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Before we begin

• This tutorial consists of two parts:
– a fixed core (as advertised)

– a set of extra optional material

• This frees gives us some choice in what we
want to cover after the fixed core

• As I talk, please make notes about what
you’d like to see in the optional section
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Introduction

What this is all about
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Why do we process?

• Conversion: move data to a useful format

• Data extraction: pick out data and use them

• Build in-memory structures for use in
programs (specialized extraction)

• Semantic validation

• Basically, move information out of the
XML serialization syntax and into use
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The concept of representation

• Below are many different representations of the
number 223:
– DF (hexadecimal)

– 337 (octal)

– 11011111 (binary)

– two hundred and twenty-three (plain English)

– 2*100+2*10+3 (expression)

• These are all different ways of saying the same
thing
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Representations of documents

• Similarly, XML documents have many possible
representations:
– a string of bytes read from a file (or a socket)

– a string of characters

– a sequence of parsing events

– a tree structure

– Lisp S-expressions

– records in a relational database

• These are all equivalent, but have different uses
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Representations cont’d

• The XML document as a string of bytes is
singled out, because XML is mainly
intended for exchange across the network

• Similarly, RDBMSs single out the database
as a set of tables in a running server as the
main representation, because these are
mainly intended for interactive use as a
single-site storage mechanism
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The XML processing model

• Relies heavily on the concept of a parser,
something that reads bytes and turns it into
elements, character data and attributes

• This is all the parser does: moving up some
levels of interpretation from bytes to XML
constructs (and processing these)

• On top of the parser other frameworks can
be built, but these aren’t parsers or part of it
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The processing model, again

XML

document
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The processing paradigms

• Event-based: attach actions to events like
new start tag, new end tag etc

• Tree-based: build a tree and work on it

• Declarative: describe what you want done,
and the software does it for you
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Required tools

• A parser

• Event-based: nothing more required, though
many useful event-based frameworks exist

• Tree-based: a tree builder

• Declarative: a declaration language and
processor, usually a tree builder as well
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Levels of abstraction

...60 63 120 109 108 32 118 101 114 105

...< x m l v e r s i

startDocument()
xmlDeclaration(...)
startElement(...)

Document

...



26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 13

Levels of abstraction

• Byte sequence: rock-bottom

• Elements and attributes:
– Event sequence: better, nesting implicit

– Tree structure: even better, explicit nesting

• Application-specific
– Requires custom code, but enables you to

forget the XML representation of the
information
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An example

• XBEL is a simple XML DTD for representing
bookmark collections

• To the operating system, an XBEL document is a
sequence of bytes with no meaning

• To XML software, it is an XML document, with
elements and attributes

• To XBEL software, it is a bookmark collection,
with folders, bookmarks and descriptions
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Levels of information

• Basic logical:

– only gives you the logical document

• Full logical:

– the logical document + the DTD

• Basic lexical:

– logical + entity boundaries, comments, CDATA
sections/PCDATA

• Full lexical:

– whitespace in tags, character refs, DTD info...
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Event-based processing
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Turning bytes into events

<example>

<line>&quo;Hello,
world!&quo;</line>

</example>

• start document

• start element: example

• start element: line

• text: “Hello, World!”

• end element: line

• end element: example

• end document
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Event-based processing

• The most low-level paradigm, which the
others can be built on top of

• For simple applications, event-based
processing is very natural and easy

• For more complex applications you need to
build an apparatus to keep track of state

• Some frameworks do this for you
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Event-based processing

• Simple to implement

• Requires few resources

• Processing may be event-based even if the
framework gives access to the full tree
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Some event-based frameworks

• Most native parser APIs

• SAX

• OmniMark

• Balise

• DSSSL

• SAXON

• MDSAX
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Native parser APIs

• The following parsers have event-based
native APIs:
– expat

– SP

– sgmlop/xmllib

– xmlproc

– Lark

– XP

– TclXML

– XML::Parser

– Ælfred

– RXP

– and many others…
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Native parser APIs

