description of the data. For example, a metadata block containing the GPS data
indicating the position and movement of the digital camera at the time or capture
might have a name Capture \040 Location \040 (GPS) . This attribute is
required.

mimeType. This attribute specifies the MIME type of the data contained in the
metadata block. In general, it is encouraged that most metadata be stored using
XML. However, there are many types of data that cannot be efficiently represented
in XML. For example, many digital cameras allow the user to record an audio anno-
tation at the time the image is captured. This data would most efficiently be stored
in the file in a raw image format such as audio/aiff or audio/wav . This
attribute is required. The value of this attribute must be the ASCII string containing
the MIME type of the metadata. If this DIG2000MetadataSpec element contains
data within the element itself, then the value of this attribute must be text/xml .
22 October 30, 1998

DIG2000 file format proposal
specID. This attribute specifies the ID of the specification upon which the value of
this metadata block is based. The value of this element must be a valid GUID as
defined in [3]. An application may use this ID to determine how to interpret the
data contained in this metadata block.

instance. A single DIG2000 file may contain multiple instances of a single type of
metadata block. For example, one file may contain several audio annotations, each
in a different language. This attribute specifies a local ID for this metadata block,
which can be used by other blocks of metadata to specify a pointer to this block.
The value of this attribute must be unique within the DIG2000MetadataRoot
element. The value of this attribute may be any string that is a valid XML ID
attribute. This attribute is optional.

editable. This attribute specifies whether an application has permission from the
original file author to edit the data contained in this metadata block. The legal val-
ues of this attribute are Edit , which indicates that the data may be edited, and
Locked , which indicates that an application shall not edit this data. This attribute
is optional. If it is not present, the default value is Edit .

downloadPriority. This attribute indicates the priority this metadata block
should receive when the file is being transferred to a client or being loaded into
memory. The legal values of this attribute are Immediate , Delayed , and OnRe-
quest . Immediate indicates that this data should be downloaded immediately
upon the start of data transfer (or at least with the first “package” of data.
Delayed indicates that this data does not need to be transferred immediately
upon the start of transfer, but that it should be automatically transferred to the cli-
ent as bandwidth permits. OnRequest indicates that this data should only be
transferred to the client when it is explicitly requested by the client. This attribute is
optional. If it is not present, the default value is OnRequest .

creationDate. This attribute indicates the date and time at which this metadata
block was originally written to the file. Once written, the value of this attribute shall
never change. The value of this attribute must be a Timestamp. This attribute is
required.

modificationDate. This attributes indicates the date and time at which this
metadata block was either last modified or last updated from the location speci-
fied by the remote attribute. The value of this attribute must be a Timestamp.
This attribute is required.

stream. This attribute specifies the name of the stream in which the data for this
metadata block is stored. The value of this attribute is a relative pathname, from
the root storage of the file, using URL filename encoding.

For example, consider the following example file, where Storage 1 is the root
storage of the file (Figure 4.1):
ISO/IEC JTC1/SG29/WG1 N1017 23

The Image Stream metadata block
FIGURE 4.1 Example storages and streams

In this example, the location of Stream 4 would be indicated with the string
Stream \040 4, and the location of Stream 7 would be indicated with the string
Storage \040 3/Stream \040 7.

If this metadata block is not actually stored in this file, but only referenced by the
remote attribute, this attribute must not exist. Both the stream attribute and the
property attribute may not exist in the same DIG2000MetadataRoot
element.

The indicated stream contains an object of the MIME type specified by the mime-
Type attribute.

remote. This attribute indicates a URL from which the value of this metadata
block can be downloaded or a local copy of the data (specified by either the con-
tents of this element or the stream or property attribute) can be updated. The
indicated URL points to an object of the MIME type specified by the mimeType
attribute. This attribute is optional.

4.5 The Image Stream metadata block

Name: Image \040 Stream
MIME type: TBD
Block specification ID: 01000100-5E0C-11D2-9D44-00A0C933BB7F

As stated earlier, a block of metadata can be stored in the file that specifies generic
information about the compressed bitstream, such as the creation and modifica-
tion dates of the stream itself, or a URL from which updated image data can be
downloaded. The attributes of the DIG2000MetadataSpec element for the
compressed bitstream must be as follows:

◆ Since this metadata block is merely auxiliary information about the standard
bitstream, this metadata block specification structure must indicate that the
image data is stored in the normal location; the value of the stream attribute
must be Image \040 Stream .

◆ The structure may specify a URL from which the image data may be updated,
but the actual DIG2000MetadataSpec element must be empty.

◆ The name, mimeType and specID attributes must be as specified above.

Storage 1

Storage 3

Stream 4

Stream 7

Stream 6
24 October 30, 1998

DIG2000 file format proposal
◆ The editable or downloadPriority attributes may be set as desired by
the writing application.

4.6 Defining new metadata blocks

It can often be difficult for standards processes to react to current application
development cycle timeframes, and thus it is necessary for applications to be able
to define new types of metadata blocks. Applications developers are, however,
encouraged to look for existing solutions before creating new types, and to evange-
lize types they create to form de-facto standards where appropriate.

To define a new type of metadata block, an application developer must determine
the following things:

◆ Generate a GUID for use as the specID of the metadata block.

◆ Determine the name of this type. The name should be short but descriptive,
and be something that is meaningful to a human being. A developer may
choose to allow a portion of the name to vary depending on the actual data in
the metadata block. For example, the name string for a metadata type that will
contain an audio annotation may be defined as
Audio \040 Annotation: \040 Lang , where Lang will have the value of a
string representing the actual language of the annotation.

◆ Determine the format and MIME type of the actual data. Developers are
strongly encouraged to use XML whenever possible. However, there are many
datatypes, such as audio data, for which XML is inappropriate. In those cases,
applications are strongly encouraged to use industry standard data types. For
example, if a metadata block is to contain digital video, an application may
choose to encode the image data as a QuickTime™ Movie
(video/quicktime).

◆ Determine if the specification of the metadata type will specify where the data
is to be stored. In some cases, the specification may mandate that the data is
to be stored within the DIG2000MetadataSpec element, or that it is never
to be stored in the file itself and always must be accessed through the URL
specified by the remote attribute.

◆ Determine if the editable or downloadPriority attributes should be
restricted in any way.

Once a metadata type is specified, any application that knows the specification
may write or access metadata in that type.

4.7 Example Metadata Root

The following XML code represents the contents of an example Metadata Root
stream. Note that the example metadata types shown below are valid yet purely
hypothetical. The values shown do not imply any aspect of the current or future
specification of a metadata block type.
ISO/IEC JTC1/SG29/WG1 N1017 25

Example Metadata Root
In this example, there are three separate blocks of metadata of two different types.
The first block is an audio catalog. The other two blocks are both streams of audio
containing an annotation in two different languages. This example also contains
the DIG2000MetadataSpec element for the compressed bitstream itself.

<?xml version="1.0"?>
<!DOCTYPE DIG2000MetadataRoot PUBLIC>
<DIG2000MetadataRoot>

<DIG2000ImgSpec>
<ImgSize w="4096" h="6144"/>
<DefaultDisplaySize w="20.32" h="30.48" unit="Centimeters"/>
<InputColor colorspace="Unspecified"/>
<ChannelList n="4" pm="False">

<Channel name="R" size="bit8"/>
<Channel name="G" size="bit8"/>
<Channel name="B" size="bit8"/>
<Channel name="A" size="bit8"/>

</ChannelList>
</DIG2000ImgSpec>

<DIG2000MetadataSpec
name="Image Stream"
mimeType="TBD"
specID="01000100-5E0C-11D2-9D44-00A0C933BB7F"
stream="Image Stream"
remote="http://www.kodak.com/dig2000/example.d2k"
downloadPriority="OnRequest"
editable="Locked"
creationDate="Thu Sep 18 12:34:19 1998"
modificationDate="Thu Sep 18 12:34:19 1998"

>

<DIG2000MetadataSpec
name="Audio catalog"
mimeType="text/xml"
specID="00000001-1234-5678-9ABC-DEF012345678"
instance="Annotation1"
downloadPriority="Delayed"
creationDate="Thu Oct 9 16:23:20 1998"
modificationDate="Thu Oct 9 16:23:20 1998"
remote="http://www.kodak.com/dig2000/annotations.xml"

>
<Annotation language="English" instance="AudioA1English"/>
<Annotation language="Japanese" instance="AudioA1Japanese"/>

</DIG2000MetadataSpec>

<DIG2000MetadataSpec
name="Audio Annotation: English"
mimeType="audio/aiff"
specID="00000002-1234-5678-9ABC-DEF012345678"
instance="AudioA1English"
downloadPriority="OnRequest"
creationDate="Thu Oct 9 16:23:20 1998"
modificationDate="Thu Oct 9 16:23:20 1998"

/>
26 October 30, 1998

DIG2000 file format proposal
<DIG2000MetadataSpec
name="Audio Annotation: Japanese"
mimeType="audio/aiff"
specID="00000002-1234-5678-9ABC-DEF012345678"
instance="AudioA1Japanese"
downloadPriority="OnRequest"
creationDate="Thu Oct 9 16:23:20 1998"
modificationDate="Thu Oct 9 16:23:20 1998"

/>
</DIG2000MetadataRoot>
ISO/IEC JTC1/SG29/WG1 N1017 27

5: Standard
metadata fields

It is important for any digital image file format to define a well known set of meta-
data fields. Although it is be very beneficial for applications to be able to define
new fields, it is essential for good interoperability that the most commonly used
fields are defined as part of the standard.

The standard fields are divided into logical blocks that can each exists on their own
in a separate stream, each describing a different aspect of the image. The blocks
are:

◆ Digital Image Source (Section 5.1)
◆ Intellectual Property (Section 5.2)
◆ Content Description (Section 5.3)
◆ GPS Information (Section 5.4)

The information in these blocks provides the framework to document facts about
image capture, intellectual property concerns, and descriptive information about
the image itself. With some images, users need to know who is in the picture,
where and when it was taken, and so on, to understand the significance of the
image.

For instance, a photograph of an automobile accident is useless to an insurance
company unless it is known to which accident the picture applies. Similarly, an old
family picture is far more interesting if it is known which ancestor is in the picture,
and when and where it was taken. One problem with traditional methods of deal-
ing with images is that it is easy for this data to become separated from the images,
greatly diminishing the value of the images.

A fundamental concept of the DIG2000 format is that an image should be as self-
describing as possible. As an image moves across a network, or is written to vari-
ous types of media, the self-describing data should move with the image.

Any block may be omitted. If omitted, that block should be treated as if the values
are unknown.

Many values specified in this chapter are specified using the standard CDATA repre-
sentations of common data types, as specified in Section 4.2.
ISO/IEC JTC1/SG29/WG1 N1017 29

Digital Image Source block
5.1 Digital Image Source block

This block specifies how the digital image samples were determined from original
reflected light.

5.1.1 Metadata block structure values
Name: Digital \040 Image \040 Source
MIME type: text/xml
Block specification ID: 01000500-5E0C-11D2-9D44-00A0C933BB7F

This metadata block may be stored within the DIG2000MetadataSpec element
directly, within a stream in the file, or remotely.

5.1.2 Document type definition
<?xml version="1.0"?>
<!DOCTYPE DigitalImageSource [

<!ELEMENT DigitalImageSource
((CameraCapture | ScannerCapture | ComputerGenerated)?,
Notes?)

>
<!ATTLIST DigitalImageSource

imageSource (Unidentified | FilmScanner |
ReflectionPrintScanner | DigitalCamera |
StillFromVideo | ComputerGenerated) "Unidentified"

sceneType (Unidentified | OriginalScene
SecondGenerationScene | DigitalSceneGeneration)
"Unidentified"

softwareNameAndRelease CDATA #IMPLIED
userDefinedID CDATA #IMPLIED
sharpnessApproximation CDATA #IMPLIED

>

<!ELEMENT CameraCapture
(CameraInformation?, CameraCaptureSettings?,
CapturedItem?, Notes?)

>

<!ELEMENT CameraInformation
(DigitalCaptureDeviceCharacterization?, Notes?)

>
<!ATTLIST CameraInformation

manufacturer CDATA #IMPLIED
modelName CDATA #IMPLIED
serialNumber CDATA #IMPLIED

>

30 October 30, 1998

DIG2000 file format proposal
<!ELEMENT DigitalCaptureDeviceCharacterization
(SpatialFrequencyResponse?, CFAPattern?, OECF?, Notes?)

>
<!ATTLIST DigitalCaptureDeviceCharacterization

sensor (Unidentified | MonochromeArea | OneChipArea |
TwoChipColorArea | ThreeChipColorArea |
ColorSequentialArea | MonochromeLinear | Trilinear |
ColorSequentialLinear) "Unidentified"

focalPlaneXResolution CDATA #IMPLIED
focalPlaneYResolution CDATA #IMPLIED
focalPlaneResolutionUnit (Inches | Meters | Centimeters |

Millimeters) "Millimeters"

spectralSensitivity CDATA #IMPLIED
ISOSaturationSpeedRating CDATA #IMPLIED
ISONoiseSpeedRating CDATA #IMPLIED

>

<!ELEMENT SpatialFrequencyResponse (SFRRow+)>
<!ELEMENT SFRRow EMPTY>
<!ATTLIST SFRRow

freq CDATA #REQUIRED
hSFR CDATA #REQUIRED
vSFR CDATA #REQUIRED

>

<!ELEMENT CFAPattern (CFARow+)>
<!ELEMENT CFARow

(Red | Green | Blue | Cyan | Magenta | Yellow | White)+
>
<!ELEMENT Red EMPTY>
<!ELEMENT Green EMPTY>
<!ELEMENT Blue EMPTY>
<!ELEMENT Cyan EMPTY>
<!ELEMENT Magenta EMPTY>
<!ELEMENT Yellow EMPTY>
<!ELEMENT White EMPTY>

<!ELEMENT OECF (OECFRow+)>
<!ELEMENT OECFRow EMPTY>
<!ATTLIST OECFRow

logExp CDATA #REQUIRED
rLevel CDATA #REQUIRED
gLevel CDATA #REQUIRED
bLevel CDATA #REQUIRED

>

<!ELEMENT CameraCaptureSettings (SpecialEffects?, Notes?)>
<!ATTLIST CameraCaptureSettings

captureTimeStamp CDATA #IMPLIED
exposureTime CDATA #IMPLIED
fNumber CDATA #IMPLIED

exposureProgram (Unidentified | Manual | ProgramNormal |
AperturePriority | ShutterPriority | ProgramCreative |
ProgramAction | PortraitMode | LandscapeMode)
"Unidentified"
ISO/IEC JTC1/SG29/WG1 N1017 31

Digital Image Source block
brightnessValue CDATA #IMPLIED
brightnessValueMin CDATA #IMPLIED
brightnessValueMax CDATA #IMPLIED

exposureBias CDATA #IMPLIED

subjectDistance CDATA #IMPLIED
subjectDistanceMin CDATA #IMPLIED
subjectDistanceMax CDATA #IMPLIED
subjectDistanceUnit (Inches | Meters | Centimeters |

Millimeters) "Meters"

meteringMode (Unidentified | Average |
CenterWeightedAverage |
Spot | MultiSpot) "Unidentified"

sceneIlluminant (Unidentified | Daylight | FluorescentLight |
TungstenLamp | Flash | StandardIlluminantA |
StandardIlluminantB | StandardIlluminantC |
D55Illuminant | D65Illuminant | D75Illuminant)
"Unidentified"

colorTemperature CDATA #IMPLIED

focalLength CDATA #IMPLIED
focalLengthUnit (Inches | Meters | Centimeters |

Millimeters) "Millimeters"

maxAperture CDATA #IMPLIED
flash (Unidentified | NoFlashUsed | FlashUsed) "Unidentified"
flashEnergy CDATA #IMPLIED

flashReturn (Unidentified | SubjectOutsideFlashRange |
SubjectInsideFlashRange) "Unidentified"

backLight (Unidentified | FrontLit | BackLit1 | BackLit2)
"Unidentified"

subjectLocationX CDATA #IMPLIED
subjectLocationY CDATA #IMPLIED

exposureIndex CDATA #IMPLIED

autoFocus (Unidentified | AutoFocusUsed |
AutoFocusInterrupted | NearFocused | SoftFocused |
Manual) "Unidentified"

>

<!ELEMENT SpecialEffects
(SpEfUnidentified | SpEfNone | SpEfColored | SpEfDiffusion |
SpEfMultiImage | SpEfPolarizing | SpEfSplitField | SpEfStar)+

>
<!ELEMENT SpEfUnidentified EMPTY>
<!ELEMENT SpEfNone EMPTY>
<!ELEMENT SpEfColored EMPTY>
<!ELEMENT SpEfDiffusion EMPTY>
<!ELEMENT SpEfMultiImage EMPTY>
<!ELEMENT SpEfPolarizing EMPTY>
<!ELEMENT SpEfSplitField EMPTY>
<!ELEMENT SpEfStar EMPTY>
32 October 30, 1998

DIG2000 file format proposal
<!ELEMENT Notes (#PCDATA)>

<!ELEMENT CapturedItem
((OriginalScene | ReflectionPrint | Film | OtherItem)?,
Notes?)

>

<!ELEMENT OriginalScene (#PCDATA)>

<!ELEMENT ReflectionPrint (PrintedItem?, Notes?)>
<!ATTLIST ReflectionPrint

documentSizeX CDATA #IMPLIED
documentSizeY CDATA #IMPLIED
documentSizeUnit (Inches | Meters | Centimetes |

Millimeters) "Inches"

medium (Unidentified | ContinuousToneImage | HalftoneImage |
LineArt) "Unidentified"

type (Unidentified | BlackAndWhitePrint | ColorPrint |
BlackAndWhiteDocument | ColorDocument) "Unidentified"

>

<!ELEMENT PrintedItem
((Film | ComputerGenerated | OtherItem)?, Notes?)

>

<!ELEMENT Film (CameraCapture?, Notes?)>
<!ATTLIST Film

brand CDATA #IMPLIED
category (Unidentified | NegativeBlackAndWhite |

NegativeColor | ReversalBlackAndWhite | ReversalColor |
Chromagenic | InternegativeBlackAndWhite |
InternegativeColor) "Unidentified"

filmSizeX CDATA #IMPLIED
filmSizeY CDATA #IMPLIED
filmSizeUnit (Inches | meters | Centimetes | Millimeters)

"Inches"

rollID CDATA #IMPLIED
frameID CDATA #IMPLIED

>

<!ELEMENT ComputerGenerated (#PCDATA)>
<!ATTLIST ComputerGenerated

softwareNameAndRelease CDATA #IMPLIED
>

<!ELEMENT OtherItem (#PCDATA)>

<!ELEMENT ScannerCapture
(ScannerInformation?, CapturedItem?, Notes?)

