
XML AR C H I T E C T U R E OAGIS RE L E A S E 6.2

O PEN AP P L I C A T I O N S G ROUP IN T E G R A T I O N SP E C I F I C A T I O N S
1

XML AXML ARCHITECTURERCHITECTURE

2.0 Introduction2.0 Introduction
The World Wide Web Consortium (W3C) has released the first version of the
Extensible Markup Language (XML) specification to broad support within the
industry. XML was designed to fill a deficiency identified in other Internet and
markup standards, like HTML, by supporting data definition and information
processing requirements. It provides a middle ground between the restrictions and
general inflexibility of HTML, and the overall complexity of SGML. This
specification has become widely supported as the beginning of the next generation
of Internet capabilities. Extensions and enhancements to the XML specification are
under development within the W3C. As these are completed and released, they will
be reviewed by the Open Applications Group for applicability in support of further
enabling application to application integration.

The Open Applications Group has developed an approach for implementation of the
Open Applications Group Interface Specification (OAGIS) within an XML
framework. This section describes the process for development, translation, and
implementation of OAGIS compliant Business Object Documents in XML. For
detailed information on the XML specification itself, and other related W3C projects,
please refer to the official W3C web site at www.w3c.com, or one of the many
available publications on the topic.

At this time, implementation projects using the OAGIS may be based on the original
message structure, or in the XML format described in this document. The decision
to use one format or another is left to the systems integrators, application vendors,
and ultimately, the customers. It is expected that the need for support of both
approaches will decrease over time, as migration to XML occurs, and software
vendors begin to support XML as a native integration mechanism within their

XML AR C H I T E C T U R E OAGIS RE L E A S E 6.2

O PEN AP P L I C A T I O N S G ROUP IN T E G R A T I O N SP E C I F I C A T I O N S
2

products. As migration and adoption progresses, the proprietary format may be
phased out.

The Open Applications Group is aware of the broad set of initiatives around XML
technology. While the results of many of these initiatives are directly applicable to
support of the integration specification, only released recommendations will be used
to implement the content of the specification. We hope this will allow the reference
files distributed to our members and supporters to remain as stable as possible. As
enhancement opportunities are identified, and implementation bugs are reported,
each of the reference files will be updated as appropriate. Additionally, other tools
and resources may be provided to support XML implementations of the
specification.

As an overall design principle, the Open Applications Group's approach to XML is
focused on simplicity and usability. We have tried to provide the entire body of
knowledge contained in the specification within the set of distributed DTDs, while
avoiding the use of some of the more sophisticated XML constructs unless
absolutely necessary.

While this document reviews each major component of the Interface Specification
as implemented in XML, it is not intended to be a primer or training guide. A strong
working knowledge of both XML and the OAGIS is assumed.

In the sections that follow, the case for XML is outlined, followed by the steps
required to incorporate support for XML within the specification. Sample files are
provided as a part of the discussion. Additionally, guidelines for extending the
specification using the USERAREA are provided. Unique transaction pairs, such as
Get, Show, GetList, and List are discussed as well. The entire set of XML DTDs are
available from the Internet web site at www.openapplications.org.

For additional information, to report bugs, or request enhancements, please send e-
mail to xml@openapplications.org.

XML AR C H I T E C T U R E OAGIS RE L E A S E 6.2

O PEN AP P L I C A T I O N S G ROUP IN T E G R A T I O N SP E C I F I C A T I O N S
3

2.1 The Case for XML2.1 The Case for XML
XML provides significant advantages over more traditional approaches to inter-
application messaging and interface development. These advantages make a
compelling case for its use in support of the OAGIS. The result is a framework that
strongly supports the implementation needs of the vendor, integrator, and customer
communities. A number of considerations in this area are provided here.

3rd Party Tool and Development Support: Vendors and customers may leverage
the rapidly expanding market of available 3rd party tools and development libraries
as a part of their implementation solutions. These include parsing and validating
APIs and message generation tools. As the XML standard continues to be
expanded, solution providers will be well positioned to take advantage of the
applicable enhancements with little incremental internal development effort.

Readability: Traditional messaging and interface techniques have often been
implemented using cryptic message formats. Development and troubleshooting
these solutions is correspondingly difficult. XML is easy to read and structured
intuitively.

Extensibility: A unique characteristic of an XML implementation is its support for
vendor and implementation specific extensions. While the OAGIS is robust, there
will be a number of circumstances where implementations need to support data
elements that are not a part of the specification. These extensions may be
incorporated into the solution without adding complexity or increasing maintenance
effort. Additionally, extensions from multiple parties may be incorporated
concurrently. Details are provided later in this document.

Knowledge and Skills Base: The widespread awareness and adoption of XML
has resulted in a significant knowledge base for customer and vendor support.
Unlike proprietary solutions, knowledge and support of integration solutions based
on XML may be obtained throughout the industry. As XML gains in popularity, the
available resource pool promises to continue to grow.

Related Technologies: Another advantage of an XML implementation is the
opportunity for incorporation into other types of solutions based on the same
technology. These include web browser support, programming tools, and
knowledge management systems. A number of initiatives in these areas are
already underway.

In general, the Open Applications Group's use of XML will be limited to the standard
implementation as released by the World Wide Web Consortium. In order to
maintain flexibility and openness, the use of proprietary extensions or non-standard
constructs will not be supported.

XML AR C H I T E C T U R E OAGIS RE L E A S E 6.2

O PEN AP P L I C A T I O N S G ROUP IN T E G R A T I O N SP E C I F I C A T I O N S
4

2.2 Implementation Overview2.2 Implementation Overview
Within the scope of business application integration, XML solutions are comprised
of two key components; the DTDs (Document Type Definitions), and the XML
transaction messages themselves. (XSL style sheets are not used for the current
implementation.) The DTD is used to formally define and validate the overall
structure and content of a message. Simply put, the DTD acts as a template used
to define the message structure and relationships between the data elements. In
some cases, the DTD information is embedded inside the XML message. For the
purposes of OAGIS XML implementation, DTDs will always be deployed as a set of
separate files.

According to the W3C Frequently Asked Questions list,
"A DTD is usually a file (or several files to be used together) which contains a
formal definition of a particular type of document. This sets out what names can
be used for elements, where they may occur, and how they all fit together."

Mapping from the OAGIS specification to XML requires the development of a set of
DTDs. The sections below describe the process for developing DTDs to support
OAGIS messages, the structure of the DTDs that have been developed and will be
released to validate messages, and the conversion of a few sample messages into
XML.

The OAGIS XML solution is implemented as a set of three resource DTDs, and an
additional DTD for each service request. The resource DTDs include information
that is common across all requests. Resource DTDs are used to define Data Types,
Fields, and Segments. A small number of complex data types, or Super Segments
are also defined. The service request support files define their unique definition
and structure, as well as additional attributes or element restrictions that are not
defined in the resource files. Each of these topics is discussed in more detail in
later sections of this document.