• Require you to register handlers for events,
either functions (C, tcl) or objects (Java,
Python)

• Usually also allow various options to be set

• Some have options to allow non-standard
behaviour
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The expat API

• Application must register handler functions
like:

• void XML_StartElementHandler (void *userData,
const XML_Char *name, const XML_Char **atts)

• XML_EndElementHandler(void *userData, 
    const XML_Char *name)

• XML_CharacterDataHandler(void *userData, 
const XML_Char *s, int len)

• XML_ProcessingInstructionHandler(void
*userData, const XML_Char *target, const
XML_Char *data)
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The expat API

• XML_UnknownEncodingHandler(void
*encodingHandlerData, const XML_Char *name,
XML_Encoding *info);

• XML_DefaultHandler(void *userData, 
const XML_Char *s, int len)

• const XML_LChar XMLPARSEAPI
*XML_ErrorString(int code);

• int XMLPARSEAPI XML_Parse(XML_Parser parser,
const char *s, int len, int isFinal);
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Problems

• All different, so if you want to switch
parsers you need to rewrite your application
(and learn a new API)

• General applications become parser-bound

• Also, utilities built for one parser only work
with that specific parser
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SAX: Simple API for XML

• SAX is a standardized API to parsers,
developed on the xml-dev mailing list

• Currently supported by nearly all Java
parsers and all Python parsers

• Some attempts have been made at
translation into Delphi, C/C++ and Perl, but
nothing definite and widely supported has
yet emerged
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SAX: How it works

Parser ApplicationSAX driver

Control messagesControl messages

Data events Data events

• The driver implements the SAX parser
interface, and at the same time acts as a native
application of the parser
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SAX: Basic processing

• The SAX driver implements the Parser
interface, which has two Parse methods
(accepting an InputSource or a URL) and
some methods to set various handlers

• The application implements the
DocumentHandler interface, which has
methods for receiving data events
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The Parser interface

• Has these methods:
– parse(sysid) / parse(InputSource)

– setDocumentHandler

– set*Handler

– setLocale
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The DocumentHandler

• Methods:
– startElement(name, attrs)

– endElement(name)

– characters

– processingInstruction(target,data)

– startDocument()

– endDocument()

– setDocumentLocator(locator)
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SAX: A simple example

class ExampleApp(saxlib.DocumentHandler):

    def __init__(self):

        self.count=0

    def startElement(self,name,attrs):

        self.count=self.count+1

    def endDocument(self):

        print “There were”,self.count,”elements.”

p=saxexts.make_parser() # Instantiates a parser

p.setDocumentHandler(ExampleApp())

p.parse(“test.xml”)
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SAX: Error handling

• SAX requires you to register a separate
error handler to receive error events

• The same object may play both roles

• Three levels of errors exist:
– warnings: not true errors

– errors: validity errors

– fatal errors: well-formedness errors
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The ErrorHandler

• Methods:
– warning(exception)

– error(exception)

– fatalError(exception)

• The exceptions contain the information
necessary to find the location of the error
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SAX: Working with attributes

• Attribute information is provided by the
AttributeList interface

• Provides:
– attribute values and names

– complete enumeration

– attribute type information (if available)
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AttributeList

• Methods:
– getLength()

– getName(ix)

– getType(ix) / getType(name)

– getValue(ix) / getValue(name)

• In Python these can be used as if they were
built-in lists or dictionaries
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A common technique

• Characters event: add data into an internal
buffer
– event may be split

• Actually handle the contents of the element
in the endElement event
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Demo

• Show XBEL example
– go through source

– run on cos_urls.xml

– run on pyhoo.xml
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Another technique

• To stop parsing (because of errors or
whatever):
– throw a SAXParseException

– define your own subclass if:
• you need to provide more information

• you need to single out your own exceptions
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SAX: Esoteric stuff

• InputSources can be used to feed input from
sources other than URLs to the parser