>

ISO/IEC JTC1/SG29/WG1 N1017 33

Digital Image Source block
<!ELEMENT ScannerInformation
(DigitalCaptureDeviceCharacterization?, Notes?)

>
<!ATTLIST ScannerInformation

manufacturerName CDATA #IMPLIED
modelName CDATA #IMPLIED
serialNumber CDATA #IMPLIED
software CDATA #IMPLIED
softwareVersion CDATA #IMPLIED
operatorID CDATA #IMPLIED
creationTimeStamp CDATA #IMPLIED
modifiedTimeStamp CDATA #IMPLIED
devicePixelSize CDATA #IMPLIED

>
]>

5.1.3 Element definitions

5.1.3.1 DigitalImageSource
This element specifies the chain of events that were involved in generating the digi-
tal image samples contained in this file from original reflected light. It optionally
contains either a CameraCapture (Section 5.1.3.2), ScannerCapture
(Section 5.1.3.23) or ComputerGenerated (Section 5.1.3.21) element and a
Notes element (Section 5.1.3.15). It has the following attributes:

imageSource. This attribute specifies the device source of the digital file, such as
a film scanner, reflection print scanner, or digital camera.

sceneType. This attribute specifies the type of scene that was captured by the
device that produced the digital image samples in this file. It differentiates “origi-
nal scenes” (direct capture of real-world scenes) from “second generation scenes”
(images captured from pre-existing hardcopy images). It provides further differenti-
ation for scenes that are digitally composed.

softwareNameAndRelease. This attribute specifies the name of the software,
its manufacturer’s name, and the version of the software used to create the DIG2000
image.

userDefinedID. This attribute specifies an ID code assigned to an image by the
user. This attribute is useful when users have their own filing or accounting scheme
with an identification system already in place, and enables users to cross-reference
their digital files to a pre-existing analog one.

sharpnessApproximation. To perform image filtering in a resolution indepen-
dent manner, the algorithm must have information on the degree of blurring
introduced by the system components which generated the digital image (digital
camera, scanner, etc.). This is expressed as the effective filter width, q. Approxi-
mate the total capture MTF by the form, where q is the width and s is the spatial
frequency measured in cycles per pixel at the captured resolution delivered by the
input device. If the MTF is far from Gaussian form, fit the low-frequency portion
best. This attribute specifies the value q.
34 October 30, 1998

DIG2000 file format proposal
5.1.3.2 CameraCapture
This element specifies a camera capture of a scene. It optionally contains a Cam-
eraInformation (Section 5.1.3.3), CameraCaptureSettings
(Section 5.1.3.12) and CapturedItem element (Section 5.1.3.16) and a Notes
element (Section 5.1.3.15), but has no attributes.

5.1.3.3 CameraInformation
This element specifies information about that camera that captured the scene. It
optionally contains a DigitalCaptureDeviceCharacterization element
(Section 5.1.3.4) and a Notes element (Section 5.1.3.15), and has the following
attributes:

manufacturerName. This attribute specifies the name of the manufacturer or
vendor of the camera or original-scene capture device.

modelName. This attribute specifies the model name or number of the camera,
and can include the serial number of the camera.

serialNumber. This attribute specifies the manufacturer’s serial number of the
camera, encoded as a text string.

5.1.3.4 DigitalCaptureDeviceCharacterization
This element specifies the technical characterization of the digital capture device. It
optionally contains a SpatialFrequencyResponse (Section 5.1.3.5), CFAPat-
tern (Section 5.1.3.7), OECF (Section 5.1.3.10) and Notes element
(Section 5.1.3.15), and has the following attributes:

sensor. This attribute specifies the type of image sensor used in the camera or
image capturing device.

focalPlaneXResolution, focalPlaneYResolution. These attributes specify
the number of pixels per focalPlaneResolutionUnit in the X and Y direc-
tions for the main image respectively. They specify the actual focal plane X and Y
resolutions at the focal plane of the camera. These values must be valid Reals.

focalPlaneResolutionUnit. This attributes encodes the unit of measurement
for the focalPlaneXResolution and focalPlaneXResolution attributes.

spectralSensitivity. This attribute can be used to describe the spectral sensitivity
of each channel of the camera used to capture the image. It is useful for certain sci-
entific applications. The string is compatible with the New Standard Practice for the
Electronic Interchange of Color and Appearance Data being developed within an
ASTM Technical Committee. The string consists of a mandatory keyword list fol-
lowed by the associated data values. Mandatory keywords include
NUMBER_OF_FIELDS, which equals the number of channels (spectral bands) + 1,
and NUMBER_OF_SETS, which specifies the number of spectral frequency (wave-
length) entries.
ISO/IEC JTC1/SG29/WG1 N1017 35

Digital Image Source block
ISOSaturationSpeedRating. This attribute specifies the ISO saturation speed
rating classification as defined in [4]. The value of this attribute is encoded as a
Real.

ISONoiseSpeedRating. This attribute specifies the iso noise-based speed rating
classification as defined in [4]. The value of this attribute is encoded as a Real.

5.1.3.5 SpatialFrequencyResponse
This element specifies the spatial frequency response (SFR) of image capturing
device. It consists of an ordered list of SFRRow elements containing attributes that
specify an array of values, but has no attributes itself. One instance of the SFRRow
element (Section 5.1.3.6) specifies one point on the frequency response curve. The
device measured SFR data, described in [5], can be stored as a table of spatial fre-
quencies, horizontal SFR values, vertical SFR values, and diagonal SFR values. The
following is a simple example of measured SFR data encoded using the XML nota-
tion (freq in lw/ph).

<SpatialFrequencyResponse>
<SFRRow freq="0.1" hSFR="1.00" vSFR="1.00"/>
<SFRRow freq="0.2" hSFR="0.90" vSFR="0.95"/>
<SFRRow freq="0.3" hSFR="0.80" vSFR="0.85"/>

</SpatialFrequencyResponse>

5.1.3.6 SFRRow
This element specifies a single point in the SFR curve of the image capturing device.
It contains no elements, but has the following attributes:

freq, hSFR, vSFR. These attributes encode the spatial frequency response (SFR) of
the camera or image capturing device at a single frequency.

5.1.3.7 CFAPattern
Encodes the actual color filter array (CFA) geometric pattern of the image sensor
used to capture a single-sensor color image. It is not relevant for all sensing meth-
ods. The data contains the minimum number of rows and columns of filter color
values that uniquely specify the color filter array. This element contains CFARow
elements (Section 5.1.3.8), one for each row in the CFA pattern. The following is a
sample encoding using the XML syntax:

<CFAPattern>
<CFARow><Green/><Red/> <Green/><Red/> <Green/><Red/> </CFARow>
<CFARow><Blue/> <Green/><Blue/> <Green/><Blue/> <Green/></CFARow>
<CFARow><Green/><Red/> <Green/><Red/> <Green/><Red/> </CFARow>
<CFARow><Blue/> <Green/><Blue/> <Green/><Blue/> <Green/></CFARow>

</CFAPattern>

5.1.3.8 CFARow
This element specifies one row of a CFA pattern. It contains Red, Green , Blue ,
Cyan, Magenta , Yellow and White elements (Section 5.1.3.9), and has no
attributes.
36 October 30, 1998

DIG2000 file format proposal
5.1.3.9 Red, Green, Blue, Cyan, Magenta, Yellow, White
These elements specify one filter array element in a CFA pattern. These elements
have no contents and no attributes.

5.1.3.10 OECF
This element specifies the opto-electronic conversion function (OECF). The OECF is
the relationship between the optical input and the image file code value outputs of
an electronic camera. The property allows OECF values defined in [6] to be stored as
a table of values. The following example shows a simple example of measured OECF
data.

<OECF>
<OECFRow logexp="-3.0" rlevel="10.2" glevel="12.5" blevel="8.9"/>
<OECFRow logexp="-2.0" rlevel="48.1" glevel="47.5" blevel="48.3"/>
<OECFRow logexp="-1.0" rlevel="150.2" glevel="152.0"

blevel="149.8"/>
</OECF >

This element contains one or more OECFRow elements (Section 5.1.3.11), and has
no attributes.

5.1.3.11 OECFRow
This element specifies one point of the opto-electronic conversion function (OECF). It
has no contents, but has the following attributes:

logExp. This attribute specifies the log exposure value for this point in the OECF.
The value must be encoded as a Real.

rLevel. This attribute specifies the red level for this point in the OECF. The value
must be encoded as a Real.

gLevel. This attribute specifies the green level for this point in the OECF. The value
must be encoded as a Real.

bLevel. This attribute specifies the blue level for this point in the OECF. The value
must be encoded as a Real.

5.1.3.12 CameraCaptureSettings
This element describes the camera settings used when the image was captured.
New generations of digital and film cameras make it possible to capture more
information about the conditions under which a picture was taken. This may
include information about the lens aperture and exposure time, whether a flash
was used, which lens was used, etc. This technical information is useful to profes-
sional and serious amateur photographers. In addition, some of these properties
are useful to image database applications for populating values useful to image
analysis and retrieval. This element optionally contains a SpecialEffects
(Section 5.1.3.13) and Notes element (Section 5.1.3.15), and has the following
attributes.
ISO/IEC JTC1/SG29/WG1 N1017 37

Digital Image Source block
captureTimeStamp. This attribute specifies the date and time the image was
captured. The value of this attribute must be a Timestamp.

exposureTime. This attribute specifies the exposure time used when the image
was captured. The units are seconds. The value of this attribute must be a Real.

fNumber. This attribute specifies the lens f-number (ratio of lens aperture to focal
length) used when the image was captured. The value of this attribute must be a
Real.

exposureProgram. This attribute specifies the class of exposure program that
the camera used at the time the image was captured. Note the following standard
definitions for the following program modes:

◆ ProgramNormal is a general purpose auto-exposure

◆ AperturePriority means that the user selected the aperture and the
camera selected the shutter speed for proper exposure

◆ ShutterPriority means that the user selected the shutter speed and the
camera selected the aperture for proper exposure

◆ ProgramCreative is biased toward greater depth of field

◆ ProgramAction is biased toward faster shutter speed

◆ PortraitMode is intended for close-up photos with the background out of
focus

◆ LandscapeMode is intended for landscapes with the background in good
focus

brightnessValue. This attribute specifies the Brightness Value (BV) measured
when the image was captured, using APEX units. The expected maximum value is
approximately 13.00 corresponding to a picture taken of a snow scene on a sunny
day, and the expected minimum value is approximately –3.00 corresponding to a
night scene. The value of this attribute must be a Real.

brightnessValueMin, brightnessValueMax. If the value supplied by the cap-
ture device represents a range of values rather than a single value, the
brightnessValueMin and brightnessValueMax attributes specify the
lower and upper values of the range, respectively. The values of these attributes
must be Reals.

exposureBias. This attribute specifies the actual exposure bias (the amount of
over or under-exposure relative to a normal exposure, as determined by the cam-
era’s exposure system) used when capturing the image, using APEX units. The range
is between –99.99 and 99.99. The value is the number of exposure values (stops).
For example, –1.00 indicates 1 eV (1 stop) underexposure, or half the normal expo-
sure. The value of this attribute must be a Real.
38 October 30, 1998

DIG2000 file format proposal
subjectDistance. This attribute specifies the distance (in the unit specified by the
subjectDistanceUnit attribute) between the front nodal plane of the lens
and the position at which the camera was focusing when the image was captured.
Note that the camera may have focused on a subject within the scene which may
not have been the primary subject. The value of this attribute must be a Real.

subjectDistanceMin, subjectDistanceMax. If the value supplied by the cap-
ture device represents a range of values rather than a single value, the
subjectDistanceMin and subjectDistanceMax attributes specify the
lower and upper values of the range, respectively, the unit specified by the sub-
jectDistanceUnit attribute. The values of these attributes must be Reals.

subjectDistanceUnit. This attributes encodes the unit of measurement for the
subjectDistance , subjectDistanceMin and subjectDistanceMax
attributes.

meteringMode. This attribute specifies the metering mode (the camera’s
method of spatially weighting the scene luminance values to determine the sensor
exposure) used when capturing the image.

sceneIlluminant. This attribute specifies the light source (scene illuminant) that
was present when the image was captured.

colorTemperature. This attribute specifies the actual color temperature value of
the scene illuminant stored in units of Kelvin. Color temperatures are limited to
values in the range of 0 to 32767 Kelvin. The value of this attribute must be a Real.

focalLength. This attribute specifies the lens focal length (in the unit specified by
the focalLengthUnit attribute) used to capture the image. The value of this
attribute must be a Real.

focalLengthUnit. This attributes encodes the unit of measurement for the
focalLength attribute.

maxAperture. This attribute specifies the maximum possible aperture opening
(minimum lens f-number) of the camera or image capturing device, using APEX
units. The allowed range is 1.00 to 99.99. The value of this attribute must be a Real.

flash. This attribute specifies whether flash was used.

flashEnergy. This attribute specifies the amount of flash energy that was used.
The measurement units are Beam Candle Power Seconds (BCPS). The value of this
attribute must be a Real.

flashReturn. This attribute specifies whether the camera judged that the flash
was not effective at the time of exposure.

backLight. This attribute specifies the camera's evaluation of the lighting condi-
tions at the time of exposure. Note the following definitions for lighting situations:
ISO/IEC JTC1/SG29/WG1 N1017 39

Digital Image Source block
◆ FrontLit means the subject is illuminated from the front side.

◆ BackLit1 means the brightness value difference between the subject center
and the surrounding area is greater than one full step (APEX). The frame is
exposed for the subject center.

◆ BackLit2 means the brightness value difference between the subject center
and the surrounding area is greater than one full step (APEX). The frame is
exposed for the surrounding area.

subjectLocationX, subjectLocationY. These attributes specify the approxi-
mate location of the subject in the scene. It provides an X column number and Y
row number that corresponds to the center of the subject location. These values
are in resolution-independent coordinates (as defined inSection 2.1) where the
height of the image is 1.0 and the width is the aspect ratio. The values of these
attributes must be Reals.

exposureIndex. This attribute specifies the exposure index setting the camera
selected. The value of this attribute must be a Real.

autoFocus. This attribute specifies the status of the focus of the capture device at
the time of capture. Note the following definitions for auto focus:

◆ AutoFocusUsed means that the camera successfully focused on the subject.

◆ AutoFocusInterrupted means that the image was captured before the camera
had successfully focused on the subject.

◆ NearFocused means that the camera deliberately focused at a distance closer
than the subject to allow for the super-imposition of a focused foreground
subject.

◆ SoftFocused means that the camera deliberately did not focus exactly at the
subject distance to create a softer image (commonly used for portraits).

◆ Manual means that the camera was focused manually

5.1.3.13 SpecialEffects
This element specifies the types of special effects filters used. It contains an list of
filter elements, where the order of the elements in the array indicates the stacking
order of the filters. The first value in the array is the filter closest to the original
scene. This element optionally contains one or more of the SpEfUnidenti-
fied , SpEfNone , SpEfColored , SpEfDiffusion , SpEfMultiImage ,
SpEfPolarizing , SpEfSplitField and SpEfStar elements
(Section 5.1.3.14), and contains no attributes.

5.1.3.14 SpEfUnidentified, SpEfNone, SpEfColored, SpEfDiffusion,
SpEfMultiImage, SpEfPolarizing, SpEfSplitField and SpEfStar
These elements specify a single filter element, each. These elements have no con-
tent and have no attributes.
40 October 30, 1998

DIG2000 file format proposal
5.1.3.15 Notes
This element contains additional information not provided by the other proper-
ties. Both professional and amateur photographers may want to keep track of a
variety of miscellaneous technical information, such as the use of extension tubes,
bellows, close-up lenses, and other specialized accessories.

5.1.3.16 CapturedItem
This element contains a description of the item that was digitally captured. For
example, if the capture device is a film scanner, this element specifies information
about the piece of film that was scanned. This element contains either an Origi-
nalScene (Section 5.1.3.17), ReflectionPrint (Section 5.1.3.18), Film
(Section 5.1.3.20) or OtherItem element (Section 5.1.3.22) and a Notes element
(Section 5.1.3.15), and has no attributes.

5.1.3.17 OriginalScene
This element contains a description of the original scene. It contains text describ-
ing the scene, but has no attributes.

5.1.3.18 ReflectionPrint
This element contains information about a reflection print that was digitally cap-
tured. It optionally contains a PrintedItem (Section 5.1.3.19) and a Notes
element (Section 5.1.3.15), which describes what was used to create this reflection
print, and has the following attributes:

documentSizeX, documentSizeY. These attributes specify the lengths of the X
and Y dimension of the original photograph or document, respectively. The values
of these attribute must be encoded as Reals, and are given in the unit of measure
specified by the documentSizeUnit attribute.

documentSizeUnit. This attribute specifies the measurement units in which the
documentSizeX and documentSizeY attributes are specified.

medium. This attribute specifies the medium of the original photograph, docu-
ment, or artifact.

type. This attribute specifies the type of the original document or photographic
print.

5.1.3.19 PrintedItem
This attribute contains a description of the item that was printed. It either contains
a Film (Section 5.1.3.20), ComputerGenerated (Section 5.1.3.21), or Other-
Item (Section 5.1.3.22) element and a Notes element (Section 5.1.3.15), and has
no attributes.

5.1.3.20 Film
This attribute contains a description of a piece of film that was digitized. It option-
ally contains a CameraCapture element (Section 5.1.3.2) and a Notes element
ISO/IEC JTC1/SG29/WG1 N1017 41

Digital Image Source block
(Section 5.1.3.15), indicating how the image on the film was captured, and has the
following attributes:

brand. This element specifies the name of the film manufacturer, the brand
name, product code and generation code (for example, Acme Bronze 100, Acme
Aerial 100).

category. This attribute specifies the category of film used. Note: The category
Chromagenic refers to B/W negative film that is developed with a C41 process (i.e.,
color negative chemistry).

filmSizeX, filmSizeY. These attributes specify the size of the X and Y dimension
of the film used, and the unit of measurement. The values of these elements must
be encoded as Reals.

filmSizeUnits. This attribute specifies the unit of measure in which the film-
SizeX and filmSizeY attribute are specified.

rollID. This attribute specifies the roll number or ID of the film. For some film, this
number is encoded on the film cartridge as a bar code.

frameID. This attribute specifies the frame number or ID of the frame digitized
from the roll of film.

5.1.3.21 ComputerGenerated
This element contains information about the creation of a computer generated dig-
ital image. The element has the following attributes:

softwareNameAndRelease. This attribute specifies the name of the software,
its manufacturer’s name, and the version of the software used to create the image.

