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Abstract
Today’s Internet appliances feature user interface technologies almost unknown a few years ago:
touch screens, styli, handwriting and voice recognition, speech synthesis, tiny screens, and more.
This richness creates problems.  First, different appliances use different languages:  WML for
cell phones; SpeechML, JSML, and VoxML for voice enabled devices such as phones; HTML
and XUL for desktop computers, and so on.  Thus, developers must maintain multiple source
code families to deploy interfaces to one information system on multiple appliances.  Second,
user interfaces differ dramatically in complexity (e.g, PC versus cell phone interfaces).  Thus,
developers must also manage interface content.  Third, developers risk writing appliance-specific
interfaces for an appliance that might not be on the market tomorrow. A solution is to build
interfaces with a single, universal language free of assumptions about appliances and interface
technology. This paper introduces such a language, the User Interface Markup Language
(UIML), an XML-compliant language.  UIML insulates the interface designer from the
peculiarities of different appliances through style sheets.  A measure of the power of UIML is
that it can replace hand-coding of Java AWT or Swing user interfaces.
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1.1 Introduction
There has been an explosion of ways to create user interfaces (UIs) for Web and network
applications.  First, there are markup languages: Dynamic HTML, or DHTML (the interaction of
HTML, CSS [2] and XSL style sheets [4], the Document Object Model [16], and scripting),
XwingML [1], and XML-based User Interface Language (XUL) [9] for traditional desktop
applications;  the Wireless Markup Language (WML) for mobile devices like cell phones with
displays [15]; and SpeechML [6], Voice Markup Language (VoxML) [8], and Java Speech
Markup Language (JSML) [14], for voice-enabled devices like conventional telephones.  The
growing popularity of the Extensible Markup Language (XML) [3] promises more languages.  In
addition, there are traditional programming and scripting languages (e.g., Java, JavaScript, and
Visual Basic and C++ through Active-X).

Fueling this trend is an explosion in the variety of appliances that could be used for Internet
access. At least five Internet appliance categories are popular today, as summarized in Table 1.
Other appliances include two-way pagers, electronic messaging appliances, and systems for Web
access via televisions (e.g., WebTV).  Also emerging today are hybrid appliances:  cellular
phones which contain keyboards and allow downloadable applications, and at least one smart
phone that runs a palm PC operating system.



This has created a Tower of Babel for user interface designers and software developers.  First,
interface designers must learn multiple languages.  Second, they may need to maintain multiple
bodies of “source code.” For example, a hospital’s information system might be accessible via
Web browsers on PCs in the building, but require a separate interface implemented in another
language, such as WML, to give cell phone access to doctors on rounds. Just for a PC alone, the
interface code can represent about half of the code in applications [10].

Internet Appliances

Characteristic PC
Handheld
PC Palm

Cellular
Phone

Voice
Phone

Can download
applications

Yes Yes Yes No No

Output
devices

≥800x600
color &
speaker

240x480
mono, gray,
or color

Portrait
orientation
mono,  gray

3 or 4 line
character
text

Speaker

Input devices Keyboard,
pointing
device, mike

Keyboard,
stylus,
touch screen

Keypad,
stylus,
touch screen

Keypad,
mike

Keypad,
mike

UI metaphor GUI,
multiple
windows

GUI,
single
window plus
message
boxes

GUI,
single
window plus
message
boxes,
handwriting
recognition

Cards† Speech
synthesis,
voice
recognition,
keypad input

UI
development
tools

DHTML,
XwingML,
XUL, many
more

OS specific
toolkit, Java

OS specific
toolkit

WML VoxML,
SpeechML,
JSML

Graphics Yes Yes Yes No No
Primary
Memory, Mb

4-256 4-64 1-8 <1 None

Secondary
Memory, Mb

Gigabytes None None None None

Processor
speed, MHz

233-450 75-190 16-75 <=50 None

Table 1.  Typical characteristics of major Internet appliances at start of 1999

The situation today is analogous to what happened with PCs two decades ago:  many types of
hardware were developed, each with its own application programming interface (API).  A
scaling problem arose:  software developers could not directly support new hardware as more
devices came on the market.  Eventually operating systems offered a single API, shielding the

                                                
† A WML card is a combination of text, variables and commands that are used to display information and navigate a
web on a small-format text display device. This is analogous to a small text-only web page.



software developer from the underlying device-specific APIs.  This paper explores the
development of an analogous layer for user interfaces for Web applications.

