W3C

Extensible Stylesheet L anguage
(XSL)

Version 1.0

W3C Working Draft 18 October 2000

Thisversion:

D/ WWW.W3.0Tg DEE

(PDFE by Renderx], KT TiTa, oneTargeTine), ZIPTis)

Latest version:
DWW W.W3.0ro/ T RIXSI

Previous version:

P//WWW.Wo.0rg -XSl-

Authors and Contributors;

Sharon Adler (IBM) <Eca@usibm com>

Anders Berglund (IBM) <ElIh@usibm.com>

Jeff Caruso (Pageflex) <[caruso@pageilexinc.conj>
Stephen Deach (Adobe) <Bdeachi@adobe com>

Paul Grosso (ArborText) <panl@arboriext.conj>

Eduardo Gutentag (Sun) <Eduardo.guientag@eng.sun.conj>
Alex Milowski (Lexica) <BElEX@milowsKi con>

Scott Parnell (Xerox) <Ecol Parnalll@iusaxerox com>

Jeremy Richman (BroadVision) <feremy.Richman@BroadVision.conj>

Steve Zilles (Adobe) <EzlleS[@adohe com>

Copyright © 2000 W3C (MIT, INRIA, Keio), All Rights Reserved. W3C liability, trademark, document use and
software licensing rules apply.


http://www.w3.org/
http://www.w3.org/TR/2000/WD-xsl-20001018/
http://www.w3.org/TR/2000/WD-xsl-20001018/xslspecRX.pdf
http://www.w3.org/TR/2000/WD-xsl-20001018/xslspec.xml
http://www.w3.org/TR/2000/WD-xsl-20001018/xslspec.html
http://www.w3.org/TR/2000/WD-xsl-20001018/xs001018.zip
http://www.w3.org/TR/xsl/
http://www.w3.org/TR/2000/WD-xsl-20000327
mailto:sca@us.ibm.com
mailto:alrb@us.ibm.com
mailto:jcaruso@pageflexinc.com
mailto:sdeach@adobe.com
mailto:paul@arbortext.com
mailto:eduardo.gutentag@eng.sun.com
mailto:alex@milowski.com
mailto:Scott.Parnell@usa.xerox.com
mailto:Jeremy.Richman@BroadVision.com
mailto:szilles@adobe.com

i Extensible Stylesheet Language (XSL) (xsl-20001018)

Abstract

XSL isalanguage for expressing stylesheets. It consists of two parts:
1. alanguage for transforming XML documents, and

2. an XML vocabulary for specifying formatting semantics.

An XSL stylesheet specifies the presentation of a class of XML documents by describing how an
instance of the classis transformed into an XML document that uses the formatting vocabulary.

Status of this document

This is a W3C Working Draft for review by W3C members and other interested parties. This working
draft incorporates the proposed resolution of the issues raised during Last Call. The Working Group
intends to submit a revised version of this specification for publication as a Candidate Recommendation
in the near future. We are issuing this interim public draft as it sets out a number of changes made in
response to comments received on the Last Call draft. Items under consideration for change for
Candidate Recommendation include the name of the font-height-override-before and
font-height-override-after properties. Please send detailed comments to KS-ediTors@wa3.0rg; of
the comments are available. More general public discussion of XSL takes place on the mailing
list.

It is adraft document and may be updated, replaced, or obsoleted by other documents at any time. The
XSL Working Group will not allow early implementation to constrain its ability to make changes to this
specification prior to final release. It is inappropriate to use W3C Working Drafts as reference material
or to cite them as other than “work in progress’. A list of current W3C working drafts can be found at
PED/TWWW.W3.0r/ TH.

This document has been produced as part of the V3T Style Activity by the [KSC_Working Groug
(Membersonty).

W3C Working Draft


mailto:xsl-editors@w3.org
http://lists.w3.org/Archives/Public/xsl-editors
http://www.mulberrytech.com/xsl/xsl-list/index.html
http://www.w3.org/TR
http://www.w3.org/Style/
http://www.w3.org/Style/XSL/Group/
http://cgi.w3.org/MemberAccess/

Extensible Stylesheet L anguage (XSL) (xsl-20001018) iii

Table of Contents

1. Miroduciion and Overview 1
ocessing a oty 1

1.1.1. [ree Trandarmarons 2

11.2 2

1.2. Benaiis ol X901 5
1.2.1. Paging and Scrolfing 6

1.2.2. Eelediors and Tree ConSiriciion 7

1.2.3. Bn EXtended Page Layout Mode] 7

124, omprenensive Area Mo 7

1.2.5. [nternationalization and Writing-Mode3 7

1.2.6. 8

2. hiroduciion 10 XS Transormarion 9
2.1. Iree ConSTriciion 9
2.2. KSC_Namespace 9

3. [niroduction 1o Formaiting 9
3.1. [Concepiua Procedurg 11

4. Brea Model 12
4.1. 12
4.2. Rectangular ATteag 13
421, 13

4.2.2. 13

4.2.3. GEOMATIC DEnTiond 14

4.2.4. 17

4.2.5. Btacking Consiraints 18

4.2.6. EONf Basaline 1Tanted 23

4.3. Bpaces and Conditionality] 23
4.3.1. Bpaceresolution Rules 23

4.4, BIOGCK=areas 24
4.4.1. Siacked Block-aread 25

4.4.2. [ntrusion Adjusiments 27

4.5, 28
4.6. 29
4.6.1. Sacked Thiinearead 29

4.6.2. 30

4.7. Drdering constrantg 30
4.7.1. [Genera Ordering Constrantg 30

W3C Working Draft



iv Extensible Stylesheet Language (XSL) (xsl-20001018)

4.7.2. 30
4.7.3. 31
4.8. Keeps and Breakg 32
4.9. Rendering Mod€] 33
49.1. 33
4.9.2. Niewport GEomeiry| 33
49.3. 34
4.9.4. Border, INQ, and Backgroun 34
495, 31
4.9.6. Cayering and Conilict of Markg 34
4.10. Bample Atea Treg 35
411. OS ol Traison Aread 35
5. Property Inemen esolutio 37
5.1. Bpecitied, Computed, and Actual Values, and Inheritancg 37
5.1.1. Bpecified Values 37
5.1.2. Computed Values 37
5.13. 38
5.14. 38
5.2. Bhorthand EXpansion 38
5.3. Computing the Values of Corresponding Properties 39
5.3.1. Border and Padding Properties 40

5.3.2. Margin, Space, and Tndent Properti
5.3.3. Heght,_ and Width Propertices
5.3.4. pverconsirained Geomeiry|
5.4. B mple Property 10 _Trat Mapping
5.4.1. Background-position-horizontal and background-poSition-Vertical PTOPETTES.......vveeeen..
5.4.2. Column-number Property]
5.4.3. [Text=align Propery
5.4.4. [Text-align-1ast Properyl
5.4.5. g-index Propery|
5.5. Complex Property 10 T rait Mappingd
5.5.1. Word-spacing and Leter-spacing Properties
5.5.2. Reference-orientation Property|
5.5.3. (Writing-mode and DiTection Properties
5.5.4. AbSolute-position Property]
5.5.5. Reaive-position Property
5.5.6. [Text-decoration Property|

S556GRRRRRRERGARRA

55.7. 47
5.6. Non-property Based Trat Generatiorn 47
5.7. Property Based Transiormationg 48

W3C Working Draft



Extensible Stylesheet L anguage (XSL) (xsl-20001018) \Y

5.7.1. [Text-transiorm Property] 48
5.8. [Onicode Bidi Processing 48
9 30
5.9.1. pProperty Coniexi 50
5.9.2. BEAAIoN Orded 51
5.9.3.Basc3 51
5.9.4. ElINCI0N CAlls 51
5.9.5. 51
5.9.6. 53
5.9.7. Relalive NIImeric3 53
59.7.1. 53
5.9.7.2. Rgaive Lenqing 53