• It can also be used to implement your own
character encodings

• The EntityResolver handler allows you to
interpret system identifiers yourself, and
also to resolve public identifiers
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SAX: More esoterica

• The DTDHandler lets you receive entity and
notation declarations

• The Locator can be used to get information
about the current location in the document
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SAX: Complete view

DocumentHandler

Data events

Data events

Parser

ErrorHandler
Error events

DTDHandler

EntityResolver

Data events

Control results

Application

Control messages

Locator

Location queries

Location results
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Java SAX helper classes

• ParserFactory: Can be used to create an
XML parser specified by a parameter or a
Java property

• LocatorImpl: Can be used to store copies of
location information

• AttributeListImpl: Can be used to store
copies of attribute lists
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Python SAX helper classes

• ErrorRaiser

• ErrorPrinter

• ParserFactory
– creates parsers from predefined lists

• Locator
– like LocatorImpl

• AttributeMap
– like AttributeListImpl
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Python SAX helper classes

• EventBroadCaster
– forwards events to all handlers in a list

• mllib
– implements the old-style Python interface
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SAX: Event sources

• SAX events need not come from parsers in
the traditional sense

• Alternatives:
– A DOM walker

– An XSL implementation

– A program that generates XML
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SAX: Parser filters

• Parser filters are objects that receive events
from the parser (or another filter) and pass
them on to the application (or another filter)

• Possible applications:
– implement namespaces outside parser

– implement architectural forms outside parser

– strip unnecessary whitespace

– implement attribute inheritance
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SAX: Parser filters

DocumentHandlerParser ParserFilter ParserFilter

ParserFilter DocumentHandler
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Advantages

• Processing components can be developed
that:
– can be mixed (more or less) freely

– are independent of parsers

– can be used with XML generators also

• Some filters exist already
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Demo

• Go through filters.py source

• Show sax_esis2.py source

• Run on test.xml and show difference

• Play around with various combinations
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SAX 2
• Is currently being discussed

• Is more open than SAX 1.0, by allowing for:
– querying of features by ID

– registering handlers by ID

– setting parameters, also by ID

• Some standard handlers will be specified in
SAX2, probably those for namespaces, lexical
information and DTD information

• A set of IDs is also specified
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SAXON

• A framework for making XML processing
applications, built on SAX and the DOM

• Designed for processing that produces output

• Event-based, but gives you access to the document
tree

• Works by defining separate handler objects for
each element type

• Comes with a number of useful handlers
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SAXON: How it works

Parser SAX driver SAXON

ElementHandler

ElementHandler

ElementHandler
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SAXON internals

• Two main modes of operation:
– Distributor: calls handlers in document order

– Wanderer: ditto by default, but allows handlers
to influence the order by controlling processing

• Can use XSL patterns to select handlers and
apply processing

• Supports nearly all of XSL
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Ready-made handlers

• ElementHandlerBase: Does nothing

• ElementCopier: Just copies the element

• ItemRenderer: Inserts user-defined text
before and after content, content is copied

• GroupRenderer: Like ItemRenderer, but
acts on a group of consecutive elements

• ItemSorter: Sort consecutive elements
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More ready-made handlers

• NumberHandler: Used to number source
elements for use by other handlers

• ElementToAttributeConverter: Like it says,
but on source elements

• ElementSuppressor: Like it says

• ElementRedirector: Sends output from an
element to a specified Writer (which is
closed afterwards)
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Conclusion

• SAXON makes it easier to develop
processing applications by:
– defining high-level components

– providing some standard components

– providing extra XSL-based facilities

• Cost:
– You have to learn it
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MDSAX

• A framework for building SAX processing
applications

• Relies heavily on the concept of parser
filters

• Provides a default filter interface, a
common environment for filters (for
communication and resource sharing) etc
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MDSAX services

• Shared element stack between filters

• Queue of operations to perform after the parsing is
complete

• Event routing concept (branching the event stream
into a tree, keeping element substacks for the
branches)