5.1.3.22 OtherItem
This element contains information about an item that was digitized that is not a
ComputerGenerated (Section 5.1.3.21), Film (Section 5.1.3.20), Reflection-
Print (Section 5.1.3.18), or OriginalScene (Section 5.1.3.17). It has no
attributes.

5.1.3.23 ScannerCapture
This element contains information about a scanner capture of an item. It option-
ally contains a ScannerInformation (Section 5.1.3.24) and CapturedItem
elements (Section 5.1.3.16) and a Notes element (Section 5.1.3.15), but has no
attributes.

5.1.3.24 ScannerInformation
This element contains information about a particular scanner that was used to digi-
tize an image item. It optionally contains a DigitalCaptureDevice-
Characterization (Section 5.1.3.4) element and a Notes element
(Section 5.1.3.15), and has the following attributes:
42 October 30, 1998

DIG2000 file format proposal
manufacturerName. This attribute specifies the manufacturer or vendor of the
scanner.

modelName. This attribute specifies model name or number of the scanner. It
can also include the serial number of the scanner.

serialNumber. This attribute specifies the manufacturer’s serial number of the
scanner as a text string.

software. This attribute specifies the name and version of the scanner software or
firmware.

softwareVersion. This attribute specifies the version number or revision date of
the scanner software or firmware. If the value of this attribute is a date, it must be
encoded as a Timestamp.

serviceBureau. This attribute specifies the name of the service bureau, photofin-
isher, or organization performing the scan.

operatorID. This attribute specifies a name or ID for the person operating the
scanner.

creationTimeStamp. This attribute specifies the date and time the image was
scanned item was digitized. This attribute should never be changed after it is writ-
ten in the image capture device. The value of this attribute must be a Timestamp.

pixelSize. This attribute specifies the pixel size, in micrometers, of the scanner.
The value of this attribute must be encoded as a Real.

5.1.4 Examples

5.1.4.1 A simple DigitalImageSource
<?xml version="1.0">
<!DOCTYPE DigitalImageSource PUBLIC>
<DigitalImageSource

imageSource="DigitalCamera"
sceneType="OriginalScene"

>
<CameraCapture>

<CameraInformation
manufacturer="Acme Camera Company"
modelName="RZ55L"
serialNumber="123-456-789"

/>
ISO/IEC JTC1/SG29/WG1 N1017 43

Digital Image Source block
<CameraCaptureSettings
captureTimeStamp="Tue, 20 Oct 1998 17:42:12 -0400"
fNumber="1.0"
exposureProgram="ProgramAction"
subjectDistance="3"
subjectDistanceUnit="Meters"
meteringMode="CenterWeightedAverage"
sceneIlluminant="Daylight"
focalLength="50"
focalLengthUnit="Millimeters"
flash="NoFlashUsed"
autoFocus="AutoFocusUsed"

/>

<CapturedItem>
<OriginalScene>Petroglyph on the Big Island of Hawaii
</OriginalScene>

</CapturedItem>
</CameraCapture>

</DigitalImageSource>

5.1.4.2 A complex DigitalImageSource
<?xml version="1.0">
<!DOCTYPE DigitalImageSource PUBLIC>
<DigitalImageSource

imageSource="FilmScanner"
sceneType="SecondGenerationScene"

>
<ScannerCapture>

<ScannerInformation
manufacturerName="Acme Scanner Company"
modelName="Flatbed 40"
serialNumber="987-654-321"
software="Acme ScanThatSlide"
softwareVersion="5.3"
creationTimeStamp="Tue, 20 Oct 1998 17:42:12 -0400"

/>

<CapturedItem>
<Film

brand="Acme Film Company"
category="InternegativeColor"
filmSizeX="6"
filmSizeY="6"
filmSizeUnit="Centimeters"
rollID="27845"
frameID="12A"

>
<CameraCapture>

<CameraInformation
manufacturerName="Acme Camera Company"
modelName="Dupe camera 29"
serialNumber="18"

/>
44 October 30, 1998

DIG2000 file format proposal
<CapturedItem>
<Film

brand="Acme Film Company"
category="ColorNegative"
filmSizeX="6"
filmSizeY="6"
filmSizeUnit="Centimeters"
rollID="24563"
frameID="8"

>
<CameraCapture>

<CameraInformation>
mamufacturerName="Ace"
modelName="SnapShot"
serialNumber="SS-35"

/>

<CapturedItem>
<OriginalScene>

Petroglyph on the Big Island of Hawaii</OriginalScene>
</CapturedItem>

</CameraCapture>
</Film>

</CapturedItem>
</CameraCapture>

</Film>
</CapturedItem>

</ScannerCapture>
</DigitalImageSource>

5.2 Intellectual Property block

The intellectual property block contains information about the ownership and
copyright status of the image. Rights for an original artifact may be stated, along
with the rights for the digital file.

5.2.1 Metadata block structure values
Name: Intellectual \040 Property
MIME type: text/xml
Block specification ID: 01000200-5E0C-11D2-9D44-00A0C933BB7F

This metadata block may be stored within the DIG2000MetadataSpec element
directly, within a stream in the file, or remotely.

5.2.2 Document type definition
<?xml version="1.0"?>
<!DOCTYPE IntellectualProperty [

<!ELEMENT IntellectualProperty (Copyright?, Notes?)>
<!ATTLIST IntellectualProperty

originalImageLegalBroker CDATA #IMPLIED
digitalImageLegalBroker CDATA #IMPLIED
authorship CDATA #IMPLIED

>

ISO/IEC JTC1/SG29/WG1 N1017 45

Intellectual Property block
<!ELEMENT Copyright (#PCDATA)>
<!ELEMENT Pricing (#PCDATA)>
<!ELEMENT Notes (#PCDATA)>

]>

5.2.3 Element definitions

5.2.3.1 IntellectualProperty element
The intellectualProperty element optionally contains one of each of the
Copyright (Section 5.2.3.2), Pricing (Section 5.2.3.3) and Notes elements
(Section 5.2.3.4). It also has the following attributes:

originalImageLegalBroker. This attribute specifies the name of the person or
organization that holds the legal right to grant permissions or restrict use of the
original image. The original image is either the analog source scanned to create the
digital file or the original digital capture of a scene.

digitalImageLegalBroker. This attribute specifies the name of the person or
organization that holds the legal right to grant permissions or restrict use of the
digital file.

authorship. This attribute specifies the name of the camera owner, photogra-
pher or image creator.

5.2.3.2 Copyright
This element encodes the copyright notice of the Legal Broker for the digital file.
The complete copyright statement should be contained in this element, including
any dates and statements of claims. If desired, this element can also list details
concerning the Legal Broker.

5.2.3.3 Pricing
This element specifies pricing information for this image. It contains a textual
description of the pricing.

5.2.3.4 Notes
This element encodes additional information beyond the scope of other properties
in this block.

5.2.4 Example
<?xml version="1.0"?>
<!DOCTYPE IntellectualProperty PUBLIC>
<IntellectualProperty

originalImageLegalBroker="John Doe"
digitalImageLegalBroker="Acme Stock Photography, Inc."

>
<Copyright>1998, All rights reserved</Copyright>
<Pricing>Available for commercial use for per use fee of $100 US
</Pricing
<Notes>john_doe@acmenet.net, 555-555-1234</Notes>

</IntellectualProperty>
46 October 30, 1998

DIG2000 file format proposal
5.2.5 Intellectual property issues
It is important for developers to understand the implications of intellectual prop-
erty and copyright information on actions taken by end users when creating
derivative works of copyrighted material:

Rights are based on the user and creator. Rights to use the original digital
image are based on both the identity of the user and the permissions and restric-
tions imposed on the image itself by the creator. One user in one situation will
most certainly have been granted different rights than another user in the same or
a different situation. For example, some photographers will not allow their images
to be sold for billboard display and the rights to some images are granted exclu-
sively to particular individuals.

Rights are fluid. Rights are often quite fluid and may change over time. The
rights an individual has today may not be the same as the rights that user will have
tomorrow. Thus although a DIG2000 file can contain a statement of rights, it often
cannot be a complete statement.

An end-user doesn’t have all rights. An end-user generally only has particu-
lar rights. For example, a user may have the right to use the original digital image
in its entirety but not the right to produce a derivative work from that original digi-
tal image.

Rights claimed for the original. It is also important to understand the rights
potentially claimed for the original digital image or original work. Regardless of the
actions taken by the end user, the original copyright and particular rights granted
to the end user for the original are still in effect. Although the end user may be
able to claim a copyright on the new derived work, the portion of the original that
is used in the derived work is still covered by the original copyright.

For example, an end user adjusts the color balance of the original image, produc-
ing a new derived work. Provided that user did have the right to produce the new
work, the user may only claim a copyright on the derived part of that work. In this
example, only the color balance adjustment and the fact that it was performed on
a particular original digital image may be copyrighted. In addition, the user may
still not have the right to even display the new work. In order to display the new
work, the user must have the right to display the original digital image.

Although it is important for developers to understand the implications of intellec-
tual property, it is generally not possible for an application to determine the rights
of a particular individual at a particular time and to act on those rights. However, it
is possible for applications to aid end users in reducing their liability for violation of
copyright on the original digital images. Applications can provide this functionality
by:

◆ Stating the terms of the copyright for the new derived work
◆ Embedding the original copyright within the attribution for the derived work
◆ Indicating the scope of the changes from the original to the derived work.
ISO/IEC JTC1/SG29/WG1 N1017 47

Content Description block
Applications are strongly encouraged to provide this functionality where
appropriate.

5.3 Content Description block

These properties describe the content of the image. Typically it is text that the user
enters, either when the pictures are taken or later in the process.

5.3.1 Metadata block structure values
Name: Content \040 Description
MIME type: text/xml
Block specification ID: 01000300-5E0C-11D2-9D44-00A0C933BB7F

This metadata block may be stored within the DIG2000MetadataSpec element
directly, within a stream in the file, or remotely.

5.3.2 Document type definition
<?xml version="1.0"?>
<!DOCTYPE ContentDescription [

<!ELEMENT ContentDescription
(GroupCaption?, Caption?, People?, Places?, Things?, Events?,
Notes?)

>
<!ATTLIST ContentDescription

testTarget (Unidentified | ColorChart | GreyCard |
Greyscale | ResolutionChart | InchScale |
CentimeterScale | MillimeterScale | M icrometerScale)
"Unidentified"

captureTimeStamp CDATA #IMPLIED
>

<!ELEMENT RollCaption (#PCDATA)>
<!ELEMENT Caption (#PCDATA)>
<!ELEMENT People (#PCDATA)>
<!ELEMENT Places (#PCDATA)>
<!ELEMENT Things (#PCDATA)>
<!ELEMENT Events (#PCDATA)>
<!ELEMENT Notes (#PCDATA)>

]>

5.3.3 Element definitions

5.3.3.1 ContentDescription
The ContentDescription element optionally contains one of each of the
RollCaption (Section 5.3.3.2), Caption (Section 5.3.3.3), People
(Section 5.3.3.4), Places (Section 5.3.3.5), Things (Section 5.3.3.6), Events
(Section 5.3.3.7) and Notes elements (Section 5.3.3.8). It also has the following
attributes:
48 October 30, 1998

DIG2000 file format proposal
testTarget. This attribute specifies information about the type of scale or test tar-
get that is captured within the image frame.

captureTimeStamp. This attribute specifies the date and time the image was
originally captured. In the case of a scanned photograph, this would be the date
and time of the original photograph, not the date and time it was scanned. In the
case of other printed materials, this would be the date the item was originally pub-
lished. This attribute must be a valid Timestamp.

5.3.3.2 RollCaption
This element contains text that describes the subject or purpose of a group or roll
of images (e.g., a roll of film). The image in the digital file is one member of the
“roll.”

5.3.3.3 Caption
This element contains text that describes the subject or purpose of the image. It
may be additionally used to provide any other type of information related to the
image.

5.3.3.4 People
This element contains text that specifies the personal or “role” names of people in
the image. Personal names are any variation of FirstName, Initial, LastName, Titles
of Address denotations (for example, Dr. Jane Smith). Roles may be occupational or
situational denotations (for example, doctor). Multiple entries are allowed.

5.3.3.5 Places
This element contains text that specifies the place depicted in the image (Chicago,
Illinois). Multiple entries are allowed (e.g., the image may contain a map or an
aerial view of a region).

5.3.3.6 Things
This element contains text that specifies the names of tangible objects depicted in
the image (Washington Monument, for example). Multiple entries are allowed.

5.3.3.7 Events
This element contains text that specifies the events depicted in the image. Events
may be personal or societal (e.g., birthday, anniversary, New Year’s Eve). Editorial
applications may use this property to describe historical, political, or natural events
(e.g., a coronation, the Crimean War, Hurricane Andrew).

5.3.3.8 Notes
This element contains additional user/application defined information beyond the
scope of other properties in this block.
ISO/IEC JTC1/SG29/WG1 N1017 49

GPS Information block
5.3.4 Example
<?xml version="1.0"?>
<!DOCTYPE ContentDescription PUBLIC>
<ContentDescription

testTarget="GreyCard"
captureTimeStamp="Tue, 20 Oct 1998 17:42:12 -0400"

>
<RollCaption>My trip to Hawaii</RollCaption>
<Caption>A petroglyph of a sea turtle</Caption>
<Places>Hawaii Volcanos National Park</Places>

</ContentDescription>

5.4 GPS Information block

This block of properties is used store information describing where the original
scene was captured, in terms of the Global Position System.

5.4.1 Metadata block structure values
Name: Capture \040 Location \040 (GPS)
MIME type: text/xml
Block specification ID: 01000400-5E0C-11D2-9D44-00A0C933BB7F

This metadata block may be stored within the DIG2000MetadataSpec element
directly, within a stream in the file, or remotely.

5.4.2 Document type definition
<?xml version="1.0"?>
<!DOCTYPE GPSInformation [

<!ELEMENT GPSInformation EMPTY>
<!ATTLIST GPSInformation

GPSVersionID CDATA #REQUIRED
GPSLatitudeRef (North | South) #REQUIRED
GPSLatitude CDATA #REQUIRED
GPSLongitudeRef (East | West) #REQUIRED
GPSLongitude CDATA #REQUIRED
GPSAltitudeRef CDATA “0"
GPSAltitude CDATA #REQUIRED
GPSTimeStamp CDATA #REQUIRED
GPSSatellites CDATA #IMPLIED
GPSStatus (InProgress | Interrupted) #REQUIRED

GPSMeasureMode (TwoDimensional | ThreeDimensional)
"TwoDimensional"

GPSDOP CDATA #REQUIRED

GPSSpeedRef (MilesPerHour | KilometersPerHour | Knots)
"MilesPerHour"

GPSSpeed CDATA #IMPLIED
GPSTrackRef (True | Magnetic) "True"
GPSTrack CDATA #IMPLIED
GPSImgDirectionRef (True | Magnetic) "True"
50 October 30, 1998

DIG2000 file format proposal
GPSImgDirection CDATA #IMPLIED
GPSMapDatum CDATA #IMPLIED
GPSDestLatitudeRef (North | South) "North"
GPSDestLatitude CDATA #IMPLIED
GPSDestLongitudeRef (East | West) "East"
GPSDestLongitude CDATA #IMPLIED
GPSDestBearingRef (True | Magnetic) "True"
GPSDestBearing CDATA #IMPLIED
GPSDestDistanceRef (Miles | Kilometers | Knots) "Miles"
GPSDestDistance CDATA #IMPLIED

>
]>

5.4.3 Element descriptions

5.4.3.1 GPSInformation
The GPSinformation element contains no content, but has the following
attributes:

GPSVersionID. This attribute specifies the version of GPSInfoIFD . The value of
this attribute must be 2.0.0.0 .

GPSLatitudeRef. This attribute specifies whether the latitude is north or south
latitude.

GPSLatitude. This attribute specifies the numerical latitude. The latitude is
expressed as three floating values giving the degrees, minutes, and seconds, respec-
tively. When degrees, minutes and seconds are expressed, the format is
dd/1, mm/1, ss /1 . When degrees and minutes are used and, for example, frac-
tions of minutes are given up to two decimal places, the format is
dd/1, mmmm/100,0/1 .

GPSLongitudeRef. This attribute specifies whether the longitude is east or west
longitude.

GPSLongitude. This attribute specifies the numerical longitude. The longitude is
expressed in the same format as the GPSLatitude attribute.

GPSAltitudeRef. This attribute specifies the altitude used as the reference alti-
tude. In this version the reference altitude is sea level, so this tag must be set to 0,
and encoded as an Real. The reference unit is meters.

GPSAltitude. This attribute specifies the altitude based on the reference in the
GPSAltitudeRef attribute. Altitude is expressed as one floating value, and must
be encoded as a Real. The reference unit is meters.

GPSTimeStamp. This attribute specifies the time of position capture as UTC (Coor-
dinated Universal Time). The value of this attribute is encoded as a string
containing three Real values, with the values separated by a colon. The three val-
ISO/IEC JTC1/SG29/WG1 N1017 51

GPS Information block
ues represent the hour, minute, and second. For example, if the time is 4:58:19 PM,
then the value of this field would be 16:58:19 .

GPSSatellites. This attribute specifies the GPS satellites used for measurements.
This tag can be used to describe the number of satellites, their ID number, angle of
elevation, azimuth, SNR and other information in ASCII notation. The format is not
specified. If the GPS receiver is incapable of taking measurements, value of the tag
must be set to NULL.

GPSStatus. This attribute specifies the status of the GPS receiver when the image is
recorded.

GPSMeasureMode. This attribute specifies the GPS measurement mode.

GPSDOP. This attribute specifies the GPS DOP (data degree of precision). An HDOP
value is written during two-dimensional measurement, and PDOP during three-
dimensional measurement. The value of this attribute must be a Real.

GPSSpeedRef. This attribute specifies the unit used to express the GPS receiver
speed of movement.

GPSSpeed. This attribute specifies the speed of GPS receiver movement. The value
of this attribute must be a Real.

GPSTrackRef. This attribute specifies the reference for giving the direction of GPS
receiver movement.

GPSTrack. This attribute specifies the direction of GPS receiver movement. The
value of this attribute must be a Real. The range of values is from 0.00 to 359.99.

GPSImgDirectionRef. This attribute specifies the reference for giving the direc-
tion of the image when it is captured.

GPSImgDirection. This attribute specifies the direction of the image when it was
captured. The value of this attribute must be a Real. The range of values is from
0.00 to 359.99.

GPSMapDatum. This attribute specifies the geodetic survey data used by the GPS
receiver. If the survey data is restricted to Japan, the value of this tag is TOKYO or
WGS-84. If a GPS Info tag is recorded, it is strongly recommended that this tag be
recorded.