In fact, we argue that it is disadvantageous for interface designers to directly use appliance-
specific languages. Traditional user interface languages work for one type of interface, but fail to
scale when faced with the new appliances that are now appearing on the market.  Consider how
“stressed” the design of HTML has become:  it evolved from describing documents and forms-
based user interfaces in HTML 2.0 to direct manipulation interfaces in DHTML, to speech
synthesis with CSS. It is time to raise the abstraction in building user interfaces:  a universal,
appliance-independent markup language for user interfaces should be created as a standard.
That language could describe user interfaces in a highly appliance-independent manner, and map
the description to other markup languages or programming languages via style sheets.

This paper discusses design issues in such a universal language and describes the User Interface
Markup Language (UIML) that allows designers to describe the user interface in generic terms,
and then use a style description to map the interface to various operating systems (OSs) and
appliances. Thus, the universality of UIML makes it possible to describe a rich set of interfaces
and reduces the work in porting the user interface to another platform (e.g., from a graphical
windowing system to a hand-held appliance) to changing the style description.

1.2 Historical Motivation for an Appliance-independent UI Language
Throughout history, people have raised the level of abstraction with which they communicate
with computers. Originally, people programmed computers in binary machine code.  Later,
assembly language was a big revolution:  people could write programs using mnemonics instead
of strings of zeros and ones. Then came programming languages and compilers. Programmers
resisted high-level programming languages at first because compilers generated less efficient
machine code than hand-coded assembly programs. However, high-level programming
languages allowed a wider range of people to program.

The advent of the Web again raised the abstraction level:  first, documents could be published by
anyone in a platform-independent format. HTML 2 empowered non-programmers to create
simple forms-based interfaces.  DHTML added direct manipulation. Style sheets added further
abstraction by separating content and presentation style, simplifying porting and customization.

Because DHTML requires a complex interpretation environment to render the interface, new
markup languages were proposed for small appliances: WML and Compact HTML [7].
However, each of these languages embeds specific assumptions about the type of interface or
appliance with which they will be used.  HTML describes a document, WML describes cards for
a handheld appliance with small screen, VoxML assumes voice, and so on.

User interface technology is also advancing. Graphical user interfaces with pointing devices are
giving way to natural sounding speech synthesis, voice and handwriting recognition, full motion
video, virtual reality and even mechanisms to receive input from brain waves.

These developments argue for one more step in abstracting user interfaces – good for both
today’s computer interfaces and future interfaces. This next step is the subject of this paper.

1.3 Developer Reasons for an Appliance-Independent UI Language
Some of the benefits for application developers and user interface designers in using a single,
application-independent UI language are discussed below.



Manage family of interfaces of varying complexity: Figure 1,  Figure 2, and Figure 3 show three
different interfaces to a the same Internet accessible financial management system, for a desktop
PC, handheld PC, and cellular phone, respectively.  The interface designer must manage multiple
interfaces or views of an information system.  Obviously, this is difficult if more than one
language must be involved.  The PC interface might be in Java or DHTML, the handheld PC
interface in C++ with the API of the handheld PC’s OS, and the cell phone interface in WML.
This introduces a costly problem:  the developer must maintain three different bodies of source
code for the three interfaces.  The effort required to keep all interfaces consistent, or maintain the
interfaces as the functionality of the underlying financial system is expanded, grows linearly with
the number of interfaces.  In contrast, use of an appliance-independent UI language would
greatly reduce the amount of code that needs to be maintained and make the maintenance cost
sub-linear.  (The maintenance cost is sub-linear, but not constant.  That is because the appliance-
independent portion can be maintained independent of the number of appliances used, while the
portion that maps to specific devices grows with the number of devices.)

