
Representing and Querying XML
with Incomplete Information

Serge Abiteboul�
INRIA-Rocquencourt

Serge.Abiteboul@inria.fr

Luc Segoufin
INRIA-Rocquencourt
Luc.Segoufin@inria.fr

Victor Vianuy

U.C. San Diego
vianu@cs.ucsd.edu

ABSTRACT
We study the representation and querying of XML with
incomplete information. We consider a simple model for
XML data and their DTDs, a very simple query lan-
guage, and a representation system for incomplete infor-
mation in the spirit of the representations systems devel-

oped by Imielinski and Lipski for relational databases.
In the scenario we consider, the incomplete information
about an XML document is continuously enriched by
successive queries to the document. We show that our
representation system can represent partial information
about the source document acquired by successive queries,

and that it can be used to intelligently answer new queries.
We also consider the impact on complexity of enriching
our representation system or query language with addi-
tional features. The results suggest that our approach
achieves a practically appealing balance between expres-
siveness and tractability. The research presented here

was motivated by the Xyleme project at INRIA, whose
objective it to develop a data warehouse for Web XML
documents.

1. INTRODUCTION
In a warehouse for XML data { that we call an (XML)

Webhouse { information is collected from Web sites and

stored in a centralized fashion. In practice, the informa-
tion held in a Webhouse is never complete. This is due
to many reasons: limited storage capacity, the dynamic
nature of Web data, expiration of data, etc. Thus, Web-
houses have to deal with incomplete information. We

view here the Webhouse as an incomplete repository of
XML documents that is continuously enriched by explo-
ration of Web sources, in response to queries or by crawl-
ing the Web. Documents may be entirely missing or may
be partially available.

�This author supported in part by R.N.R.T.
yThis author supported in part by the National Science
Foundation under grant number IIS-9802288. Work per-
formed in part while visiting I.N.R.I.A.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODS’01 Santa Barbara, California USA
Copyright 2001 ACM 0-89791-88-6/97/05 ...$5.00.

At any given time, the Webhouse contains a represen-

tation of incomplete information about XML documents

satisfying given Document Type De�nitions (DTDs). The
incomplete information about the XML documents is
enriched using answers to queries against remote doc-
uments.
When a query is posed against the Webhouse, two

courses of action are possible:

(1) The �rst alternative is to answer the query as best
possible using the incomplete information already avail-
able. Since the data is not entirely known, the answer is
not always complete. We represent the answer using the
same representation as the one we use to describe our

incomplete knowledge of the sources. Two important
variations are the sure and possible answer modalities,
i.e., providing the pieces of information that surely hold
in all possible answers, or similarly those that possibly

hold.
(2) The second, similar to a mediator approach, is to seek

from the sources the additional information needed to
fully answer the query. In this case, we would like to use
the incomplete information as a guide for determining
what additional exploration of Web sources is needed by
taking as much as possible advantage of the data already
available.

This paper introduces representations for incomplete
information, studies their incremental maintenance and
addresses the issue of answering queries posed against an
incomplete Webhouse.
The quest for simplicity and e�ciency was the main

motivating factor in our choice of model, and has led

to many limitations. The most notable are (i) a very
limited query language based on pattern matching and
simple selection conditions on data values, (ii) the use of
simpli�ed DTDs that ignore the ordering of components
in an element, and (iii) the assumption that XML ele-
ments have persistent identi�ers. Despite its limitations,

we believe that our framework captures a broad range of
situations of practical interest. Our examples illustrate
some of them.
The representation of incomplete information is quite

natural. It uses partial XML trees to represent the data

available, and typing information in the style of DTDs
to represent the data that is still missing. The typing
we use for the missing data is interesting in its own right
and reminiscent of some extensions already proposed for
DTDs. These include specifying ranges for some data
value, e.g., price � 100, and a specialization mechanism

allowing to de�ne the type of a given element name de-

pending on the context where it appears. We call such a
representation an incomplete tree. As illustrated by our
examples, incomplete trees exhibit in a user-friendly way

the partial information available as well as the missing
information, and can be itself naturally represented and
browsed as an XML document.
We show that, given a simpli�ed DTD satis�ed by the

input and a sequence of query-answer pairs on the input,
the partial knowledge about the input can be represented

by an incomplete tree which can be maintained incremen-
tally in ptime. Given a query and an incomplete tree,
the set of possible answers to the query can again be
represented by an incomplete tree computable in ptime.
In particular, this shows that incomplete trees form a
strong representation system with respect to our queries.

Furthermore, it can be checked in ptime whether a given
query can be fully answered with the data currently avail-
able. For the case when the available data is not su�-
cient, we provide a ptime algorithm that uses the in-
complete tree to determine which additional information
is needed from the sources in order to fully answer the

query, and provides a nonredundant set of queries for
retrieving the information.
Although incomplete trees can be incrementally main-

tained in ptime, their size can grow exponentially in the
overall sequence of query-answer pairs. We discuss sev-

eral ways of dealing with the exponential blowup. We
consider an extension to incomplete trees called conjunc-

tive, that intuitively adds a form of alternation. With
this extension, the size of incomplete trees is shown to
remain polynomial with respect to the entire sequence of
query-answer pairs. However, many of the manipulations

needed in handling incomplete information now become
exponential in the representation. For example, checking
emptiness of conjunctive trees becomes np-hard, whereas
it is in ptime for regular incomplete trees. As an alter-
native approach, we exhibit a restriction of the input
DTD and the queries ensuring that incomplete trees re-

main polynomial in the overall sequence of query-answer
pairs. Thus, all manipulations remain polynomial.
Regardless of the complexity-theoretic bound, we ex-

hibit two approaches for dealing with cases when the
incomplete tree grows too large to be practical. The
�rst approach consists of asking a small set of additional

queries chosen so as to provide precisely the critical in-
formation needed to eliminate some of the unknown in-
formation and shrink the incomplete tree. We prove that
the queries can be chosen such that the incomplete tree
remains of polynomial size with respect to the entire se-

quence of query-answer pairs and input DTD. This ap-
proach can be used heuristically whenever needed. The
second approach is a heuristic for gracefully loosing some
of the information represented in the incomplete tree,
thus allowing to trade o� accuracy against size in incom-
plete trees. Once again, we show that this approach can

be used to keep the incomplete tree polynomial in the
sequence of query-answer pairs.
We argue that our core model provides a practically

appealing starting point for dealing with incomplete in-
formation in XML Webhouses. However, the model has
many limitations. We discuss the impact of various ex-

tensions to the model, and show that even minor exten-
sions lead to signi�cant di�culties. The representation
system may no longer exhibit in a user-friendly way the

partial information available, or there may no longer be
a strong representation system. Most seriously, various
decision problems, such as whether a query can be an-

swered given the information currently available, have
very high complexity or become undecidable. Some of
the extensions concern the query language: the extra fea-
tures include optional and negative subtrees in query pat-
terns, constructed answers, recursive path expressions,
data joins, and powerful restructuring modeled by the

k-pebble transducers of [17]. We also discuss other ex-
tensions to the framework such as the persistent ids as-
sumption and the issue of order.
The paper is organized as follows. Section 2 introduces

our formal model for XML, DTD, the various types we
use, as well as the representation system. Section 3 deals

with the acquisition and the use of incomplete informa-
tion, and with the various approaches to the exponential
blowup of incomplete trees. Section 4 discusses exten-
sions and associated complexity and undecidability re-
sults. The paper ends with brief conclusions.