GPSDestLatitudeRef. This attribute specifies whether the latitude of the destina-
tion point is north or south latitude.

GPSDestLatitude. This attribute specifies the latitude of the destination point.
The latitude is expressed in the same format as the GPSLatitude attribute.
52 October 30, 1998

DIG2000 file format proposal
GPSDestLongitudeRef. This attribute specifies whether the longitude of the des-
tination point is east or west longitude.

GPSDestLongitude. This attribute specifies the longitude of the destination
point. The longitude is expressed in the same format as the GPSLatitude
attribute.

GPSDestBearingRef. This attribute specifies the reference used for giving the
bearing to the destination point.

GPSDestBearing. This attribute specifies the bearing to the destination point.
The value of this attribute must be a Real. The range of values is from 0.00 to
359.99.

GPSDestDistanceRef. This attribute specifies the units used to express the dis-
tance to the destination point.

GPSDestDistance. This attribute specifies the distance to the destination point.
The value of this attribute must be a Real.

5.4.4 Example
<?xml version="1.0"?>
<!DOCTYPE GPSinformation PUBLIC>
<GPSInformation

GPSVersionID="2.0.0.0"
GPSLatitudeRef="North"
GPSLatitude="21/1,19/1,0/1"
GPSLongitudeRef="West"
GPSLatitude="157/1,52/1,0/1"
GPSAltitudeRef="0"
GPSAltitude="365"
GPSTimeStamp="17:42:12"
GPSStatus="InProgress"
GPSDOP="1.0"

</GPSInformation>
ISO/IEC JTC1/SG29/WG1 N1017 53

6: Color
representation

This chapter describes how the colorspace of uncompressed data is specified and
how that color information should be interpreted when loading and processing the
image.

6.1 Introduction

The method of encoding for color imagery is critical to how consistently the colors
in an image will be reproduced across different systems and different media types.
The DIG2000 proposal format defines sRGB as the single default colorspace and sup-
port for International Color Consortium (ICC) color profiles.

The sRGB colorspace is an international standard (IEC 61966–2–1) that represents
color appearance with respect to a defined reference viewing environment, display
and observer. For color stimuli that are meant to be viewed in the reference view-
ing environment, sRGB values are computed by a series of simple mathematical
operations from standard CIE colorimetric values. For color stimuli that are meant
to be viewed in a viewing environment or display that is different from the refer-
ence conditions, it is necessary to include appropriate color appearance
transformations to determine visually corresponding CIE colorimetric values for the
reference environment (an informative annex addressing these issues is provided in
the IEC standard).

The purpose of the ICC is clearly stated in its specification. “The International Color
Consortium was established in 1993 by eight industry vendors for the purpose of
creating, promoting and encouraging the standardization and evolution of an
open, vendor-neutral, cross-platform color management system architecture and
components.” The intent of the ICC profile format is “to provide a cross-platform
device profile format. Such device profiles can be used to translate color data cre-
ated on one device into another device’s native color space. The acceptance of this
format by operating system vendors allows end users to transparently move pro-
files and images with embedded profiles between different operating systems. For
example, this allows a printer manufacturer to create a single profile for multiple
operating systems.”

Taken together, sRGB as a default colorspace and ICC profile support, provides a sim-
ple, extremely robust color management solution that addresses most, if not all,
common color management workflow needs.
ISO/IEC JTC1/SG29/WG1 N1017 55

sRGB
6.2 sRGB

6.2.1 Introduction
The sRGB colorspace is designed to complement current ICC color management
strategies by enabling a method of handling color in the operating systems, device
drivers and the Internet that utilizes a simple and robust device independent color
definition. This will provide good quality and backward compatibility with mini-
mum transmission and system overhead. Based on a calibrated colorimetric RGB
color space well suited to cathode ray tube (CRT) displays, flat panel displays, televi-
sion, scanners, digital cameras, and printing systems, such a space can be
supported with minimal cost to software and hardware vendors. The intent is to
promote its adoption by showing the benefits of supporting a standard color space,
and the suitability of this standard color space, sRGB.

6.2.2 Reference conditions

6.2.2.1 Reference display conditions
The sRGB colorspace is defined with the following reference display conditions
(Table 6.1):

The CIE chromaticities for the red, green, and blue ITU–R BT.709–2 reference prima-
ries, and for CIE Standard Illuminant D65, are given in Table 6.2.

The reference display characterization is based on the characterization in CIE 122.
Relative to this methodology, the reference display is characterized by the equa-

TABLE 6.1 sRGB reference display conditions

Display luminance level 80 cd/m2

Display white point x= 0.3127, y = 0.3290 (D65)

Display model offset (R, G and B) 0.0

Display input/output characteristic (R, G and B) 2.2

TABLE 6.2 CIE chromaticities for
ITU–R BT.709 reference primaries and CIE standard illuminant

Red Green Blue D65

x 0.6400 0.3000 0.1500 0.3127

y 0.3300 0.6000 0.0600 0.3290

z 0.0300 0.1000 0.7900 0.3583
56 October 30, 1998

DIG2000 file format proposal
tion below where V’sRGB is the input data signal and VsRGB is the output normalized
luminance:

(6.1)

6.2.2.2 Reference viewing conditions
Specifications for the reference viewing environments are based on ISO 3664 and
are defined as follows (Table 6.3):

6.2.2.3 Reference observer conditions
The reference observer is the CIE 1931 two-degree standard observer from ISO/CIE
10527.

6.2.3 Encoding characteristics

6.2.3.1 Introduction
The encoding transformations between 1931 CIE xyz values and 8 bit RGB values
provide unambiguous methods to represent optimum image colorimetry when
viewed on the reference display in the reference viewing conditions by the refer-
ence observer. The 1931 CIE xyz values are scaled from 0.0 to 1.0, not 0.0 to 100.0.
These non-linear sR'G'B' values represent the appearance of the image as displayed
on the reference display in the reference viewing condition. The sRGB tristimulus
values are linear combinations of the 1931 CIE xyz values as measured on the face-
plate of the display. A linear portion of the transfer function of the dark end signal
is integrated into the encoding specification to optimize encoding implementa-
tions. Recommended treatments for both veiling glare and viewing conditions are
provided in Annexes of the IEC standard. The details that follow are identical to
those in the IEC 61966 standard.

TABLE 6.3 sRGB reference viewing conditions

Reference background For the background as part of the display
screen, the background is 20% of the ref-
erence display luminance level

Reference surround 20% reflectance of the reference ambient
illuminance

Reference proximal field 20% of the reflectance of the reference
display luminance level

Reference ambient illuminance level 64 lx

Reference ambient white point x = 0.3457, y = 0.3585 (D50)

Reference veiling glare 1.0%

VsRGB VsRGB' 0.0+()2.2=
ISO/IEC JTC1/SG29/WG1 N1017 57

sRGB
6.2.3.2 Transformation from RGB values to 1931 CIE xyz values
The relationship is defined as follows:

(6.2)

If

(6.3)

else

(6.4)

and

(6.5)

The above equations closely fit a simple power function with an exponent of 2.2.
This maintains consistency with the legacy of desktop and video images.

6.2.3.3 Transformation from 1931 CIE xyz values to RGB values
The sRGB tristimulus values can be computed using the following relationship:

(6.6)

In the RGB encoding process, negative sRGB tristimulus values, and sRGB tristimulus
values greater than 1.00 are not retained. When encoding software cannot support
this extended range, the luminance dynamic range and color gamut of RGB is lim-
ited to the tristimulus values between 0.0 and 1.0 by simple clipping.

R'sRGB R8bit 255.0⁄=

G'sRGB G8bit 255.0⁄=

B'sRGB B8bit 255.0⁄=

R'sRGB G'sRGB B'sRGB 0.04045≤, ,

RsRGB R'sRGB 12.92⁄=

GsRGB G'sRGB 12.92⁄=

BsRGB B'sRGB 12.92⁄=

R'sRGB G'sRGB B'sRGB 0.04045>, ,

RsRGB

R'sRGB 0.055+

1.055
---------------------------------- 

 
2.4

=

GsRGB

G'sRGB 0.055+

1.055
---------------------------------- 

 
2.4

=

BsRGB

B'sRGB 0.055+

1.055
---------------------------------- 

 
2.4

=

x
y
z

0.4124 0.3576 0.1805
0.2126 0.7152 0.0722
0.0193 0.1192 0.9505

RsRGB

GsRGB

BsRGB

=

RsRGB

GsRGB

BsRGB

3.2406 1.5372– 0.4986–

0.9689– 1.8758 0.0415
0.0557 0.2040– 1.0570

x
y
z

=

58 October 30, 1998

DIG2000 file format proposal
The sRGB tristimulus values are transformed to non-linear sR'G'B' values as follows:

If

(6.7)

else

(6.8)

The non-linear sR'G'B' values are converted to digital code values. This conversion
scales the above sR'G'B' values by using the equation below where WDC represents
the white digital count and KDC represents the black digital count.

(6.9)

This standard specified a black digital count of 0 and a white digital count of 255
for 24-bit (8-bits/channel) encoding. The resulting RGB values are formed according
to the following equations:

(6.10)

This is simplified as shown below:

(6.11)

6.3 International Color Consortium (ICC) profiles

The intent of the ICC profile format is to provide a cross-platform device profile for-
mat. Such device profiles can be used to translate color data created on one device
into another device’s native color space. The acceptance of this format by operat-
ing system vendors allows end users to transparently move profiles and images
with embedded profiles between different operating systems. For example, this
allows a printer manufacturer to create a single profile for multiple operating sys-
tems. The ICC profile specification is freely available at http://www.color.org [2].

RsRGB GsRGB BsRGB 0.0031308≤, ,

R'sRGB 12.92 RsRGB×=

G'sRGB 12.92 GsRGB×=

B'sRGB 12.92 BsRGB×=

RsRGB GsRGB BsRGB 0.0031308>, ,

R'sRGB 1.055 RsRGB
1.0 2.4⁄ 0.055–×=

G'sRGB 1.055 GsRGB
1.0 2.4⁄ 0.055–×=

B'sRGB 1.055 BsRGB
1.0 2.4⁄ 0.055–×=

R8bit WDC KDC–() R'sRGB× KDC+=

G8bit WDC KDC–() G'sRGB× KDC+=

B8bit WDC KDC–() B'sRGB× KDC+=

R8bit 255.0 0.0–() R'sRGB× 0.0+=

G8bit 255.0 0.0–() G'sRGB× 0.0+=

B8bit 255.0 0.0–() B'sRGB× 0.0+=

R8bit 255.0 R'sRGB×=

G8bit 255.0 G'sRGB×=

B8bit 255.0 B'sRGB×=
ISO/IEC JTC1/SG29/WG1 N1017 59

International Color Consortium (ICC) profiles
6.3.1 Intended audience of the ICC profile specification
This specification is designed to provide developers and other interested parties a
clear description of the profile format. A nominal understanding of color science is
assumed, such as familiarity with the CIELAB color space, general knowledge of
device characterizations, and familiarity of at least one operating system level color
management system.

6.3.2 ICC device profiles
Device profiles provide color management systems with the information necessary
to convert color data between native device color spaces and device independent
color spaces. This specification divides color devices into three broad classifica-
tions: input devices, display devices and output devices. For each device class, a
series of base algorithmic models are described which perform the transformation
between color spaces. These models provide a range of color quality and perfor-
mance results. Each of the base models provides different trade-offs in memory
footprint, performance and image quality. The necessary parameter data to imple-
ment these models is described in the required portions on the appropriate device
profile descriptions. This required data provides the information for the color man-
agement framework default color management module (CMM) to transform color
information between native device color spaces.

6.3.3 ICC profile structure
The profile structure is defined as a header followed by a tag table followed by a
series of tagged elements that can be accessed randomly and individually. This col-
lection of tagged elements provides three levels of information for developers:
required data, optional data and private data. An element tag table provides a
table of contents for the tagging information in each individual profile. This table
includes a tag signature, the beginning address offset and size of the data for each
individual tagged element. Signatures in this specification are defined as a four
byte hexadecimal number. This tagging scheme allows developers to read in the
element tag table and then randomly access and load into memory only the infor-
mation necessary to their particular software application. Since some instances of
profiles can be quite large, this provides significant savings in performance and
memory. The detailed descriptions of the tags, along with their intent, are included
later in this specification. The required tags provide the complete set of informa-
tion necessary for the default CMM to translate color information between the
profile connection space and the native device space. Each profile class determines
which combination of tags is required. For example, a multi-dimensional lookup
table is required for output devices, but not for display devices.

In addition to the required tags for each device profile, a number of optional tags
are defined that can be used for enhanced color transformations. Examples of
these tags include PostScript Level 2 support, calibration support, and others. In
the case of required and optional tags, all of the signatures, an algorithmic descrip-
tion, and intent are registered with the International Color Consortium.

Private data tags allow CMM developers to add proprietary value to their profiles. By
registering just the tag signature and tag type signature, developers are assured of
60 October 30, 1998

DIG2000 file format proposal
maintaining their proprietary advantages while maintaining compatibility with the
industry standard. However, the overall philosophy of this format is to maintain an
open, cross-platform standard, therefore the use of private tags should be kept to
an absolute minimum.

6.3.4 Embedded ICC profiles
In addition to providing a cross-platform standard for the actual disk-based profile
format, this specification also describes the convention for embedding these pro-
files within graphics documents and images. Embedded profiles allow users to
transparently move color data between different computers, networks and even
operating systems without having to worry if the necessary profiles are present on
the destination systems. The intention of embedded profiles is to allow the inter-
pretation of the associated color data.

6.4 Color representation specification

It is critical to have clear and unambiguous guidelines for the colorspace defini-
tion. The DIG2000 proposal provides a simple, robust method for this.

If there does not exist an ICC profile, then the colorspace is sRGB. If there is an ICC
profile embedded in the image, this takes priority and provides an unambiguous
colorspace definition. Details on how to embed an ICC profile into the format are
given in Section 3.4 and Section 4.4.4.

More details on the respective sRGB standard colorspace and the ICC profile format
can be found in [10] and [13]. Implementors are strongly encouraged to read these
references thoroughly before implement these color representations.

From Section 4.4.4, if there is no ICC profile embedded in the file or the standard
sRGB colorspace ICC profile is embedded, then the colorspace is sRGB. Otherwise,
the colorspace is ICCProfile . Details on the use and meaning of the Input-
Color element and the colorspace attribute are given in Section 4.4.4.

Finally, if one desires to convert RGB colors into YCC colors for compression advan-
tages, it is strongly recommended to follow the SMPTE recommendations [11] for
deriving the proper color conversion matrix and thus the proper YCC space. Failure
to do so can result in visible image quality loss.
ISO/IEC JTC1/SG29/WG1 N1017 61

Appendices
DIG2000 file format proposal
October 30, 1998

A: Structured
Storage

Intellectual property note: The Structured Storage binary format is the property of
Microsoft. The DIG believes that there are not licensing or royalty barriers to third par-
ties creating independent implementations of a Structured Storage reader and writer.
However, the formal documentation of the IP status of the standard is not yet in
place. The DIG is working diligently to get this issue resolved.

Note: This document is meant to accompany the Microsoft OLE Structured Storage Ref-
erence Implementation, hereafter referred to as the ‘Software.’ If this document and
functionality of the Software conflict, the actual functionality of the Software repre-
sents the correct functionality. Microsoft assumes no responsibility for any damages
that might occur either directly or indirectly from these discrepancies or inaccuracies.
Microsoft may have trademarks, copyrights, patents or pending patent applications,
or other intellectual property rights covering subject matter in this document and in
the Software. The furnishing of this document does not give you a license to these
trademarks, copyrights, patents, or other intellectual property rights and any license
rights granted are limited to those set forth in the End User License Agreement accom-
panying this document.

A.1 Compound file binary format

A.1.1 Overview
A Compound File is made up of a number of virtual streams. These are collec-
tions of data that behave as a linear stream, although their on-disk format may be
fragmented. Virtual streams can be user data, or they can be control structures
used to maintain the file. Note that the file itself can also be considered a virtual
stream.

All allocations of space within a Compound File are done in units called sectors.
The size of a sector is definable at creation time of a Compound File, but for the
purposes of this document will be 512 bytes. A virtual stream is made up of a
sequence of sectors.

The Compound File uses several different types of sector: Fat, Directory, Minifat,
DIF, and Storage. A separate type of ‘sector’ is a Header, the primary difference
being that a Header is always 512 bytes long (regardless of the sector size of the
rest of the file) and is always located at offset zero (0). With the exception of the
header, sectors of any type can be placed anywhere within the file. The function of
the various sector types is discussed below.
ISO/IEC JTC1/SG29/WG1 N1017 65

In the discussion below, the term SECT is used to describe the location of a sector
within a virtual stream (in most cases this virtual stream is the file itself). Inter-
nally, a SECT is represented as a ULONG.