Avoid market risks of developing for new appliances:  Suppose that in 18 months the particular
handheld OS or handheld device used for the financial application goes off the market. Then the
investment of C++ code in the original handheld PC’s OS must be discarded, and the interfaces
written to use a new API.  Therefore, developers are cautious about committing resources to
developing interfaces for custom software applications on new devices.  This makes it difficult
for appliance manufacturers to introduce new technologies.  The use of an appliance-independent
UI language would allow reusing the interface description that is appliance-independent with
new technologies, reducing the risk of adopting new technologies.

1.4 Why a New Language?
We argue that it is necessary to start from scratch and design a new language.  One might argue
that an existing language could be augmented or modified to be mappable to an arbitrary
appliance; why design a new language?

One answer is that existing languages were designed with inherent assumptions about the type of
user interfaces and appliances for which they would be used.  For example, HTML started as a
language for describing documents (with tags for headings, paragraphs, and so on), and was
augmented to describe forms.  As another example, Javascript events correspond to a PC with a
GUI, mouse, and keyboard.  In theory, it is possible to modify languages to handle any type of
appliance, but this produces a stress on the language design.  Witness the complexity added to
HTML from version 2 to 4.  Imagine the complexity if a future version of DHTML supported
any appliance type.

A language like Java contains fewer assumptions and would be more feasible to use as a
universal, appliance-independent language.  But this would require Java to run on all appliances
(which may never occur), and appliance-specific code (e.g., for layout) would be needed.

Based on these arguments, it would be more natural to create a new language using XML.  XML
permits new tags to be defined, which is appealing in designing a language that must work with
yet-to-be-invented appliances.



Figure 1. A financial application rendered for a desktop PC

Figure 2.  Handheld PC rendering Figure 3.  Cell phone rendering

1.5 Related Work
The idea of creating a universal notation to describe user interfaces has been around for a while.
Natural-language is regarded as inappropriate for this job:  it tends to be lengthy, vague, and
broad [13].  Instead, formal languages have proven effective. Formal languages have a specified
grammar and are easy to parse.  Languages created in the human-computer interaction



community are known as User Interface Management Systems (UIMS).  A variety of UIMSs
have been proposed (see [11] and [12]).

2 Design Considerations for an Appliance-Independent UI Language
for the Web

We next discuss some important properties for a language for user interface development that is
appliance-independent.  The list of properties underscores those problems that we sought to solve
with UIML. Later, after UIML is introduced (in Section 3), we return to this list and explain how
UIML addresses these properties (in Section 4).

Create natural separation of user interface from non-interface code:  An application program
can be divided into two parts:  (1) the user interface, and (2) the code behind the interface that
implements the internal logic of the program and interacts with external entities (e.g., database
servers).  A clear line should distinguish the two parts for several reasons.

First, whereas programmers implement the internal logic, a variety of specialists may serve on
the user interface design team:  human factor specialists, graphic artists, cognitive psychologists,
as well as programmers.  Thus, whatever metaphors and concepts the UI language uses, it should
be clear which are part of the user interface and which are part of the internal program logic.
Otherwise, the two teams of developers do not have clear responsibilities in implementing an
application program.

A second reason for a clear line between user interface and internal program logic is to allow a
many-to-one relationship between the two.  One may want multiple user interfaces to the same
program logic.  For example, the popular WinZip program (www.winzip.com) has a Wizard
Interface (for novice users) and a Standard Interface (for experts).  Or one may want a single user
interface to control multiple servers, each with distinct internal program logic.  For example, one
user interface might provide access to two databases.

Be usable by non-programmers and occasional users:  Given that user interface designers may
range from human factor specialists to graphic artists and cognitive psychologists, it is desirable
for a user interface to be built without requiring programmers. The explosion in the number of
people worldwide that design Web pages occurred, in part, because HTML is a declarative
language usable by people who do not know traditional procedural languages.

In addition, the syntax and semantics of a UI language should allow an occasional user to start
building interfaces without extensive study. A UI language should have a syntax that is familiar
and easy to learn. A simple user interface should correspond to a short, simple description in the
UI language. The semantics of the UI language should be intuitive enough so that the occasional
user can pick up and understand a UI description.

Finally, the majority of interface designers do not currently design interfaces for multiple
appliances.  So it is important that the UI language not be overly complex or cumbersome to use
for designers who only care about using a single appliance.