Related work. Incomplete information has been of in-
terest early on in database systems [7]. Much of the
focus has been on searching for the \correct" semantics
for queries applied to incomplete databases [25, 20, 24].
Usually, the semantics of incompleteness is approached

from two perspectives, either a closed world assumption

(CWA) or an open world assumption (OWA). Intuitively,
CWA states that nothing holds unless explicitly stated in
the incomplete database, whereas OWA states that any-
thing not ruled out is possible. Interestingly, incomplete
trees reconcile the two approaches by allowing a com-

bination of the two semantics. They allow to describe
with
exible precision the missing information, by stat-
ing that some facts are not in the document (CWA) but
also that some data still ignored may exist (OWA).
A landmark paper [12] laid the formal groundwork for

incomplete databases with nulls of the \unknown" kind,

and introduced the notion of strong representation sys-
tem. The representation system we use is in the spirit of
the c-tables of [12], but addresses a tree model instead of
the relational model. Most importantly, we use a more
benign form of incompleteness, which is possible because

our query language is more restricted than the relational
algebra they consider (e.g., it has no data joins).
The complexity of handling incompleteness was stud-

ied in many works, e.g., [12, 24, 2]. The program com-
plexity of evaluation is usually higher by an exponential
than the data complexity [8, 23]. This was �rst noted

in [11, 16], as part of the study of nulls in weak univer-
sal instances. Updating incomplete information received
special attention in [10].
The Webhouse scenario that we consider here is in the

spirit of data warehousing, see e.g., [14]. Our technique
is reminiscent of techniques used in answering queries us-

ing views, a much studied problem [15, 5, 19]. The use of
a model based on incomplete information to study this
problem is proposed in [1]. The management of incom-
pleteness due to data expiration is studied in [9].
Extensions of DTDs with specialization have been con-

sidered under various names and in various contexts, e.g.,

in [4, 6, 18]. We use the specialization mechanism in our
representation system.
Perhaps closest to our work is the investigation in [13],

that studies incomplete information in semistructured
data. However, their framework and results are quite
di�erent.

2. FORMAL FRAMEWORK
We next present our core framework for Webhouses

with incomplete information. We de�ne in turn our
model of XML documents and simpli�ed DTDs, queries,
and the representation system for incomplete informa-

tion. We use as a running example the catalog example

in Figure 1.

Data trees. Our formal model abstracts XML docu-
ments as labeled trees. Our abstraction simpli�es real

XML documents in several ways, some of which are mi-
nor and others more substantial. For example, the model
does not distinguish between attributes and subelements,
a distinction often considered cosmetic. A more sig-
ni�cant simpli�cation is that out trees are unordered,
whereas XML documents are ordered. We will discuss

the issue of order in Section 4.
We use the following: an in�nite set N of nodes; a �-

nite set � of element names (labels); and a set Q of data
values. We denote element names by a; b; c:::, nodes by n,
data values by v, possibly with sub and superscripts. We
denote sets of labels by A;B;C; ::: etc. For simplicity, we

assume that the set Q of data values is the rational num-
bers (any set equipped with a dense linear order would
do). Our simpli�ed model for XML is de�ned next.

Definition 2.1. A (data) tree over � is a triple ht; �; �i,
where: (1) t is a �nite rooted tree with nodes from N ;

(2) �, the labeling function, associates a label in � to

each node in t; and

(3) �, the data value mapping, assigns a value in Q to

each node in t.

Data trees are denoted by T; T 0; : : : A pre�x of ht; �; �i
is a data tree ht0; �0; �0i where t0 is a subtree of t contain-
ing the root, and �0; �0 are the restrictions of �; � to the
nodes of t0. Note that two pre�xes of the same tree share

nodes in N .

Tree types. In XML, the structure of valid documents
is described by DTDs. We use here a simpli�ed version
of DTDs that we call tree type. A tree type speci�es,
for each element name a, the set of element names al-

lowed for children of nodes labeled a, together with some
multiplicity constraint. We also specify a root name, a
restriction that can easily be removed.
Consider the alphabet � of labels. We use the auxil-

iary notion of multiplicity atom to describe the children
that nodes labeled a may have. A multiplicity atom is

an expression a
!1
1 � � � a

!
k

k where the ai are distinct labels
in � and each !i is a symbol in f?;+; ?; 1g.

Definition 2.2. A tree type � (over alphabet �) is a
triple (�; r; �) where r 2 � is a particular label called the

root, and � associates to each a 2 � a multiplicity atom

�(a) called the type of a.

Satisfaction of a tree type (�; r; �) by a data tree t,
denoted t j= � , is de�ned in the obvious way as follows.

The root of t is labeled r and for each node n in t la-
beled a, if �(a) contains a

w
i

i , the number of children of
n labeled ai is restricted as follows:

wi =1 : exactly one child is labeled ai;
wi =? : at most one child is labeled ai;
wi =+ : at least one child is labeled ai.

wi = ? : no restriction;

The set of trees satisfying � is denoted by rep(�).
We usually denote a tree type by � when r is under-

stood. In examples, we specify tree types as in the fol-
lowing example:

root: catalog

catalog ! product+

product ! name price cat picture?

cat ! subcat

Observe that we ommit the 1 in exponents, e.g., we write
name for name1. This tree type is represented graphi-

cally in the catalog example in tree form, with multiplic-
ities placed on edges. See Figure 1 (a).

Queries. We de�ne a simple query language that se-
lects pre�xes of input trees. Although very limited, we

claim that this is often su�cient in practice. The query
basically browses the input tree down to a certain depth
starting from the root, by reading nodes with speci�ed
element names and possibly selection conditions on data
values. All nodes involved in the pattern are extracted
(so there is no projection), as well as subtrees of speci�ed

leaves. The pattern may also specify the non-existence of
nodes with a given label. We call such a query a pre�x-

selection query (ps-query). For instance, Queries 1 and 2
in Figure 1 (b,c) are ps-queries. Query 1 �nds the name,
price and subcategories of electronics products with price

less than $200. Query 2 �nds the name and pictures of
all cameras whose picture appears in the catalog.
More formally, a ps-query is a labeled tree ht; �; condi

where:

� t is a rooted tree;

� � associates with each node a label in the extended
alphabet � [f:a j a 2 �g [fa j a 2 �g. Internal
nodes can only have labels in �, and sibling internal

nodes have distinct labels.

� cond associates to each node a condition, which is
a Boolean combination of statements of the form
= v; 6= v;� v;� v;< v;> v, where v 2 Q.