XML AR C H I T E C T U R E OAGIS RE L E A S E 6.2

O PEN AP P L I C A T I O N S G ROUP IN T E G R A T I O N SP E C I F I C A T I O N S
5

2.3 Resource DTD 2.3 Resource DTD –– Data Dom Data Domainsains
The first resource file used in XML mapping is the data type definition file,
oagis_domains.dtd. This file describes the data types used in all subsequent

DTDs.

Below is the entire DTD for data type domains. We'll discuss each component of
the resource file below. Most of this file is comments and revision control
information. The actual element specification for the string domain is a single line.

<!--
 $Revision: 6.2.0 $
 $Date: 12 December 1998 $
 Open Applications Group DTD
 Copyright 1998, All Rights Reserved

 $Name: oagis_domains.dtd $
-->

<!-- == -->
<!-- Entities - Domains
 This section defines data domains for the
 primitive element values. This is the only
 area where the primitive #PCDATA should
 appear.
-->

<!-- String Data: Generic Character Data Domain -->
<!ENTITY % STRDOM "(#PCDATA)">

Before working through the OAGIS-specific details, a few notes on XML in general
must be provided.

Delimiters: Components of a DTD are defined by a set of delimiters. In the
example above, two are introduced: comments and entities.

Comments: Comments within a DTD are delimited by the tokens <!-- and -->.

Information between these tokens is considered a comment and is ignored.
Comments may cross multiple lines.

Entities: Entities within a DTD are delimited by the tokens <!ENTITY and -->. In

many cases, entities are used to define replacement text within the DTDs.

The STRDOM DomainThe STRDOM Domain
The reference DTD provided above is mostly comments, including revision
information and documentation. A single entity called STRDOM is defined. This

XML AR C H I T E C T U R E OAGIS RE L E A S E 6.2

O PEN AP P L I C A T I O N S G ROUP IN T E G R A T I O N SP E C I F I C A T I O N S
6

entity is defined as #PCDATA, or parsed character data. Simply put, each field can

be composed of any character information supported by XML.

Entity definitions act similarly to traditional macros for replacement text.
References to these entities appear later in the specification DTDs. In the string
domain specification below, instances of the "%STRDOM;" entity are replaced with

the text (#PCDATA) as the XML file is interpreted.

<!ENTITY % STRDOM "(#PCDATA)">

At this time, only string data domains are implemented in the specification. Over
time, additional typing may be introduced to further support validation.
Representative data type domains that may be introduced later include simple
definitions such as dates or numbers (integer and/or float). More complex domains
that may be appropriate may include phone numbers, or even sets of ISO codes.

It is expected that the evolution of XML, and facilities for stronger data typing as has
been proposed through efforts such as XML-Data, will begin to address these topics
directly. The Open Applications Group implementation will continue to review, and
adopt as appropriate, alternative approaches as they are released as industry
standards.

XML AR C H I T E C T U R E OAGIS RE L E A S E 6.2

O PEN AP P L I C A T I O N S G ROUP IN T E G R A T I O N SP E C I F I C A T I O N S
7

2.4 Resource DTD 2.4 Resource DTD –– Fields Fields
The next resource file used in XML mapping provides field element definitions.
These are the next most primitive element used in OAGIS implementation in XML.
Field definitions are shared across all segment and transaction DTDs.

Below is a small portion of the field DTD, oagis_fields.dtd. In the distributed

DTD, all specification fields are included.

<!--
 $Revision: 6.2.0 $
 $Date: 12 December 1998 $
 Open Applications Group DTD
 Copyright 1998, All Rights Reserved

 $Name: oagis_fields.dtd $
-->

<!-- == -->
<!-- Entities - Fields - Appendix C
-->

<!ELEMENT ACCTPERIOD %STRDOM;>
<!ELEMENT ACCTYEAR %STRDOM;>
<!ELEMENT ACKREQUEST %STRDOM;>
<!ELEMENT ADDRLINE %STRDOM;>
<!ELEMENT ADDRTYPE %STRDOM;>
<!ELEMENT AUTHID %STRDOM;>
<!ELEMENT BUSNAREA %STRDOM;>
<!ELEMENT CHARGEID %STRDOM;>
<!ELEMENT CONFIRMATION %STRDOM;>

...

The element definitions provided above define the specification fields. Each field is
defined as type STRDOM. The STRDOM entity is replaced with the definition provided

in the domain reference file described above. So, the ACCTPERIOD element

<!ELEMENT ACCTPERIOD %STRDOM;>

is parsed with the domain definition defined above, and is interpreted as the
following:

<!ELEMENT ACCTPERIOD (#PCDATA)>

XML AR C H I T E C T U R E OAGIS RE L E A S E 6.2

O PEN AP P L I C A T I O N S G ROUP IN T E G R A T I O N SP E C I F I C A T I O N S
8

The one exception the domain definitions is the content model of the USERAREA
element. The content model for this element is ANY, as shown below. This allows
for customer and vendor specific extensions to be incorporated into the DTDs as
described in the implementation notes later in this document.

<!ELEMENT USERAREA ANY>

XML AR C H I T E C T U R E OAGIS RE L E A S E 6.2

O PEN AP P L I C A T I O N S G ROUP IN T E G R A T I O N SP E C I F I C A T I O N S
9

2.5 Resource DTD 2.5 Resource DTD –– Segments Segments
The third resource file, oagis_segments.dtd, defines OAGIS segments and super

segments that are shared across all transactions. Segments are complex data types
that contain more than one element. Super Segments are simply segments that
may contain multiple level content definitions.

One representative segment, AMOUNT, is shown below. The example is followed by
a brief description of each key component.

<!--
 $Revision: 6.2.0 $
 $Date: 12 December 1998 $
 Open Applications Group DTD
 Copyright 1998, All Rights Reserved

 $Name: oagis_segments.dtd $
-->

<!-- == -->
<!-- Elements - Segments - Appendix D
-->

<!-- AMOUNT -->
<!ENTITY % SEG_AMOUNT_QUALIFIER_EXTENSION “OTHER”>
<!ENTITY % SEG_AMOUNT_QUALIFIERS
 "(ACTUAL | APPRVORD | AVAILABLE | BUDGET | DISCNT1 |
 DISCNT2 | DISCNT3 | DISCNT4 | DISCNT5 | DISCNT6 | DISCNT7 |
 DISCNT8 | DISCNT9 | DOCUMENT | EXTENDED | ITEM | OPENITEM |
 ORDER | ORDLIMIT | TAX | TAXBASE | TOTLIMIT |

%SEG_AMOUNT_QUALIFIER_EXTENSION;)">
<!ENTITY % SEG_AMOUNT_TYPES_EXTENSION “OTHER”>
<!ENTITY % SEG_AMOUNT_TYPES
 "(T | F | %SEG_AMOUNT_TYPES_EXTENSION;)">
<!ELEMENT AMOUNT (VALUE, NUMOFDEC, SIGN, CURRENCY, DRCR)>
<!ATTLIST AMOUNT
 qualifier %SEG_AMOUNT_QUALIFIERS; #REQUIRED
 type %SEG_AMOUNT_TYPES; #REQUIRED
 index CDATA #IMPLIED>

Each segment has a set of supporting attributes. All segments contain the
QUALIFIER attribute, and many have TYPE and INDEX attributes as well. The

QUALIFIER is defined as an entity below. In the definition of the AMOUNT element,

this definition is referenced. The entity definition lists the set of valid values for the
attribute.