A.1.2 Sector types
typedef unsigned long ULONG; // 4 bytes
typedef unsigned short USHORT; // 2 bytes
typedef short OFFSET; // 2 bytes
typedef ULONG SECT; // 4 bytes
typedef ULONG FSINDEX; // 4 bytes
typedef USHORT FSOFFSET; // 2 bytes
typedef ULONG DFSIGNATURE; // 4 bytes
typedef unsigned char BYTE; // 1 byte
typedef unsigned short WORD; // 2 bytes
typedef unsigned long DWORD; // 4 bytes
typedef WORD DFPROPTYPE; // 2 bytes
typedef ULONG SID ; // 4 bytes
typedef CLSID GUID; // 16 bytes

typedef struct tagFILETIME { // 8 bytes
DWORD dwLowDateTime;
DWORD dwHighDateTime;

} FILETIME, TIME_T;

const SECT DIFSECT = 0xFFFFFFFC; // 4 bytes
const SECT FATSECT = 0xFFFFFFFD; // 4 bytes
const SECT ENDOFCHAIN = 0xFFFFFFFE; // 4 bytes
const SECT FREESECT = 0xFFFFFFFF; // 4 bytes

A.1.2.1 Header
struct StructuredStorageHeader{ // [offset from start in bytes, length

// in bytes]

BYTE _abSig[8]; // [000H,08] {0xd0, 0xcf, 0x11, 0xe0,
// 0xa1, 0xb1, 0x1a, 0xe1} for current
// version, was {0x0e, 0x11, 0xfc,
// 0x0d, 0xd0, 0xcf, 0x11, 0xe0} on
// old, beta 2 files (late ’92) which
// are also supported by the reference
// implementation

CLSID _clid; // [008H,16] class id (set with
// WriteClassStg, retrieved with
// GetClassFile/ReadClassStg)

USHORT _uMinorVersion; // [018H,02] minor version of the
// format: 33 is written by reference
// implementation

USHORT _uDllVersion; // [01AH,02] major version of the dll/
// format: 3 is written by reference
// implementation

USHORT _uByteOrder; // [01CH,02] 0xFFFE: indicates Intel
// byte-ordering
66 October 30, 1998

DIG2000 file format proposal
USHORT _uSectorShift; // [01EH,02] size of sectors in power-
// of-two (typically 9, indicating 512-
// byte sectors)

USHORT _uMiniSectorShift;
// [020H,02] size of mini-sectors
// in power-of-two (typically 6,
// indicating 64-byte mini-sectors)

USHORT _usReserved; // [022H,02] reserved, must be zero

ULONG _ulReserved1; // [024H,04] reserved, must be zero

ULONG _ulReserved2; // [028H,04] reserved, must be zero

FSINDEX _csectFat; // [02CH,04] number of SECTs in the FAT
// chain

SECT _sectDirStart; // [030H,04] first SECT in the FAT
// Directory chain

DFSIGNATURE_signature; // [034H,04] signature used for
// transactioning must be zero. The
// reference implementation does not
// support transactioning

ULONG _ulMiniSectorCutoff;
// [038H,04] maximum size for
// mini-streams: typically 4096 bytes

SECT _sectMiniFatStart;
// [03CH,04] first SECT in the
// mini-FAT chain

FSINDEX _csectMiniFat; // [040H,04] number of SECTs in the
// mini-FAT chain

SECT _sectDifStart; // [044H,04] first SECT in the DIF
// chain

FSINDEX _csectDif; // [048H,04] number of SECTs in the DIF
// chain

SECT _sectFat[109]; // [04CH,436] the SECTs of the first
// 109 FAT sectors

};

The Header contains vital information for the instantiation of a Compound File. Its
total length is 512 bytes. There is exactly one Header in any Compound File, and it
is always located beginning at offset zero in the file.

A.1.2.2 Fat sectors
The Fat is the main allocator for space within a Compound File. Every sector in the
file is represented within the Fat in some fashion, including those sectors that are
unallocated (free). The Fat is a virtual stream made up of one or more Fat Sectors.

Fat sectors are arrays of SECT’s that represent the allocation of space within the
file. Each stream is represented in the Fat by a chain, in much the same fashion as
ISO/IEC JTC1/SG29/WG1 N1017 67

a DOS file allocation table (FAT). To elaborate, the set of Fat Sectors can be consid-
ered together to be a single array—each cell in that array contains the SECT of the
next sector in the chain, and this SECT can be used as an index into the Fat array
to continue along the chain. Special values are reserved for chain terminators
(ENDOFCHAIN = 0xFFFFFFFE), free sectors (FREETEXT = 0xFFFFFFFF), and
sectors that contain storage for Fat Sectors (FATSECT = 0xFFFFFFFD) or DIF Sec-
tors (DIFSECT = 0xFFFFFFFC), which are not chained in the same way as the
others.

FIGURE A.1 Example of chained sectors

The locations of Fat Sectors are read from the DIF (Double indirect Fat), which is
described below. The Fat is represented in itself, but not by a chain—a special
reserved SECT value (FATSECT = 0xFFFFFFFD) is used to mark sectors allo-
cated to the Fat.

A SECT can be converted into a byte offset into the file by using the following for-
mula: SECT << ssheader._uSectorShift + sizeof(ssheader) . This
implies that sector 0 of the file begins at byte offset 512, not at 0.

A.1.2.3 MiniFat sectors
Since space for streams is always allocated in sector sized blocks, there can be con-
siderable waste when storing objects much smaller than sectors (typically 512
bytes). As a solution to this problem, we introduced the concept of the MiniFat.
The MiniFat is structurally equivalent to the Fat, but is used in a different way. The
virtual sector size for objects represented in the Minifat is
1 << ssheader._uMiniSectorShift (typically 64 bytes) instead of
1 << ssheader._uSectorShift (typically 512 bytes). The storage for these
objects comes from a virtual stream within the Multistream (called the
Ministream).

The locations for MiniFat sectors are stored in a standard chain in the Fat, with the
beginning of the chain stored in the header.

A Minifat sector number can be converted into a byte offset into the ministream by
using the following formula: SECT << ssheader._uMiniSectorShift . (This
formula is different from the formula used to convert a SECT into a byte offset in
the file, since no header is stored in the Ministream)

The Ministream is chained within the Fat in exactly the same fashion as any nor-
mal stream. It is referenced by the first Directory Entry (SID 0).

3 5 E 1

Pointer in from
directory
68 October 30, 1998

DIG2000 file format proposal
A.1.2.4 DIF sectors

FIGURE A.2 DIF sector

The Double Indirect Fat is used to represent storage of the Fat. The DIF is also rep-
resented by an array of SECT’s, and is chained by the terminating cell in each
sector array (see the diagram above). As an optimization, the first 109 Fat Sectors
are represented within the header itself, so no DIF sectors will be found in a small
(< 7 MB) Compound File.

The DIF represents the Fat in a different manner than the Fat represents a chain. A
given index into the DIF will contain the SECT of the Fat Sector found at that off-
set in the Fat virtual stream. For instance, index 3 in the DIF would contain the
SECT for Sector #3 of the Fat.

The storage for DIF Sectors is reserved in the Fat, but is not chained there (space for
it is reserved by a special SECT value, DIFSECT=0xFFFFFFFC). The location of
the first DIF sector is stored in the header.

A value of ENDOFCHAIN=0xFFFFFFFE is stored in the pointer to the next DIF sec-
tor of the last DIF sector.

A.1.2.5 Directory sectors
typedef enum tagSTGTY {

STGTY_INVALID= 0,
STGTY_STORAGE= 1,
STGTY_STREAM= 2,
STGTY_LOCKBYTES= 3,
STGTY_PROPERTY= 4,
STGTY_ROOT= 5,

} STGTY;

typedef enum tagDECOLOR {
DE_RED= 0,
DE_BLACK= 1,

} DECOLOR;

Pointers to FAT sectors

Pointer to next DIF sector
ISO/IEC JTC1/SG29/WG1 N1017 69

struct StructuredStorageDirectoryEntry {
// [offset from start in bytes,
// length in bytes]

BYTE _ab[32*sizeof(WCHAR)]; // [000H,64] 64 bytes. The
// Element name in Unicode,
// padded with zeros to fill
// this byte array

WORD _cb; // [040H,02] Length of the
// Element name in bytes,
// including two bytes for the
// terminating NULL

BYTE _mse; // [042H,01] Type of object:
// value taken from the STGTY
// enumeration

BYTE _bflags; // [043H,01] Value taken from
// DECOLOR enumeration.

SID _sidLeftSib; // [044H,04] SID of the left
// sibling of this entry in the
// directory tree

SID _sidRightSib; // [048H,04] SID of the right
// sibling of this entry in the
// directory tree

SID _sidChild; // [04CH,04] SID of the first
// child acting as the root of
// all the children of this
// element(if_mse=STGTY_STORAGE)

GUID _clsId; // [050H,16]CLSID of this storage
// (if_mse=STGTY_STORAGE)

DWORD _dwUserFlags; // [060H,04] User flags of this
// storage (if_mse=STGTY_STORAGE)

TIME _T_time[2]; // [064H,16] Create/Modify
// timestamps
// (if_mse=STGTY_STORAGE)

SECT _sectStart; // [074H,04] starting SECT of
// the stream
// (if_mse=STGTY_STREAM)

ULONG _ulSize; // [078H,04] size of stream in
// bytes (if_mse=STGTY_STREAM)

DFPROPTYPE _dptPropType; // [07CH,02] Reserved for future
// use. Must be zero.

};

The Directory is a structure used to contain per stream information about the
streams in a Compound File, as well as to maintain a tree styled containment struc-
ture. It is a virtual stream made up of one or more Directory Sectors. The Directory
70 October 30, 1998

DIG2000 file format proposal
is represented as a standard chain of sectors within the Fat. The first sector of the
Directory chain (the Root Directory Entry)

Each level of the containment hierarchy (i.e. each set of siblings) is represented as a
red/black tree. The parent of this set of siblings will have a pointer to the top of this
tree. This red/black tree must maintain the following conditions in order for it to be
valid:

1. The root node must always be black. Since the root directory (see below) does
not have siblings, it’s color is irrelevant and may therefore be either red or
black.

2. No two consecutive nodes may both be red.

3. The left child must always be less than the right child. This relationship is
defined as:

◆ A node with a shorter name is less than a node with a longer name (i.e.
compare the length of the name)

◆ For nodes with the same length names, compare the two names.

The simplest implementation of the above invariants would be to mark every node
as black, in which case the tree is simply a binary tree.

A Directory Sector is an array of Directory Entries, a structure represented in the
diagram below. Each user stream within a Compound File is represented by a sin-
gle Directory Entry. The Directory is considered as a large array of Directory Entries.
It is useful to note that the Directory Entry for a stream remains at the same index
in the Directory array for the life of the stream—thus, this index (called an SID) can
be used to readily identify a given stream.

The directory entry is then padded out with zeros to make a total size of 128 bytes.

Directory entries are grouped into blocks of four to form Directory Sectors.

A.1.2.5.1 Root Directory Entry
The first sector of the Directory chain (also referred to as the first element of the
Directory array, or SID 0) is known as the Root Directory Entry and is reserved for
two purposes: First, it provides a root parent for all objects stationed at the root of
the multistream. Second, its function is overloaded to store the size and starting
sector for the Ministream.

The Root Directory Entry behaves as both a stream and a storage. All of the fields in
the Directory Entry are valid for the root. The Root Directory Entry’s Name field typ-
ically contains the string “RootEntry” in Unicode, although some versions of
structured storage (particularly the preliminary reference implementation and the
Macintosh version) store only the first letter of this string, “R” in the name. This
string is always ignored, since the Root Directory Entry is known by its position at
SID 0 rather than by its name, and its name is not otherwise used. New imple-
mentations should write “RootEntry” properly in the Root Directory Entry for
consistency and support manipulating files created with only the “R” name.
ISO/IEC JTC1/SG29/WG1 N1017 71

A.1.2.5.2 Other Directory Entries
Non-root directory entries are marked as either stream (STGTY_STREAM) or stor-
age (STGTY_STORAGE) elements. Storage elements have a _clsid, _time[] ,
and _sidChild values; stream elements may not. Stream elements have valid
_sectStart and _ulSize members, whereas these fields are set to zero for
storage elements (except as noted above for the Root Directory Entry).

To determine the physical file location of actual stream data from a stream direc-
tory entry, it is necessary to determine which Fat (normal or mini) the stream exists
within. Streams whose _ulSize member is less than the
_ulMiniSectorCutoff value for the file exist in the ministream, and so the
_startSect is used as an index into the MiniFat (which starts at
_sectMiniFatStart) to track the chain of minisectors through the ministream
(which is, as noted earlier, the standard (non-mini) stream referred to by the Root
Directory Entry’s _sectStart value). Streams whose _ulSize member is
greater than the _ulMiniSectorCutoff value for the file exist as standard
streams—their _sectStart value is used as an index into the standard Fat which
describes the chain of full sectors containing their data).

A.1.2.6 Storage sectors
Storage sectors are simply collections of arbitrary bytes. They are the building
blocks of user streams, and no restrictions are imposed on their contents. Storage
sectors are represented as chains in the Fat, and each storage chain (stream) will
have a single Directory Entry associated with it.

A.1.3 Examples
This section contains a hexadecimal dump of an example structured storage file to
clarify the binary file format.

A.1.3.1 Sector 0: Header
_abSig = DOCF 11E0 A1B1 1AE1
_clid = 0000 0000 0000 0000 0000 0000 0000 0000
_uMinorVersion = 003B
_uDllVersion = 3
_uByteOrder = FFFE (Intel byte order)
_uSectorShift = 9 (512 bytes)
_uMiniSectorShift = 6 (64 bytes)
_usReserved = 0000
_ulReserved1 = 00000000
_ulReserved2 = 00000000
_csectFat = 00000001
_sectDirStart = 00000001
_signature = 00000000
_ulMiniSectorCutoff = 00001000 (4096 bytes)
_sectMiniFatStart = 00000002
_csectMiniFat = 00000001
_sectDifStart = FFFFFFFE (no DIF, file is < 7Mb)
_csectDIF = 00000000
_sectFat[] = 00000000 FFFFFFFF… (continues with FFFFFFFF)
72 October 30, 1998

DIG2000 file format proposal
000000: D0CF 11E0 A1B1 1AE1 0000 0000 0000 0000
000010: 0000 0000 0000 0000 3B00 0300 FEFF 0900
000020: 0600 0000 0000 0000 0000 0000 0100 0000
000030: 0100 0000 0000 0000 0010 0000 0200 0000
000040: 0100 0000 FEFF FFFF 0000 0000 0000 0000
000050: FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
...
0001F0: FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

A.1.3.2 SECT 0: First (only) FAT sector
SECT 0: FFFFFFFD = FATSECT: marks this sector as a FAT sector.

Referred to in header by _sectFat[0]
SECT 1: FFFFFFFE = ENDOFCHAIN: marks the end of the directory chain,

referred to in header by _sectDirStart
SECT 2: FFFFFFFE = ENDOFCHAIN: marks the end of the mini-fat,

referred to in header by _sectMiniFatStart
SECT 3: 00000004 = pointer to the next sector in the “Stream 1” data.

This sector is the first sector of “Stream 1”, it is referred
to by the Directory Entry

SECT 4: ENDOFCHAIN (0xFFFFFFFE): marks the end of the “Stream 1”
stream data. Further Entries are empty (FREESECT =0xFFFFFFFF)

000200: FDFF FFFF FEFF FFFF FEFF FFFF 0400 0000
000210: FEFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
...
0003F0: FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

A.1.3.3 SECT 1: First (only) Directory sector
SID 0: Root SID: Root Name = "R"
SID 1: Element 1 SID: Name = "Storage 1"
SID 2: Element 2 SID: Name = "Stream 1"
SID 3: Unused

A.1.3.3.1 SID 0: Root Directory Entry
_ab = "R" (this should be “Root Entry”)
_cb = 0004 (4 bytes, does not include double-null

 terminator)
_mse = 05 (STGTY_ROOT)
_bflags = 00 (DE_RED)
_sidLeftSib = FFFFFFFF (none)
_sidRightSib = FFFFFFFF (none)
_sidChild = 00000001 (SID 1: “Storage 1”)
_clsid = 0067 6156 54C1 CE11 8553 00AA 00A1 F95B
_dwUserFlags = 00000000 (n/a for STGTY_ROOT)
_time[0] = CreateTime = 0000 0000 0000 0000 (none set)
_time[1] = ModifyTime = 801E 9213 4BB4 BA01 (?)
_sectStart = 00000003 (starting sector of MiniStream)
_ulSize = 00000240 (length of MiniStream in bytes)
_dptPropTyp e = 0000 (n/a)

000400: 0052 0000 0000 0000 0000 0000 0000 0000 .R..............
000410: 0000 0000 0000 0000 0000 0000 0000 0000
000420: 0000 0000 0000 0000 0000 0000 0000 0000
000430: 0000 0000 0000 0000 0000 0000 0000 0000
000440: 0400 0500 FFFF FFFF FFFF FFFF 0100 0000
000450: 0067 6156 54C1 CE11 8553 00AA 00A1 F95B .gaVT....S.....[
000460: 0000 0000 0000 0000 0000 0000 801E 9213
000470: 4BB4 BA01 0300 0000 4002 0000 0000 0000 K.......@.......
ISO/IEC JTC1/SG29/WG1 N1017 73

A.1.3.3.2 SID 1: “Storage 1”
_ab = ("Storage 1")
_cb = 0014 (20 bytes, including double-null terminator)
_mse = 01 (STGTY_STORAGE)
_bflags = 01 (DE_BLACK)
_sidLeftSib = FFFFFFFF (none)
_sidRightSib = FFFFFFFF (none)
_sidChild = 00000002 (SID 2: “Stream 1”)
_clsid = 0000 0000 0000 0000 0000 0000 0000 0000 (none set)
_dwUserFlags = 00000000 (none set)
_time[0] = CreateTime = 00000000 00000000 (none set)
_time[1] = ModifyTime = 00000000 00000000 (none set)
_sectStart = 00000000 (n/a)
_ulSize = 00000000 (n/a)
_dptPropType = 0000 (n/a)

000480: 5300 7400 6F00 7200 6100 6700 6500 2000 S.t.o.r.a.g.e. .
000490: 3100 0000 0000 0000 0000 0000 0000 0000 1...............
0004A0: 0000 0000 0000 0000 0000 0000 0000 0000
0004B0: 0000 0000 0000 0000 0000 0000 0000 0000
0004C0: 1400 0101 FFFF FFFF FFFF FFFF 0200 0000
0004D0: 0061 6156 54C1 CE11 8553 00AA 00A1 F95B .aaVT....S.....[
0004E0: 0000 0000 0088 F912 4BB4 BA01 801E 9213 K.......
0004F0: 4BB4 BA01 0000 0000 0000 0000 0000 0000 K...............

A.1.3.3.3 SID 2: “Stream 1”
_ab = ("Stream 1")
_cb = 0012 (18 bytes, including double-null terminator)
_mse = 02 (STGTY_STREAM)
_bflags = 01 (DE_BLACK)
_sidLeftSib = FFFFFFFF (none)
_sidRightSib = FFFFFFFF (none)
_sidChild = FFFFFFFF (n/a for STGTY_STREAM)
_clsid = 0000 0000 0000 0000 0000 0000 0000 0000 (n/a)
_dwUserFlags = 00000000 (n/a)
_time[0] = CreateTime = 00000000 00000000 (n/a)
_time[1] = ModifyTime = 00000000 00000000 (n/a)
_startSect = 00000000 (SECT in mini-fat, since _ulSize is smaller

 than _ulMiniSectorCutoff)
_ulSize = 00000220 (< ssheader._ulMiniSectorCutoff, so

 _sectStart is in Mini)
_dptPropType = 0000 (n/a)

000500: 5300 7400 7200 6500 6100 6D00 2000 3100 S.t.r.e.a.m. .1.
000510: 0000 0000 0000 0000 0000 0000 0000 0000
000520: 0000 0000 0000 0000 0000 0000 0000 0000
000530: 0000 0000 0000 0000 0000 0000 0000 0000
000540: 1200 0201 FFFF FFFF FFFF FFFF FFFF FFFF
000550: 0000 0000 0000 0000 0000 0000 0000 0000
000560: 0000 0000 0000 0000 0000 0000 0000 0000
000570: 0000 0000 0000 0000 2002 0000 0000 0000
000580: 0000 0000 0000 0000 0000 0000 0000 0000
74 October 30, 1998

DIG2000 file format proposal
A.1.3.3.4 SID 3: Unused
000590: 0000 0000 0000 0000 0000 0000 0000 0000
0005A0: 0000 0000 0000 0000 0000 0000 0000 0000
0005B0: 0000 0000 0000 0000 0000 0000 0000 0000
0005C0: 0000 0000 FFFF FFFF FFFF FFFF FFFF FFFF
0005D0: 0000 0000 0000 0000 0000 0000 0000 0000
0005E0: 0000 0000 0000 0000 0000 0000 0000 0000
0005F0: 0000 0000 0000 0000 0000 0000 0000 0000

A.1.3.4 SECT 3: MiniFat sector
SECT 0: 00000001: pointer to the second sector in the “Stream 1”

data. This sector is the first sector of “Stream 1”, it is
referred to by _sectStart of SID 2

SECT 1: 00000002: pointer to the third sector in the “Stream 1” data.
This sector is the second sector of “Stream 1”, it is
referred to in MiniFat SECT 0, above.