The negative labels indicate the absence of a node with
that label among the children of a node in the pattern. A
node adorned with a bar indicates that the entire subtree
rooted at that node is extracted. Examples of queries are

shown in Figure 1.
We next formalize the notion of answer to a query us-

ing the auxiliary concept of valuation. Given a ps-query
q = ht; �; condi and an input data tree t0, a valuation �

from q to t0 is a mapping from the nodes of t into nodes
of t0 such that:

(1) each edge hn;mi in t is mapped by � into an edge of
t0 unless �(m) = :a for some a;
(2) for each node n in t such that �(n) 2 fa; ag, �(n) has
label a in t0;
(3) for each n, the value of �(n) in t0 satis�es cond(n).
(4) if hn;mi is an edge in t and �(m) = :a then �(n)

has no child labeled a in t0.
The answer q(t0) is the pre�x tree of t0 consisting of

the nodes n0 which are in the image of some valuation

� from q to t0, or are descendants of such a node with
label a; a 2 �. Possible answers to Queries 1 and 2 in
the catalog example are depicted in Figure 1 (d,e).

The following remark insists of an essential aspect of
the model.

Remark 2.3. (Object identi�ers) Consider a tree

t and two queries q1; q2. The answers q1(t) and q2(t)
are both pre�xes of t. In particular, their roots are the

same and they share nodes from the input t. This is an

important aspect of the model, which amounts to having

persistent node identi�ers in the input and answers.

Conditional tree types. We next discuss our repre-
sentation of incomplete information. The main idea is

that at any given time the Webhouse knows, as a result
of previous queries, a pre�x of the full data tree repre-
senting the complete data. In addition, using the queries
and the initial type de�nitions of the sources, there is
partial knowledge about the missing portion of the full

tree. Our representation of incomplete information in-
cludes the pre�x tree known so far and the description
of the missing information.
To describe the missing information we need to extend

tree types in three ways: by allowing disjunctions of mul-
tiplicity atoms, by specifying conditions on data values,

and by adding a specialization mechanism allowing to
de�ne several types for the same element name. For in-
stance in Figure 1, after posing Query 1, we know that
the missing data contains 2 new types of products: prod-
uct1 and product2, the �rst one for products which cat-
egory is not \electrical", the second for products which

price is greater that 200.

We next de�ne formally our representation of incom-

plete information, extending the notion of tree type. Note
that the data sources continue to be described by tree
types, as previously de�ned.
Before introducing specialization, we de�ne simple con-

ditional tree types. A condition is de�ned as for queries.
A simple conditional tree type over alphabet � is a pair

(�; cond) where:

� � is a mapping associating to each a 2 � a disjunc-

tion �(a) of multiplicity atoms; and,

� cond associates a condition to each a 2 � (the con-

dition applies to the data value of nodes with label
a).

The set of trees represented by a simple conditional tree

type (�; cond) is de�ned in the obvious manner and de-
noted rep(�; cond). We extend our notation for tree
types to conditional tree types by allowing on right hand
sides of productions disjunctions of multiplicity atoms,
as in a ! ab? _ c?d+.
Next we consider specialization, found useful in the

context of DTDs for expressing structural properties that
are dependent on the context of a node. It has been pre-
viously considered in [4, 6, 18]. Specialization is achieved
by allowing several possible types for the same element
name. This suggests the following de�nition. A special-
ization mapping � is a mapping from some �0 to some

�, two sets of element names. It transforms a data tree
T with names in �0 into a data tree �(T) with names
in �0 in the obvious manner, by replacing each label a

by �(a). We are now ready to de�ne the most complex
types used in the paper.
A conditional tree type over � and specialized alphabet

�0 is a triple (�; cond; �) where:

� (�; cond) is a simple conditional tree over �0 and

� � is a specialization mapping from �0 to �.

Intuitively, the labels in �0 specialize the labels in �.
In the catalog example (Figure 1 (f)), product1, prod-
uct3 would be elements of �0 such that �(product1) =

�(product3) = product.
The semantics of conditional tree types is de�ned as

follows. A data tree T over � is in rep(�; cond; �) i� there
exists a tree T 0 in rep(�; cond) such that T = �(T 0).
Intuitively, there is a similarity between conditional

tree types and unranked tree automata [3]. Both are

used to de�ne valid sets of trees, and the role of the spe-
cialized alphabet in conditional tree types is similar to
that of states in a non-deterministic top-down tree au-
tomaton. The analogy does not fully go through because
of the lack of order and the presence of data values in
our trees. However, some of the
avor of the automata

techniques carries through, and the sets of trees de�nable
by conditional tree types have some properties similar to
regular tree languages. For example, the sets of trees
de�ned by conditional tree types are closed under union,
intersection, and complement. A key technical point for
our algorithms is testing emptiness of the set of trees sat-

isfying a conditional tree type. An easy reduction to and
from testing emptiness of context-free grammars shows
that :

Lemma 2.4. Checking emptiness of rep(�; cond; �) is

ptime-complete.

Incomplete trees. As discussed earlier, the representa-
tion of incomplete information consists of two aspects: a
pre�x of a full data tree, and information on the missing
portion of the tree. The missing portion is described by
some conditional tree type (�; cond; �) over alphabet �,

with a specialized alphabet �0. In order to fully capture
the incomplete information, it is not su�cient to provide
the labeling of the pre�x tree with element names from
�; instead, we must provide the possible interpretation
of the nodes in terms of the specialized alphabet �0.
We are now ready to de�ne incomplete trees.

Definition 2.5. An incomplete tree consists of the

following:

� a conditional tree type (�; cond; �), over �, with

specialized alphabet �0;

� a data tree Td = ht; �; �i over �; and,

� a data labeling mapping �0 associating to each node

n of Td a subset of �0 included in ��1(�(n)), such

that �0(n1) \ �0(n2) = ; for n1 6= n2.

We denote incomplete trees byT,T1, T2, etc. In the cat-
alog example, the incomplete tree resulting from Queries

1 and 2 is represented in Figure 1 (f). The grey nodes and
the associated information describe the missing portion
of the input tree.

camera camera

name price cat=elec

subcat=camera

product3

camera

product2a

catalog

product

camera cdplayer

* **

product1
product3

product2b product2c
product

catalog

Canon 120 elec c.jpg Nikon 199 elec Olympus o.jpg elecSony 175 elec

name price cat picture
=elec

subcat!=camera

 >=200

product2b

 >=200 =elec

subcat=camera

product2c

name price cat name price cat picture
 >=200 =elec

subcat=camera

product2a

name price cat picture

Canon elec c.jpg

product product product

camera camera cdplayer

Canon 120 elec Nikon 199 elec Sony 175 elec

(d) Answer to Query 1 (e) Answer to Query 2

catalog

product

camera

 product

Olympus o.jpg elec

price

subcat

price<200

subcat

(f) Incomplete information after Query 1 and Query 2

**

product

catalog

name cat=elecpicturecat name

(a) DTD of the source

catalog

product

name

catalog

product

picture
cat=elec

subcat=camera

(b) Query 1 (c) Query 2

subcat

!=elec

product1

*

1

+

1 1 1

Figure 1: Catalog example

The set of trees represented by an incomplete tree T as
in the de�nition consists of the trees T over � for which
there exists a data tree T 0 over �0 such that: T = �(T 0);

T 0 satis�es (�; cond); T 0 has t as a pre�x; and, every node
n of t is labeled in T 0 by a symbol in �0(n), and symbols
in �0(n) do not label any nodes other than n. The set of
trees represented by T is denoted rep(T).
Given an incomplete tree, it is often of interest to check

whether certain facts or sets of facts are certain, or if

they are possible given the partial information available.
In our framework, the most natural facts of interest are
usually pre�xes of trees. Given an incomplete tree T
and a data tree T over �, we say that T is a certain

pre�x if every tree in rep(T) has T as a pre�x (up to
node identi�ers), and it is a possible pre�x is some tree

in rep(T) has T as a pre�x. We can show the following,
using standard techniques for DTDs.