5.9.8. 54
5.9.9. Colord 54
5.9.10. 54
5.9.10.1. 54

5.9.11. Cexical Simciara 54
5.9.12. EXpression Value conversiong 55
5.9.13. Delnifions of TInifsS of Meagire 56
5.9.13.1. 56

5.10. [Core Function Library 57
5.10.1. 57
5.10.2. 57
5.10.3. 58
5.10.4. Property Vaue Funciiong 58
5.11. Properny Daiatypes 59
6. Formaiiing Objecig 62
6.1. [nfroduction 0 Formatting Objecis 62
6.1.1. D&linitions Common 10 Many Formaiting Objecig 63
6.2. Formaiting Object Conten 64
Oormaiting Objects Summar 65

6.4. Declarations and Pagination and Layout Formaiting Objecty 69
6.4.1. 69
6.4.1.1. Page-Sequence-masiers 70
6.4.1.2. 70
6.4.1.3. Page Generation 71
6.4.1.4. Flows and FlTow Mapping 71
6.4.1.5. Consirants on Page Generation 72
6.4.1.6. Paginaiion I ree Siructurg 72

6.4.2. 73
6.4.3. 73
6.4.4. 73

W3C Working Draft



Vi Extensible Stylesheet Language (XSL) (xsl-20001018)

6.4.5. [orpage-Sequencd 74
6.4.6. foTayour-masier-se| 75
6.4.7. fo:page-Sequence-masie] 76
6.4.8. [0:Single-page-masier-rei erencg 77
6.4.9. foTrepeaiable-page-masier-referencg 7
6.4.10. forep E-page-master-alernaiiv 78
6.4.11. forconditional-page-masier-rei erence 78
6.4.12. forSmple-page-masie] 80
6.4.13. 83
6.4.14. foTeqgion-beiorg 86
6.4.15. 87
6.4.16. 88
6.4.17. 90
6.4.18. 91
6.4.19. [oSafc-conieni 92
6.4.20. 92
6.5. Block-Tevel Formaiting Objecis 93
6.5.1. 93
6.5.1.1. 93
6.5.1.1.1. Chapter an on _T1tes, Paragrap 93

6.5.2. 95
6.5.3. [DIoCK=containes 96
6.6. [Nline-Tevel Formatting Onjecty 98
6.6.1. 98
6.6.1.1. 98
6.6.1.1.1. FiTSLCine of Paragrapn in Small-capg 98
6.6.1.1.2. Figure with a Photograph 98
6.6.1.1.3. Page numbering and page Number relerence 99

6.6.2. 101
6.6.3. 102
6.6.4. [onitia-property-sel 103
6.6.5. forexternal-graphig 104
6.6.6. fO.inSiream-Torelgn-onjecy 105
6.6.7. 107
6.6.8. [DINMNe-confaner 108
6.6.9. 110
6.6.10. 112
6.6.11. forpage-number-citation 113
6.7. Formaiting ObjectsTor Tableg 114
6.7.1. 114
6.7.1.1. 114
6.7.1.1.1. Emple EWI olumn-wi ecification 114

6.7.2. foTable-and-caption 118

W3C Working Draft



Extensible Stylesheet L anguage (XSL) (xsl-20001018) Vii

6.7.3. [0Iana 119
6.7.4. [odanle-columni 121
6.7.5. foTable-caption 122
6.7.6. [OIaneheaden 123
6.7.7. [DIahleTooied 123
6.7.8. [oTable-hody] 124
6.7.9. [DIahleTow 124
6.7.10. [oTanle=cell 125
6.8. Formaiting Objectsior LI 127
6.8.1. [Dirodncion 127
6.8.1.1. EXampleg 128
6.8.1.1.1. Enumerated 114 128

6.8.1.1.2. HTVIL-Siyle "dI" 113 130

6.8.2. [DIiS=hiocK 135
6.8.3. [OIiS=iiem 136
6.8.4. foiliS-item-boady] 136
6.8.5. [DIiS=ifem-Tahe] 137
6.9. DynamiC EfTectsS: Link and MUIti Formaiting ObJec 137
6.9.1. [Niroduciion 137
6.9.1.1. EXampleg 138
6.9.1.1.1. EXpan olfapsible € 01 conten 138

6.9.1.1.2. Biyling an XLINK Based on the Aclive Staig 142

6.9.2. [0 hasic-lInK 143
6.9.3. [OTMUITI-SWITCH 144
6.9.4. [OMuii-casa 145
6.9.5. [oomulti-togarg 146
6.9.6. fo:multi-properticesy 146
6.9.7. fomulti-property-sei 147
6.10. Out-of-Cine Formaiting Object 148
6.10.1. [Mirodncion 148
6.10.1.1. 148
6.10.1.2. 148
6.10.1.3. Conditional Sub-Regiong 148

6.10.2. [odTIoal 149
6.10.3. [oTnonoa 151
6.10.4. foTootnote-boay] 152
6.11. Other Formaiting Object$ 152
6.11.1. Infroduciion 152
6.11.1.1. 152

6.11.2. [o:-wrappe] 153
6.11.3. [Dmarked 154
6.11.4. [oTerieve-market 154

7. Formatting Properties 156

W3C Working Draft



viii

7.1. DEescription of Property Groups

Extensible Stylesheet Language (XSL) (xsl-20001018)

XS Areas and 1he (CSS BoX Model

7.3. Common AccesSibility Properties

7.3.1. [Source-dociment’

7.3.2. [I0E]

7.4. Common ADSolute Position Properti

7.4.1. [absoluie-position]

7.4.2.[ToD]
7.4.3,

7.4.4.

7.4.5. 01

7.5. Common Aural Properties

7.5.1. CazZimiin

7.5.2. [Cleater

7.5.3.

754.

755.

7.5.6.
75.7.

7.58.

759,

7.5.10. [TIchnessT

7.5.11. [SEK]

7512

7.5.13. [Speak-numera’]
7.5.14. [ Speak-punciuation]

7515,

7.5.16. [STES]

7.5.17.

7.5.18. vOImeT

7.6. Common BOrder, INg, and Backgroun

opert

7.6.1. [background-attachment ]

7.6.2. [background-color’]

7.6.3. [hackground-image |

7.6.4. [background-repeat’]

7.6.5. [background-position-horizonta ]

7.6.6.T bacquouna-posflo_t_al"’]n-ver IC

7.6.7.

7.6.8. m_mrﬂor er-DEfOre-Styl€

7.6.9. [harder-heforeswidinT

7.6.10. [horder-arter-cotor

7.6.11. [border-aiter-syle]

W3C Working Draft

156
158

159
159
159

160
160
161
162
162
162

163
163
164
164
164
165
165
165
166
166
166
167
167
167
168
168
168
168
169

169
169
170
170
171
172
173
174
174
174
175
175



Extensible Stylesheet L anguage (XSL) (xsl-20001018) iX

1.7

7.8.