Facilitate rapid prototyping of user interfaces:  User interface design teams often need to
implement prototype user interfaces quickly to gain feedback from customers or end-users.  A
design methodology of iterative enhancement may be used, which requires interface changes to
be made quickly and easily.  Or a design team may use a scenario approach, in which an



interface representing some but not all desired functions is created.  For these users, a UI
language must permit rapid prototyping.

Allow the language to be extensible: A UI language must work with appliances and interface
technologies not yet invented.  This implies that the language should not be hard-wired to use
tags, attributes, or keywords that imply a particular interface technology.  Here are some
examples of inappropriate UI language constructs:

Construct Problem

<WINDOW> tag The appliance may not use a graphical interface, but rather voice.

if MouseDown then The appliance may not use a mouse.

Allow a family of interfaces to be created in which common features are factored out:  A user
interface in the future may be delivered on dozens of different appliances.  Some might have
large screens and keyboards.  Others might have small or no screens and only a keypad, or
perhaps just a touch screen or voice input.  It would be unreasonable for a UI language to require
different user interface descriptions for each appliance. Instead, the interface descriptions should
be organized into a tree or other structure, with interfaces common to multiple appliances
factored out into “families”.

Facilitate internationalization and localization:  A UI language should permit user interface
descriptions to be presented using multiple spoken languages (internationalization) and special
formatting appropriate for the location of the user (localization).

Allow efficient download of user interfaces over networks to Web browsers:  There are two
ways to deliver interfaces to Web browsers:  deliver code (e.g., Active-X, Java) or deliver
HTML.  Delivering code allows an arbitrarily complex interface to be rendered.  However code
files are hundreds of kilobytes or larger and slow to download.  Also, code is often not cached by
browsers and proxy servers, thus wasting network bandwidth every time the interface is started.
On the other hand, HTML files are typically small (tens of kilobytes) and cachable, allowing
relatively fast download, but HTML cannot generate as rich an interface as code.  Ideally, an
application-independent UI language would achieve the flexibility of downloading code, but
require no more time or network bandwidth than downloading HTML.

Facilitate security:  Current methods for distributing user interfaces from a Web server over the
Internet to user agents are notorious for security problems.  Active-X controls download
executable code, which could be malicious.  Java applets execute with a sandbox model to limit
the resources that a malicious applet can attack, but subtle security problems have been
discovered [5].  Consequently, some firewalls block Active-X and Java.  Even HTML forms that
invoke code on a server via the Common Gateway Interface have produced some famous
security holes in Web servers (for example, tainted Perl scripts).  Given this history, it is
desirable that an appliance-independent UI language be safer, and that firewall operators do not
feel it is necessary to block the language.

Promote a high degree of usability for people with disabilities:  An appliance-independent UI
language facilitates interface design for people with disabilities in a natural way.  Accessibility
for disabled persons may require alternate interface technology – for example, using voice



synthesis or Braille.  This mandates that a user interface designer create not one, but multiple
user interfaces.  Thus an appliance-independent UI language must naturally allow management
of multiple interfaces.

3 UIML Language Description and Examples

3.1 Overview - Anatomy of the Interface
In UIML version 2.0, a user interface is simply set of interface elements with which the user
interacts.  These elements may be organized differently for different categories of users and
different families of appliances.  Each interface element has data (e.g., text, sounds, images) used
to communicate information to the user.  Interface elements can also receive information from
the user using interface artifacts (e.g., a scrollable selection list) from the underlying appliance.
Since the artifacts vary from appliance to appliance, the actual mapping (rendering) between an
interface element and the associated artifact (widget) is done using a style sheet.

Runtime interaction is done using events.  Events can be local (between interface elements) or
global (between interface elements and objects that represent an application’s internal program
logic [i.e., the backend]). Since the interface typically communicates with a backend to perform
its work, a runtime engine provides for that communication. The runtime engine also facilitates a
clean separation between the interface and the backend.

3.2 Language Description
UIML describes a user interface with five sections: description, structure, data, style, and events.
UIML will be exemplified by the interface in Figure 4.

Figure 4.  A single window with a menu.