XML AR C H I T E C T U R E OAGIS RE L E A S E 6.2

O PEN AP P L I C A T I O N S G ROUP IN T E G R A T I O N SP E C I F I C A T I O N S
10

<!ENTITY % SEG_AMOUNT_QUALIFIERS
 "(ACTUAL | APPRVORD | AVAILABLE | BUDGET | DISCNT1 |
 DISCNT2 | DISCNT3 | DISCNT4 | DISCNT5 | DISCNT6 | DISCNT7 |
 DISCNT8 | DISCNT9 | DOCUMENT | EXTENDED | ITEM | OPENITEM |
 ORDER | ORDLIMIT | TAX | TAXBASE | TOTLIMIT |

%SEG_AMOUNT_QUALIFIERS_EXTENSION;)">

The second entity that is used to support the AMOUNT element is the set of values

used in attribute TYPE. These values (transactional and functional) are defined

below.

<!ENTITY % SEG_AMOUNT_TYPES
 "(T | F | %SEG_AMOUNT_TYPES_EXTENSION;)">

The AMOUNT element is comprised of six (6) required fields. The definitions of these

fields were provided in the resource file oagis_fields.dtd above. None of these

fields are optional, or occur more than once.

<!ELEMENT AMOUNT (VALUE, NUMOFDEC, SIGN, CURRENCY, DRCR)>

The AMOUNT element also has an associated set of attributes. They are both

required in the XML message. The allowed values are defined through the use of
entities SEG_AMOUNT_QUALIFIERS and SEG_AMOUNT_TYPES.

<!ATTLIST AMOUNT
 qualifier %SEG_AMOUNT_QUALIFIERS; #REQUIRED
 type %SEG_AMOUNT_TYPES; #REQUIRED
 index CDATA #IMPLIED>

The remaining segments are defined in the resource DTD with a similar structure.
Most of them contain the QUALIFIER and TYPE attributes.

SEGMENT ENTITIES
As may be apparent from the list of qualifiers in the segment sample shown above, a
segment may be used multiple times within the same data type, each with a different
qualifier or qualifier/type combination.

XML AR C H I T E C T U R E OAGIS RE L E A S E 6.2

O PEN AP P L I C A T I O N S G ROUP IN T E G R A T I O N SP E C I F I C A T I O N S
11

One example of these entity definitions is shown below. One of the qualifiers for the
AMOUNT segment is ACTUAL. Additionally, this qualifier is implemented with both

transactional and functional types (T and F).

<!ENTITY % AMOUNT.ACTUAL.F "AMOUNT">
<!ENTITY % AMOUNT.ACTUAL.T "AMOUNT">

The current specification includes 29 unique qualifier and type combinations for the
AMOUNT segment. The XML implementation of the OAGIS represents a trade-off

between creating a large number of elements in the specification and not clearly
defining which qualifiers are to be used in each BOD. This release represents a
middle ground between the two approaches.

The result is that each transaction DTD provides a definition of which qualifier and/or
type is used in each location. This definition is provided in the form of parameter
entities as shown above. The transaction DTD fragment shown below demonstrates
how the entities are implemented.

A business analyst or programmer may then use this information to support design
and development activities around each transaction. However, when the final XML
file is actually transmitted, the entity definition is interpreted simply as the core
segment. In this case, the AMOUNT element is processed in both cases.

<!ELEMENT JELINE (
 (%AMOUNT.ACTUAL.T;),
 (%AMOUNT.ACTUAL.F;)?,
 GLNOMACCT, BUSNAREA?, COSTCENTER?, DEPARTMENT?, DESCRIPTN?, …

"SUPER SEGMENTS"
In a small number of instances, more complex data types should be consistently
defined across the entire specification. Typically, these will represent very general
information structures, such as partner addresses, charges, and charge distributions.
These may be defined with multiple levels, possibly incorporating multiple segments
or data types. These elements are generally referred to as Super Segments.

One example of a Super Segment is provided below. The CHARGE segment

includes another segment (OPERAMT), a number of fields, and another Super

Segment (DISTRIBUTN).

<!ELEMENT CHARGE (
 (%OPERAMT.EXTENDED.T;)?,
 CHARGEID?, CHGLINENUM?, DESCRIPTN?, USERAREA?, DISTRIBUTN*)>

XML AR C H I T E C T U R E OAGIS RE L E A S E 6.2

O PEN AP P L I C A T I O N S G ROUP IN T E G R A T I O N SP E C I F I C A T I O N S
12

2.6 Sample Transaction DTD 2.6 Sample Transaction DTD -- Confirm BOD Confirm BOD
The three resource DTDs contain common definitions that are shared across all of
the transactions within the specification. Definitions that are unique to individual
transactions are provided in the corresponding transaction DTD. A separate DTD
file is distributed for each transaction. One of the simplest transactions in the
specification, version 2 of the Confirm BOD, is described in this section. The
complete DTD, 002_confirm_bod_002.dtd, is shown below.

The naming convention used for transaction DTD files is
"<Chapter>_<Verb>_<Noun>_<Version>.dtd".

<!--
 $Revision: 6.0.0 $
 $Date: 15 June 1998 $
 Open Applications Group DTD
 Copyright 1998, All Rights Reserved

 $Name: 002_confirm_bod_002.dtd $
-->

<!-- == -->
<!ENTITY % DOMAINS SYSTEM "oagis_domains.dtd">
%DOMAINS;

<!ENTITY % FIELDS SYSTEM "oagis_fields.dtd">
%FIELDS;

<!ENTITY % SEGMENTS SYSTEM "oagis_segments.dtd">
%SEGMENTS;

<!-- == -->

<!ELEMENT BOD (CNTROLAREA, DOCUMENT+)>

 <!ATTLIST VERB value CDATA #FIXED "CONFIRM">
 <!ATTLIST NOUN value CDATA #FIXED "BOD">
 <!ATTLIST REVISION value CDATA #FIXED "002">

<!ELEMENT DOCUMENT (CONFIRM_BOD)>

 <!ELEMENT CONFIRM_BOD (CONFIRM, CONFIRMMSG*)>

 <!ELEMENT CONFIRM (SENDER, STATUSLVL, DESCRIPTN?,
 ORIGREF?, USERAREA?)>

 <!ELEMENT CONFIRMMSG (DESCRIPTN?, REASONCODE?,
 USERAREA?)>

In the first section of the transaction DTD, resource information is loaded from the
data domains, fields, and segments reference files. In order to load this
information, entities are created to reference the external definitions. When the
DTD is parsed, the contents of the external files replace the entity references.

