

Common Warehouse Metamodel (CWM): Extending UML for Data Warehousing and Business Intelligence

OMG First Workshop on UML in the .com Enterprise: Modeling CORBA, Components, XML/XMI and Metadata

November 6-9, 2000, Palm Springs, CA

Speakers

Daniel T. Chang

IBM

(dtchang@us.ibm.com)

John D. Poole

Hyperion Solutions

(john_poole@hyperion.com)

Objectives

- Overview of CWM concepts
- Use of UML by CWM
- UML lessons learned from CWM
- Discuss moving forward

Where to find my modified slides and notes...

http://www.cwmforum.org/

http://www.omg.org/uml

A ballot lock box down in Florida!

What is CWM?

- A complete specification of syntax and semantics that Data Warehousing and Business Intelligence tools can leverage to successfully interchange shared metadata
- A language or framework for specifiying the external representation of data warehouse metadata for purposes of interchange

™ CWM Provides...

- A standard <u>language</u> for defining the structure and semantics of metadata in a formal way (MOF / UML / OCL)
- A standard <u>interchange mechanism</u> for sharing metadata defined in the standard language (XML / XMI)
- A standard <u>specification</u> (interface) for access to, and discovery of, the metadata defined in the standard language (IDL for now, <u>normative Java API with JSR-40</u>)

Management	Warehouse Process				Warehouse Operation				
Analysis	Transformation		OLAP	Data Mining		mation alization	Business Nomenclature		
Resource	Object (UML)	Re	Relational Rec		ord Mul			XML	
Foundation	Business Information	Dat Type	Eynr	essions	Keys Index	-		Software g Deployment	
	UML 1.3 (Foundation, Behavioral_Elements, Model_Management)								

CWM Design Rationale

- MOF is the modeling language (syntax+semantics)
- UML is the modeling notation
- UML is the also the base metamodel
- XMI is the interchange mechanism

CWM Design Rationale

- Extend the UML metamodel with Data
 Warehousing and Business Intelligence domain objects
- Standardize on MOF semantics
- Yields a MOF-compliant metamodel (M2 level) for constructing DW & BI models of data (metadata)
- Effectively defines a UML-aligned notation for specifying DW & BI metadata

UML as Modeling Notation

- Structure and typing in UML (versus MOF)
- Notational conventions and usage
- OCL for precise modeling

Structural issues: Association Classes

- Association classes: Defined by UML but not permitted by MOF
- CWM has a number of places where Association Classes would've been useful (to attach attributes to certain M:M associations)
- We seemed to be able to get by using Classes

Chang, Poole -- CWM: Extending UML for Data Warehousing and Business Intelligence

Chang, Poole -- CWM: Extending UML for Data Warehousing and Business Intelligence

Structural Issues: References

- MOF allows the specification of references
- UML has no notational support for references
- Arguably an implementation issue, but CWM metamodel is a MOF metamodel...
- Notationally, we represented references as derived attributes (i.e., an attribute computed from a related association)
- "/" + attribute name, <<reference>> stereotype

- Association subclassing not supported by Rose
- Associations inherited from UML metamodel
 - Namespace/ownedElement
 - Owner/feature
- We would've liked to have been able to subclass these in some cases (restrict extent)
- Used OCL constraints on association ends instead
- Note: This is a tool issue, not a MOF/UML issue

Typing: Inheritance of UML Type System

- Both MOF and UML have type systems (an alignment issue)
- CWM was compelled to use/extend the UML type system, rather than the MOF type system, because of inheritance from UML metamodel

Use of OCL for Precise Metamodeling

- Extensive use of OCL throughout all of the CWM metamodels
- In some cases, compensate for MOF/UML/Tool dissonance (e.g., constraints on association ends)
- Need for some specialized collection operations (e.g., transitive closure)
- Where to store? (e.g., Rose Documentation pane)

UML as Base Metamodel

- Packaging structure and modularity
- Core metamodel and extended metamodels
- Representing instances
- Traversal of modeling abstraction hierarchy