7.6.12. [horder-affer-widin’] 176
7.6.13. [harder-Sart-color] 176
7.6.14. [border-Start-sty €] 177
7.6.15. [horder-garn-widin'g 177
7.6.16. [harder-end-color 177
7.6.17.[border-end-styl€] 178
7.6.18. [horder-end-widin’] 178
7.6.19. [border-top-color’] 178
7.6.20. [border-top-stiyl€e] 179
7.6.21. [border-top-widin] 180
7.6.22. [horder-_offom-color 181
7.6.23. [horder-boom-siyTe 181
7.6.24. fhorder-horfom-wWidr] 181
7.6.25. 182
7.6.26. [horder-1gt-styl€] 182
7.6.27. [horder-Ta-wWidin' 183
7.6.28. [border-right-color’] 183
7.6.29. [border-right-style] 183
7.6.30. [border-rignt-widin’] 184
7.6.31. [padding-before] 184
7.6.32. 185
7.6.33. 185
7.6.34. 186
7.6.35. 186
7.6.36. [padding-botionT] 186
7.6.37. 187
7.6.38. 187
[Common Font Properties 187
7.7.1. EonISand Font Darg 187
7.7.2. 190
7.7.3. [Toni-Selection-siraieqy’| 191
7.7.4. 192
7.7.5. 103
7.7.6. [Toni-Size-ad|us(] 195
7.7.7. 196
7.7.8. [(Iont-varant’] 197
7.7.9. 197
[Common Hyphenaiion Properties 199
7.8.1. 199
7.8.2. 199
7.8.3. 200
7.8.4. 201

W3C Working Draft



X Extensible Stylesheet Language (XSL) (xsl-20001018)

7.8.5. [hyphenation-characier] 201
7.8.6. [hyphenalion-push-character-count | 201
7.8.7. [hyphenation-remain-character-count | 202
7.9. Common Margin Properties-BIocK 202
7.9.1. [margin-iop’] 202
7.9.2. [Margin-botom’] 203
7.9.3. [margin-1eit] 204
7.9.4. [margin-right’] 205
7.9.5. [Space-berore] 205
7.9.6. [Space-aiier] 206
7.9.7. [SAM-Indent” 206
7.9.8. Cend-indent’] 207
7.10. Common Margin Properties-Tning 207
7.10.1. [Spaceend] 207
7.10.2. [SpaceSart] 208
7.11. Erea Alignment Propert 208
7.11.1. [alignment-ad|ust’] 216
7.11.2. [aighment-basaing] 219
7.11.3. [(hasAne-shiiT] 220
7.11.4. [display-align] 222
7.11.5. COomMinani-Daseline] 223
7.11.6.[TElaive-aion] 224
7.12. RreaDimension Propertiey 225
7.12.1. [block-progression-dimension 225
7.12.2. [content-helghnt’] 227
7.12.3. CConfent-Widii] 228
7.12.4. [hegnt] 228
7.12.5. [Tniline-progression-dimension’ 229
7.12.6. [max-height’] 231
7.12.7. (MaxX=wWidii] 230
7.12.8. [min-height’] 232
7.12.9. DMin-widin? 233
7.12.10. [scaing] 233
7.12.11. [Scaing-method] 234
7.12.12. Cidin 234
7.13. BIocK and Cine-r TOpErT 235
7.13.1. [hyphenation-Keep'] 235
7.13.2. [hyphenation-ladder-count | 236
7.13.3. [as=lne-end-Iindent’] 236
7.13.4. [Tine-height’] 237
7.13.5. [Tine-helght-shiT-agdjustiment | 238
7.13.6. [Tine-Stacking-sirateqy’] 239

W3C Working Draft



Extensible Stylesheet L anguage (XSL) (xsl-20001018) Xi

7.13.7. inefeed-Treaiment’] 240
7.13.8. [SpaceTlreaiment | 240
7.13.9. 241
7.13.10. 243
7.13.11. 244
7.13.12. [white-Space-collapse] 245
7.13.13. 245
7.14. Character Properties 246
7.14.1. 246
7.14.2. 246
7.14.3. [SUppress-a-line-break’] 248
7.14.4. eXT-0ecoranon’] 248
7.14.5. 250
7.14.6. [ext-iransiormm’] 250
7.14.7. [Treal-aSWord-space] 251
7.14.8. 252
7.15. Color-relaied Properties 253
7.15.1. [Ccalor 253
7.15.2. [ Color-profife-name] 254
7.15.3. [Tendering-intent 254
7.16. Floa-related Properties 255
7.16.1. [clear 255
7.16.2. 257
7.17. Keeps and Breaks Properties 259
7.17.1. 259
7.17.2. [hreak=Nefore] 260
7.17.3. 261
7.17.4. [Keep-with-next] 262
7.17.5. [Keep-with-previous’] 262
7.17.6. 263
7.17.7. 264
7.18. Cayout-relaied Properties 264
7.18.1. 264
7.18.2. CoverdTon] 265
7.18.3. [Teference-orientarion’] 266
7.18.4. [Teallve-position’] 267
7.18.5. [Span] 268
7.19. Ceader and Rule Properties 268
7.19.1. [Teader-alignment ] 268
7.19.2. 269
7.19.3. [Teader-paitern-widin’ 270

W3C Working Draft



Xii Extensible Stylesheet Language (XSL) (xsl-20001018)

7.19.4. 270
7.19.5. 271
7.19.6. [T ThicknesS] 279
7.20. Propertiestor Dynamic Effects Formaiting Objec 272
7.20.1. 272
7.20.2. Cao-resore] 273
7.20.3. 273
7.20.4. [CaseTiie] 274
7.20.5. [deslination-placement-of 1set 274
7.20.6. [external-deSinaion’ 275
7.20.7. Ondicate-gedinaiion’ 275
7.20.8. [nfemal-desinaion’] 276
7.20.9. [Show=-desinaron’ 276
7.20.10. 276
7.20.11. 277
7.20.12. [Target-presentaiion-Context | 278
7.20.13. [Target-processing-CoNntext | 279
7.20.14. [Targer-styTesheer] 279
7.21. Properfiestor Markersg 280
7.21.1. 280
7.21.2. 280
7.21.3.[Telrieve-postion’] 281
7.21.4. [Teneve-boundary’] 282
7.22. PropertiesTor Number 10 String Conversio 282
7.22.1. 282
7.22.2. [grouping-Separaior | 283
7.22.3. 283
7.22.4. 283
7.23. Paginaiion and Layout Properties 283
7.23.1. [hIANK-0r-NOF-NIank] 284
7.23.2. [colimn-connt] 284
7.23.3. 285
7.23.4. 285
7.23.5. dIOW-Name 285
7.23.6. [Torce-page-count’] 286
7.23.7. [Tnitial-page-number’] 287
7.23.8. [Mader-name’] 288
7.23.9. [MaxXimum-Tepeas | 289
7.23.10. [odd-or-even’ 289
7.23.11. 290
7.23.12. 291
7.23.13. 291

W3C Working Draft



Extensible Stylesheet L anguage (XSL) (xsl-20001018) Xiii

7.23.14. [precedence] 292
7.23.15. [Tegion-name] 292
7.24. [Table Properties 294
7.24.1. [border-aiter-precedence] 294
7.24.2. [border-before-precedence’] 294
7.24.3. [border-collapse] 294
7.24.4. [border-end-precedence] 295
7.24.5. [Dorder-separation’] 295
7.24.6. [border-start-precedence ] 296
7.24.7. [caption-Side] 296
7.24.8. [comn-nomber 297
7.24.9. [collmn-widin’] 208
7.24.10. [empiy-cels] 298
7.24.11. Cendsrow 299
7.24.12. [nUmMber-columns-repeaied’] 299
7.24.13. [number-columns-spanned’] 300
7.24.14. [number-rows-spanned’] 300
7.24.15. [Saisrow] 301
7.24.16. [Table-Tayour] 301
7.24.17. danle-omit-Toofer-ai-hreak’] 302
7.24.18. [Tahle-omit-header-ar-hreak 'l 302
7.25. pNTiTing-mode-relaied Propertiey 302
7.25.1. [direciion’ 307
7.25.2. [Tont-heighi-override-aiter 308
7.25.3. [Tont-helght-override-berore] 309
7.25.4. [glyph-orientation-norizomn 309
7.25.5. [glyph-orientation-vertica’] 310
7.25.6. Inicode-hidiT 311
7.25.7. [Writing-mode] 312
7.26. MIiscellaneous Properties 314
7.26.1. [content-iype] 314
7.26.2. COd1 315
7.26.3. [provisiona-label-separaiion | 315
7.26.4. [provisSiona-distance-between-Stars| 316
7.26.5. [Ie=1d7] 316
7.26.6. [[SCore-Spaces] 317
7.26.7.[S] 317
7.26.8. [VISIDITTY] 318
7.26.9. [Z2IndexT] 318
7.27. [Bhorthand Propertied 319
7.27.1. [background’] 319
7.27.2. [hackground-position’] 320

W3C Working Draft



Xiv Extensible Stylesheet Language (XSL) (xsl-20001018)

7.27.3.