3.2.1 Five Parts of UIML
The logical structure of an interface description in UIML follows this skeleton:

<?xml version="1.0" standalone="no"?>
<uiml version="2.0">
    <interface name="Figure5" class="MyApps">
       <description>…</description>
       <structure>…</structure>
       <data>…</data>
       <style>…</style>
       <events>…</events>
    </interface>



    <logic>
    </logic>
</uiml>

The <description> section lists the individual elements that collectively form an application’s
user interface.  For example, in a word processor on a PC, each menu item (e.g., “Open” in the
“File” menu), toolbar button, pulldown list, and so on are interface elements.  Each element is
given a unique name in the user interface and has a particular function. The description section
does not specify how each element should be rendered or even what its function is. Elements can
communicate with the backend and with other elements. Here is a UIML fragment exemplifying
a description section for Figure 4:

<description>
   <element name="Main" class="Main"/>
   <element name="File" class="ActionGroup"/>
   <element name="NewAction" class="ActionItem"/>
   <element name="CloseAction" class="ActionItem"/>
   <element name="QuitAction" class="ActionItem"/>
</description>

Each element must have a name and a class attribute. The name must be unique within the
interface description. The notion of “class” follows that of CSS in that it specifies an object type;
the element’s “name” uniquely identifies an instance of that type.  A style associated with all
instances of a class is associated with the same “class” value; a style associated with a specific
instance of a class is associated with the same “name” value.

The <structure> section specifies which elements from the description section are present for a
given appliance, and how the elements are organized.  In general, a structure section lists a subset
of the interface elements listed in the description section. It is a subset because some appliances
(e.g., handheld appliances) cannot support all the available functionality for a given application.
Here is the structure section from a UIML fragment:

<structure>
   <element name="Main">
     <element class="Bar">
       <element name="File">
         <element name="NewAction"/>
         <element name="CloseAction"/>
         <element class="Separator"/>
         <element name="QuitAction"/>
       </element>
     </element>
   </element>
</structure>

Elements in the structure section are selected from the list in the description section.  Each
element is identified by the name attribute.  In many cases, it is desirable to introduce elements
that are not part of the application for usability reasons. For example, a menu separator enhances
usability but does not add new functionality. These elements have only a class attribute, and
cannot receive or generate events.

The <data> section contains data that is appliance-independent but application-dependent. All
the information that is presented to the user is described in this section. For example, a word-



processor may have a spell-checking element. The word “Spelling,” which is used to display the
element, does not depend on the underlying appliance but rather on the application and the user.
It depends on the application for its meaning, and on the user for the language to display.
However, it does not depend upon whether the run-time widget is a button or a menu item. Here
is the data section for Figure 4:

<data>
   <content name="Main">Example</content>
   <content name="File">File</content>
   <content name="NewAction">New</content>
   <content name="CloseAction">Close</content>
   <content name="QuitAction">Quit</content>
</data>

Each line in the <data> section has a name attribute that identifies the corresponding interface
element. The text for each content element can be any valid XML code. This allows content with
international characters and special formatting (e.g., HTML).

The <style> section contains the style sheet information and data that are appliance-dependent.
The backend is not concerned with whether the input came from the command-line, from a text
field, or from voice recognition. Here is the style section for Figure 4:

<style>
   <attribute class="Main" type="rendering" value="java.awt.Frame"/>
   <attribute class="Main" type="size" value="100,80"/>
   <attribute class="ActionItem" type="rendering"
       value="java.awt.MenuItem"/>
   <attribute class="Separator" type="rendering"
       value="wrapper.MenuSeparator"/>
   <attribute class="ActionGroup" type="rendering"
       value="java.awt.Menu"/>
   <attribute class="Bar" type="rendering"
       value="java.awt.MenuBar"/>
</style>

Each line in the <style> section describes a set of interface elements that have the same class
attribute.  Various style attributes (e.g., color, font size) for specific appliances can be specified.
Different style sheets for different appliances are created.  Thus modifying one line in the style
can have dramatic changes in the interface. A special attribute called rendering maps all the
elements with the same class attribute to a widget class in the native UI toolkit. In the example
above, changing all the menuitems into buttons is achieved by simply changing the rendering for
the “ActionItem” class.