Theorem 2.6. Given an incomplete tree T and a data

tree T over �, it can be checked in ptime whether T is

a certain pre�x or whether T is a possible pre�x.

3. ACQUIRING AND USING
INCOMPLETE INFORMATION

We present here the main results of the paper, showing
that our framework can be e�ciently used to deal with
incomplete information in the scenario we described. We
�rst deal with acquiring partial information, and discuss
the possible exponential blowup of the representation.
We then consider the problem of answering queries when

our knowledge consists of an incomplete tree, i.e., the
classical problem of querying incomplete databases ap-
plied to our model. Finally, we consider the issue of
\completing" our knowledge in order to fully answer a
given query.

3.1 Acquiring incomplete information
In our basic scenario, information about the Web is

acquired gradually using answers to queries. We next
show how this can be done in the framework we devel-
oped. For simplicity, we assume that the input is a single

document described by a tree type. The case of multiple
sources can be easily reduced to this case by virtually
merging the sources into a single document.
Consider an input tree T . Initially, all we know about

T is its tree type, say � . As consecutive ps-queries are
asked, each answer re�nes our partial information about

T , which we describe using an incomplete tree. At each
stage of the process, we have an incomplete tree T, a ps-
query q and the answer A = q(T). Using this, we re�ne
our incomplete information by computing T0 which de-
scribes precisely the trees in rep(T) and compatible with
the answer A to query q. The re�nement algorithm is

called Re�ne(T; q; A) and is outlined informally next.

Algorithm Re�ne. As a warm-up, we �rst illustrate
the algorithm using the catalog example in Figure 1.

Example 3.1. The incomplete tree after Query 1 con-

tains a data tree which is output of query 1, and an

incomplete tree which describe the missing products. A

product is not returned by Query 1 if (i) it is not a elec-

tronic product or (ii) its price is greater than 200. This

is done by creating two new labels product1 and product2

with obvious conditions attached to it and which are spe-

cialization of product.
The construction of the new incomplete tree 2 requires

us to represent several kinds of products:

Products returned by both Query 1 and 2: these are the

cheap cameras with pictures. Suppose the node ids indi-

cate that the products with name Canon in the answers

to Queries 1 and 2 are the same. The information re-

turned for this node by the two queries can be merged.

Note that persistent node id assumption is critical here.

Products in Query 2 and not Query 1: The typing in-

formation is used to register the fact that the (unknown)

price of these products must be more than 200. This is

the case of the Olympus camera, which is of type prod-
uct2a.

Products in Query 1 and not Query 2: This is the case of

the Nikon camera. A product returned by Query 1 is in

this category either because it is not a camera or because

it is a camera and has no picture. In the case of Nikon,

we already know it is a camera, so we can infer that it

has no picture, i.e., its type is product3.

Missing products: a product may be returned neither by

Query 1 nor by Query 2 because it is not an electronic

product, because it is expensive but not a camera, or be-

cause it is an expensive camera without pictures. This

yields the three categories of missing nodes (colored grey).

Note that product2b and product2c are re�nements of

product2.

We now outline Algorithm Re�ne. The input of the
algorithm is an incomplete tree T and a ps-query q with

answer A, where:

� T consists of a conditional tree type (�; cond; �)
over �, with specialized alphabet �0 and a �-specia-
lized data tree (t; �; �).

� q = htq; �q; condqi

The output is a new incomplete tree T0 such that

rep(T
0

) = rep(T) \ q
�1
(A):

1. First compute the conditional tree type of the nega-
tion of q. This is the conditional tree type �q�1 cor-
responding to trees which return an empty answers
to q. This can been done as follows. For each node
a of the query tree tq, create types ta, �ta, and t̂a.
Let la be the label of a (�q(a)). Each of the new

types are a specialization of la (�0(ta) = �0(�ta) =
�0(t̂a) = la). Intuitively ta will accept any sub-
tree starting in a assuming it is not involved in the
emptiness the query; �ta accepts any subtree start-
ing in a not verifying the condition condq(a); and
t̂a accepts subtrees starting in a satisfying the con-

dition condq(a) but returning an empty answer to
the query q : it propagates downwards the cause
for emptiness. Set cond0(ta) = true,cond0(�ta) =
:condq(a), cond

0(t̂a) = condq(a). Now create a
new tree type �q�1 by processing the query from
the root to the leaves inductively. The new root

has type t̂r _ �tr where r is the root of tq . For each
node a of tq, let a1; � � � ; an be its children in tq (by
de�nition of a ps-query no two children can have

the same label, thus n is bounded by j�j). Add the
following rules to �q�1 .

� ta ! t?a1 � � � t
?
an , accept everything.

� �ta ! t?a1 � � � t
?
an , accept everything below a be-

cause there the condition of q is not satis�ed
by a.

� t̂a !
W

i
t?a1 � � � t̂

?
a
i

�t?a
i

� � � t?an , one of the chil-

dren must not satisfy a condition on q.

This requires O(jqj:j�j) iterations.

Note that nodes that are leaves have to be treated
di�erently : indeed they cannot propagate down-
wards an eventual failure and thus the type t̂l where

l is a leaf is not created. It is easy to modify the
above step accordingly.

The next step consists of computing the intersec-
tion of the above tree type �q�1 with the input
tree type � . This is straightforward and can be
done in polynomial time. Note that this yields a
tree type containing conjunctions of disjunctions of

multiplicity atoms. This produces the conditional
tree type of the missing information of T0.

2. The new data tree is obtained as follows. Create

a new type for each node of A. Compute the join

between A and t (the existence of node ids is crucial
here). For data in A and t specialize it computing
the intersection of both types. For data in t but not
in A, the type is specialized using the conditional
tree type T0 previously computed.

We can show the following:

Theorem 3.1. Given an incomplete tree T and a ps-

query q with answer A, Algorithm Re�ne computes in

polynomial time an incomplete tree T0 such that rep(T0) =

rep(T) \ q�1(A).

Complexity. Algorithm Re�ne can be used repeatedly
to incrementally re�ne an initial tree type given succes-
sive query-answer pairs (q1; A1) : : : ; (qn; An). Although
each incremental step can be done in ptime, the size
of the incomplete tree may become exponential in the
overall sequence of query-answer pairs, as illustrated in

Example 3.2 below.
All of our algorithms on incomplete trees have ptime

complexity. However, since the incomplete trees them-
selves can become exponential with respect to the se-
quence of query-answer pairs from which they are con-
structed, the algorithms we developed have, in the worst

case, exponential complexity with respect to the overall
sequence. One might legitimately wonder if this is due
to the particular representation system we have chosen.
The answer turns out to be negative: we can prove lower-
bounds independent of the representation system. We

illustrate this with the possible and certain pre�x ques-
tion, shown in Theorem 2.6 to be in ptime with respect
to the incomplete tree.