Package Structure & Modularity

- UML 1.3 metamodel is rather course grained and tightly coupled (i.e., has many package dependencies)
- We tried to compensate in CWM through:
 - Use of a flat, namespace hierarchy
 - Use of <<metamodel>> stereotype to specialize UML Package
 - CWMX extensions: Minimal dependencies

Core Metamodels & Extended Metamodels

- CWM core metamodels extend UML "core" metamodel packages:
 - Foundation (Core, Data_Types)
 - Behavioral_Elements::Common_Behavior
 - Model_Management
- Use inherited UML Extensibility Mechanisms (TaggedValue, Stereotype, Constraint) to extend M1 CWM models (without extending CWM)

CWMX (extension package)

MODELING

- Vendor-specific metamodels that directly extend core CWM metamodels
- Fairly easy to extend the "core" CWM by introducing custom technology metamodels (facilitates interchange)
- An argument in favor of the "create a new metamodel" approach versus the UML profile approach?

- UML::Behavioral_Elements::Common_Behavior
- Representations of Instance (Object, DataValue), AttributeLink (slot) and Classifier-Instance association
- CWM introduces the concept of Extent (a collection of instances -- e.g., a Relational RowSet)

Object-Oriented Resource Instance

Relational Resource Instance

Multdimensional Resource Instance

Traversal of Modeling Abstraction Layers

- With CWM, it is possible to span the modeling hierarchy (M2 through M0) in a single XMI document:
 - M2: tags describing metadata
 - M1: contents of the M2 tags
 - M0: linked content of M1 instances

It is also possible to interchange a single CWM model that spans conceptual, logical and physical boundaries (plus instances!) using the CWM Transformation metamodel:

- The CWM Transformation Metamodel derives its power and flexibility by the way it references core elements of the UML metamodel:
 - ClassifierMap
 - FeatureMap
 - ClassifierFeatureMap

UML Tools

- UML conformance issues
- Rose Profile for UML / MOF
- Metadata repositories
- Metadata bridges/adapters/toolkits

Rose Profile for MOF

- Two-way mapping between Rose's interpretation/implementation of UML, and the MOF
- Resolves the overall dissonance between Rose, UML and MOF (at least to the extent that it assists us in generating interfaces and servers from MOF-compliant metamodels)
- Based on UML Profile for MOF

- UML and MOF alignment
 - A major problem area for CWM
 - UML 2.0: Physical Metamodel to be replaced by MOF
 - Need to ensure that this does indeed resolve the alignment issues between MOF and UML

- UML Profiles
 - Creation of new metamodels (CWM) versus definition of UML Profiles
 - New metamodels facilitate interchangeable metadata (necessarily the case with profiles?)
 - Proliferation of new metamodels: New notations
 - Proliferation of new profiles: New dialects of the same notation

- Object Constraint Language
 - Need to be able to include OCL statements as part of a UML model
 - Need to be able to harvest OCL from model automatically and submit to a model checker
 - OMG specification issues (OCL is considered normative but we have no way of checking if OCL is valid)

- Dynamic systems and dynamic object models
 - MOF reflection
 - CWM extends into DW / BI domain
- Patterns for construction
 - Variation points (stability)
- Patterns for interchange
 - Push / pull paradigm
 - Request / response paradigm

- Concept of "parameterized" transformations
 - Effectively supported by CWM Transformation metamodel
 - Complete spectrum from black box to white box transformations

CWM Information Sources

- OMG home page CWM link
- CWM Forum home page
 - Other misc. info (presentations, papers, links)
 - http://www.cwmforum.org/
- OMG UML home page
 - http://www.omg.org/uml

Java Community Process Related Efforts

- Java Metadata Interface (JMI)
- Java OLAP Interface (JOLAP)
- Java Data Mining API (JDMAPI)

(http://java.sun.com/aboutJava/communityprocess/)

Summary

- Brief overview of CWM
- CWM and UML
- UML as Modeling Language
- UML as Base Metamodel
- UML Tools
- Issues
- Information Sources