Finally, the <events> section describes the runtime interface events, which may be
communicated between the interface elements and the backend.  Events allow elements to
synchronize with each other.  Events are both appliance-dependent and application-dependent.
To avoid rewriting the event handlers for each appliance and application combination, UIML
allows programmers to specify events in generic terms and then resolve them to appliance-
dependent events at runtime using the <style> section. A generic event has a trigger and one or
more of source element name, destination element name, and action. It can be triggered by the
user (e.g., when the user enters some text), by the application (e.g., when the backend displays
data), or by the underlying system (e.g., when a timer expires or an exception is raised).



<events>
   <event name="SelectQuit" class="ActionSelect"
      source="QuitAction" trigger="Select">
      <action target="Main" method="exit"/>
   </event>
</events>

The <events> section may contain multiple event descriptions. Each event is identified with a
name that is unique within the interface description. Events and elements are on different
namespaces and can share the same name. The class attribute is used to resolve events to events
from the target appliance, using a style sheet.

3.2.2 Runtime Interaction and Events
UIML is a declarative language, which means that the user specifies what needs to be done, but
not how. For example, when the user declares that an interface element is to be rendered as an
icon, he does not specify the runtime behavior: single-click (for Macintosh OS) or double-click
(for Microsoft Windows) for selection. The user can only set attributes exposed by the
underlying toolkit to affect the runtime behavior.

At runtime, two different types of events can occur: events that are localized within the interface
and involve no more than simple attribute assignments, and events that propagate outside the
interface and involve complex calculations.  Events are declared in generic terms in the events
section and are resolved to actual appliance events at runtime using the style sheet. A user
interface that is sufficient for demonstrations and prototypes can often be constructed using only
localized events.

One of UIML’s goals is to break the dependency between the interface and the backend. Thus,
no calculations are defined in the interface and all calculations and backend integration actions
are completely hidden. This is achieved by having a runtime engine monitor all events.
Application/interface integrators map generic interface events to scripts or application methods
(explained in the next section).

3.2.3 Backend Integration
There are many models in building software. At one extreme, the entire user interface acts as an
object or set of objects, with attributes that may be programmatically read from and written to by
the backend (e.g., Visual Basic applications). At the other extreme, the backend is the
application, which is controlled from a simple user interface either directly (e.g., command-line-
driven applications) or via remote procedure calls. Most software lies somewhere in between,
and UIML supports the full range. The backend can appear as an invisible interface element and
accept events defined in the event section. Or, interface elements can appear as objects and the
backend can manipulate them just like any other software component.

However, to maintain the clean separation between interface and application, each side should be
designed in isolation. The <logic> section of UIML provides the mapping between the two
sides.  This allows interfaces (or at least portions thereof) to communicate with any application,
given the appropriate event and style mappings, and vice-versa.



3.3 Domain-Specific UIML/GUI
As with any new technology, the learning curve associated with the technology can and often
does have a profound effect upon that technology’s acceptance and usefulness.  Programmers
typically become proficient with specific development toolkits and environments, and may be
reluctant to adopt a different set of constructs or different terminology, despite tangible benefits.
In order to flatten this learning curve, UIML allows for domain-specific variants which adopt
vocabularies closely aligned with specific appliances or even application domains.  A variant is
supported through the definition of a suitable set of XSL transformations.  For example, in a
variant of UIML known as UIML/GUI, the interface in Figure 4 may be expressed as follows:

<interface name="DSUIML Example" class="JavaAWT">
   <window name="Main" content="UIML Example">
      <menubar name="Selections">
         <menu name="FileSelection" caption="File" >
            <menuitem name="itemF0" caption ="New"/ shortcut="Ctrl-N">
            <menuitem name="itemF3" caption ="Close"/ >

<menuseparator/>
            <menuitem name="itemF4" caption ="Quit"/>
         </menu>
      </menubar>
   </window>
</interface>

This example is more compact and easier to read than the UIML fragments in Section 3.2, but as
a tradeoff it is specific to an appliance with a graphical user interface.  Unlike other domain-
specific user interface languages (e.g., XwingML, XUL), UIML/GUI can be mapped to UIML,
which can then be remapped to other appliance types (e.g., ones without graphical user
interfaces).