7.27.4. Fhorder-hottony’]

7.27.5.

7.27.6.

7217.

7.27.8.

7.27.9. [border-spacing |

7.27.10.

7.27.11. [horder-widin'

7.27.12. [

7.27.13.

7.27.14.

7.27.15.

7.27.16. [page-break-aiter’)

7.27.17. [page-break-before]

7.27.18. [page-break-inside|

7.27.19.

7.27.20.

7.27.21. [SZ€]

72122

1.21.23.

7.27.24.

8. Conformanca

Appendices

A. [OIenationalization

A.l. Rddifiona " writing-mode__vaues

B. Formatting Object summaryj

B.1. Declaration and Pagination and Layout Formatting Objecty
B.2. BTocK Formatiing Obj ectg

B.3. [Nline Formatting Objects

B.4. [Table Formaiiing Objecis

B.5. CiSt Formatting Object3

INK an ultir Form

B.7. [Out-of -line Formatting Objects

B.8. [Other Formatting ODbjects

C.Property Summary

C.1. EXplanaiion of Trat Mapping Vaues

C.2. Property Table Part ||

W3C Working Draft

322
323
323
324
324
325
325
326
326
327
327
328
329
329
331
332
333
333
335
336
339
340

341

342
342

345
346
346
347
347
347
347

348
348
349



Extensible Stylesheet L anguage (XSL) (xsl-20001018) XV

C.3. |Property Table: Part 1] 360
D. Beerenced 373
D.1. Normanve Beterenced 373
D.2. Diher References 375
E. Properiy Tndeq 376
F. Acknowledgements (Non-Normative) 383

W3C Working Draft



XVi Extensible Stylesheet Language (XSL) (xsl-20001018)

This pageisintentionally |eft blank.

W3C Working Draft



Extensible Stylesheet L anguage (XSL) (xsl-20001018) Page 1 of 384

1. Introduction and Overview

This specification defines the Extensible Stylesheet Language (XSL). XSL is alanguage for expressing
stylesheets. Given a class of arbitrarily structured XML [EAZZCXMTI] documents or data files, designers
use an XSL stylesheet to express their intentions about how that structured content should be presented;
that is, how the source content should be styled, laid out, and paginated onto some presentation medium,
such as awindow in a Web browser or a hand-held device, or a set of physical pagesin acatalog, report,
pamphlet, or book.

1.1. Processing a Stylesheet

An XSL stylesheet processor accepts a document or datain XML and an XSL stylesheet and produces
the presentation of that XML source content that was intended by the designer of that stylesheet. There
are two aspects of this presentation process: first, constructing a result tree from the XML source tree
and second, interpreting the result tree to produce formatted results suitable for presentation on a
display, on paper, in speech, or onto other media. The first aspect is called tree transformation and the
second is called formatting. The process of formatting is performed by the formatter. This formatter
may simply be arendering engine inside a browser.

Tree transformation allows the structure of the result tree to be significantly different from the structure
of the source tree. For example, one could add a table-of-contents as a filtered selection of an original
source document, or one could rearrange source data into a sorted tabular presentation. In constructing
the result tree, the tree transformation process also adds the information necessary to format that result
tree.

Formatting is enabled by including formatting semantics in the result tree. Formatting semantics are
expressed in terms of a catalog of classes of formatting objects. The nodes of the result tree are
formatting objects. The classes of formatting objects denote typographic abstractions such as page,
paragraph, table, and so forth. Finer control over the presentation of these abstractions is provided by a
set of formatting properties, such as those controlling indents, word- and letter-spacing, and widow,
orphan, and hyphenation control. In XSL, the classes of formatting objects and formatting properties
provide the vocabulary for expressing presentation intent.

The XSL processing model is intended to be conceptua only. An implementation is not mandated to
provide these as separate processes. Furthermore, implementations are free to process the source
document in any way that produces the same result as if it were processed using the conceptual XSL
processing model. A diagram depicting the detailed conceptual model is shown below.

XSL Two Processes: Transformation & Formatting

-

XSL Transfor XSL Fermatteri}
—» — ﬁ

Result Tree
Source Tree {element and attribute nodes)

Result XML tree is the result of XSLT
processing.

W3C Working Draft



Page 2 of 384 Extensible Stylesheet Language (XSL) (xsl-20001018)

1.1.1. Tree Transformations

Tree transformation constructs the result tree. In XSL, this tree is called the element and attribute tree,
with objects primarily in the "formatting object” namespace. In this tree, a formatting object is
represented as an XML element, with the properties represented by a set of XML attribute-value pairs.
The content of the formatting object is the content of the XML element. Tree transformation is defined
in the XSLT Recommendation [KS]. A diagram depicting this conceptual process is shown below.

Transform to Another Vocabulary

With tree transformation, the structure of the
result tree can be quite different from the

structure of the source tree

XSL Transform
(XSLT)
—_—

Source Result Tree
Tree (element and attribute
nodes)

In constructing the result tree, the source tree
can be filtered and reordered, and arbitrary

structure and generated content can be added.

The XSL stylesheet is used in tree transformation. A stylesheet contains a set of tree construction rules.
The tree construction rules have two parts: a pattern that is matched against elements in the source tree
and a template that constructs a portion of the result tree. This allows a stylesheet to be applicable to a
wide class of documents that have similar source tree structures.

In some implementations of XSL/XSLT, the result of tree construction can be output as an XML
document. This would allow an XML document which contains formatting objects and formatting
properties to be output. This capability is neither necessary for an XSL processor nor is it encouraged.
There are, however, cases where this is important, such as a server preparing input for a known client;
for example, the way that a WAP (Rp//WwWw.Wapiorum.org/Tagsindex.ning) server prepares
specidized input for a WAP capable hand held device. To preserve accessibility, designers of Web
systems should not develop architectures that require (or use) the transmission of documents containing
formatting objects and properties unless either the transmitter knows that the client can accept
formatting objects and properties or the transmitted document contains a reference to the source
document(s) used in the construction of the document with the formatting objects and properties.

1.1.2. Formatting

Formatting interprets the result tree in its formatting object tree form to produce the presentation
intended by the designer of the stylesheet from which the XML element and attribute tree in the "fo"
namespace was constructed.

The vocabulary of formatting objects supported by XSL - the set of f 0: element types - represents the
set of typographic abstractions available to the designer. Semantically, each formatting object represents
a specification for a part of the pagination, layout, and styling information that will be applied to the
content of that formatting object as a result of formatting the whole result tree. Each formatting object

W3C Working Draft


http://www.wapforum.org/faqs/index.htm

Extensible Stylesheet L anguage (XSL) (xsl-20001018) Page 3 of 384

class represents a particular kind of formatting behavior. For example, the block formatting object class
represents the breaking of the content of a paragraph into lines. Other parts of the specification may
come from other formatting objects; for example, the formatting of a paragraph (block formatting
object) depends on both the specification of properties on the block formatting object and the
specification of the layout structure into which the block is placed by the formatter.

The properties associated with an instance of a formatting object control the formatting of that object.
Some of the properties, for example "color", directly specify the formatted result. Other properties, for
example 'space-before', only constrain the set of possible formatted results without specifying any
particular formatted result. The formatter may make choices among other possible considerations such
as esthetics.

Formatting consists of the generation of a tree of geometric areas, called the area tree. The geometric
areas are positioned on a sequence of one or more pages (a browser typically uses a single page). Each
geometric area has a position on the page, a specification of what to display in that area and may have a
background, padding, and borders. For example, formatting a single character generates an area
sufficiently large enough to hold the glyph that is used to present the character visually and the glyph is
what is displayed in this area. These areas may be nested. For example, the glyph may be positioned
within aline, within a block, within a page.