Theorem 3.2. Let � be a tree type over a �xed alpha-

bet �, and hqi; Aii, a sequence of ps-query-answer pairs,

1 � i � n. Let T be a data tree over �:

(i) it is np-complete to determine whether T is the pre�x

of some T 0 2 rep(�) such that Ai = qi(T
0); 1 � i �

n.

(ii) it is co-np-complete to determine whether T is a

pre�x of every tree T 0 as in (i), up to node identi-

�ers.

Proof. Reduction from 3-sat.

3.2 Avoiding the exponential blowup
The exponential blowup of incomplete trees is illus-

trated by the following example.

Example 3.2. Consider a tree type root ! a b and

the queries qi, 1 � i � n, of the form:

a = i b = i

 root

whose answers are empty. The incomplete tree con-

structed for these queries by Algorithm Re�ne yields a

disjunction of 2n multiplicity statements.

We consider two ways of avoiding the exponential blow-
up of incomplete trees:

1. By allowing conjunctions of disjunctions of types
in the de�nition of the incomplete tree,

2. By restricting the initial tree type and the ps-queries.

We �rst discuss extensions of incomplete trees with

conjunction, and restrictions of the initial tree type and
ps-queries.

Conjunctive incomplete trees. It is possible to pre-
vent the exponential blowup of incomplete trees by al-
lowing conjunctions of disjunctions of multiplicity atoms

in type speci�cations, rather than just disjunction. The
meaning of a conjunction of disjunctions of multiplicity
atoms is that the tree described must be simultaneously
valid with respect to all types speci�ed by each conjunct.
In terms of automata, this is analogous to allowing alter-

nation rather than just nondeterminism in the control.
We refer to incomplete trees augmented with conjunction
as conjunctive incomplete trees. It can be shown that
conjunctive incomplete trees can be constructed incre-
mentally by an extension of Algorithm Re�ne, and stay
polynomial in the sequence of query/answer pairs and

input tree type. The usefulness of conjunction in incom-
plete trees is illustrated by Example 3.2. The incomplete
information provided by the query/answer pairs can be
represented concisely using a conjunctions of n disjunc-
tions:

root ! (a1b _ ab1) ^ � � � ^ (anb _ abn)

cond(ai) = 6= i; 1 � i � n

cond(bi) = 6= i; 1 � i � n

where ai and bi specialize a and b, respectively. As dis-
cussed earlier, without conjunction, Algorithm Re�ne

yields a disjunction of 2n multiplicity statements, cor-
responding to the DNF form of the n conjuncts.

The price to pay for the conciseness of conjunctive
trees is increased complexity of various manipulations.
For example, the key problem of checking non-emptiness

of a conjunctive incomplete tree becomes np-complete
(see Theorem 3.2), whereas it is polynomial for usual
incomplete trees (see Lemma 2.4).

Restricting the tree types and queries. A second
approach to avoiding the blowup in the size of incom-
plete trees is to restrict the input tree types and the
ps-queries. We exhibit one restriction that we believe is
reasonable in many practical situations: the input tree

type is non-recursive, and ps-queries are restricted to
perform non-trivial data value tests only along one path
in the query tree. More precisely, a ps-query ht; �; condi
is linear testing if for all pairs of nodes ni of t for which
cond(ni) 6= true, 1 � i � 2, either n1 is a parent of n2 or

conversely. We use a straightforward modi�cation of Al-
gorithm Re�ne producing on input (q1; A1); : : : ; (qn; An)
a conjunctive incomplete tree T0 of size polynomial in the
sequence (q1; A1); : : : ; (qn; An). We refer to this variant
as Algorithm ^-Re�ne.
We can show the following:

Theorem 3.3. Let � be a non-recursive tree type over

� and (q1; A1); : : : ; (qn; An) a sequence of linear-testing

ps-queries and their answers on some T 2 rep(�). The
incomplete tree constructed for � and

(q1; A1); : : : ; (qn; An)

by Algorithm ^-Re�ne has size polynomial in � and

(q1; A1); : : : ; (qn; An).

Proof. Because the queries are linear, the conjunct

at each node can be factorized. The transformation of
the conjunctive incomplete tree into a regular incomplete
tree can now be done in a straightforward way. The pro-
cess is exponential in the maximal depth of the queries
qi. As the tree type � is non-recursive, let d be its depth.
Each qi has a depth bounded by d. Thus the algorithm

remains polynomial in qi (exponential in d).

Heuristics. We sketch two approaches for dealing with
cases when the incomplete tree grows too large to be
practical. The �rst consists of asking a small set of addi-
tional queries chosen so as to provide precisely the critical

information needed to eliminate some of the unknown in-
formation and shrink the incomplete tree. The choice of
additional queries may be guided by various heuristics,
which can be applied whenever the incomplete tree be-
comes too large. There is a standard choice of additional
queries which always keeps the incomplete tree polyno-

mial in size and no larger than the complete input data
tree together with its tree type.
The second approach for dealing with large incomplete

trees is to gracefully loose some of the information in or-
der to shrink the incomplete tree. The idea is illustrated
by Example 3.2. Intuitively, the incomplete tree becomes

large because it enumerates explicitly the restrictions on
the pairs of values for a and b, which are tested repeat-
edly by the queries. This makes it expensive to maintain
the information about the connection between the a and
b values. One way around this is to \forget" the costly
information on the connection between the values, and

only retain the ranges of allowed values for a and for b.
In general, the expensive combinations of values can be
identi�ed by a scoring system maintained dynamically

as queries are asked. This approach can be extended to
combinations of type specializations, which may involve
constraints on both the data values and structure of the

allowed trees. We omit further details in this abstract.

3.3 Querying incomplete trees
We next show how incomplete trees can be used to

answer queries. We look at two distinct issues. The �rst
is the classical problem of answering a query using only
the information provided by the incomplete tree. The
answer is itself an incomplete tree, providing a descrip-
tion of the possible answers. This �rst issue is addressed

in the present section. The second issue, addressed in
next section, is using incomplete trees as a guide for a
mediator which must decide what new queries should be
asked on the source document in order to provide a com-
plete answer to a user query.
Before considering such questions, we note an impor-

tant technical property of the incomplete trees produced
by Algorithm Re�ne. We call an incomplete tree reach-
able if it is constructed by Algorithm Re�ne from some
initial tree type and some sequence of query-answer pairs.
By inspection of the algorithm, it can be shown that

reachable trees have a special form which, intuitively,
ensures that a multiplicity statement of the incomplete
tree involving several specialized versions of some sym-
bol a can be unambiguously parsed: each specialization
of a in the statement can be assigned to exactly one data
node of Td, except for possibly one which describes miss-

ing data. The impact of this property on the complex-
ity of various manipulations is signi�cant. For instance,
without this property, computing the complement and
intersection of conditional tree types is generally expo-
nential, whereas the analogous manipulations of reach-
able incomplete trees can be done in polynomial time.