4 How UIML Matches the Design Considerations
We now return to the design considerations presented in Section 2, and explain how UIML
addresses them.

Create natural separation of user interface from non-interface code:  UIML, like HTML, is a
declarative language.  It describes what should be present in the user interface.  In contrast,
conventional programming languages and scripting languages are procedural:  they specify how
an operation is executed, through procedures.  This creates a clear line between the interface
code and the internal program logic:  interfaces are described with a declarative language, while
the internal logic is described by a procedural language.

Unlike HTML, UIML permits a variety of event handling to be described within UIML without
relying on a (procedural) scripting language.  Each user interface component enumerated in
UIML can be associated with a set of events.  Each event can either declare that a user interface
attribute must equal a new value, or invoke an operation outside the user interface (e.g., a
procedure in the backend program logic).  The ability of UIML events to set new attribute values
within UIML allows many common events to be handled without any procedural code.  Thus, a
user interface designer can implement complex behavior, such as allowing buttons that change
the appearance of the interface, without relying on procedural event handlers.  For example, the
font panel in Figure 5 is implemented entirely in UIML without using procedural code (see
uiml.org/papers/www8 for an example).



Be usable by non-programmers and occasional users:  The fact that UIML is a declarative
language, similar to HTML, permits its use by non-programmers.  To give UIML an easy-to-
learn syntax, it is XML-compliant.  But making UIML easy for occasional users to work with
and avoiding verbose UIML descriptions presented a design problem.  On the one hand, we
wanted UIML to be general so that it worked for UI technologies yet to be invented.  Thus
UIML uses a generic tag <element>, with the class attribute used to map a particular <element>
to a representation in a particular user interface technology (e.g., a button or panel in a GUI).  On
the other hand, we wanted the tags in UIML to look natural (arguing for tags like <WINDOW>
for UI designers that only deploy interfaces on a single appliance).

The solution was to make UIML general (Section 3.2), but to also to create domain-specific
variants of UIML with appliance-specific vocabularies that map to general UIML (Section 3.3).
In fact, domain-specific UIML descriptions are significantly smaller than general UIML
descriptions, because structure and style information are now indirectly specified.

Figure 5.  Font panel; event handling is implemented entirely within UIML

Facilitate rapid prototyping of user interfaces:  Several aspects of UIML facilitate rapid
prototyping:

1. The appearance of an interface may quickly be changed simply by modifying a line or two of
a style sheet.

2. Because UIML is declarative, a few lines of UIML are equivalent to many lines of a
procedural programming language.

Allow the language to be extensible:  Two aspects of UIML facilitate extensibility:

1. UIML tags can be assigned the attribute class.  UIML authors can create new values of the
class attribute to extend UIML for appliances with interface technologies not in use today.  In
addition, the style sheet maps values of the class attribute to particular renderings for
particular appliances.



2. Events that arise for user interface elements are not hard-wired into UIML.  Instead, events
are named with a class attribute, and attribute values are mapped to events appropriate for
specific interface technologies through a style sheet.

Allow a family of interfaces to be created in which common features are factored out:  To
facilitate creation of a family of interfaces (e.g., Figures 1 through 3), UIML separately
enumerates the elements constituting any user interface (with the <description> tag) and the
user interface structure (with the <structure> tag).  Each structure may be named with a family
name.  The family name may be used within a style sheet and elsewhere in UIML to share
portions of interface descriptions among family members.

Facilitate internationalization and localization:  UIML separates the content of an interface
from the interface description.  The text used in the user interface that an end user sees (e.g.,
button labels, menu labels) or hears is not embedded within the interface description.  Instead,
this wording is given in Unicode in the UIML content section (within the <data> tag).  There
may be multiple content sections, each with a different name (e.g., a language name),
corresponding to different spoken languages.  In addition, style sheet elements may be keyed
with the same names, so that appropriate layout, color, voice inflection, and other presentation
attributes are used with each language.

Allow efficient download of user interfaces over networks to Web browsers:  UIML achieves
the ideal of allowing the flexibility of downloading code (e.g., Java or Active-X), but using
smaller files that are relatively quick to download and that can be cached.