...
SECT 8: FFFFFFFE = ENDOFCHAIN: marks the end of the “Stream 1” data.

Further Entries are empty (FREESECT = 0xFFFFFFFF)

000600: 0100 0000 0200 0000 0300 0000 0400 0000
000610: 0500 0000 0600 0000 0700 0000 0800 0000
000620: FEFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
...
0007F0: FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

A.1.3.5 SECT 4: MiniStream (data of “Stream 1”)
// referred to by SECTs in MiniFat of SECT 3, above

000800: 4461 7461 2066 6F72 2073 7472 6561 6D20 Data for stream
000810: 3144 6174 6120 666F 7220 7374 7265 616D 1Data for stream
000820: 2031 4461 7461 2066 6F72 2073 7472 6561 1Data for strea
...
000A00: 7461 2066 6F72 2073 7472 6561 6D20 3144 ta for stream 1D
000A10: 6174 6120 666F 7220 7374 7265 616D 2031 ata for stream 1

// data ends at 000A1F, MiniSector is filled to the end with known data
// (a copy of the header or FFFFFFF to prevent random disk or memory
// contents from contaminating the file on-disk.

000A20: 0000 0000 0000 0000 3B00 03FF FE00 0900 ;.......
000A30: 0600 0000 0000 0000 0000 0000 0000 0100
000A40: D0CF 11E0 A1B1 1AE1 0000 0000 0000 0000
000A50: 0000 0000 0000 0000 003B 0003 FFFE 0009 ;......
000A60: 0006 0000 0000 0000 0000 0000 0000 0001
000A70: 0000 0001 0000 0000 0000 1000 0000 0002
000A80: 0000 0001 FFFF FFFE 0000 0000 0000 0000
000A90: FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
...
000BF0: FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
ISO/IEC JTC1/SG29/WG1 N1017 75

A.2 OLE Property Set binary format

A.2.1 Document properties in storage
In an IStorage , a serialized property set is stored in either a single stream or in a
nested IStorage instance. In the latter case, the contained stream named “Con-
tents” is the primary stream containing property values. The format of the primary
stream, the same in either case, is described in the next section below. None of the
property types VT_STREAM, VT_STORAGE, VT_STREAMED_OBJECT, or
VT_STORED_OBJECT may be used in a stream based property set; these types
may only be used in storage based sets. It is the person who invents/defines a new
property set who gets to choose whether the set is always stream based, is always
storage based, or at times can be either.

Names in an IStorage that begin with the value ‘\0x05 ’ are reserved exclu-
sively for the storage of property sets. Streams or storages that begin with ‘\0x05 ’
must therefore be in the format described below; storages so named must contain
a “Contents ” stream in the format.

1
 One of the things that a person who invents

a new standard property set does is specify the standard string name under which
instances of that type are stored. For example, the summary information property
set defined by OLE2 is always found under the name
“\005SummaryInformation ". OLE2 provided no conventions for choosing this
name; however, a convention for choosing such names is now strongly recom-
mended below.

1. Properties may of course be stored in streams or storages that do not begin with ‘\0x05 ,’ but
such properties are completely private to the application manipulating the storage; there is little
reason to do this.
76 October 30, 1998

DIG2000 file format proposal
FIGURE A.3 Steam containing a serialized property set

A.2.2 Format of the primary property set stream
The overall structure of a stream containing a serialized property set is as illus-
trated in Figure A.3. The format consists of a property set header, a sequence of size
exactly one of format ID/offset pair, and a corresponding sequence of sections con-
taining the actual property values.

1

Absolutely all the fields of a serialized property set specified here are always stored
in storage in little endian (Intel) byte order.

2

The overall length of this property set stream is limited to 256k bytes.

1. The original OLE2 format allowed for more than one section, but use of that functionality is dis-
couraged and no longer supported.

2. Notwithstanding the fact that there is a byte-order tag of 0xFFFE at the start of the format.
This tag was intended to allow for future extensibility that has been subsequently determined to
be very unlikely to be done.

Property Set Header

FMTID/Offset pair

Section
Section Header

Property ID/Offset pairs

Primary stream of a serialized property set

Byte Order Indicator
(WORD)

Format Version
(WORD)

Originating OS Version
(DWORD)

Class Identifier
(CLSID)

Reserved
(DWORD)

FMTID (16 bytes) Offset* (DWORD)

Property ID for property m (DWORD)

Size of section (DWORD) Count of properties, m (DWORD)

Offset** (DWORD)Property ID for property 1 (DWORD)
Property ID for property 2 (DWORD) Offset** (DWORD)

Offset** (DWORD)
m entries

Type indicator m (DWORD)

Property value 1 (variable length)Type indicator 1 (DWORD)
Type indicator 2 (DWORD) Property value 2 (variable length)

Property value m (variable length)
m entries

Properties (Type/Value pairs)

*Offset in bytes from the start of the stream to the start of the section
**Offset in bytes from the start of the section to the start of the type/value pair
ISO/IEC JTC1/SG29/WG1 N1017 77

A.2.2.1 Property Set header
At the beginning of the property set stream is a header. The following structure
illustrates the header:

typedef struct PROPERTYSETHEADER {
WORD wByteOrder; // Always 0xFFFE
WORD wFormat; // Should be 0
DWORD dwOSVer; // System version
CLSID clsid; // Application CLSID
DWORD reserved; // Should be 1

} PROPERTYSETHEADER;

The definition of the members of this structure as follows:

wByteOrder. The byte-order indicator is a WORD and should always hold the
value 0xFFFE. This is the same as the Unicode© byte-order indicator. When writ-
ten in little endian (Intel) byte order, as is always done, this appears in the stream
as 0xFE, 0xFF .

wFormat. The format version is a WORD and indicates the format version of this
stream. Property set writers should write zero for this value. Property set readers
should check this value; if it is non-zero, then they should refuse to read the set, for
it is in a format that they don’t in fact understand.

dwOSVer. The OS version number is encoded as OS kind in the high order word (0
for Windows on OS, 1 for Macintosh, 2 for Windows 32-bit, 3 for UNIX) and the OS
supplied version number in the low order word. For Windows on DOS and Windows
32-bit, the latter is the low order word of the result of GetVersion() .

clsid. The class identifier is the CLSID of a class that can display and/or provide
programmatic access to the property values. If there is no such class, it is recom-
mended that the format ID be used (see below), though a value of all zeros is also
acceptable; the former simply allows for greater future extensibility.

reserved. Reserved for future use. A writer of a property set should write the
value one here; a reader of a property set should only however check that the
value is at least one.

A.2.2.2 Format ID/Offset pairs
This part of the serialized property set indicates two things: the FMTID that scopes
the property values contained in the set, and the location within the stream at
which those values are stored.

typedef struct FORMATIDOFFSET {
FMTID fmtid; // semantic name of a section
DWORD dwOffset; // offset from start of whole property set

// stream to the section
} FORMATIDOFFSET;
78 October 30, 1998

DIG2000 file format proposal
The offset is the distance of bytes from the start of the whole stream to where the
section begins. The format ID (FMTID) is the semantic name of its corresponding
section, telling how to interpret the property values therein.

A.2.2.3 Sections
Each section is made of up a property section header followed by an array that
locates each property value within the section. It is specifically not the case that the
properties in this array are sorted in any particular order Offsets within this array
are the distance from the start of the section to the start of the property (type,
value) pair. This allows entire sections to be copied as an array of bytes without any
translation of internal structure.

typedef struct PROPERTYSECTIONHEADER {
DWORD cbSection; // size of section in bytes,

// which is inclusive of the byte
// count itself

DWORD cProperties; // count of properties in section
PROPERTYIDOFFSET rgprop[]; // array of property locations

} PROPERTYSECTIONHEADER;

typedef struct PROPERTYIDOFFSET {
DWORD propid; // name of a property
DWORD dwOffset; // offset from the start of the

// section to that property
} PROPERTYIDOFFSET;

Each property value contains a type tag followed by the bytes of the actual prop-
erty value (at last!). All type/value pairs begin on a 32-bit boundary. Thus values
may be followed with null bytes to align the subsequent pair on a 32-bit boundary
(note though that there is no guarantee that property values are in fact as tightly
packed in a section as this restriction permits; that is, there may be additional gra-
tuitous padding).

typedef struct SERIALIZEDPROPERTYVALUE {
DWORD dwType; // type tag
BYTE rgb[]; // the actual property value

} SERIALIZEDPROPERTYVALUE;

A consequence of these rules is that the smallest legal section, one containing zero
properties, contains the following eight bytes: 08 00 00 00 00 00 00 00 .

A.2.3 Special property ids
A couple of property ID’s have special significance in all property sets.

A.2.3.1 Property ID zero: Dictionary of property names
To enable users of property sets to attach meaning to properties beyond those pro-
vided by the type indicator, property ID zero (0) is reserved in all property sets for
an optional dictionary giving human readable names for the properties in the set
and for the property set itself. The value will be an array of (property ID, string)
pairs.

The value of property ID zero is an array of property ID/string pairs. Entries in the
array are the ID’s and corresponding names of the properties; these are not in any
ISO/IEC JTC1/SG29/WG1 N1017 79

particular order with respect to their property ID’s. Not all of the names of the
properties in the set need appear in the dictionary: the dictionary may omit entries
for properties that are assumed to be universally known by clients that manipulate
the property set. Typically names for the base property sets for widely accepted
standards will be omitted.

Property names that begin with the binary Unicode characters 0x0001 through
0x001F are reserved for future use.

The name indicated as corresponding to property ID zero is to be interpreted as the
human readable name of the property set itself; like all property names, this may
or may not be present.

The dictionary is stored as a list of property ID/string pairs; the code page for the
strings involved is as indicated in property ID one. This can be illustrated using the
following pseudo-structure definition for a dictionary entry (it’s a pseudo-structure
because the sz[] member is variable size).

typedef struct tagENTRY {
DWORD propid; // Property ID
DWORD cb; // Count of bytes in the string, including

// the null at the end
tchar tsz[cb]; // Zero-terminated string. Code page as

// indicated by property ID one.
} ENTRY;

typedef struct tagDICTIONARY {
DWORD cEntries; // Count of entries in the list
ENTRY rgEntry[cEntries];

} DICTIONARY;

Note the following:

◆ Property ID zero does not have a type indicator. The DWORD that indicates the
count of entries sits in the usual type indicator position.

◆ The count of bytes in the string (cb) includes the zero character that
terminates the string.

◆ If the code page indicator is not 1200 (Unicode), there is no padding between
entries to achieve reasonable alignment (sigh). However, if the code page
indicator is Unicode, then each entry should be aligned on a DWORD boundary.

◆ If the code page indicator is not 1200 (Unicode), property names are stored
DBCS strings. If the code page indicator does indicate Unicode, property name
strings are stored as Unicode.

◆ Property name strings are restricted in length to 128 characters including the
NULL terminating character.

A.2.3.2 Property ID one: Code Page Indicator
Property ID one (1) is reserved as an indicator of which code page or script any not-
always-Unicode strings in the property set originated from (code pages are used in
Windows and scripts are from the Macintosh world). All such string values in the
entire property set, such as VT_LPSTR’s, VT_BSTR’s, and the names in the prop-
80 October 30, 1998

DIG2000 file format proposal
erty name dictionary found in code page zero use characters from this one code
page. If the code page indicator is not present, the prevailing code page on the
reader’s machine must be assumed. If an application cannot understand the indi-
cated code page, it should not try to modify strings stored in the property set.

When an application that is not the author of a property set changes a property of
type string in the set, it should examine the code page indicator and take one of
the following courses of action:

1. Write the new value using the code page found in the code page indicator.

2. Rewrite all string values in the property set using the new code page (including
the new value), and modify the code page indicator to reflect the new code
page.

Possible values for the code page indicator are given in the Win32 API reference (see
the NLSAPI functions, and specifically the GetACP function) and Inside Macintosh
Volume VI, §14–111. For example, the code page US ANSI is represented by 0x04e4
(or 1252 in decimal); the code page for Unicode is 1200 . Whether a Windows code
page or a Macintosh script is found in property ID one is determined by the “origi-
nating OS version” (PROPERTYSETHEADER::dwOSVer) of the property set as a
whole. Note that there exist Windows code page equivalents for the Macintosh
scripts numbers (Windows code page 10000, for example, is the Macintosh Roman
script).

By far, if it is at all possible, it is recommended that the Unicode code page (1200)
be used. This is the only practical way to in fact achieve worldwide interoperable
property sets. In code page 1200, note especially that the count at the start of a
VT_LPSTR or VT_BSTR is to be interpreted as a byte count, not a character count.
The byte count includes the two zero bytes at the end of the string.

Property ID one is of type VT_I2 , and therefore consists of a DWORD containing
VT_I2 followed by a USHORT indicating the code page. For example, the
type/value pair for property ID one representing the US ANSI code page is the follow-
ing six bytes: 02 00 00 00 e4 04 , plus any necessary padding.

A.2.3.3 Property ID 0x80000000: Locale Indicator
Property ID 0x80000000 (PID_LOCALE) is reserved as an indication of which
locale the property set was written in. The default locale for a property set, in the
event that PID_LOCALE does not exist in the property set will be the system’s
default locale (LOCALE_SYSTEM_DEFAULT).

Applications can choose to support locale or just get the default behavior. Applica-
tions that allow users to specify a working locale should write that locale identifier
to this property. Applications that use the user’s default locale
(LOCALE_USER_DEFAULT) should write the user’s default locale identifier.

Applications should be concerned with the possibility of getting information from a
property set which is of a different locale than the application’s locale or the user’s
or the system’s (i.e. a foreign object).

There is no provision in the OLE Property Set interfaces defined above to specifi-
cally read and write PID_LOCALE; in other words this property can be treated just
ISO/IEC JTC1/SG29/WG1 N1017 81

like any property. Likewise the system will not attempt to automatically add or
modify this property.

Property ID PID_LOCALE is of type VT_U4, and therefore consists of a DWORD con-
taining VT_U4 followed by a DWORD containing the Locale Identifier (LCID) as
defined by Appendix C of the Win32 SDK.

A.2.3.4 Reserved property ID’s
Property ID’s with the high bit set (that is, which are negative) are reserved for
future definition by Microsoft.

A.2.4 Property type representations
A property (type, value) pair is a DWORD type indicator, followed by a value whose
representation depends on the type. The serialized representations of each of the
different types of values are as follows:

TABLE 6.4 Common property types

Type indicator Value representation

VT_EMPTY no bytes

VT_NULL no bytes

VT_I2 2 byte signed integer

VT_I4 4 byte signed integer

VT_R4 32bit IEEE floating point value

VT_R8 64bit IEEE floating point value

VT_CY 8 byte two’s complement integer (scaled by 10,000)

VT_DATE A 64bit floating point number representing the num-
ber of days (not seconds) since December 31, 1899
(thus, January 1, 1900 is 2.0, January 2, 1900 is 3.0, and
so on). This is stored in the same representation as
VT_R8.

VT_BSTR Counted, null terminated binary string; represented as
a DWORD byte count of the number of bytes in the
string (including the terminating null) followed by the
bytes of the string. Character set is as indicated by the
code page indicator.

VT_ERROR A DWORD containing a status code.

VT_BOOL Boolean value, a WORD containing 0 (false) or –1 (true).

VT_VARIANT A type indicator (a DWORD) followed by the correspond-
ing value. VT_VARIANT is only used in conjunction
with VT_VECTOR: see below.

VT_UI1 1 byte unsigned integer

VT_UI2 2 byte unsigned integer
82 October 30, 1998

DIG2000 file format proposal
VT_UI4 4 byte unsigned integer

VT_I8 8 byte signed integer

VT_UI8 8 byte unsigned integer

VT_LPSTR This is the representation of many strings. Stored in the
same representation as VT_BSTR. Note therefore that
the serialized representation of VT_LPSTR in fact has
a preceding byte count, whereas the in-memory repre-
sentation does not. Character set is as indicated by the
code page indicator.

VT_LPWSTR A counted and null terminated Unicode string; a
DWORD character count (where the count includes the
terminating null) followed by that many Unicode (16
bit) characters. Note that the count is a character
count, not a byte count.

VT_FILETIME 64bit FILETIME structure as defined by Win32

VT_BLOB A DWORD count of bytes, followed by that many bytes
of data; the byte count does not include the four bytes
for the length of the count itself: an empty blob would
have a count of zero, followed by zero bytes. Thus, the
serialized representation of a VT_BLOB is similar to
that of a VT_BSTR but does not guarantee a null byte
at the end of the data.

VT_STREAM Indicates the value is stored in a stream which is sibling
to the “Contents” stream. Following this type indicator
is data in the format of a serialized VT_LPSTR which
names the stream containing the data.

VT_STORAGE Indicates the value is stored in an IStorage which is sib-
ling to the “Contents” stream. Following this type indi-
cator is data in the format of a serialized VT_LPSTR
which names the IStorage containing the data.

VT_STREAMED_OBJE
CT

As in VT_STREAM but indicates that the stream con-
tains a serialized object, which is a class ID followed by
initialization data for the class.

VT_STORED_OBJECT As in VT_STORAGE but indicates that the designated
IStorage contains a loadable object.

TABLE 6.4 Common property types

Type indicator Value representation
ISO/IEC JTC1/SG29/WG1 N1017 83

Clipboard format identifiers, stored with the tag VT_CF, use one of five different
representations:

typedef struct VTCFREP {
LONG lTag;
BYTE rgb[];

} VTCFREP;

VT_BLOB_OBJECT A BLOB containing a serialized object in the same rep-
resentation as would appear in a
VT_STREAMED_OBJECT. That is, following the
VT_BLOB_OBJECT tag is a DWORD byte count of the
remaining data (where the byte count does not include
the size of itself) which is in the format of a class id fol-
lowed by initialization data for that class.