• XML markup language for setting up filter
configurations
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MDSAX

MDSAX parsing context

Element stack

MDFilter MDFilter ApplicationSAX driver
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MDSAX: Standard filters
• MDFlattenFilter: removes the tags of an

element, passing on the content

• MDAttlistFilter: validates attributes

• MDNamespaceFilter: performs namespace
processing

• MDInheritanceFilter: performs attribute
inheritance

• MDXAFFilter: architectural forms
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DSSSL

• DSSSL is an ISO-standardized style sheet
and transformation language

• It can convert between SGML and XML
DTDs as well as to presentation formats

• It is event-based and uses a subset of
Scheme for programming

• Allows tree navigation and reprocessing
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Scheme

• A small programming language in the Lisp family,
standardized in R5RS

• Very cleanly designed, with a functional bent, but
allows for several different programming styles

• Too limited in standardized tools (not features) for
large-scale development, although many
implementations provide these things as
incompatible extensions

• Much used as an embedded language
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DSSSL: Basic workings

• DSSSL stylesheets contain constant
definitions, function definitions and rules

• Rules consist of a selector (defines which
events it applies to) and an action part

• Typical actions are:
– create formatting objects

– create SGML/XML output
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DSSSL: Grove to flow objects
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DSSSL: A simple example

(element document

  (make simple-page-sequence)

(element part

  (make paragraph))

(element emph

  (make sequence

        font-posture: ‘italic))
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DSSSL: Current status

• The standard was finished in 1996

• Two main implementations exist:
– Jade: a DSSSL engine by James Clark

– HyBrick: a browser produced by Fujitsu

• More powerful than XSL

• Fewer implementations, less tutorials

• Less geared toward web use



26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 69

Building your own structure

• Constantly thinking in terms of elements
and attributes has several disadvantages:
– it’s awkward (sub-optimal level of abstraction)

– it often means having to repeat work if you use
your data for more than one thing

– it means code depends on the exact shape of
your markup, making you vulnerable to
changes
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DSSSL problems

• Documentation is sparse, especially on tree
navigation

• Some tasks are made awkward by the lack
of normal assignment

• A selector language like those of XSL and
CSS would have been nice

• Not everybody knows Scheme
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DSSSL advantages

• Jade is good and blazingly fast

• Full programming, can process substrings

• It’s here now and complete

• Good support for paper-based formats

• Full-featured and very general formatting
model
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Building your own structure

• A better approach can often be building an
application-specific data structure to hold
your data

• This is typically something you want to do
on top of an event-based interface

• In object-oriented languages the most
natural way to do this is to build an object
structure
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Using the structure

• To generate files:
– by having ‘dumping’ methods in the classes

– by using iterators and visitors

• Other ways of navigating the structure are
also possible

• In some languages the structure can also be
serialized automatically (speed benefits are
usually small)
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Demo

• Show
– bookmark.py source

– demo in interpreter

– run xbel_parse.py
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Conclusion

• Event-based processing is
– low-overhead

– low-level

– often convenient

– standardized through SAX and DSSSL

– sometimes awkward

– useful for building your own data structures



26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 76

Tree-based processing
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Tree-based processing

• …where the document is parsed into a tree
structure, and processing is done by
traversing the tree

• Usually built on top of an event-based layer

• May be unpractical for very large
documents, unless the processor is very
smart (some are)
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Tree-based vs. event-based

• Tree-based:
– a tree is built first, then your application gets a

reference to it and starts working

• Event-based:
– you specify actions that are executed on specific events

• Bottom line:
– if main loop in your code and a tree is available, it’s

tree-based

– if main loop in system code, and tree availabe, it’s not
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Building a tree from bytes

<example>

<line>&quo;Hello,
world!&quo;</line>

</example>

example

line

"Hello, world!"
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Alternatives

• The DOM (Document Object Model)