Rendering takes the area tree, the abstract model of the presentation (in terms of pages and their
collections of areas), and causes a presentation to appear on the relevant medium, such as a browser
window on a computer display screen or sheets of paper. The semantics of rendering are not described
in detail in this specification.

The first step in formatting is to "objectify" the element and attribute tree obtained via an XSLT
transformation. Objectifying the tree basically consists of turning the elements in the tree into
formatting object nodes and the attributes into property specifications. The result of this step is the
formatting object tree.

Build the XSL Formatting Object Tree

The XSLFO tree is processed: characters are converted to
character FOs and compound properties are built.

XSL Formatting
Objectify
Result XML Tree in the
“fo” name space
{element and attribute XSL formatting
nodes) objects/properties

Some of the properties, for example "color",
directly specify the formatted result.

Other properties, for example "sp. N
only constrain the set of possible formatted
results without specifying any particular
formatted result.

As part of the step of objectifying, the characters that occur in the result tree are replaced by fo:character
nodes. Characters in text nodes which consist solely of whitespace characters and which are children of
elements whose corresponding formatting objects do not permit fo:character nodes as children are
ignored. Other characters within elements whose corresponding formatting objects do not permit

W3C Working Draft



Page 4 of 384 Extensible Stylesheet Language (XSL) (xsl-20001018)

fo:character nodes as children are errors.

The content of the fo:instream-foreign-object is not objectified; instead the object representing the
fo:instream-foreign-object element points to the appropriate node in the element and attribute tree.
Similarly any non-XSL namespace child element of fo:declarations is not objectified; instead the object
representing the fo:declarations element points to the appropriate node in the element and attribute tree.

The second phase in formatting is to refine the formatting object tree to produce the refined formatting
object tree. The refinement process handles the mapping from properties to traits. This consists of: (1)
shorthand expansion into individual properties, (2) mapping of corresponding properties, (3)
determining computed values (may include expression evaluation), and (4) inheritance. Details on
refinement are found in B5 — Property Refinement / Resolutior] on page 37.

The refinement step is depicted in the diagram below.
Refine the Formatting Object Tree

The XSL formatting object tree is refined in an
iterative fashion.

XSL Formatting
Refinement

e

XSL formatting XSL formatting
objects/properties objects/traits

Property inheritance is resolved, computed
values are processed, expressions are evaluated,

and duplicate corresponding properties are
removed.

Thethird step in formatting is the construction of the areatree. The areatree is generated as described in
the semantics of each formatting object. The traits applicable to each formatting object class control
how the areas are generated. Although every formatting property may be specified on every formatting
object, for each formatting object class, only a subset of the formatting properties are used to determine
the traits for objects of that class.

Area generation is depicted in the diagram below.

W3C Working Draft



Extensible Stylesheet L anguage (XSL) (xsl-20001018) Page 5 of 384

Generate the Area Tree

The last part of formatting describes the generation

of a tree of geometric areas. These areas are
positioned on a sequence of one or more pages.

- 4
XSL Formatti :
{Area Tree " 1=
Generation) /
Emm—
—

XSL formatting XSL areas
objectsitraits rendering traits

Each geometric area has a position on
the page, a specification of what to display

in that area and may have a background,
padding, and borders.

Summary of the Process

Formating " Fomatting ™
Object / Object ! \

fo:block I\ fo:block /I

Element

fo:block

abjectify refinement

Altributes Properties / Traits "““\\
start-indent="2em’ starl-indent="Zem’ [ startindent="dopt’ |
font-size="20pt" font-size='20pt" ‘\font-size#zo;x' /

S __,.--/
Area
block-area
area generation
-

-

Traits

start-indent="40pt’
Tont-size="20pt’

1.2. Benefits of XSL

Unlike the case of HTML, element names in XML have no intrinsic presentation semantics. Absent a
stylesheet, a processor could not possibly know how to render the content of an XML document other
than as an undifferentiated string of characters. XSL provides a comprehensive model and a vocabulary
for writing such stylesheets using XML syntax.

This document is intended for implementors of such XSL processors. Although it can be used as a
reference manual for writers of XSL style sheets, it is not tutorial in nature.

XSL builds on the prior work on Cascading Style Sheets [[CSS3] and the Document Style Semantics and
Specification Language [DSS=0). While many of XSL's formatting objects and properties correspond
to the common set of properties, this would not be sufficient by itself to accomplish al the goals of

W3C Working Draft



Page 6 of 384 Extensible Stylesheet Language (XSL) (xsl-20001018)

XSL. In particular, XSL introduces a model for pagination and layout that extends what is currently
available and that can in turn be extended, in a straightforward way, to page structures beyond the
simple page models described in this specification.

1.2.1. Paging and Scrolling

Doing both scrollable document windows and pagination introduces new complexities to the styling
(and pagination) of XML content. Because pagination introduces arbitrary boundaries (pages or regions
on pages) on the content, concepts such as the control of spacing at page, region, and block boundaries
become extremely important. There are also concepts related to adjusting the spaces between lines (to
adjust the page vertically) and between words and letters (to justify the lines of text). These do not
aways arise with simple scrollable document windows, such as those found in today's browsers.
However, there is a correspondence between a page with multiple regions, such as a body, header,
footer, and left and right sidebars, and a Web presentation using "frames'. The distribution of content
into the regionsis basically the same in both cases, and X SL handles both cases in an analogous fashion.

XSL was developed to give designers control over the features needed when documents are paginated as
well as to provide an equivalent "frame" based structure for browsing on the Web. To achieve this
control, XSL has extended the set of formatting objects and formatting properties. In addition, the
selection of XML source components that can be styled (elements, attributes, text nodes, comments, and
processing instructions) is based on XSLT and XPath, thus providing the user with an extremely
powerful selection mechanism.

The design of the formatting objects and properties extensions was first inspired by DSSSL. The actual
extensions, however, do not always ook like the DSSSL constructs on which they were based. To either
conform more closely with the CSS2 specification or to handle cases more simply than in DSSSL, some
extensions have diverged from DSSSL.

There are several ways in which extensions were made. In some cases, it sufficed to add new values, as
in the case of those added to reflect a variety of writing-modes, such as top-to-bottom and
bottom-to-top, rather than just left-to-right and right-to-left.

In other cases, common properties that are expressed in CSS2 as one property with multiple
simultaneous values, are split into several new properties to provide independent control over
independent aspects of the property. For example, the "white-space" property was split into four
properties:. a "space-treatment" property that controls how white-space is processed, a
"linefeed-treatment” property that controls how line-feeds are processed, a "white-space-collapse”
property that controls how multiple consecutive spaces are collapsed, and a "wrap-option” property that
controls whether lines are automatically wrapped when they encounter a boundary, such as the edge of a
column. The effect of splitting a property into two or more (sub-)properties is to make the equivalent
existing CSS2 property a "shorthand" for the set of sub-propertiesit subsumes.

In still other cases, it was necessary to create new properties. For example, there are a number of new
properties that control how hyphenation is done. These include identifying the script and country the
text isfrom as well as such properties as "hyphenation-character" (which varies from script to script).

Some of the formatting objects and many of the properties in XSL come from the CSS2 specification,
ensuring compatibility between the two.

There are four classes of XSL properties that can be identified as:
1. CSS properties by copy (unchanged from their CSS2 semantics)
2. CSS properties with extended values

W3C Working Draft



Extensible Stylesheet L anguage (XSL) (xsl-20001018) Page 7 of 384

3. CSS properties broken apart and/or extended
4. XSL-only properties

1.2.2. Selectorsand Tree Construction

As mentioned above, XSL uses XSLT and XPath for tree construction and pattern selection, thus
providing a high degree of control over how portions of the source content are presented, and what
properties are associated with those content portions, even where mixed namespaces are involved.