The only significant difference between
VT_BLOB_OBJECT and VT_STREAMED_OBJECT is
that the former does not have the system-level storage
overhead that the latter would have, and is therefore
more suitable for scenarios involving numbers of small
objects.

VT_CF A BLOB containing a clipboard format identifier fol-
lowed by the data in that format. That is, following the
VT_CF tag is data in the format of a VT_BLOB: a
DWORD count of bytes, followed by that many bytes of
data in the format of a packed VTCFREP described
just below, followed immediately by an array of bytes
as appropriate for data in the clipboard format format
(text, metafile, or whatever).

VT_CLSID A class ID (or other GUID).

VT_VECTOR If the type indicator is one of the above values with this
bit on in addition, then the value is a DWORD count of
elements, followed by that many repetitions of the
value.

As an example, a type indicator of
VT_LPSTR | VT_VECTOR has a DWORD element
count, a DWORD byte count, the first string data, a
DWORD byte count, the second string data, and so on.

TABLE 6.4 Common property types

Type indicator Value representation
84 October 30, 1998

DIG2000 file format proposal
The values for rgb are determined by the different values for lTag :

As was mentioned above, all type/value pairs begin on a 32-bit boundary. It fol-
lows that in turn, the type indicators and values of a type value pair are so aligned.
This means that values may be necessarily followed by null bytes to align a subse-
quent type/value pair.

However, within a vector of values, each repetition of a value is to be aligned with
its natural alignment rather than with 32-bit alignment. In practice, this is only sig-
nificant for types VT_I2 and VT_BOOL (which have 2-byte natural alignment); all
other types have 4-byte natural alignment. Therefore, a value with type tag
VT_I2 | VT_VECTOR would be:

◆ a DWORD element count, followed by
◆ an sequence of packed 2-byte integers with no padding between them,

whereas a value of with type tag VT_LPSTR | VT_VECTOR would be a
DWORD element count, followed by

◆ a sequence of (DWORD cch, char rgch[]) strings, each of which may be
followed by null padding to round to a 32-bit boundary.

A.3 CompObj stream binary format

A.3.1 Overview
The ‘CompObj’ stream in a storage object provides generic information regarding
the native data contained in this storage object. This generic information is manip-
ulated through the OLE API functions WriteFmtUserTypeStg and
ReadFmtUserTypeStg and includes:

◆ User Type: a user readable string that indicates the type of the object.

◆ Clipboard Format: implies the names and structure of streams and sub-
storages.

TABLE 6.5 Relationship between lTag and rgb

lTag Value rgb value

-1L a DWORD containing a built-in Windows clipboard format value.

-2L a DWORD containing a Macintosh clipboard format value.

-3L a GUID containing a format identifier (this is in little usage).

any positive
value

a null-terminated string containing a Windows clipboard format
name, one suitable for passing to RegisterClipboardFor-
mat . The code page used for characters in the string is per the
code page indicator. The “positive value” here is the length of the
string, including the null byte at the end.

0L no data (very rare usage)
ISO/IEC JTC1/SG29/WG1 N1017 85

This document exposes the binary format of the data written by WriteFmtUser-
TypeStg and interpreted by ReadFmtUserTypeStg .

A.3.2 Format
The format consists of three basic parts, that represent versions of the stream writ-
ten by different versions of the OLE2 libraries:

◆ Header, User Type (ANSI), Clipboard format (ANSI)

◆ ProgID (ANSI): optional. If not present, no Unicode information may follow

◆ Unicode versions of User Type, Clipboard format and ProgID: optional. If any
Unicode information is present all three items have to be valid. Presence of the
Unicode information is indicated by a “magic DWORD” value following the ANSI
ProgID.

The following is a detailed description of the format using a pseudo C++ syntax
where applicable.

A.3.2.1 Mandatory part

A.3.2.1.1 Stream name
 // Stream name: L”\1CompObj”

A.3.2.1.2 Header
struct CompObjHdr { // The leading data in the

// CompObj stream
DWORD dwVersionAndByteOrder;

// First DWORD: LOWORD Version=0x0001,
// HIWORD=FFFE (ignored by reader!)

DWORD dwFormat = 0x00000a03;
// OS Version: always Win 3.1

DWORD unused = -1L; // Always a -1L in the stream

CLSID clsidClass; // Class ID of this object, identical
// to the CLSID in the parent storage
// of the stream

};

A.3.2.1.3 User Type
struct ANSIUserType {

DWORD dwLenBytes; // length of User Type string in bytes
// including terminating 0

char szUserType[dwLenBytes];
// User Type string (ANSI) terminated
// with '\0'

}

86 October 30, 1998

DIG2000 file format proposal
A.3.2.1.4 Clipboard Format (ANSI)
LONG dwCFLen; // Length of clipboard format name

// special values:
// 0 no clipboard format
// -1 DWORD with standard Windows CF
// follows: DWORD cfStdWin;
// -2 DWORD with standard Apple
// Macintosh CF follows:
// DWORD cfStdMac;
// >0 Length in bytes of clipboard
// format name including terminating 0

char szCFName[dwCFLen]; // Clipboard Format Name (ANSI)
// terminated with '\0'

A.3.2.2 Optional: ProgID (ANSI)
The stream may end at this point. Versions of OLE before 2.01 provided only the
data described in section 2.1.

If more data follows it is to be interpreted as follows:

struct ANSIProgID {
DWORD dwLenBytes; // length of ProgID stream in bytes.

// dwLenBytes ≤ 40
char szProgID[dwLenBytes]; // ProgID string (ANSI) terminated

// with '\0'
}

A.3.2.3 Optional: Unicode versions
Only if a ANSI ProgID was provided (possibly with ANSIProgID::dwLen-
Bytes=0), the following data may follow:

A.3.2.3.1 Magic Number
DWORD dwMagicNumber =0x71B239F4; // indicates Unicode UserType, CF

// and ProgID follow (all three!)

A.3.2.3.2 User Type (Unicode)
struct UNICODEUserType {

DWORD dwLenBytes; // Size of Unicode User Type in bytes
// (not characters!) including
// terminating 0

WCHAR wszUserType[dwLenBytes/sizeof(WCHAR)];
// Unicode User Type string, terminated
// with '\0'

};
ISO/IEC JTC1/SG29/WG1 N1017 87

A.3.2.3.3 Clipboard Format (Unicode)
LONG dwUnicodeCFLen; // Length of Unicode clipboard format

// name in bytes
// Special values:
// 0 no clipboard format
// -1 DWORD with standard Windows CF
// follows: DWORD cfStdWin;
// -2 DWORD with standard Apple
// Macintosh CF follows:
// DWORD cfStdMac;
// >0 Length in bytes of clipboard
// format name including
// terminating 0

WCHAR szCFName[dwUnicodeCFLen/sizeof(WCHAR)];
// Clipboard Format Name (Unicode)
// terminated with '\0'

A.3.2.3.4 ProgID (Unicode)
struct UNICODEProgID {

DWORD dwLenBytes; // Size of Unicode ProgID in bytes
// (not characters!) including
// terminating '\0'

WCHAR wszProgID[dwLenBytes/sizeof(WCHAR)];
// Unicode ProgID string, terminated
// with '\0'

};
88 October 30, 1998

B: Example API

The following text is an excerpt from the Netgraphica™ Image Source Reference
Guide [15], part of the developers documentation from TrueSpectra’s Flashpix tool-
kit. This excerpt is not edited such that it stands alone, and there may be references
to portions of the full document that are not included here. If you have further
questions about this information, contact Steve Sutherland at
steves@truespectra.com.

This documentation shows an example of an API that could be used to efficiently
access image data from a DIG2000 file in a resolution-independent and block/tile
oriented mode.

B.1 Using the ImageSource interface

This section describes how to use the ImageSource Interface in a Client Applica-
tion. The following sections are included:

◆ Introduction
◆ Image representation
◆ Loading an image
◆ Getting tiles

B.1.1 Introduction
The ImageSource interface can be used for manipulating image data which has
multiple resolutions, and can be accessed by tiles (small square blocks of image
data) rather than by scanline. These are two essential features of the .fpx-format
image and the corresponding Internet Imaging Protocol (IIP). They make accessing
image data more efficient because an application has the ability to request only
the region of the image it needs at the resolution it needs.

ImageSource and other related interfaces provide methods to access to all the
possible information in an .fpx-format or IIP image, but only a small subset of these
methods is needed in a typical client application for displaying the image data.

This document describes how to use the ImageSource package in the context of
a client application. We will begin by giving a brief overview of how the image data
is represented, and then go on to show how to access the image data through the
ImageSource interface with examples.

For more detailed information about the interfaces and classes used here, refer to
Appendix B.2.
ISO/IEC JTC1/SG29/WG1 N1017 89

B.1.2 Image representation

B.1.2.1 Multiple resolutions
Image data is available at a hierarchy of resolutions; each is one-half the size
(rounded up to the nearest pixel) of the next higher one. Resolution levels are
assigned from lowest to highest. The lowest resolution image is always at level 0,
and if there are n levels in the hierarchy the highest resolution image is at level n–
1.

B.1.2.2 Tiles
Each resolution is broken up into square 64×64 pixel tiles. Tiles are indexed in row
major order from left-to-right and from top-to-bottom. Within the tiles the pixels
are also ordered from left-to-right and top-to-bottom. The tiles at the right and bot-
tom edges of the image are padded by replicating the last row and column if the
width or height of the resolution are not exact multiples of the tile width and
height.

B.1.2.3 Example
The following table shows the sizes for all the resolutions of a 500 x 300 pixel
image.

B.1.3 Loading an image
To load an imagesource, we first construct an ImageSource object; in this case it
is an IIPImageSource . The image is loaded using the load() method which
returns a boolean value indicating whether the load was successful or not. In the
case of the IIPImageSource , the load method does not request any pixel data
from the server; it just loads the basic information about the image such as num-
ber of resolutions, pixel size of the resolutions, colorspace, and information which
may be needed later to decompress image data when it arrives.

In C++, we first get an instance of an IIPModule , and use the load method to
obtain an instance of an ImageSource . Here is the code to do it:

// image source interface
#include "ImageSource.h"
...

TABLE B.1 Example resolution sizes

Res level Pixel width Pixel height Tile width Tile height

3 500 300 8 5

2 250 150 4 3

1 125 75 2 2

0 63 38 1 1
90 October 30, 1998

DIG2000 file format proposal
// load image from URL and get the size of the highest resolution
char *url =

"http://www.truespectra.com/cgibin/NetGraphicaCGI.exe?
fif=cat.fpx";
ImageSourceModule *isMod = newIIPModule();
ImageSource *source = isMod->load(url);
if (!source) {

// do something on failure
...

}

Once the image has been successfully loaded we can, for example, determine the
pixel size of the highest resolution. First we query the number of resolutions, and
then use that to query the pixel size of the image at the highest resolution level.

In C++ it would be:

int nRes = source->getResCount();
Dimension size;
source->getPixelSize(nRes-1 &size);

B.1.4 Getting tiles
Tiles can be requested by specifying a resolution level and a rectangle. The rectan-
gle is specified in the pixel coordinates of the selected resolution. First we get a list
of the indices of the tiles that are needed to cover a given rectangle, then we get
the corresponding set of tiles.

In C++ the code to do this looks like:

// rectangle specifying all of resolution level 3
Dimension size;
source->getPixelSize(3, &size);
Rect rect(0, 0, size.width, size.height);

// get list of tiles in specified rectangle
TileList *needTiles = source->getRectTileList(3, &rect);

// get the set of tiles specified in the tile list
TileSet *tSet = source->getTileSet(3, needTiles);

An individual tile can be retrieved from the TileSet by tile index using the get-
Tile() method. The tile index can be specified directly, or an enumeration of the
indices for all the tiles in the TileSet can be retrieved using the getTileL-
ist() method.

In C++ the code to retrieve a tile looks like this:
ISO/IEC JTC1/SG29/WG1 N1017 91

TileList *gotTiles = tSet->getTileList();
while (gotTiles->hasMoreElements()) {

// get a tile
int tIndex = gotTiles->getNext();
Tile *tile = tSet->getTile(tIndex);
// do something with it
...
tile->Release();

}
tSet->Release();
gotTiles->Release();

B.2 C++ documentation

This section describes the interfaces and classes available in the C++ version of the
Netgraphica Client Toolkit. The following contents are included:

◆ .fpx-format related interfaces
◆ ImageSource related interfaces
◆ Property Set related interfaces
◆ Render2D base types
◆ Hierarchy of C++ classes

B.2.1 .fpx-format related interfaces
These interfaces provide access to reading and writing image data in the .fpx-
format.

An .fpx-format image view object is comprised of a ViewTransform specifying
some transformation parameters, an ImageSource for the source image data,
and optionally an ImageSource to cache the result image which is generated by
applying the ViewTransform to the source image. In addition there is non-
image data describing various attributes of the image such as the subject, author,
scanner setting, camera settings, etc. as appropriate.

The main interfaces described below are the FpxViewProperties interface
which provides access to the non-image data, the FpxFile interface which associ-
ates source image data in with the transform and property interfaces, and the
FpxFileModule is a collection of methods for loading and saving files in the
.fpx-format.

B.2.1.1 Interfaces

ThumbNail. The Thumbnail interface is used to access the thumbnail image
showing the rendered result image with all transforms applied.

FpxObjectProperties. This interface provides methods for manipulating prop-
erty sets associated with .fpx-format view and image objects.
92 October 30, 1998

DIG2000 file format proposal
FpxImageProperties. This interface provides methods for manipulating the
properties associated with an .fpx-format image object.

FpxViewProperties. This interface provides methods for manipulating the prop-
erties associated with the root .fpx-format view object.

FpxFile. The FpxFile interface associates a ViewTransform with source
image data.

FpxFileModule. A FpxFileModule provides a collection of methods for load-
ing and saving data in .fpx-format files.

6.4.0.1 See Also
ImageSource , ViewTransform

B.2.2 ImageSource related Interfaces
These interfaces provide access to tiled image data at multiple resolutions. Image
data is provided at a hierarchy of resolutions, and data at an individual resolution
is broken into square tiles. The benefits of using these interfaces are that applica-
tions can select an appropriate resolution, and request only the tiles that they
need. This speeds up the loading and manipulation of the image data.

This form of image data reflects the essential elements of the .fpx image file for-
mat and the Internet Imaging Protocol (IIP), however these interfaces may also be
implemented for other image file formats, as well as procedural images.

B.2.2.1 Interfaces

Colorspace. The Colorspace interface provides methods to get information about
the colorspace of the image data associated with it.

CompressionInfo. This interface encapsulates a collection of CompressionT-
ables which contain the information needed to decompress a JPEG encoded tile
data obtained from an ImageSource .

CompressionParameters. This interface allows an application to set .fpx-for-
mat compression parameters.

CompressionTable. This interface allows an application to access the data in a
JPEG header only stream which contains the huffman and quantization tables
needed to decode tiles.

ImageBuffer. This interface provides access to basic information about an image:
its dimensions in pixels, colorspace, and pixel data.

ImageSource. The ImageSource interface provides access to image data at a
hierarchy of resolutions on a tile basis.
ISO/IEC JTC1/SG29/WG1 N1017 93

ImageSourceModule. An ImageSourceModule is used to load image data
from an image file and provide an ImageSource interface to that data.

Matrix4D. A class representing a 4×4 matrix.

Tile. This interface allows an application to access information about a single tile
of an image.

TileList. This interface allows an application to enumerate a set of tile indices
from one of the resolution levels of an image.

TileSet. This interface provides access to a subset of all the tiles at a particular res-
olution level.

ViewTransform. The ViewTransform interface is used to get and set the
parameters for the various transformations allowed by the .fpx-format.

B.2.2.2 See Also
ImageSource , ImageSourceModule

B.2.3 Property Set related Interfaces
These classes allow an application to read and write information in property sets.

B.2.3.1 Interfaces

PropertySetException. Base class for property set exceptions.

PropertyIdNotFoundException. Exception indicating that the application
tried to get the value of or delete a property that did not exist in a PropertySet .

PropertyWrongTypeException. Exception indicating that the application used
a PropertyValue method for retrieving the value of a property that did not
match the type of the PropertyValue .

ByteArray. A class which holds an array of bytes and a count of those bytes.

PropertyValue. This interface allows an application to retrieve property values.

PropertySet. This interface allows an application to read, modify and create
properties in a property set.

PropertyValueFactory. This interface allows an application to construct Prop-
ertyValue which may be used to set values for properties in property sets.

B.2.4 Render2D Base Types

Affine2D. This class represents an affine transformation of a 2D coordinate space.
94 October 30, 1998

DIG2000 file format proposal
Angle2D. A floating-point angle structure.

BaseInterface. Defines a base class that uses reference counts.

cast. Converts an object to the type you need, if it implements that type.

Cloneable. Used for copying an object (but maintaining proper reference counts).

Dimension. This class encapsulates an integer width and height.

Dimension2D. This class encapsulates a floating point width and height.

Enumeration. Ordered list of objects.

instanceof. Tests whether the object implements the given interface.

Matrix2D. A 3×3 matrix representing a 2D affine transformation.

Point. This class represents a point in a 2D coordinate space using floating point
coordinates.

Point2D. This class represents a point in a 2D coordinate space using floating
point coordinates.

Rect. A rectangle in integer coordinates defined by x, y, width, and height.

Rectangle2D. A rectangle defined by x and y coordinates representing each
“edge” of the rectangle.

ScanlineConsumer. This interface is an abstraction for specifying an image one
scanline at a time.

ScanlineProducer. This interface is an abstraction for retrieving an image one
scanline at a time.

Vect. This class defines a vector in a 2D integer coordinate space.

Vector2D. This class defines a vector in a 2D floating point coordinate space.

B.2.5 Hierarchy of C++ Classes
◆ Matrix4D

◆ ByteArray

◆ PropertySetException

◆ PropertyWrongTypeException
◆ PropertyUnrecognizedTypeException
◆ PropertyIdNotFoundException

◆ Angle2D
ISO/IEC JTC1/SG29/WG1 N1017 95

◆ BaseInterface

◆ ScanlineProducer
◆ ScanlineConsumer
◆ Enumeration
◆ Cloneable

◆ Affine2D
◆ PropertyValueFactory
◆ PropertyValue
◆ PropertySet
◆ ViewTransform
◆ TileSet
◆ TileList
◆ ImageSourceModule
◆ ImageSource
◆ ImageBuffer

◆ Tile
◆ CompressionTable
◆ CompressionParameters
◆ CompressionInfo
◆ Colorspace
◆ ThumbNail
◆ FpxObjectProperties

◆ FpxViewProperties
◆ FpxImageProperties

◆ FpxFileModule
◆ FpxFile

◆ Dimension

◆ Dimension2D

◆ Matrix2D

◆ Point

◆ Point2D

◆ Rect

◆ Rectangle2D

◆ Vect

◆ Vector2D
96 October 30, 1998

C: Enhancements
for Windows

Although the DIG2000 file format contains no elements that preclude its use on any
particular platform, there are a few optimizations that can be made to files to
allow them to interact more fluidly on the Windows platforms (Windows 95/98/NT).