XML AR C H I T E C T U R E OAGIS RE L E A S E 6.2

O PEN AP P L I C A T I O N S G ROUP IN T E G R A T I O N SP E C I F I C A T I O N S
13

<!ENTITY % DOMAINS SYSTEM "oagis_domains.dtd">
%DOMAINS;

<!ENTITY % FIELDS SYSTEM "oagis_fields.dtd">
%FIELDS;

<!ENTITY % SEGMENTS SYSTEM "oagis_segments.dtd">
%SEGMENTS;

Next, the root, or top-level, message element is defined. The same definition is
used for all transactions. The BOD element contains two sub-elements. The

CNTROLAREA sub-element occurs exactly once. The DOCUMENT sub-element

occurs one or many times. The CNTROLAREA element is an OAGIS segment, and

is defined in the segment resource file.

<!ELEMENT BOD (CNTROLAREA, DOCUMENT+)>

Additional attributes for CNTROLAREA elements are defined to restrict the values

that may be provided in the VERB, NOUN, and REVISION elements. When the XML

message is generated, the contents of these elements must exactly match the
#FIXED values listed.

<!ATTLIST VERB value CDATA #FIXED "CONFIRM">
<!ATTLIST NOUN value CDATA #FIXED "BOD">
<!ATTLIST REVISION value CDATA #FIXED "002">

After the CNTROLAREA is defined, the rest of the DTD describes the structure of the

transaction data. The DOCUMENT element is always defined as the verb-noun

combination of the transaction. This verb-noun element, CONFIRM_BOD in this

example, is then developed from its member data types defined in the OAGIS.

The first OAGIS data type is represented by the CONFIRM element. This element

contains two required elements and three optional elements. These elements are
defined in the field resource file.

<!ELEMENT DOCUMENT (CONFIRM_BOD)>

 <!ELEMENT CONFIRM_BOD (CONFIRM)>

 <!ELEMENT CONFIRM (SENDER, STATUSLVL, DESCRIPTN?,
 ORIGREF?, USERAREA?)>

The remainder of the transactions defined in the OAGIS follow the same structure
as the CONFIRM BOD just described. These transactions are more complex. In

XML AR C H I T E C T U R E OAGIS RE L E A S E 6.2

O PEN AP P L I C A T I O N S G ROUP IN T E G R A T I O N SP E C I F I C A T I O N S
14

many cases, they require deeper element nesting and more sophisticated regular
expressions.

XML AR C H I T E C T U R E OAGIS RE L E A S E 6.2

O PEN AP P L I C A T I O N S G ROUP IN T E G R A T I O N SP E C I F I C A T I O N S
15

2.7 Sample Message 2.7 Sample Message –– Confirm BOD Confirm BOD
XML messages are constructed based upon the definitions provided in the DTDs.
When the message is parsed, it is compared against the DTDs to validate that it is
valid and well formed. Each required element must be present in the message, and
the elements must be sent in the correct order.

An example of the CONFIRM BOD message implemented in XML follows. The
four main components of this message are described below.

<?xml version="1.0"?>

<!DOCTYPE confirm_bod_002 SYSTEM "002_confirm_bod_002.dtd">

<BOD>
 <CNTROLAREA>
 <BSR>
 <VERB>CONFIRM</VERB>
 <NOUN>BOD</NOUN>
 <REVISION>002</REVISION>
 </BSR>
 <SENDER>
 <LOGICALID>XXX1234YYY</LOGICALID>
 <COMPONENT>G/L</COMPONENT>
 <TASK>CONFIRM</TASK>
 <REFERENCEID>REF1</REFERENCEID>
 <CONFIRMATION>0</CONFIRMATION>
 <LANGUAGE>EN</LANGUAGE>
 <CODEPAGE/>
 <AUTHID>JOE DOE</AUTHID>
 </SENDER>
 <DATETIME qualifier = "CREATION">
 <YEAR>1995</YEAR>
 <MONTH>12</MONTH>
 <DAY>31</DAY>
 <HOUR>17</HOUR>
 <MINUTE>59</MINUTE>
 <SECOND>00</SECOND>
 <SUBSECOND>0000</SUBSECOND>
 <TIMEZONE>-0500</TIMEZONE>
 </DATETIME>
 </CNTROLAREA>
 <DOCUMENT>
 <CONFIRM_BOD>
 <CONFIRM>
 <SENDER>
 <LOGICALID>XX141HG09</LOGICALID>
 <COMPONENT>INVENTORY</COMPONENT>
 <TASK>RECEIPT</TASK>
 <REFERENCEID>95129945823449</REFERENCEID>
 <CONFIRMATION/>
 <LANGUAGE>EN</LANGUAGE>
 <CODEPAGE></CODEPAGE>
 <AUTHID>JOE DOE</AUTHID>
 </SENDER>
 <STATUSLVL>00</STATUSLVL>
 <DESCRIPTN>PROCESSED WITHOUT ERRORS</DESCRIPTN>

XML AR C H I T E C T U R E OAGIS RE L E A S E 6.2

O PEN AP P L I C A T I O N S G ROUP IN T E G R A T I O N SP E C I F I C A T I O N S
16

 <ORIGREF>RCPT#12550699</ORIGREF>
 </CONFIRM>
 </CONFIRM_BOD>
 </DOCUMENT>
</BOD>

The first line of the message includes the XML release version that was used. For
this example, version 1.0 is indicated. The processor will parse the message based
upon the 1.0 specification as released by the W3C and implemented in the XML
tools.

<?xml version="1.0"?>

The next file segment defines the document type (DOCTYPE) element. This

element is defined with three components. The first component is the name of the
document type, in this example, "002_confirm_bod_002". The second

component is the access path for the definition file, in this example, "SYSTEM".

This indicates that the DTD location is an operating system path. XML also
supports references to URLs instead of local operating system file locations. The
third and final component is the file name of the DTD,
"002_confirm_bod_002.dtd".

<!DOCTYPE confirm_bod_002 SYSTEM "002_confirm_bod_002.dtd">

The next set of lines contain control information for the message. All transactions
include this information, in the same format. The BSR element contains the verb,

noun, and version definitions that match the transaction type. SENDER and

DATETIME elements are provided as well.

The actual transaction data is included between the DOCUMENT tags. These

elements are discussed below.

<BOD>
 <CNTROLAREA>
 <BSR>
 <VERB>CONFIRM</VERB>
 <NOUN>BOD</NOUN>
 <REVISION>002</REVISION>
 </BSR>
 <SENDER>
 <LOGICALID>XXX1234YYY</LOGICALID>
 <COMPONENT>G/L</COMPONENT>
 <TASK>CONFIRM</TASK>
 <REFERENCEID>REF1</REFERENCEID>
 <CONFIRMATION>0</CONFIRMATION>
 <LANGUAGE>EN</LANGUAGE>
 <CODEPAGE></CODEPAGE>
 <AUTHID>JOE DOE</AUTHID>
 </SENDER>

XML AR C H I T E C T U R E OAGIS RE L E A S E 6.2

O PEN AP P L I C A T I O N S G ROUP IN T E G R A T I O N SP E C I F I C A T I O N S
17

 <DATETIME qualifier = "CREATION">
 <YEAR>1995</YEAR>
 <MONTH>12</MONTH>
 <DAY>31</DAY>
 <HOUR>17</HOUR>
 <MINUTE>59</MINUTE>
 <SECOND>00</SECOND>
 <SUBSECOND>0000</SUBSECOND>
 <TIMEZONE>-0500</TIMEZONE>
 </DATETIME>
 </CNTROLAREA>
 <DOCUMENT>

 </DOCUMENT>
</BOD>

Transaction data is provided in the DOCUMENT definition. Each element provided is

contained within a pair of tags, as defined in the DTD.