For example, the patterns of XPath alow the selection of a portion of a string or the Nth text node in a
paragraph. This allows users to have arule that makes all third paragraphs in procedural steps appear in
bold, for instance. In addition, properties can be associated with a content portion based on the numeric
value of that content portion or attributes on the containing element. This allows one to have a style rule
that makes negative values appear in "red" and positive values appear in "black". Also, text can be
generated depending on a particular context in the source tree, or portions of the source tree may be
presented multiple times with different styles.

1.2.3. An Extended Page L ayout M odel

There is a set of formatting objects in XSL to describe both the layout structure of a page or "frame"
(how big is the body; are there multiple columns; are there headers, footers, or sidebars; how big are
these) and the rules by which the XML source content is placed into these "containers”.

The layout structure is defined in terms of one or more instances of a "simple-page-master" formatting
object. This formatting object allows one to define independently filled regions for the body (with
multiple columns), a header, afooter, and sidebars on a page. These simple-page-masters can be used in
page sequences that specify in which order the various simple-page-masters shall be used. The page
sequence also specifies how styled content is to fill those pages. This model alows one to specify a
sequence of simple-page-masters for a book chapter where the page instances are automatically
generated by the formatter or an explicit sequence of pages such as used in a magazine layout. Styled
content is assighed to the various regions on a page by associating the name of the region with names
attached to styled content in the result tree.

In addition to these layout formatting objects and properties, there are properties designed to provide the
level of control over formatting that is typical of paginated documents. This includes control over
hyphenation, and expanding the control over text that is kept with other text in the same line, column, or
on the same page.

1.2.4. A Comprehensive Area M odel

The extension of the properties and formatting objects, particularly in the area on control over the
spacing of blocks, lines, and page regions and within lines, necessitated an extension of the CSS2 box
formatting model. This extended model is described in B4 = Atrea Model on page 12 of this
specification. The CSS2 box model is a subset of this model. See the mapping of the CSS2 box model
terminology to the XSL Area Model terminology in B 7-Z—XSL _Areas and ihe CSS Box Mode] on page
158. The area model provides a vocabulary for describing the relationships and space-adjustment
between letters, words, lines, and blocks.

1.2.5. Internationalization and Writing-M odes

There are some scripts, in particular in the Far East, that are typically set with words proceeding from
top-to-bottom and lines proceeding either from right-to-left (most common) or from left-to-right. Other

W3C Working Draft



Page 8 of 384 Extensible Stylesheet Language (XSL) (xsl-20001018)

directions are also used. Properties expressed in terms of afixed, absolute frame of reference (using top,
bottom, left, and right) and which apply only to a notion of words proceeding from left to right or right
to left do not generalize well to text written in those scripts.

For this reason XSL (and before it DSSSL) uses a relative frame of reference for the formatting object
and property descriptions. Just as the CSS2 frame of reference has four directions (top, bottom, left and
right), so does the XSL relative frame of reference have four directions (before, after, start, and end), but
these are relative to the "writing-mode". The "writing-mode" property is a way of controlling the
directions needed by a formatter to correctly place glyphs, words, lines, blocks, etc. on the page or
screen. The "writing-mode" expresses the basic directions noted above. There are writing-modes for
"left-to-right - top-to-bottom" (denoted as "Ir-th"), "right-to-left - top-to-bottom" (denoted as "rl-tb"),
"top-to-bottom - right-to-left" (denoted as "th-rl") and more. See B 7.25.7 — " Writing-mod€] on page 312
for the description of the "writing-mode" property. Typicaly, the writing-mode value specifies two
directions: the first is the inline-progression-direction which determines the direction in which words
will be placed and the second is the block-progression-direction which determines the direction in which
blocks (and lines) are placed one after another. In addition, the inline-progression-direction for a
sequence of characters may be implicitly determined using bidirectional character types for those
characters from the Unicode Character Database [INICODE Characier Daiabasd] for those characters

and the Unicode Bidi Algorithm [ONICODE TRY|.

Besides the directions that are explicit in the name of the value of the "writing-mode" property, the
writing-mode determines other directions needed by the formatter, such as the shift-direction (used for
sub- and super-scripts), etc.

1.2.6. Linking

Because XML, unlike HTML, has no built-in semantics, there is no built-in notion of a hypertext link.
In this context, "link" refers to "hypertext link" as defined in
pp77wWww.w3.org/ TR/IMmMIZuT/Srucylinks.nimi#n-12.]] as well as some of the aspects of "link" as

defined in pR7WWW.W3.org/ TRIXIINK/ANTG, where "link is a relationship between two or more
resources or portions of resources, made explicit by an XLink linking element”. Therefore, XSL has a
formatting object that expresses the dual semantics of formatting the content of the link reference and
the semantics of following the link.

NOTE: During the CR period the XSL WG and Linking WG will jointly develop additional examples and
guidance on how to use these formatting objects given XPointer and XLink XML source.

XSL provides afew mechanisms for changing the presentation of alink target that is being visited. One
of these mechanisms permits indicating the link target as such; another alows for control over the
placement of the link target in the viewing area; still another permits some degree of control over the
way thelink target is displayed in relationship to the originating link anchor.

XSL aso provides a genera mechanism for changing the way elements are formatted depending on
their active state. This is particularly useful in relation to links, to indicate whether a given link
reference has already been visited, or to apply a given style depending on whether the mouse, for
instance, is hovering over the link reference or not.

W3C Working Draft


http://www.w3.org/TR/html401/struct/links.html#h-12.1
http://www.w3.org/TR/xlink/#intro

Extensible Stylesheet L anguage (XSL) (xsl-20001018) Page 9 of 384

2. Introduction to XSL Transfor mation

2.1. Tree Construction
The Tree Construction is described in "X SL Transformations" [XS[I].

The provisions in "XSL Transformations’ form an integral part of this recommendation and are
considered normative.

2.2. XSL Namespace
The XSL namespace hasthe URI ht t p: / / wwww. W3. or g/ 1999/ XSL/ For nmat .

NOTE: The 1999 in the URI indicates the year in which the URI was alocated by the W3C. It does not indicate
the version of XSL being used.

XSL processors must use the XML namespaces mechanism [M3C_ XTI _Names] to recoghize elements
and attributes from this namespace. Elements from the XSL namespace are recoghized only in the
stylesheet, not in the source document. Implementors must not extend the XSL namespace with
additional elements or attributes. Instead, any extension must be in a separate namespace.

This specification uses the prefix f o: for referring to elements in the XSL namespace. However, XSL
stylesheets are free to use any prefix, provided that there is a namespace declaration that binds the prefix
to the URI of the XSL namespace.

An element from the XSL namespace may have any attribute not from the XSL namespace, provided
that the expanded-name of the attribute has a non-null namespace URI. The presence of such attributes
must not change the behavior of XSL elements and functions defined in this document. Thus, an XSL
processor is aways free to ignore such attributes, and must ignore such attributes without giving an
error if it does not recognize the namespace URI. Such attributes can provide, for example, unique
identifiers, optimization hints, or documentation.

It is an error for an element from the X SL namespace to have attributes with expanded-names that have
null namespace URIs (i.e., attributes with unprefixed names) other than attributes defined for the
element in this document.

NOTE: The conventions used for the names of XSL elements, attributes, and functions are as follows: names are
all lowercase, hyphens are used to separate words, dots are used to separate names for the components of complex
datatypes, and abbreviations are used only if they aready appear in the syntax of arelated language such as XML
or HTML.

3. Introduction to Formatting

The aim of this section is to describe the general process of formatting, enough to read the area model
and the formatting object descriptions and properties and to understand the process of refinement.

Formatting is the process of turning the result of an XSL transformation into a tangible form for the
reader or listener. This process comprises severa steps, some of which depend on others in a
non-sequential way. Our model for formatting will be the construction of an area tree, which is an

W3C Working Draft



Page 10 of 384 Extensible Stylesheet Language (XSL) (xsl-20001018)

ordered tree containing geometric information for the placement of every glyph, shape, and image in the
document, together with information embodying spacing constraints and other rendering information;
this information is referred to under the rubric of traits, which are to areas what properties are to
formatting objects and attributes are to XML elements. 4 — Atea Model on page 12 will describe the
area tree and define the default placement-constraints on stacked areas. However, this is an abstract
model which need not be actually implemented in this way in a formatter, so long as the resulting
tangible form obeys the implied constraints. Constraints might conflict to the point where it is
impossible to satisfy them all. In that case, it is implementation-defined which constraints should be
relaxed and in what order to satisfy the others.