We now consider the �rst of the questions mentioned
above. Suppose our knowledge of the world consists in an
incomplete tree T, obtained by Algorithm Re�ne. This
means that the possible data trees are in rep(T). Sup-
pose we wish to answer a ps-query q. The possible an-
swers for q are the data trees in q(rep(T)). Incomplete

trees form a strong representation system for ps-queries
if the set q(rep(T)) can be described using an incomplete
tree for arbitrary q and T. Indeed, this is the case:

Theorem 3.4. Given an incomplete tree T and a ps-

query q, one can e�ectively construct an incomplete tree

denoted q(T) such that

rep(q(T)) = fq(T) j T 2 rep(T)g = q(rep(T)):

Furthermore, if T is reachable, then q(T) can be con-

structed in ptime.

As a very useful consequence, we can decide if a ps-
query q can be fully answered using the information pro-
vided by an incomplete tree T.

Corollary 3.5. Let T be an incomplete tree with data

tree Td, and q a ps-query. It is decidable in ptime whether

q can be fully answered using T, i.e. whether for every

T 2 rep(T), q(T) = q(Td).

Proof. This can be reduced to tests of emptiness
of several conditional tree types, which can be done in
ptime (see Lemma 2.4).

Remark 3.6. As an important side e�ect, Corollary

3.5 in combination with Theorem 3.1 provide a way to

check if a ps-query q can be answered using the views

provided by a sequence of ps-query-answer pairs. The

problem of answering queries using views has been stud-

ied recently in other contexts (see related work).

There are several important variants of the query an-

swering problem with incomplete information, such as
deciding if certain facts are certain or possible in the an-
swers to a given query. The following is an immediate
consequence of Theorems 2.6 and 3.4.

Theorem 3.7. Given a reachable incomplete tree T,

a ps-query q, and a data tree T over �, it can be checked

in ptime whether T is a certain pre�x or whether T is a

possible pre�x of q(T).

3.4 Guiding mediators
We consider here the following problem: suppose we

have partial information about the input document(s)
speci�ed as an incomplete tree, and the user poses a
query against the virtual input document. If we are
lucky, we may be able to provide the complete answer
to the query using the information available. Otherwise,
additional queries may have to be generated against the

input document to obtain the information needed to fully
answer the query. The incomplete tree can be used as
a guide to generate such queries. We assume that the
generated queries further explore the input document
starting from the nodes already available. We refer to
such queries as local. In order to generate local queries

intelligently, we must determine which sources possibly
(or certainly) contain information relevant to the query.
The following states that these questions can be e�ec-

tively answered:

Theorem 3.8. Given a reachable incomplete tree T
and a ps-query q the following can be checked in ptime:

(possible non-emptiness) q(T) 6= ; for some tree

T 2 rep(T); and,

(certain non-emptiness) q(T) 6= ; for every tree

T 2 rep(T).

The proof is similar to that of Theorem 2.6.
We now consider in more detail the generation of local

queries. We show that we can always e�ciently compute
a set of local queries that collect the additional informa-
tion allowing to answer a given ps-query. More formally,

let T be an incomplete tree with data tree Td and q a
ps-query. A local ps-query is an expression of the form
p@n where p is a ps-query and n is a node in Td. The
query returns the answer to p on the full subtree of Td
rooted at n. Consider a set L of local queries against
T. We say that L completes T relative to q if for each

T 2 rep(T), q(T) equals q(T 0) where T 0 is obtained by
extending each node n of Td for which p@n 2 L, with
p@n(T).
Obviously, the query q itself posed at the root is always

a trivial completion of T relative to q. The point in
using local queries is to avoid doing the work already

done by previous queries. Therefore, we would like the
completion L to have the property that no nodes already
existing in T are retrieved again by queries in L, and

that no new node is retrieved by distinct queries in L.
Finally, L should not contain queries which always return
empty answers on the possible input trees. If L has these

properties, we call it non-redundant.
In general, it is not possible to �nd a non-redundant

L for an arbitrary incomplete tree T and ps-query q, as
illustrated next.

Example 3.3. Consider the following incomplete tree

T and query q:

a

b b

b a

Incomplete tree Query

* *

c c

b

Let L be some completion of T relative to q. Clearly,

L must contain query q itself applied to the root, which

retrieves the already existing b-node in T.

Luckily, although T in Example 3.3 is a valid incomplete
tree, it is not a reachable one. For reachable incomplete
trees, it turns out that non-redundant completions can
be found, as stated next.

Theorem 3.9. Let T be a reachable incomplete tree,

and q a ps-query. One can construct in ptime a set of

local queries L which forms a non-redundant completion

of T relative to q.

Although non-redundancy of completions is an appealing
property, enforcing it clearly comes at a cost. In practice,

other parameters are likely to also be taken into account
in order to generate e�cient completions.

4. EXTENSIONS
Our framework for XML documents with incomplete

information relies on many limitations and assumptions,
such as the availability of persistent node ids, the lack of
order, and a very simple query language. In this section
we discuss several extensions to our framework, and their
impact on handling incomplete information. A compre-

hensive study of possible extensions is beyond the scope
of this paper. Instead, we illustrate the kinds of di�-
culties that various extensions may introduce. Many of
the de�nitions in this section are informal. We begin
by discussing several extensions to ps-queries, and their

impact on handling incomplete information.

Branching. Recall that ps-query tree patterns allow
just one child with a given label for each node in the
pattern. For instance, this disallows a query whose pat-
tern looks simultaneously for a product which has a pic-

ture and another which is a camera. Branching allows
multiple children with the same label. Incomplete trees
remain a strong representation system for ps-queries ex-
tended with branching and can be maintained incremen-
tally in ptime. However, if T is a reachable incomplete
tree and q a ps-query with branching, q(T) may now be

exponential with respect to T. For example, if the data
tree of T is (a), where a1 : : : an are specializations of a,
and q is the ps-query (b) with branching,

root

(b)(a)

a
a

aa

root

b=1 b=2 b=n

aa
1 2 n

...
...

...

then the incomplete tree for q(T) has to describe n!
possibilities of assigning the n values of b to a1; : : : an.

Branching and constructed answers. Queries with
constructed answers consist of a body and a head. As
for ps-queries, the body is a tree pattern. However, the
nodes in the pattern are labeled by variables. For each
input, the body de�nes a set of bindings of the variables
to input nodes. The head of the query speci�es how to

construct an answer data tree from the bindings. This is
done in the spirit of XML-QL, using Skolem functions.
Incomplete trees are no longer a strong representation
system for ps-queries with branching and constructed an-
swers. For example, the query:

Y

root

X a:f(X) b:g(Y)

 root

body head

c c

produces answers with equal numbers of a's and b's
(one a for each binding of X and one b for each binding
of Y), which cannot be precisely described by incomplete
trees. In fact, the existence of a strong representation
system for such queries remains open.