 <CONFIRM_BOD>
 <CONFIRM>
 <SENDER>
 <LOGICALID>XX141HG09</LOGICALID>
 <COMPONENT>INVENTORY</COMPONENT>
 <TASK>RECEIPT</TASK>
 <REFERENCEID>95129945823449</REFERENCEID>
 <CONFIRMATION>0</CONFIRMATION>
 <LANGUAGE>EN</LANGUAGE>
 <CODEPAGE></CODEPAGE>
 <AUTHID>JOE DOE</AUTHID>
 </SENDER>
 <STATUSLVL>00</STATUSLVL>
 <DESCRIPTN>PROCESSED WITHOUT ERRORS</DESCRIPTN>
 <ORIGREF>RCPT#12550699</ORIGREF>
 </CONFIRM>
 </CONFIRM_BOD>

Each XML formatted message will have the same structure. The main components
are the version header, DTD reference, control information, and transaction data.
Each of these was briefly discussed above.

XML AR C H I T E C T U R E OAGIS RE L E A S E 6.2

O PEN AP P L I C A T I O N S G ROUP IN T E G R A T I O N SP E C I F I C A T I O N S
18

2.8 DTD Development Steps 2.8 DTD Development Steps –– Resource Files Resource Files
Development of the XML resources required for OAGIS support is most easily
facilitated by review and conversion of the individual transaction files. This section
describes the process to code the transactions in XML.

As a part of the conversion, some information that is provided in the specification is
not directly supported by XML. These items will be noted in the discussion. The
conversion process and resource file format will be enhanced over time to
incorporate as much of this information as possible. These enhancements will be
developed through adoption of additional capabilities as they are released by the
W3C.

Domain Resource DTD DefinitionsDomain Resource DTD Definitions
The domain resource file contains data type and value restrictions. In the current
XML implementation, only one domain is defined.

Each field that is defined in the specification is a member of a data domain. The
XML implementation of this domain is shown below. This string domain is currently
used for all fields. Later, the DTDs may be extended to support the additional
attributes defined in the OAGIS.

<!ENTITY % STRDOM "(#PCDATA)">

All fields in the specification DTDs reference the STRDOM definition.

Field Resource DTD DefinitionsField Resource DTD Definitions
The next resource area provided is the set of field definitions. When implemented
in XML, the name and primitive data type are provided.

<!ELEMENT DRCR %STRDOM;>

Each field that is used in the specification is provided in the field resource DTD.
Fields used in segments are handled in the same manner as those defined directly
in the transaction data types. Field alignment, padding, and length restrictions are
described in the specification, but are not used in the XML translation.

XML AR C H I T E C T U R E OAGIS RE L E A S E 6.2

O PEN AP P L I C A T I O N S G ROUP IN T E G R A T I O N SP E C I F I C A T I O N S
19

Segment Resource DTD DefinitionsSegment Resource DTD Definitions
The third resource that is provided in the XML implementation is the set of segment
definitions. These definitions provide the content model for the segment, as well as
the qualifiers and types that may be used in conjunction with the segment.

<!ENTITY % SEG_AMOUNT_QUALIFIERS
 "(ACTUAL | APPRVORD | AVAILABLE | BUDGET | DISCNT1 |
 DISCNT2 | DISCNT3 | DISCNT4 | DISCNT5 | DISCNT6 | DISCNT7 |
 DISCNT8 | DISCNT9 | DOCUMENT | EXTENDED | ITEM | OPENITEM |
 ORDER | ORDLIMIT | TAX | TAXBASE | TOTLIMIT |

%SEG_AMOUNT_QUALIFIERS_EXTENSION;)">
<!ENTITY % SEG_AMOUNT_TYPES
 "(T | F | SEG_AMOUNT_TYPES_EXTENSION;)">
<!ELEMENT AMOUNT (VALUE, NUMOFDEC, SIGN, CURRENCY, DRCR)>
<!ATTLIST AMOUNT
 qualifier %SEG_AMOUNT_QUALIFIERS; #REQUIRED
 type %SEG_AMOUNT_TYPES; #REQUIRED
 index CDATA #IMPLIED>

Each segment defined in the OAGIS is provided in the segment resource file,
oagis_segments.dtd. These are then incorporated into each of the transaction

DTDs.

XML AR C H I T E C T U R E OAGIS RE L E A S E 6.2

O PEN AP P L I C A T I O N S G ROUP IN T E G R A T I O N SP E C I F I C A T I O N S
20

2.9 DTD Development Steps 2.9 DTD Development Steps –– Transactions Transactions
The differences in the way transaction files are defined in the traditional Open
Applications Group format and XML are significant. XML allows for a very flexible
definition of the overall structure, with straightforward support for optional and
multiple fields embedded in the message data. The original structure of an OAGIS
format message was to provide sets of header meta-data to describe the message
fields.

Control Area DTD DefinitionsControl Area DTD Definitions
The first section of the DTD provides control information, while the second includes
the actual transaction data. The CNTROLAREA is defined as a segment. The

DATAAREA element is discussed in the next section.

The BOD element in the XML example below is defined as required and single
instance. The very simple regular expression, "CNTROLAREA" indicates that it is

required and only occurs once. In the same fashion, the required and possibly
multi-occurrence transaction data area is represented by the simple regular
expression "DATAAREA+".

<!ELEMENT BOD (CNTROLAREA, DATAAREA+)>

 <!ATTLIST VERB value CDATA #FIXED "CONFIRM">
 <!ATTLIST NOUN value CDATA #FIXED "BOD">
 <!ATTLIST REVISION value CDATA #FIXED "001">

 <!ELEMENT DOCUMENT (CONFIRM_BOD)>

Additional attributes are defined in the header information. The VERB, NOUN, and

REVISION attributes are required for all transactions, and must match the

corresponding, appropriate transaction values. The remainder of the CNTROLAREA

element definition is provided in the segment resource file,
oagis_segments.dtd. The structure of the transaction information is discussed

in the next section.

Transaction DTD DefinitionsTransaction DTD Definitions
The DOCUMENT element contains a reference to only a single element created from

the transaction's verb and noun. In this case, the element is CONFIRM_BOD. The

CONFIRM_BOD element is then defined with its member data types.