• Groves

• Ace

• Balise
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DOM

• A language-independent API defined by the
W3C for tree-based processing

• Level 1: Deals with all logical aspects of
documents, with special handling of HTML

• Level 2: Stylesheets, DTD, filters/iterators,
ranges and namespaces (not yet finished)

• Defined in IDL, can be mapped
automatically to most languages
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Intended uses

• In browsers:
– dynamic documents (with tweakable styles)

– information extraction (for use in applets and
web scripting)

• In editors:
– as a data model

• Server-side:
– for various kinds of processing
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DOM usage

• Creating the tree:
– with a parser which builds from a document

– by calling ‘create___’ and ‘insert___’ methods

• Using it:
– to extract data

– modify the document

– locate specific parts (possibly using XPointer,
XQL or XSL patterns)
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DOM implementations

• Java 9

• Python 2

• Delphi 1

• Perl 1

• Smalltalk 1

• tcl 1

• Common Lisp 1

• C++       0.2
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A DOM document

Element
'example'

Text
'"Hello, World!"'

Element
'line'

Document
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The DOM classes

ProcessingInstruction

CDATASection

EntityReference

EntityNotationDocumentType

DocumentFragment

Document

CharacterData

Attr Element

TextComment

NamedNodeMap NodeList Node DOMImplementation
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Structure

• Really consists of two APIs that duplicate
the same functionality:
– one based on Nodes and NodeLists, where

everything is generic

– one based on the detailed classes, with more
specialized attributes and methods

• The latter is defined because it is easier to
understand and work with
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Document

interface Document : Node {

  readonly attribute DocumentType       doctype;

  readonly attribute DOMImplementation implementation;

  readonly attribute Element       documentElement;

  //create___ methods

};
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Loading a DOM tree

from xml.dom import sax_builder

from xml.sax import saxexts

builder=sax_builder.SaxBuilder()

parser=saxexts.make_parser()

parser.setDocumentHandler(builder)

parser.parse(url)

# builder.document now holds the document
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DOMImplementation

interface DOMImplementation {

  boolean hasFeature(in DOMString feature,

 in DOMString version);

};

• Features
– HTML

– XML
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Node highlights

• Attributes:
– nodeName

– nodeValue?

– nodeType

– ownerDocument

– parentNode

• Methods:
– cloneNode(deep)

– various tree
manipulation methods
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Element highlights

• Attributes: tagName, childNodes, attributes

• Methods:
– getAttribute, setAttribute, removeAttribute

– insertBefore, replaceChild, removeChild,
appendChild, hasChildNodes
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Attr

• Represents attributes on elements

• Attributes:
– name

– specified (a boolean)

– value
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Text

• Attributes: data, length

• Methods:
– substringData

– appendData

– insertData

– deleteData

– replaceData
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 A useful trick

• If the document contains entity or character
references (or comments/PIs) in element
content, text nodes may be fragmented

• The DOM offers a convenience method
‘normalize’ on elements, which can
normalize the children of the element

• ‘normalize’ is recursive
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Some pitfalls

• Not all DOMs will know about entity
boundaries, CDATA sections etc

• So normalize will behave differently with
different parsers

• The best solution is perhaps to develop your
own

• If it’s SAX-based parser filters can be used



26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 97

A very useful method

• Element.getElementsByTagName

• Returns the nodes in the sub tree with the
specified name (preorder)

• * returns all nodes

• Very useful to avoid sequence dependencies
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Demo

• Demonstrate dom_load and arch2.xml
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Demo

• Demonstrate some examples:
– dom_create.py

– dom_xbel.py
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DOM Level 2

• Interfaces for stylesheets (CSS only, so far)

• Events: HTML 4.0 ones + mutation events

• Iterators: allow for iteration over subsets of
nodes (in depth-first sequence) in the tree

• Filters: can be used to filter iterators

• Ranges: operations on a document range

• Namespaces: no information yet
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Further levels