Formatting objects are elements in the formatting object tree, whose names are from the XSL
namespace; a formatting object belongs to a class of formatting objects identified by its element name.
The formatting behavior of each class of formatting objects is described in terms of what areas are
created by aformatting object of that class, how the traits of the areas are established, and how the areas
are structured hierarchically with respect to areas created by other formatting objects. B 6 — Formaiting
on page 62 and B 7 — Formaiting Properiied on page 156 describe formatting objects and their
properties.

Some formatting objects are block-level and others are inline-level. This refers to the types of areas
which they generate, which in turn refer to their default placement method. Inline-areas (for example,
glyph-areas) are collected into lines and the direction in which they are stacked is the
inline-progression-direction. Lines are a type of block-area and these are stacked in a direction
perpendicular to the inline-progression-direction, called the block-progression-direction. See
on page 12 for detailed decriptions of these area types and directions.

In Western writing systems, the block-progression-direction is "top-to-bottom"™ and the
inline-progression-direction is "left-to-right”. This specification treats other writing systems as well and
introduces the terms "block" and "inline" instead of using absolute indicators like "vertica" and
"horizontal". Similarly this specification tries to give relatively-specified directions ("before" and "after”
in the block-progression-direction, "start" and "end" in the inline-progression-direction) where
appropriate, either in addition to or in place of absolutely-specified directions such as "top", "bottom",

"left", and "right". These are interpreted according to the value of the writing-mode property.

Central to this model of formatting is refinement. This is a computational process which finalizes the
specification of properties based on the attribute values in the XML result tree. Though the XML result
tree and the formatting object tree have very similar structure, it is helpful to think of them as separate
conceptual entities. Refinement involves

e propagating the various inherited values of properties (both implicitly and those with an attribute
value of "inherit"),

e evaluating expressions in property value specifications into actual values, which are then used to
determine the value of the properties,

e converting relative numerics to absolute numerics,
e constructing some composite properties from more than one attribute

Some of these operations (particularly evaluating expressions) depend on knowledge of the area tree.
Thus refinement is not necessarily a straightforward, sequential procedure, but may involve look-ahead,
back-tracking, or control-splicing with other processes in the formatter. Refinement is described more
fully in 5 = Property Relinement / Resolutior] on page 37.

To summarize, formatting proceeds by constructing an area tree (containing areas and their traits) which

W3C Working Draft



Extensible Stylesheet L anguage (XSL) (xsl-20001018) Page 11 of 384

satisfies constraints based on information contained in the XML result tree (containing element nodes
and their attributes). Conceptually, there are intermediate steps of constructing a formatting object tree
(containing formatting objects and their properties) and refinement; these steps may proceed in an
interleaved fashion during the construction of the areatree.

3.1. Conceptual Procedure

This subsection contains a conceptual description of how formatting could work. This conceptual
procedure does not mandate any particular algorithms or data structures as long as the result obeys the
implied constraints.

The procedure works by processing formatting objects. Each abject, while being processed, may initiate
processing in other objects. While the objects are hierarchically structured, the processing is not;
processing of a given object is rather like a co-routine which may pass control to other processes, but
pick up again later where it left off. The procedure starts by initiating the processing of the fo:root
formatting object.

Unless otherwise specified, processing a formatting object creates areas and returns them to its parent to
be placed in the area tree. Like a co-routine, it resumes control later and initiates formatting of its own
children (if any), or some subset of them. The formatting object supplies parameters to its children
based on the traits of areas aready in the areatree, possibly including areas generated by the formatting
object or its ancestors. It then disposes of the areas returned by its formatting object children. It might
simply return such an area to its parent (and will always do this if it does not generate areas itself), or
aternatively it might arrange the area in the area tree according to the semantics of the formatting
object; this may involve changing its geometric position. It terminates processing when al its children
have terminated processing (if initiated) and it is finished generating areas.

Some formatting objects do not themselves generate areas; instead these formatting objects simply
return the areas returned to them by their children. Alternatively, a formatting object may continue to
generate (and return) areas based on information discovered while formatting its own children; for
example, the fo:page-sequence formatting object will continue generating pages as long as it contains a
flow with unprocessed descendants.

Areas returned to an fo:root formatting object are page-viewport-areas, and are simply placed as
children of the areatree root in the order in which they are returned, with no geometrical implications.

As a general rule, the order of the area tree paralels the order of the formatting object tree. That is, if
one formatting object precedes another in the depth-first traversal of the formatting object tree, with
neither containing the other, then all the areas generated by the first will precede all the areas generated
by the second in the depth-first traversal of the area tree, unless otherwise specified. Typica exceptions
to this rule would be things like side floats, before floats, and footnotes.

At the end of the procedure, the areas and their traits have been constructed, and they are required to
satisfy constraints described in the definitions of their associated formatting objects, and in the area
model section. In particular, size and position of the areas will be subject to the placement and spacing
constraints described in the area model, unless the formatting object definition indicates otherwise.

The formatting object definitions, property descriptions, and area model are not algorithms. Thus, the
formatting object semantics do not specify how the line-breaking algorithm must work in collecting
characters into words, positioning words within lines, shifting lines within a container, etc. Rather this
specification assumes that the formatter has done these things and describes the constraints which the
result is supposed to satisfy.

W3C Working Draft



Page 12 of 384 Extensible Stylesheet Language (XSL) (xsl-20001018)

4. Area M odel

In XSL, one creates a tree of formatting objects that serve as inputs or specifications to a formatter. The
formatter generates a hierarchical arrangement of areas which comprise the formatted result. This
section defines the general model of areas and how they interact. The purpose is to present an abstract
framework which is used in describing the semantics of formatting objects. It should be seen as
describing a series of constraints for conforming implementations, and not as prescribing particular
algorithms.

4.1. Introduction

The formatter generates an ordered tree, the area tree, which describes a geometric structuring of the
output medium. The terms child, sibling, parent, descendant, and ancestor refer to this tree structure.
The tree has aroot node.

Each area tree node other than the root is called an area and is associated to a rectangular portion of the
output medium. Areas are not formatting objects; rather, a formatting object generates zero or more
rectangular areas, and normally each areais generated by a unique object in the formatting object tree.

NOTE: The only exceptions are when several leaf nodes of the formatting object tree are combined to generate a
single area, for example when several characters in sequence generate a single ligature glyph. In al such cases,
relevant properties such as font-family and font-size are the same for al the generating formatting objects (see
section BZ-7-Z—Line-buitding on page 30).

An area has a content-rectangle, the portion in which its child areas are assigned, and optional padding
and border. The diagram shows how these portions are related to one another. The outer bound of the
border is called the border-rectangle, and the outer bound of the padding is caled the
padding-rectangle.

Border Rectanglej

Padding Rectangle A

Content
Rectangle

Each area has a set of traits, a mapping of names to values, in the way elements have attributes and
formatting objects have properties. Individual traits are used either for rendering the area or for defining
constraints on the result of formatting, or both. Traits used strictly for formatting purposes or for
defining constraints may be caled formatting traits, and traits used for rendering may be called
rendering traits. Traits whose values are copied or derived from a property of the same or a
corresponding name are listed in Appendix_C — Property_summary] on page 348 and

W3C Working Draft



Extensible Stylesheet L anguage (XSL) (xsl-20001018) Page 13 of 384

Belinement 7/ Resaliiiond on page 37; other traits are listed in B4 —LISL of Traits on Areag on page 35.