Branching and optional subtrees. Queries with op-
tional subtrees allow labeling some subtrees by \?". The
semantics is that a valuation is now a partial mapping,
not required to be de�ned on the nodes of the optional

subtrees. For example, this allows to request cameras
and display their pictures if they exist. However, a cam-
era is in the answer even if it has no picture. The com-
bination of branching and optional subtrees yields an
exponential blowup in complexity for several questions
we considered. We illustrate this using a variant of the

certain pre�x question. Note that, by Theorems 3.1, 3.4,
and 2.6, it can be checked in ptime whether a tree T is
a certain or possible pre�x for the answers of a ps-query
q0 on trees compatible with a given an input tree type �
and a single ps-query-answer pair hq; Ai. For ps-queries
extended with branching and optional subtrees, we can

show the following:

Theorem 4.1. Given a tree T , a tree type � , a query-

answer pair hq; Ai, and a query q0, where q and q0 are

ps-query with branching and optional subtrees, it is co-

np-complete whether T is a certain pre�x for

q
0

[rep(�) \ q
�1
(A)]:

Proof. By reduction of validity of DNF formulas with
3 variables per disjunct.

Note that this complexity lower bound is independent
of a particular representation system.

Extended k-pebble transducers. It turns out that
our framework can be extended to ordered trees and very

powerful restructuring queries, as long as data joins are
not allowed. We illustrate this using the k-pebble tree
transducers introduced in [17] to model a wide range of

XML transformation languages. The original k-pebble
transducers work on trees without data values. However,
they can be easily extended with selection conditions,
which we refer to as extended k-pebble transducers. Their
acceptor analog is called extended k-pebble automaton,
and languages of ordered data trees they accept are called

extended regular tree languages.
Input tree types can be de�ned as extended regular

tree languages. The natural representation system for
such queries is the extended k-pebble automaton. For
such an automaton � , rep(�) is the data tree language
accepted by � . Extended k-pebble automata provide a

concise representation system that can be maintained ef-
�ciently and stays polynomial in the input type and the
entire sequence of query-answer pairs. Indeed, the fol-
lowing can be shown by extending the techniques from
[17]:

Theorem 4.2. Let � be an input type speci�ed by an

extended k-pebble automaton, and hq1; A1i; : : : ; hqn; Ani
a sequence of query-answer pairs where each qi is an ex-

tended k-pebble transducer and Ai 2 qi(T); i 2 [1; n].
There exists an extended k-pebble automaton � 0, com-

putable in ptime from � and the query-answer sequence,

such that

rep(�
0

) = rep(�) \ q
�1

1 (A1) \ � � � \ q
�1

n (An):

Despite the fact that k-pebble automata provide an ef-
�cient representation system for a very broad class of re-
structuring queries, they have several drawbacks. First,
the intuitively appealing representation of incomplete in-

formation provided by incomplete trees is lost. Second,
k-pebble automata are not a strong representation sys-
tem. Indeed, as discussed in [17], q(rep(�)) is not nec-
essarily a regular tree language for an input type � and
k-pebble transducer q (this problem already occurred in
the simpler setting of branching ps-queries with very sim-

ple constructed answers, see above). Finally, the basic
manipulations needed to handle incomplete information
have very high complexity, as indicated by the following
lower bound result:

Theorem 4.3. It is non-elementary to determine, for

an extended k-pebble automaton � , whether rep(�) = ;.

The proof, due to Thomas Schwentick [21], uses the
fact that testing emptiness of star-free generalized reg-
ular expressions1 is non-elementary [22]. Recall that
emptiness of conditional trees types can be tested in
ptime by Lemma 2.4, and this is a basic step in many of

our manipulations.
The next three extensions involve join on data values.

This turns out to be an extremely powerful feature that
leads to a dramatic increase in the di�culty of handling
incomplete information. Indeed, many of the key ques-
tions now become undecidable.

Branching, join on data values, and negation. Nega-
tion consists of labeling some subtrees by \:". With this

1These are expressions using alphabet symbols, union,
concatenation, and complement.

semantics, a valuation must match positive subtrees and
there must be no extension of the valuation matching the
negative subtrees. This extends the negation on leaves

already allowed in ps-queries. Join on data values al-
lows comparing the data values of di�erent nodes in the
pattern of the query (using =, 6=). This combination
of features leads to undecidability of several questions.
For example, given an input tree type and a sequence
of query-answer pairs (with branching, data value joins,

and negation) it is undecidable whether a new query al-
ways has empty answer.

Theorem 4.4. It is undecidable, given a (non-recur-

sive) input tree type � and a sequence

hq1; A1i; � � � ; hqn; Ani

of query-answer pairs and a query q, where qi and q are

ps-queries extended with branching, data value (in)equali-

ty, and negation, whether q(T) = ; for all

T 2 rep(�) \ q
�1

1 (A1) \ � � � \ q
�1

n (An):

Proof. Reduction from the undecidability of impli-
cation for inclusion and functional dependencies.

As an easy variation, it can be shown that it is undecid-
able whether a query is always non-empty for trees satis-
fying the input tree type and compatible with the query-
answer pairs. It is also undecidable whether a given tree
is a possible (certain) pre�x for such trees.

Note that these results are independent of any repre-
sentation system. In fact, they imply that there cannot
exist an e�ective representation system for such queries,
for which possible emptiness (or the possible pre�x ques-
tion) is decidable.

Branching, join on data values, optional subtrees,
and construction. By a reduction similar to the proof
of Theorem 4.4, we can show the following:

Theorem 4.5. It is undecidable, given a data tree T ,

a non-recursive input tree type � , a sequence

hq1; A1i; : : : ; hqn; Ani

of query-answer pairs and a query q, where qi and q are

ps-queries extended with branching, data value (in)equali-

ty, optional subtrees, and constructed answers, whether

T is a possible pre�x for answers to query q on trees in

rep(�) \ q�11 (A1) \ : : : \ q�1n (An).

As an aside, Theorems 4.4 and 4.5 highlight an inter-
esting trade-o� between negation, and optional subtrees

together with constructed answers.

Recursive path expressions and join on data val-
ues. This allows specifying in a query pattern that a
node is reachable from its parent in the pattern tree by a
path whose labels spell a word in some regular language.

Extending ps-queries with recursive path expressions and
tests of (in)equality on data values leads once again to
undecidability of various key questions. Indeed, we can
show:

Theorem 4.6. It is undecidable, given an input tree

type � , a sequence

hq1; A1i; : : : ; hqn; Ani

of query-answer pairs and a query q, where qi and q are

ps-queries extended with recursive path expressions and

(in)equality tests on data values, whether q(T) = ; for

some

T 2 rep(�) \ q
�1

1 (A1) \ : : : \ q
�1

n (An):

Proof. By reduction of the emptiness of intersection
of two context-free languages.

In particular, the above shows that there can be no
e�ective strong representation system for this class of

queries.

Node ids and order. To conclude, we informally dis-
cuss the persistent node id assumption, and the issue of
order.