• Functionality for:
– DTDs and schemas

– Validation

– Concurrent access

– Access control
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Groves

• A formalism for defining data models

• Has been used to define data models for
SGML and HyTime

• Consists of nodes with associated properties

• Property sets define modules and node
classes (of which nodes are instances)

• Node properties are typed and constrained
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The uses of groves

• Groves can be used to define data models
for practically anything

• These data models easily translate into APIs
for working with the data

• The SGML property set can be used for
working with XML documents as well
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Grove implementations

• GroveMinder

• Jade (for DSSSL tree navigation)

• PyGrove
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SGML node classes

• SgmlDocument The document

• Element Element instances

• AttributeAssignment Attribute instances

• CharData Textual data

• Pi Processing instrs.

• Comment Comments

• ElementType Element type
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SgmlDocument

• Some of the properties:
– GoverningDoctype: the DTD

– DocumentElement: the root element

– Elements: list of elements with IDs

• In the two first cases, the value is another
node

• In the third it’s a named node list
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Element

• Some properties:
– Gi: Element type name (string)

– Id: The element ID, if any (string)

– Attributes: The attributes (named node list)

– Content: Element content (node list)

– ElementType: Element type node
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An example implementation

• Paul Prescod’s PyGrove, which uses SP to
build the grove

• Simple API:
– nodes are Python objects, with properties as

attributes

– classes are Python classes

– node lists are Python lists

– named node lists are dictionaries (hashes)
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Demo

• Run Pauls PyGrove with the browser, just
to show what this looks like
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Declarative processing

(do-what-i-mean)
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Declarative processing

• You specify what you want, your processor
delivers it

• Very high-level, not as flexible as Turing-
complete solutions

• Usually less efficient than event-based
solutions, also usually tree-based

• Solutions often large or incomplete
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Comparison with others

• No programming

• Processing control is done by describing the
desired result, not how to get there

• XSL strains the definition somewhat, but is
at heart declarative
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Alternatives

• XSL (eXtensible Style Language)

• Architectural forms

• PatML

• xtr2any
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eXtensible Style Language

• The W3C style language for XML

• Uses a mostly XML-based syntax with some
‘extensions’

• Declarative: you specify what you want, not how
to get there

• Several Java implementations exist, as does one
Python implementation

• Supported by MSIE 5.0
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A warning

• Please note that these slides were written
when the 19981216 WD was current, and so
are no longer in sync with the current
working draft...
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The XSL model

Source tree

Stylesheet

Processor Result tree
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XSL: How it works

• Two parts:
– the transformation language:

• used to transform from XML to some result format

• uses selectors and actions like DSSSL

• written in XML

– the formatting language
• an XML vocabulary with formatting semantics

• intended to be used to create screen layout and
results in presentational formats
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The transformation language

• Consists of template rules (plus plus)

• Each template has a pattern that is matched
against the source tree and a template which
generates a part of the result tree

• Both XSL and result tree pieces are XML,
namespaces are used to tell them apart

• A pattern syntax is embedded in attributes
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<xsl:stylesheet>

• The root element of XSL stylesheets

• Specifies the result namespace

• Example:
<xsl:stylesheet

xmlns:xsl=“http://www.w3.org/TR/WD-xsl”

  xmlns:html=“http://www.w3.org/TR/REC-html40”

  result-ns=“html”>

  ...

</xsl:stylesheet>
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Template rules

<xsl:template match=“…”>

  …result elements here…

</xsl:template>

• xsl:apply-templates indicates where to insert
results from children
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XSL: An example rule

<xsl:template match="document">

  <fo:basic-page-sequence>

    <xsl:apply-templates/>

  </fo:basic-page-sequence>

</xsl:template>
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XSL: Equivalent HTML example

<xsl:template match="document">

  <html:html>

  <html:title>Demo</html:title>

  <html:body>

    <xsl:apply-templates/>

  </html:body>

  </html:html>

</xsl:template>
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Patterns

• XSL patterns serve a dual role:
– they are used for matching, so that templates

can select which nodes to work on

– they are used for selection, relative to a current
node

• This last role makes it possible to use
patterns for generating values and as tests in
conditional statements
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A basic pattern tutorial