For example, with UIML one can create, to our knowledge, any user interface that one can create
using Java with the AWT or Swing toolkits, yet require no download of Java code to the Web
browser.  (The interested reader can try this with the Java renderer plug-in described in the
Conclusions [Section 5].)  In essence, the Java portion is downloaded once to the client as a
UIML interpreter plug-in, which can then interpret any UIML file.

Facilitate security:  Because UIML is a declarative language, one cannot use it to write
procedural programs.  Thus it has an inherent safeguard compared to procedural languages.
Therefore the security of UIML is comparable to HTML without a scripting language.  Thus
firewall operators are unlikely to block UIML, just as they do not block HTML.  However, like
HTML, UIML can expose security holes on a server if the procedural code on the server is
poorly written.  And UIML may permit denial of service attacks if a malicious UIML file sets an
unreasonably large number of attribute values in response to a user interface event.  However, a
UIML interface is generally safer than procedural languages and comparable in safety to HTML.

Promote a high degree of usability for people with disabilities:  UIML makes no inherent
assumptions that its output will be rendered visually or that input will come from standard
mechanisms.  This makes it well suited for rendering interfaces on non-visual appliances like
phones or using specialized input mechanisms.  Just as with DHTML, cascading style sheets
facilitate accessibility by permitting multiple styles to render UIML onto different display or
input hardware.  Like CSS2, the end user, not the UIML author, has the final say over the style
sheet used to render an interface.  Information that can confuse non-visual renderings of
interfaces, such as font and image positioning alignment, are confined to style sheets used for
visual appliances.  Finally, the <description> section of UIML allows different subsets of
interface elements to be present on different appliances.  No analog to this exists in HTML or
any conventional programming language.



5 Conclusions
When the Web was young, user interfaces consisted of HTML forms displayed in browsers on
desktop computers.  Later came more sophisticated user interfaces through Active-X, Java, and
Dynamic HTML with style sheets.  Today, end users are moving from desktop computers to
many Internet appliances, such as palm PCs, handheld PCs, and cellular phones with displays.
Along with this shift, user interface technology is moving beyond graphical user interfaces,
keyboards, and pointing devices to new forms: touch screens, handwriting recognition, natural
sounding speech synthesis, voice recognition, full motion video, and virtual reality.  Exotic
technologies like eye tracking and coupling of computers to brain waves are being explored.

In this new world of many interface technologies on many types of appliances, it is too time
consuming to hand-code a user interface for each appliance.  This motivated the development of
the User Interface Markup Language (UIML) to describe user interfaces in an appliance-
independent manner.  (For example, the interfaces in Figure 1 to Figure 3 for three appliances
were generated from a single UIML description with three style sheets.) UIML is a declarative
language that distinguishes which user interface elements are present in an interface, what the
structure of the elements are for a family of similar appliances, what natural language text should
be used with the interface, how the interface is to be presented or rendered using cascading style
sheets, and how events are to be handled for each user interface element.  The UIML approach
has many benefits:

� Interface designers learn one language, yet can use any appliance.

� UIML offers the expressive power of programming languages like Java with the AWT and
Swing toolkits, but the advantages of a declarative language like HTML:  faster download
time, better security, and usability for non-programmers.

� UIML is XML-compliant, thereby providing a natural way for XML users to create user
interfaces for client-server applications, or to embed interfaces in documents and databases.

� Designers of new interface hardware can offer a simple migration path by mapping the
universal language to their appliance.

� UIML is designed to manage a family of interfaces with different capabilities.  This is a
distinguishing characteristic compared to other markup or programming languages.

� The ability to manage a family of interfaces simplifies the task of designing several versions
of a user interface to address accessibility issues.

UIML is rendered into a usable interface on an appliance either through interpretation or
compilation to another markup or programming language.  The renderer might be an application
installed on the client, a Web browser plug-in, or a compiler on a server.

To learn more about the latest version of UIML, see the examples and tutorials available at
uiml.org.  (This paper describes UIML version 2.0.)  An extended version of this paper, which
includes the full UIML for the font example in Figure 5, is available at
www.harmonia.com/papers/www8.  To try UIML, open source code for a parser and renderer
are available at uiml.org.

http://uiml.org/
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