Node ids. A signi�cant assumption in our framework is
the availability of persistent node ids. In other words,
distinct queries against an XML document return nodes
with the same id i� the nodes are identical. The avail-
ability of node ids allows us to enrich the information

about a given node (e.g. a product) through consecutive
queries, as illustrated in the catalog example. Without
ids this is no longer possible in general. Furthermore, the
representation system for incomplete information would
have to be extended in order to keep track of the various

possible ways of matching nodes returned by di�erent
queries.
Our assumption that node ids are available is gen-

erally dependent on sources providing persistent node
ids. Even if this is not generally the case, ids are some-
times available as URLs, element names, known keys,

etc. Without ids, our approach can still be used but our
expectations would have to be lowered if we wish to keep
processing cost down.

Order. The issue of order has many facets. Indeed, it

can be considered at various levels:
(1) the input tree may be ordered, as well as the answers
to queries. In this case, one would like to preserve in the
answer the order of elements from the input.
(2) the source DTD may describe the order of children at
each node type, possibly using a regular expression (as

done in full-
edged DTDs).
(3) queries may use ordering in their selection patterns.
For example, a query might request all a elements that
occur before some b element. To specify such conditions
one could use regular expressions, or perhaps weaker par-
tial order conditions.

Our discussion of extended k-pebble transducers shows
that some of our framework can be extended in the pres-
ence of order, albeit at the cost of high complexity. In-
tuitively, it is clear that order complicates the handling
of incomplete information. As one example, suppose the
input is
at and contains a and b elements. Suppose a

�rst query q1 requests the list of a elements (produced
in the order in which they appear in the input) and a
second query q2 asks for the list of b elements. Consider
now a third query q3 that asks for the list of all elements.
Can we answer this using the known answers to q1 and
q2? This depends on the type of the input: if the input

is of the form a?b? then q3 can be answered (concatenate
the answer to q1 with the answer to q2); if the input is
of the form (a + b)? then q3 cannot be answered using

the previous queries, since no information is available on
how to interleave the a and b elements. The problem
described above is somewhat similar to the issue of per-

sistent ids. Indeed, one way around it is for wrappers of
data sources to provide the rank of each element, which
allows to merge answers to consecutive queries. In the
absence of such information, a representation system has
to maintain information about partial orders among the
elements. Clearly, the order issue raises many interesting

questions that need to be further explored.

5. CONCLUSION
The main contribution of this paper is a simple frame-

work for acquiring, maintaining, and querying XML doc-
uments with incomplete information. The framework

provides a model for XML documents and DTDs, a sim-
ple XML query language, and a representation system
for XML with incomplete information. We show that the
incomplete information acquired by consecutive queries
and answers can be e�ciently represented and incremen-
tally re�ned using our representation system. Queries

are handled e�ciently and
exibly. They are answered
as best possible using the available information, either
completely, or by providing an incomplete answer using
our representation system. Alternatively, full answers
can be provided by completing the partial information
using additional queries to the sources, guaranteed to be

non-redundant.
Our framework is limited in many ways. For exam-

ple, we assume that sources provide persistent node ids.
Order in documents and DTDs is ignored, and is not
used by queries. The query language is very simple, and

does not use recursive path expressions and data joins.
In order to trace the boundary of tractability, we con-
sidered several extensions to our framework and showed
that they have signi�cant impact on handling incomplete
information, ranging from cosmetic to high complexity
or undecidability. This justi�es the particular cocktail

of features making up our framework, and suggests that
it provides a practically appealing solution to handling
incomplete information in XML.

6. REFERENCES
[1] S. Abiteboul and O. Duschka. Answering queries

using materialized views. In Proc. ACM PODS,

pages 254{263, 1998.

[2] S. Abiteboul, P. Kanellakis, and G. Grahne. On
the representation and querying of sets of possible
worlds. Theoretical Computer Science, 78:159{187,

1991.

[3] A.Bruggemann-Klein, M.Murata, and D.Wood.
Regular tree languages over non-ranked alphabets.
Unpublished manuscript, 1998.

[4] C. Beeri and T. Milo. Schemas for integration and
translation of structured and semi-structured data.
In Proc. Int. Conf. on Database Theory, pages
296{313, 1999.

[5] S. Chaudhuri, R. Krishnamurthy, S. Potamianos,
and K. Shim. Optimizing queries with materialized
views. In Proc. ICDE Conf., pages 190{200, 1995.

[6] S. Cluet, C. Delobel, J. Sim�eon, and K. Smaga.
Your mediator needs data conversion! In Proc.

ACM SIGMOD, pages 177{188, 1998.

[7] T. Codd. Understanding relations (installment
#7). In FDT Bull. of ACM Sigmod 7, pages 23{28,
1975.

[8] S. S. Cosmadakis. The complexity of evaluating
relational queries. Inf. and Control, 58:101{112,
1983.

[9] H. Garcia-Molina, W. Labio, and J. Yang.
Expiring data in a warehouse. In Proc. VLDB,
pages 500{511, 1998.

[10] G. Grahne. The Problem of Incomplete

Information in Relational Databases.
Springer-Verlag, Berlin Heidelberg, 1991.

[11] P. Honeyman, R. Ladner, and M. Yannakakis.
Testing the universal instance assumption. Inf.

Proc. Letters, 10(1):14{19, 1980.

[12] T. Imielinski and W. Lipski. Incomplete
information in relational databases. J. ACM,
31(4):761{791, 1984.

[13] Y. Kanza, W. Nutt, and Y. Sagiv. Queries with
incomplete answers over semistructured data. In
Proc. ACM PODS, pages 227{236, 1999.

[14] W. Labio, Y. Zhuge, J. L. Wiener, H. Gupta,
H. Garcia-Molina, and J. Widom. The WHIPS
prototype for data warehouse creation and
maintenance. In Proc. ACM SIGMOD, pages 557 {
559, 1997.

[15] A. Levy, A. Mendelzon, D. Srivastava, and
Y. Sagiv. Answering queries using views. In Proc.

ACM PODS, pages 95{104, 1995.

[16] D. Maier, Y. Sagiv, and M. Yannakakis. On the
complexity of testing implications of functional and
join dependencies. J. ACM, 28(4):680{695, 1981.

[17] T. Milo, D. Suciu, and V. Vianu. Typechecking for
XML transformers. In Proc. ACM PODS, pages
11{22, 2000.

[18] Y. Papakonstantinou and V. Vianu. DTD inference

for views of XML data. In Proc. ACM PODS,
pages 35{46, 2000.

[19] A. Rajaraman, Y. Sagiv, and J. Ullman. Answering
queries using templates with binding patterns. In

Proc. ACM PODS, pages 105{112, 1995.

[20] R. Reiter. A sound and sometimes complete query
evaluation algorithm for relational databases with
null values. J. ACM, 33(2):349{370, 1986.

[21] T. Schwentick. Personal communication, 2000.

[22] L. Stockmeier. The complexity of decision problems

in automata theory and logic. PhD thesis, MIT,
1974. Report MAC TR-133, Project MAC.

[23] M. Y. Vardi. The complexity of relational query
languages. In Proc. ACM STOC, pages 137{146,

1982.

[24] M. Y. Vardi. On the integrity of databases with
incomplete information. In Proc. ACM PODS,
pages 252{266, 1986.

[25] C. Zaniolo. Database relations with null values.
Journal of Computer and System Sciences,
28(1):142{166, 1984.