XML AR C H I T E C T U R E OAGIS RE L E A S E 6.2

O PEN AP P L I C A T I O N S G ROUP IN T E G R A T I O N SP E C I F I C A T I O N S
21

Segments and fields are defined in the reference files, so the element definition
simply lists the order of the fields, which are required, and which may have multiple
instances. In the example below, two (2) fields and required, and three (3) are
optional. Each may occur only once.

<!ELEMENT BOD (CNTROLAREA, DOCUMENT+)>

 <!ATTLIST VERB value CDATA #FIXED "CONFIRM">
 <!ATTLIST NOUN value CDATA #FIXED "BOD">
 <!ATTLIST REVISION value CDATA #FIXED "001">

 <!ELEMENT DOCUMENT (CONFIRM_BOD)>

 <!ELEMENT CONFIRM_BOD (CONFIRM)>

 <!ELEMENT CONFIRM (SENDER, STATUSLVL, DESCRIPTN?,
 ORIGREF?, USERAREA?)>

XML DTD Development StepsXML DTD Development Steps
Generating DTDs from the OAGIS is a straightforward process. The steps in the
conversion are described below. Many of the constructs have already been
described.

1. Update CNTROLAREA attributes for the transaction. The VERB, NOUN, and

REVISION values must match the transaction.

 <!ATTLIST VERB value CDATA #FIXED "VERB">
 <!ATTLIST NOUN value CDATA #FIXED "NOUN">
 <!ATTLIST REVISION value CDATA #FIXED "REVISION">

2. Create transaction element within DOCUMENT. The DOCUMENT entity

definition includes only one element. This element is the concatenation of
the transaction verb and noun, with an underscore between.

<!ELEMENT DOCUMENT (VERB_NOUN)>

3. Add segments for Data Types.

3.1 Add required segments in the element definition.

 <!ELEMENT SAMPLE (REQSEGMENT)>

3.2 Add optional segments in the element definition.

 <!ELEMENT SAMPLE (REQSEGMENT, OPTSEGMENT?)>

XML AR C H I T E C T U R E OAGIS RE L E A S E 6.2

O PEN AP P L I C A T I O N S G ROUP IN T E G R A T I O N SP E C I F I C A T I O N S
22

4. Add fields in the element definition.

4.1 Add required fields in the element definition.

 <!ELEMENT SAMPLE (REQSEGMENT, OPTSEGMENT?,

REQFIELD1, REQFIELD2+)>

4.2 Add optional fields in the element definition.

 <!ELEMENT SAMPLE (REQSEGMENT, OPTSEGMENT?,

REQFIELD1, REQFIELD2+, OPTFIELD1?,
OPTFIELD2*)>

5. Add USERAREA element.

 <!ELEMENT SAMPLE (REQSEGMENT, OPTSEGMENT?,

REQFIELD1, REQFIELD2+, OPTFIELD1?,
OPTFIELD2*, USERAREA?)>

6. Add Rules. If processing rules are provided for the Data Type, the regular

expressions describing these rules are coded next. These are added to the
DTD immediately before the USERAREA element.

 <!ELEMENT SAMPLE (REQSEGMENT, OPTSEGMENT?,

REQFIELD1, REQFIELD2+, OPTFIELD1?,
OPTFIELD2*, (OPTFIELD1 | OPTFIELD2),
USERAREA?)>

In some cases, processing notes may indicate that a combination of fields
are allowed, but only one of the fields listed in the set is required in a valid
transaction. A more complex rule is provided to represent this processing
note.

For example, the specification may indicate that at least one of the following
fields is required: {DESCRIPTN, ITEMID, ITEMIDX, SKU}. The
corresponding rule as coded in the transaction DTD as follows:

((DESCRIPTN, ITEMID, ITEMIDX?, SKU?) |
 (ITEMID, ITEMIDX?, SKU?) |
 (ITEMIDX, SKU?) |
 (SKU))

This content model is structured to ensure that at least one of the required
fields is provided in the XML message, and the message contents satisfy
exactly one of the model alternatives.

XML AR C H I T E C T U R E OAGIS RE L E A S E 6.2

O PEN AP P L I C A T I O N S G ROUP IN T E G R A T I O N SP E C I F I C A T I O N S
23

6.1 Remove elements included in rules. Elements that are parts of a rule
definition are removed from the parent element.

 <!ELEMENT SAMPLE (REQSEGMENT, OPTSEGMENT?,

REQFIELD1, REQFIELD2+, (OPTFIELD1 |
OPTFIELD2*), USERAREA?) >

7. Add Sub-Data Type elements. The last elements that are added to the

definition are references to sub-elements.

 <!ELEMENT SAMPLE (REQSEGMENT, OPTSEGMENT?,

REQFIELD1, REQFIELD2+, (OPTFIELD1 |
OPTFIELD2), USERAREA?, SAMPLE_CHILD1,
SAMPLE_CHILD2)>

 <!ELEMENT SAMPLE_CHILD1 (…)>
 <!ELEMENT SAMPLE_CHILD2 (…)>

8. Repeat steps 3 through 8 for each element.

XML AR C H I T E C T U R E OAGIS RE L E A S E 6.2

O PEN AP P L I C A T I O N S G ROUP IN T E G R A T I O N SP E C I F I C A T I O N S
24

2.10 Get Transactions2.10 Get Transactions
The Get series of transactions is handled differently from the other transactions. It
is used to request specific information from another system. As a result, each field
and data type is optional. Those fields that are transmitted as a part of the Get
BOD are used for selection on the receiving system.

The fields used for selection, and those requested to be returned may be different.
In order to support this functionality, an additional attribute, returndata, is

defined.

<!ATTLIST FIELDNAME returndata CDATA #REQUIRED>

Each field in a Get transaction requires the returndata attribute. This attribute

indicates whether the data type should be populated by the receiving application. If
the value of the attribute is ‘1’, the data type will be returned with the corresponding
information. Otherwise, the data type is not returned.

In the example below, taken from the Get PO transaction, the header information
includes a requested PO number, and both the header and line information is
requested to be returned.

<DOCUMENT>
 <GET_PO>
 <POHEADER returndata = “1”>
 <POID>PO12345</POID>
 </POHEADER>
 <POLINE returndata = “1”/>
 </GET_PO>
</DOCUMENT>

Note that only the OAGIS data types use the returndata attribute. These are not

used to select individual fields. It is assumed that all fields will be returned within
the requested data type.

Also, data types requested for return, but not used for selection, do not need both
start and end tags. In the example above, the POLINE element is implemented

using a construct for indicating that the element has no additional content.

XML AR C H I T E C T U R E OAGIS RE L E A S E 6.2

O PEN AP P L I C A T I O N S G ROUP IN T E G R A T I O N SP E C I F I C A T I O N S
25

2.11 USERAREA Extensions2.11 USERAREA Extensions
The USERAREA element of the OAGIS provides a facility for extending the
transaction definitions to support additional data elements. These extensions may
be required by software vendors, solution integrators, or customers. These
constituencies have the same implementation requirements, and references to
them will be made interchangeably.