C.1 Property sets

Structured storage defines property sets as a stream for storing tagged data. As
defined, property sets are very flexible. All property sets must be in Windows For-
mat (e.g. little endian). Windows format is indicated in the property set header by
setting the wByteOrder field to 0xFFFE and the wFormat field to 0x0 . Further-
more, the codepage must be written into the requisite property (property ID = 1) in
each and every DIG2000 property set as described below. A binary specification of
property sets is included in this specification in Section A.2.

With the sole exception of the OLE standard Summary Information Property Set
(Appendix C.2), each and every DIG2000 property set must be in the Unicode (1200)
codepage, and all strings in that set must be stored as wide 16-bit characters
(VT_LPWSTR). Due to its origin and use in non-DIG2000 applications, the Summary
Information Property set has different conditions than all other property sets. This
property set must be in local code page of the system on which the file is to be
loaded, and all strings in that property set must be stored as required for that code
page.

The properties defined for each property set are listed in the property set defini-
tion. All property ID codes not explicitly listed for the property set are reserved for
future use. Where valid property values are listed, those not explicitly listed are
reserved for future use.

Each property set must have a class ID, and must have one and only one section
with a defined format ID. The class ID of the property set must be the same value as
the format ID of the section.

Also, all properties in all property sets in a DIG2000 file must be of the type indi-
cated in this specification. Any properties that allow their types to vary from file to
file are explicitly noted.
ISO/IEC JTC1/SG29/WG1 N1017 97

C.2 Summary Information property set

Stream name: \005 SummaryInformation
Class ID: F29F85E0-4FF9-1068-AB91-08002B27B3D9
Format ID: F29F85E0-4FF9-1068-AB91-08002B27B3D9

Structured Storage defines one property set that may be found in every DIG2000

object to provide a basic level of information about the object. It is defined as part
of Structured Storage and is intended to be used as a standard interchange mecha-
nism for generic document information. The Summary Information property set
must be written in the local code page of the system on which the file will be read.
The Summary Information property set is optional in all DIG2000 files, and each
property within the property set is also optional when the property set is written.

The property set must also have exactly one section that has a format ID the same
as the class ID. The properties of the Summary Information property set are listed
in Table 6.6. See Appendix A.2.4 for the definitions of the property types (such as
VT_LPSTR).

Title. This property is available for the application to record a title for the image.

TABLE 6.6 Valid properties of the Summary Information property set

Property name ID code Type

Title 0x00000002 VT_LPSTR

Subject 0x00000003 VT_LPSTR

Author 0x00000004 VT_LPSTR

Keywords 0x00000005 VT_LPSTR

Comments 0x00000006 VT_LPSTR

Template 0x00000007 VT_LPSTR

Last saved by 0x00000008 VT_LPSTR

Revision number 0x00000009 VT_LPSTR

Total editing time 0x0000000A VT_FILETIME

Last printed 0x0000000B VT_FILETIME

Create time/date 0x0000000C VT_FILETIME

Last saved time/date 0x0000000D VT_FILETIME

Number of pages 0x0000000E VT_I4

Number of words 0x0000000F VT_I4

Number of characters 0x00000010 VT_I4

Thumbnail 0x00000011 VT_CF

Name of creating application 0x00000012 VT_LPSTR

Security 0x00000013 VT_I4
98 October 30, 1998

DIG2000 file format proposal
Subject. This property is available for the application to record the subject of the
image.

Author. This property is available for the application to record the author of the
image.

Keywords. This property is available for the application to record keywords about
the image.

Comments. This property is available for the application to record comments
about the image.

Template. This property is not used with DIG2000 files.

Last saved by. This property is available for the application to record the name
of the user who last saved the image.

Revision number. This property is available for the application to record the
number of times the image has been saved.

Total editing time. This property is available for the application to record the
duration of an image editing session.

Last printed. This property is available for the application to record when the
image was last printed.

Create date/time. This property is available for the application to record the cre-
ation date and time for the image. This value should not be updated after it is
initially written.

Last saved date/time. This property is available for the application to record
the date and time that the image is saved. It is strongly recommended that this
property be used in DIG2000 files.

Number of pages. This property is not used in DIG2000 files.

Number of words. This property is not used in DIG2000 files.

Number of characters. This property is not used in DIG2000 files.

Thumbnail. This property is available for the application to record a small bit-
map representation of the image. Although the thumbnail is optional, it must be
written according to the following rules if present:

◆ Thumbnail data should reflect image contents within the thumbnail format
limits and must be oriented the same way as the JPEG 2000 compressed
bitstream (see Section 3.4).
ISO/IEC JTC1/SG29/WG1 N1017 99

◆ The thumbnail image is stored in CF_DIB format which is a simple
rectangular array of pixels with a small header as defined in [7].

◆ For single channel images (including opacity only images), treat them as
monochrome without an opacity channel for purposes of the thumbnail.

◆ For multicolored images, all pixels are stored in 24 bit (bi.BitCount = 24)
BGR format in the sRGB color space. For single channel images, all pixels are
stored in either 8 bit (bi.BitCount = 8) format, or in 24 bit BGR format.

◆ Palletized color representations are not allowed for 24 bit DIB’s. However, for
single channel thumbnails stored in 8 bit format, a palette entry must be
provided which serves as the 8 to 24 bit identity lookup table. It is highly
suggested that this palette be a pure greyscale ramp of exactly 256 RGBQUAD
elements (e.g. biClrUsed = 0) running from black to white. The palette
should consist of a sequence of 256 32-bit RGBQUAD structures [x,x,x,0] for all x
running from 0 to 255. Note that DIB palettes require the fourth (reserved)
channel to be identically zero as defined in [7].

◆ The thumbnail image data is stored uncompressed.

◆ For images with an opacity channel in addition to image data channels, the
thumbnail should be stored as if it had been composited on a fully opaque
white background.

◆ The larger of the thumbnail stored height and width should be approximately
96 pixels. The image should be resized to this dimension instead of padding a
smaller image. It is not required to pad the smaller dimension to 96 pixels.
Thumbnails that are significantly larger or smaller than this size generally
cannot be used effectively.

Name of creating application property. This property is available to the
application to record the name of the application that created the image. It is
strongly recommended that this property be used in DIG2000 files.

Security property. This property is not used in DIG2000 files.

C.3 CompObj stream

A DIG2000 file may also have a CompObj type stream. If a CompObj stream is
present, the class ID of the file is required to be stored in the Clipboard Format field
of the CompObj stream as well as in the header of the storage. If a CompObj
stream exists, the clipboard format field should be used to determine the class ID of
the file.

The DIG2000 class ID is converted to a string for storage in the Clipboard Format field
and must be enclosed within the brace characters ‘{’ and ‘}’ just as returned by the
Win32™ OLE™ function StringFromGUID2() .

The CompObj stream User Type field is generally used to store the User Type infor-
mation from the OLE registry for the class ID. In OLE-enabled environments, the
100 October 30, 1998

DIG2000 file format proposal
string contents should be retrieved from the OLE registry. In non-OLE enabled envi-
ronments, a string, which is a user understandable brief description of the object
contents, should be used.

The CompObj stream ProgID field is generally used to store the ProgID informa-
tion from the OLE registry for the class ID. In OLE enabled environments, the string
contents should be retrieved from the OLE registry. In non-OLE enabled environ-
ments, a string which identifies the program associated with the class ID should be
used. This string cannot contain any spaces.

See Appendix A.3 for a detailed definition of the CompObj stream format.
ISO/IEC JTC1/SG29/WG1 N1017 101

ISO/IEC JTC1/SG29/WG1 N1017 103

D: References

1. Digital Imaging Group. Flashpix format specification. Version 1.0.1. 14 July 1997.
5 October 1998 <http://www.digitalimaging.org>.

2. International Color Consortium. ICC profile format specification. Version 3.4. 15
August 1997. 5 October 1998 <http://www.color.org. 5 October 1998>.

3. Miller, Steven. DEC/HP, Network computing architecture, remote procedure call
run time extensions specification. Version OSF TX1.0.11. 23 July 1992.
<http://www.opengroup.org/dce/>.

4. International Standards Organization. Photography—Electronic still picture
cameras—Determination of ISO speed. ISO 12232:1998. <http://www.iso.ch>.

5. International Standards Organization. Photography—Electronic still picture
cameras—Resolution measurements. ISO/DIS 12233. <http://www.iso.ch>.

6. International Standards Organization. Photography—Electronic still picture
cameras—Methods for measuring opto-electronic conversion functions (OECF’s).
ISO/DIS 14524. <http://www.iso.ch>.

7. Petzold, Charles. Programming Windows 95. 4th ed. Redmond: Microsoft P,
1996: 176–8.

8. Houchin, J. Scott. Using resolution independent images. 28 October 1997. 6
October 1998 <http://webh.kodak.com/US/en/drg/pdfPostscript/
Res_Ind_Images.pdf>.

9. Goldfarb, Charles F., Paul Prescod. The XML handbook. Upper Saddle River:
Prentice-Hall, 1998.

10. International Electrotechnical Commission. Colour management in multimedia
systems: Part 2: Colour Management, Part 2–1: Default RGB colour space—sRGB.
IEC 61966–2–1 199x. 9 October 1998 <http://w3.hike.te.chiba-u.ac.jp/IEC/100/
PT61966/parts/> or <http://www.sRGB.com/>.

11. Society of Motion Picture and Television Engineers. Derivation of basic television
color equations. RP 177–1993. 29 October 1998 <http://www.smpte.org/>.

12. Microsoft Corporation. OLE2 programmers reference volume 1: Working with
Windows™ objects. 1994: 203–4.

13. International Color Consortium (ICC). <http://www.color.org>.

14. International Standards Organization. Data elements and interchange formats—
Information interchange—Representation of dates and times. ISO 8601:1998(E).
<http://www.w3.org/TR/NOTE-datetime>

15. TrueSpectra, Inc. Netgraphica™ Image Source Reference Guide. June 1998.
<http://www.truespectra.com/dig2000>

	1: Introducing DIG2000
	1.1 The goals of the DIG2000 file format
	1.1.1 DIG2000 vision
	1.1.2 DIG2000 features
	1.1.2.1 Efficient access to the JPEG 2000 bitstream
	1.1.2.2 Unambiguous specification of color
	1.1.2.3 Flexible metadata architecture

	1.1.3 DIG2000 reference implementation

	1.2 About the Digital Imaging Group
	1.3 About this document
	1.3.1 Document sections
	1.3.2 Typographical conventions

	1.4 Path forward

	2: Coordinate systems
	2.1 Resolution independent coordinates
	2.2 Resolution dependent coordinates
	2.3 Translating coordinates between resolutions
	2.3.1 Guaranteeing alignment between resolutions
	2.3.2 Resolution sizes

	3: Binary container
	3.1 Required functionality of the binary container
	3.1.1 Efficient random access
	3.1.2 Size extensibility
	3.1.3 Streamability

	3.2 Structured storage
	3.2.1 Structured storage as a virtual file system
	3.2.2 Class ID’s

	3.3 File identification
	3.3.1 DIG2000 class ID

	3.4 Standard entities in a DIG2000 file

	4: Metadata organization
	4.1 Requirements for a metadata architecture
	4.1.1 Extensibility independent of a standardization process
	4.1.2 Rapid access to a catalog of metadata
	4.1.3 Standard metadata block descriptions
	4.1.4 Image data as metadata
	4.1.5 Adding and updating metadata

	4.2 Standard representations of data types in CDATA attributes
	4.3 Metadata Root structure specification
	4.4 Metadata Root element descriptions
	4.4.1 DIG2000ImgSpec
	4.4.2 ImgSize
	4.4.3 DefaultDisplaySize
	4.4.4 InputColor
	4.4.5 ChannelList
	4.4.6 Channel
	4.4.7 DIG2000MetadataSpec

	4.5 The Image Stream metadata block
	4.6 Defining new metadata blocks
	4.7 Example Metadata Root

	5: Standard metadata fields
	5.1 Digital Image Source block
	5.1.1 Metadata block structure values
	5.1.2 Document type definition
	5.1.3 Element definitions
	5.1.3.1 DigitalImageSource
	5.1.3.2 CameraCapture
	5.1.3.3 CameraInformation
	5.1.3.4 DigitalCaptureDeviceCharacterization
	5.1.3.5 SpatialFrequencyResponse
	5.1.3.6 SFRRow
	5.1.3.7 CFAPattern
	5.1.3.8 CFARow
	5.1.3.9 Red, Green, Blue, Cyan, Magenta, Yellow, White
	5.1.3.10 OECF
	5.1.3.11 OECFRow
	5.1.3.12 CameraCaptureSettings
	5.1.3.13 SpecialEffects
	5.1.3.14 SpEfUnidentified, SpEfNone, SpEfColored, SpEfDiffusion, SpEfMultiImage, SpEfPolarizing, ...
	5.1.3.15 Notes
	5.1.3.16 CapturedItem
	5.1.3.17 OriginalScene
	5.1.3.18 ReflectionPrint
	5.1.3.19 PrintedItem
	5.1.3.20 Film
	5.1.3.21 ComputerGenerated
	5.1.3.22 OtherItem
	5.1.3.23 ScannerCapture
	5.1.3.24 ScannerInformation

	5.1.4 Examples
	5.1.4.1 A simple DigitalImageSource
	5.1.4.2 A complex DigitalImageSource

	5.2 Intellectual Property block
	5.2.1 Metadata block structure values
	5.2.2 Document type definition
	5.2.3 Element definitions
	5.2.3.1 IntellectualProperty element
	5.2.3.2 Copyright
	5.2.3.3 Pricing
	5.2.3.4 Notes

	5.2.4 Example
	5.2.5 Intellectual property issues

	5.3 Content Description block
	5.3.1 Metadata block structure values
	5.3.2 Document type definition
	5.3.3 Element definitions
	5.3.3.1 ContentDescription
	5.3.3.2 RollCaption
	5.3.3.3 Caption
	5.3.3.4 People
	5.3.3.5 Places
	5.3.3.6 Things
	5.3.3.7 Events
	5.3.3.8 Notes

	5.3.4 Example

	5.4 GPS Information block
	5.4.1 Metadata block structure values
	5.4.2 Document type definition
	5.4.3 Element descriptions
	5.4.3.1 GPSInformation

	5.4.4 Example

	6: Color representation
	6.1 Introduction
	6.2 sRGB
	6.2.1 Introduction
	6.2.2 Reference conditions
	6.2.2.1 Reference display conditions
	6.2.2.2 Reference viewing conditions
	6.2.2.3 Reference observer conditions

	6.2.3 Encoding characteristics
	6.2.3.1 Introduction
	6.2.3.2 Transformation from RGB values to 1931 CIE xyz values
	6.2.3.3 Transformation from 1931 CIE xyz values to RGB values

	6.3 International Color Consortium (ICC) profiles
	6.3.1 Intended audience of the ICC profile specification
	6.3.2 ICC device profiles
	6.3.3 ICC profile structure
	6.3.4 Embedded ICC profiles

	6.4 Color representation specification

	A: Structured Storage
	A.1 Compound file binary format
	A.1.1 Overview
	A.1.2 Sector types
	A.1.2.1 Header
	A.1.2.2 Fat sectors
	A.1.2.3 MiniFat sectors
	A.1.2.4 DIF sectors
	A.1.2.5 Directory sectors
	A.1.2.5.1 Root Directory Entry
	A.1.2.5.2 Other Directory Entries

	A.1.2.6 Storage sectors

	A.1.3 Examples
	A.1.3.1 Sector 0: Header
	A.1.3.2 SECT 0: First (only) FAT sector
	A.1.3.3 SECT 1: First (only) Directory sector
	A.1.3.3.1 SID 0: Root Directory Entry
	A.1.3.3.2 SID 1: “Storage 1”
	A.1.3.3.3 SID 2: “Stream 1”
	A.1.3.3.4 SID 3: Unused

	A.1.3.4 SECT 3: MiniFat sector
	A.1.3.5 SECT 4: MiniStream (data of “Stream 1”)

	A.2 OLE Property Set binary format
	A.2.1 Document properties in storage
	A.2.2 Format of the primary property set stream
	A.2.2.1 Property Set header
	A.2.2.2 Format ID/Offset pairs
	A.2.2.3 Sections

	A.2.3 Special property ids
	A.2.3.1 Property ID zero: Dictionary of property names
	A.2.3.2 Property ID one: Code Page Indicator
	A.2.3.3 Property ID 0x80000000: Locale Indicator
	A.2.3.4 Reserved property ID’s

	A.2.4 Property type representations

	A.3 CompObj stream binary format
	A.3.1 Overview
	A.3.2 Format
	A.3.2.1 Mandatory part
	A.3.2.1.1 Stream name
	A.3.2.1.2 Header
	A.3.2.1.3 User Type
	A.3.2.1.4 Clipboard Format (ansi)

	A.3.2.2 Optional: ProgID (ANSI)
	A.3.2.3 Optional: Unicode versions
	A.3.2.3.1 Magic Number
	A.3.2.3.2 User Type (Unicode)
	A.3.2.3.3 Clipboard Format (Unicode)
	A.3.2.3.4 ProgID (Unicode)

	B: Example API
	B.1 Using the ImageSource interface
	B.1.1 Introduction
	B.1.2 Image representation
	B.1.2.1 Multiple resolutions
	B.1.2.2 Tiles
	B.1.2.3 Example

	B.1.3 Loading an image
	B.1.4 Getting tiles

	B.2 C++ documentation
	B.2.1 .fpx-format related interfaces
	B.2.1.1 Interfaces
	6.4.0.1 See Also

	B.2.2 ImageSource related Interfaces
	B.2.2.1 Interfaces
	B.2.2.2 See Also

	B.2.3 Property Set related Interfaces
	B.2.3.1 Interfaces

	B.2.4 Render2D Base Types
	B.2.5 Hierarchy of C++ Classes

	C: Enhancements for Windows
	C.1 Property sets
	C.2 Summary Information property set
	C.3 CompObj stream

	D: References