NOTE: NOTE: traits are aso associated with FOs during the process of refinement. Some traits are assigned
during formatting, while others are already present after refinement.

The semantics of each type of formatting object that generates areas are given in terms of which areas it
generates and their place in the area-tree hierarchy. This may be further modified by interactions
between the various types of formatting objects. The properties of the formatting object determine what
areas are generated and how the formatting object's content is distributed among them. (For example, a
word that is not to be hyphenated may not have its glyphs distributed into areas on two separate
line-areas.)

Thetraits of an area are either:

1. "directly-derived" -- The values of directly-derived traits are the computed value of a property of the
same or a corresponding name on the generating formatting object, or

2. "indirectly-derived" -- The values of indirectly-derived traits are the result of a computation involving
the computed values of one or more properties on the generating formatting object, other traits on this
area or other interacting areas (ancestors, parent, siblings, and/or children) and/or one or more values
constructed by the formatter. The calculation formula may depend on the type of the formatting object.

This description assumes that refined values have been computed for al properties of formatting objects
in the result tree, i.e, all relative and corresponding values have been computed and the inheritable
values have been propagated as described in 5 — Property Refinement / Resolutior] on page 37. This
allows the process of inheritance to be described once and avoids a need to repeat information on
computing values in this description.

4.2. Rectangular Areas

4.2.1. Area Types

There are two types of areas: block-areas and inline-areas. These differ according to how they are
typically stacked by the formatter. An area can have block-area children or inline-area children as
determined by the generating formatting object, but a given area's children must al be of one type.
Although block-areas and inline-areas are typically stacked, some areas can be explicitly positioned.

A line-areais a special kind of block-area whose children are all inline-areas. A glyph-area is a specia
kind of inline-area which has no child areas, and has a single glyph image as its content.

Typical examples of areas are: a paragraph rendered by using an fo:block formatting object, which
generates block-areas, and a character rendered by using an fo:character formatting object, which
generates an inline-area (in fact, a glyph-area).

4.2.2. Common Traits

Associated with any area are two directions, which are derived from the generating formatting object's
writing-mode and reference-orientation properties: the block-progression-direction is the direction for
stacking block-area descendants of the area, and the inline-progression-direction is the direction for
stacking inline-area descendants of the area. Another trait, the shift-direction, is present on inline-areas
and refers to the direction in which baseline shifts are applied. Also the glyph-orientation defines the
orientation of glyph-imagesin the rendered result.

The Boolean trait is-reference-area determines whether or not an area establishes a coordinate system

W3C Working Draft



Page 14 of 384 Extensible Stylesheet Language (XSL) (xsl-20001018)

for specifying indents. An area for which this trait is true is called a reference-area. Only a
reference-area may have a block-progression-direction which is different from that of its parent. A
reference-area may be either ablock-area or an inline-area.

The Boolean trait is-viewport-area determines whether or not an area establishes an opening through
which its descendant areas can be viewed, and can be used to present clipped or scrolled material; for
example, in printing applications where bleed and trim is desired. An areafor which thistraitist r ue is
called aviewport-area.

A common construct is a viewport/reference pair. Thisis a block-area viewport-area V and a block-area
reference-area R, where R is the sole child of V and where the start-edge and end-edge of the
content-rectangle of R are paralld to the start-edge and end-edge of the content-rectangle of V.

Each element has the traits top-position, bottom-position, left-position, and right-position which
represent the distance from the edges of its content-rectangle to the like-named edges of the nearest
ancestor reference-area (or the page-viewport-area in the case of areas generated by descendants of
formatting objects whose absolute-position is f i xed); the left-offset and top-offset determine the
amount by which a relatively-positioned area is shifted for rendering. These traits receive their values
during the formatting process, or in the case of absolutely positioned areas, during refinement.

The block-progression-dimension and inline-progression-dimension of an area represent the extent of
the content-rectangle of that areain each of the two relative dimensions.

Other traitsinclude:

« the isfirst and islast traits, which are Boolean traits indicating the order in which areas are
generated and returned by a given formatting object. is-firstist r ue for the first area (or only areq)
generated and returned by aformatting object, andis-lastist r ue f or thelast area (or only area).

» the amount of space outside the border-rectangle: space-before, space-after, space-start, and
space-end (though some of these may be required to be zero on certain classes of ared);

» thethickness of each of the four sides of the padding: padding-before, padding-after, padding-start,
and padding-end;

« the style, thickness, and color of each of the four sides of the border: border-before, etc.; and
» the background rendering of the area: background-color, background-image, and other background
traits.

NOTE: "Before", "after”, "start", and "end" refer to relative directions and are defined below.

» aset of font traits (see Common Font Propertiey — § 7.7 on page 187) which are used to request a
font that is deemed to be used within that area. The nominal-font for an area is determined by the
font traits and the character descendants of the area. (see — §5.,5.7 on page 47

Unless otherwise specified, the traits of a formatting object are present on each of its generated areas,
and with the same value. (However, see sections B Z4.7.Z — Line-building on page 30 and 4921
Border, Padding, and Background on page 34.)

4.2.3. Geometric Definitions

As described above, the content-rectangle is the rectangle bounding the inside of the padding and is
used to describe the constraints on the positions of descendant areas. It is possible that marks from
descendant glyphs or other areas may appear outside the content-rectangle.

W3C Working Draft



Extensible Stylesheet L anguage (XSL) (xsl-20001018) Page 15 of 384

Related to this is the allocation-rectangle of an area, which is used to describe the constraints on the
position of the area within its parent area. For an inline-area this is either the
normal-allocation-rectangle or the expanded-allocation-rectangle. The normal-allocation-rectangle
extends to the content-rectangle in the block-progression-direction and to the border-rectangle in the
inline-progression-direction. The expanded-allocation-rectangle extends outside the border-rectangle by
an amount equa to the space-after in the block-progression-direction, an amount equal to the
space-before in the opposite direction, an amount equa to the spaceend in the
inline-progression-direction, and an amount equal to the space-start in the opposite direction. Unless
otherwise specified, the allocation-rectangle for an areais the normal-all ocation-rectangle.

Spaces
Border Rectangle '
Padding Rectangle -
oo Content cee
Allocation Rectangle |
Rectangle A

Allocation- and content-rectangles of an inline-area

For a block-area, the adlocation-rectangle extends to the border-rectangle in the
block-progression-direction and outside the content-rectangle in the inline-progression-direction by an
amount equal to the end-indent, and in the opposite direction by an amount equal to the start-indent.

NOTE: The inclusion of space outside the border-rectangle of a block-area in the inline-progression-direction
does not affect placement constraints, and isintended to promote compatibility with the CSS box model.

W3C Working Draft



Page 16 of 384 Extensible Stylesheet Language (XSL) (xsl-20001018)

Spaces

Border Rectangle
ot

Padding Rectangle A

Content A
Rectangle

Allocation Rectangle =¥

Allocation- and content-rectangles of a block-area

The edges of arectangle are designated as follows:

» the before-edge is the edge occurring first in the block-progression-direction and perpendicular to it;
» theafter-edgeis the edge opposite the before-edge;

» the gtart-edge is the edge occurring first in the inline-progression-direction and perpendicular to it,

« the end-edge is the edge opposite the start-edge.

The following diagram shows the correspondence between the various edge names for a mixed
writing-mode example:

W3C Working Draft



Extensible Stylesheet L anguage (XSL) (xsl-20001018) Page 17 of 384

Allocation-rectangle

before-edge /;ontenwecmgie
before-edge / ________ ‘
English text with an|:_ _
: :§§
embedded block e
area : L Allocation-rectangle
P ra—— ‘
5 Inline prog dir before-edge / | Content-rectangle
: / (reference area)
: start-edge :
nl @ :
- = - N
3l 3 =N 2|3
o 1] o lal - o | o o
‘§a§*ggf‘am‘m.%§ §»%
21| 4 ®
S8l v 128]8
Q ;z E
block prog. dir. |
en 