Goals and GuidelinesGoals and Guidelines
The USERAREA should only be used in the rare occasion that specific data
requirements are not supported by the transaction specification. Should a specific
functional gap be identified in the specification, the Open Applications Group should
be notified to consider including the required fields in the OAGIS.

As a part of the implementation design, a number of goals and guidelines were
considered.

1. Allow multiple parties (vendors, integrators, or customers) to extend the same
USERAREA.

As a part of their standard product offerings, vendors may need to provide
application specific elements within the USERAREA. In some cases, multiple
vendors, or customers, may require extensions to the same USERAREA. The
concurrent use of these extensions must not conflict with each other.

2. Support complex element definitions within each USERAREA.

USERAREA implementations may be implemented with complex elements,
including reuse of standard OAGIS segments. Any valid XML is supported
within the USERAREA.

3. Element names must be unique within a transaction.

Multiple USERAREA definitions are supported with a single transaction. Since
each definition will be different, the vendor specific USERAREA elements must
be uniquely identified. This allows element definitions to be encapsulated in a
single vendor provided header file.

4. Element names must be unique across the specification.

Multiple USERAREA definitions are supported across transactions. The vendor
specific USERAREA definitions must be unique across transactions. However,

XML AR C H I T E C T U R E OAGIS RE L E A S E 6.2

O PEN AP P L I C A T I O N S G ROUP IN T E G R A T I O N SP E C I F I C A T I O N S
26

vendors may identify the need to reuse specific constructs across multiple
transactions. This will allow for a single repository of vendor data elements for
the entire set of supported transactions.

5. Changes required to the DTDs released by the Open Applications Group will be
limited and isolated.

Maintenance will be required as the OAGIS continues to be revised and
expanded. The impact of this activity on vendor specific extensions should be
limited as much as possible. This will be achieved by isolating the vendor
specific information to DTD and message headers only. Extensions will not be
embedded within the transaction files.

Naming ConventionsNaming Conventions
Naming conventions are established for each element in the USERAREA
extension. These conventions reduce the likelihood of conflicts in element names,
and provide consistency across implementations.

For illustration purposes, two fictional companies are used in the samples provided.
They are Acme Software and ABC Widget.

TOP LEVEL USERAREA NAMING CONVENTIONS
A top level element will be defined for each vendor within each USERAREA
extension. This element will be used to encapsulate the vendor's data elements. It
provides both the context of the extension, as well as a reference to the vendor
DTD to be used for validation.

The context of the extension is defined by the full element name path to the
USERAREA. Each element within the path is separated by a period ('.').

Within each USERAREA, the top level element names will follow the format:

<vendor.transaction.context.USERAREA>

For example, the definition of the USERAREA extension in Acme Software's
implementation of the JEHEADER element of the POST JOURNAL 004 transaction
would be named:

<ACME.POST_JOURNAL_004.JEHEADER.USERAREA>

Similarly, ABC Widget's element would be named:

<ABC.POST_JOURNAL_004.JEHEADER.USERAREA>

XML AR C H I T E C T U R E OAGIS RE L E A S E 6.2

O PEN AP P L I C A T I O N S G ROUP IN T E G R A T I O N SP E C I F I C A T I O N S
27

Note that no data elements are defined at this level. The top level element
provides context only and is used to encapsulate the data elements defined at the
next level.

The definition of this element will be provided in the vendor provided DTD file. The
vendor will provide supplemental DTDs that include only their proprietary
extensions. The base DTD will be maintained and provided by the Open
Applications Group.

ELEMENT NAMING CONVENTIONS
Within the top-level elements, vendor specific data elements are defined. These
elements contain the required data, or definitions of complex data types.

Each element within the vendor-specific USERAREA definition will follow the
format:

<vendor.elementname>

For example, the definition of the 'Weave' element within Acme Software's
USERAREA would be named:

<ACME.WEAVE>

Reference FilesReference Files
Each vendor will provide a single DTD that includes all the extensions required for
an application/OAGIS release combination. Additional reference files may also be
created by the integrators and customers as required for specific installations.
Incorporating vendor extensions also requires minor changes to the Open
Applications Group distributed reference files.

CUSTOMER/VENDOR REFERENCE FILES
Naming conventions for these files include Open Applications Group assigned
vendor or customer prefixes, followed by optional product names and versions, or
additional customer implementation information. In general, the file name will
follow the format:

<vendor prefix>_<product>_<version>.dtd or
<customer prefix>_<implementation>.dtd

For example, Acme Software has released a DTD specifically for version 4.5 of
their 'Planner' product. This file includes the element definitions for all the OAGIS
transactions supported by their product. The DTD file name may be:

XML AR C H I T E C T U R E OAGIS RE L E A S E 6.2

O PEN AP P L I C A T I O N S G ROUP IN T E G R A T I O N SP E C I F I C A T I O N S
28

acme_planner_0405.dtd

Similarly, ABC Widget will also build a single DTD to support all of their proprietary
extensions to the specification. These may be required for integration to legacy
systems and to other products in their portfolio. Their DTD file name (for the US
implementation) may be:

abc_usa.dtd

OPEN APPLICATIONS GROUP SPECIFICATION FILES
Minor changes to the released OAGI DTDs are required to support vendor
extensions. These changes impact the field reference and each transaction DTD.

Field Reference: The definition of the USERAREA element is changed from a
single string to support of any complex element. This change allows the vendor's
top level elements to be used within the USERAREA element without specification
changes to support each extension. This does not compromise the ability to use
validating parsers, as long as no data elements are defined at the top level. The
child data elements in the vendor extension are validated against the definition of
the top level element in the vendor provided DTD.

This change is implemented in the Open Applications Group release of the field
reference DTD.

Before:

<!ELEMENT USERAREA %STRDOM;>

After:

<!ELEMENT USERAREA ANY>

Vendor and Transaction DTD: Each vendor extension is incorporated into the
transaction DTD. If multiple vendor extensions are required for an implementation,
each one is added to the header of the transaction DTD.

This change is made at implementation time. As the system is installed, the
implementation team will update the OAGI release files to include references to
vendor extensions of each transaction required.

Add:

XML AR C H I T E C T U R E OAGIS RE L E A S E 6.2

O PEN AP P L I C A T I O N S G ROUP IN T E G R A T I O N SP E C I F I C A T I O N S
29

<!ENTITY % VENDOR SYSTEM "filename">
%VENDOR;

Example:

<!ENTITY % ACME_PLANNER_0405 SYSTEM "acme_planner_0405.dtd">
%ACME_PLANNER_0405;

Prefix AssignmentsPrefix Assignments
Vendors and customers (both members and non-members) may request a unique
element prefix from the Open Applications Group. These will be uniquely defined,
and must be periodically renewed.

While this registration is not required, the assignment of prefixes addresses the
need for unique element tags within an implementation. Should an implementation
incorporate prefixes that have not been assigned by the Open Applications Group,
there is no guarantee that these will not conflict with implementations by other
parties.

The prefix assignments will be used in the naming of both USERAREA 'wrapper'
elements, as well as the data elements they contain. The naming conventions for
these elements were described above.

For more information or specific prefix assignments for a product or customer,
please contact the Open Applications Group.

Execution Note: The vendor prefix assignments could be based on the
registered domain name for the organization. In most cases, the *.com domain
may be sufficient. For those organizations that do not have a North American
corporate domain registered, the high level qualifier may also be required. For
example, the prefix assigned to SAP may be either SAP or SAP-DE or SAP-
COM. This subject will require more discussion to satisfy any vendor or solution
provider needs.

ExamplesExamples
An example of a USERAREA implementation is provided here. For the purposes of
illustration, extensions that may be desirable for an implementation at a fictional
textile manufacturer are shown.

XML AR C H I T E C T U R E OAGIS RE L E A S E 6.2

O PEN AP P L I C A T I O N S G ROUP IN T E G R A T I O N SP E C I F I C A T I O N S
30

VENDOR DTD
Acme Software has developed an extension DTD for version 4.5 of their product.
This is designed for use with version 6.0 of the OAGIS.

This file is named ACME_PLANNER_0405.dtd.

Within this file, a number of vendor specific elements are defined. These are
related to additional information that is required for the product.

<!ELEMENT ACME.DYELOT (%STRDOM;)>
<!ELEMENT ACME.PARENTROLL (%STRDOM;)>
<!ELEMENT ACME.SYNTHETIC (%STRDOM;)>
<!ELEMENT ACME.THREAD (%STRDOM;)>
<!ELEMENT ACME.THREADCOUNT (%STRDOM;)>
<!ELEMENT ACME.TINT (%STRDOM;)>
<!ELEMENT ACME.WEAVE (%STRDOM;)>

After the elements are defined, they are incorporated into top level USERAREA
elements.

For this example, the UPDATE INVENTORY and SYNC ITEM transactions are
extended.

<!ELEMENT ACME.SYNC_ITEM_002.ITEMHEADER.USERAREA
 (ACME.THREAD, ACME.THREADCOUNT, ACME.SYNTHETIC?, ACME.WEAVE?,
 ACME.TINT?)>

<!ELEMENT ACME.UPDATE_INVENTORY_002.INVENTORY.USERAREA
 (ACME.DYELOT, ACME.PARENTROLL)>

CUSTOMER DTD
In addition to the extensions required for Acme Software, this implementation
example also requires ABC Widget extensions for legacy system support. For this
example, the project scope is limited to their American manufacturing plants.

This file is named ABC_USA.DTD.

Within this file, a number of customer specific elements are defined. These are
related to additional information that is required for legacy integration.

<!ELEMENT ABC.BROKER (%STRDOM;)>
<!ELEMENT ABC.SKUGROUP (%STRDOM;)>

After the elements are defined, they are incorporated into top level USERAREA
elements.

XML AR C H I T E C T U R E OAGIS RE L E A S E 6.2

O PEN AP P L I C A T I O N S G ROUP IN T E G R A T I O N SP E C I F I C A T I O N S
31

For this example, the SYNC ITEM transaction is extended.

<!ELEMENT ABC.SYNC_ITEM_002.ITEMHEADER.USERAREA
 (ABC.BROKER, ABC.SKUGROUP)>

XML FILES
The XML messages incorporate the vendor extensions within the USERAREA.
Below is a section of the SYNC ITEM transaction, including the USERAREA
extension.

<ITEMHEADER>
 . . .
 <ITEMDESC>CORD BLUE 2x50Y</ITEMDESC>
 <UPC>1254671703</UPC>
 <USERAREA>
 <ABC.SYNC_ITEM_002.ITEMHEADER.USERAREA>
 <ABC.BROKER>JAMAABC</ABC.BROKER>
 <ABC.SKUGROUP>CORD001</ABC.SKUGROUP>
 </ABC.SYNC_ITEM_002.ITEMHEADER.USERAREA>
 <ACME.SYNC_ITEM_002.ITEMHEADER.USERAREA>
 <ACME.THREAD>AA022</ACME.THREAD>
 <ACME.THREADCOUNT>120</ACME.THREADCOUNT>
 </ACME.SYNC_ITEM_002.ITEMHEADER.USERAREA>
 </USERAREA>
</ITEMHEADER>

XML AR C H I T E C T U R E OAGIS RE L E A S E 6.2

O PEN AP P L I C A T I O N S G ROUP IN T E G R A T I O N SP E C I F I C A T I O N S
32

2.12 Segment Exten2.12 Segment Extensionssions
The OAGIS contains complex data types, called Segments, which represent entities
such as amounts or dates. Each segment contains multiple data elements. It also
may have attributes, such as qualifiers or transaction types. A USERAREA
implementation may incorporate Segments as a part of the extension definition. In
some cases, a vendor or implementer requirement may require extending the list of
valid qualifiers for a specific Segment. This section describes how Segment
qualifiers lists are extended.

Segment DefinitionsSegment Definitions
The XML definition of a Segment is shown below. It is structured in the same way
as any other XML element. Usually, a Segment contains two attributes, the qualifier
and type. Each attribute has a set of valid values that may be used.

In the example of the OPERAMT Segment provided below, the valid qualifier values

are 'EXTENDED' and 'UNIT'. The valid type values are 'T' and 'F'. The

remainder of the definition shows that the OPERAMT contains seven required

elements.

<!ENTITY % SEG_OPERAMT_QUALIFIERS
 "(EXTENDED | UNIT)">
<!ENTITY % SEG_OPERAMT_TYPES
 "(T | F)">
<!ELEMENT OPERAMT (VALUE, NUMOFDEC, SIGN, CURRENCY, UOMVALUE,
 UOMNUMDEC, UOM)>
<!ATTLIST OPERAMT
 qualifier %SEG_OPERAMT_QUALIFIERS; #REQUIRED
 type %SEG_OPERAMT_TYPES; #REQUIRED>

In order to support extensions to the qualifier list, an additional qualifier, "OTHER",

is included in the default definition. This is incorporated as an expansion as shown
below.

<!ENTITY % SEG_OPERAMT_QUALIFIERS_EXTENSION "OTHER">
<!ENTITY % SEG_OPERAMT_QUALIFIERS
 "(EXTENDED | UNIT | %SEG_OPERAMT_QUALIFIERS_EXTENSION;)">

At implementation time, the extensions provided by the vendor(s) replace the
simple "OTHER" provided by default. The same naming conventions for vendor-

specific elements are used for Segment extensions.

XML AR C H I T E C T U R E OAGIS RE L E A S E 6.2

O PEN AP P L I C A T I O N S G ROUP IN T E G R A T I O N SP E C I F I C A T I O N S
33

<!ENTITY % SEG_OPERAMT_QUALIFIERS_EXTENSION
 "OTHER | ACME.BATCH | ACME.LOT")
<!ENTITY % SEG_OPERAMT_QUALIFIERS
 "(EXTENDED | UNIT | %SEG_OPERAMT_QUALIFIERS_EXTENSION;)">

Should multiple extensions be required to support an implementation, the
integrators will edit the Segments DTD to incorporate them into a single
replacement entity.