• ‘foo’ matches all elements of the foo type

• ‘foo | bar’ matches all foo and bar elements

• ‘foo/bar’ matches all bars that have foo parents

• ‘foo//bar’ matches all bars that have foo
ancestors

• ‘@baz’ matches all baz attributes

• It is also possible to match comments, PIs and
plain text
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Select patterns

• ‘.’ selects the current node

• ‘bar’ selects all bar children of the current node

• ‘./bar’ does the same thing

• ‘.//bar’ selects all bar descendants

• ‘.[@baz]’ matches the baz attribute of the current
node

• It is also possible to select comments, PIs and
plain text
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Tests

• Patterns can contain tests within []s

• Tests can contain:
– select patterns (true if they select something)

– first-of-any(), first-of-type()

– last-of-any(), last-of-type()

– not(...test...)

– and/or

• Test follow an expression and refine it
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Demo

• Show a simple demo (make it on the fly!)

• Show xbel.xsl
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Conditional inclusion

<xsl:template match=“p>

  <fo:block>

    <xsl:if test=‘.[@class=“warning”]’>

       Warning:

    </xsl:if>

  </fo:block>

  <xsl:apply-templates/>

</xsl:template>
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More conditionals

<xsl:choose>

<xsl:when test=‘.[@class=“warning”]’>

  Warning: <xsl:apply-templates/>

  </xsl:when>

  <xsl:when test='.[@class=“Danger”]'>

      DANGER: <xsl:apply-templates/>

  </xsl:when>

  <xsl:otherwise>

      <xsl:apply-templates/>

  </xsl:otherwise>

</xsl:choose>
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Direct processing

• for:each can be used inside a template to repeat
parts of it for each of the nodes in a select
expression

• The for:each contains a template that is
instantiated each time it matches

• This allows for easy iteration over list- and table-
like structures
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for-each example

<vendor>

  <name>…</name>

  …

  <product …>

  <product …>

  <product …>

  <product …>

</vendor>
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for-each example use

<xsl:template match=“vendor”>

  …header stuff…

  <ul>

  <xsl:for-each select=“product”>

    <li>…name and description…

  </xsl:for-each>

  </ul>

</xsl:template>
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Generating attributes

• Three ways:
– string expressions in attribute values of literal

result elements

– using xsl:attribute

– xsl:attribute-set
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Generating attributes 1

• The easiest way of generating an attribute
value is often by using string expressions

• These are simply placed inside an attribute
value in a template rule and surrounded
with {}
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Generating attributes 2

• It’s also possible to use xsl:attribute to
create attributes, like so:
<html:a>

<xsl:attribute name=“href”>…value…

</xsl:attribute>

…link text…

</html:a>



26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 136

Generating attributes 3

• xsl:attribute-set “defines a named set of
attributes” which can later be instantiated

• Given
<xsl:attribute-set name=“td-attrs”>

  <xsl:attribute name=“align”>left</…>

  <xsl:attribute name=“valign”>top</…>

</xsl:attribute-set>

• ...
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Generating attributes 3b

• …you can do:
<html:td>

  <xsl:use name=“td-attrs”/>

  …element content…

</html:td>
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Counters

• number can be used, using the count and
multi attributes to control counting

• It can also be done explicitly with
– counter/counters

– counter-increment

– counter-reset

– counter-scope

• Several kinds of numbering are available
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Sorting

• sort elements can be inserted as children of
apply-templates to specify what to sort on

• sort elements use select patterns to select
the values to sort on

• Several kinds of lexicographical sorting are
available, as is numerical sorting
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Node copy

• copy can be used to produce a copy of the
node in the source tree that triggered at
template instantiation
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Generation

• value-of lets you insert the value of a string
expression in the result tree

• String expressions use
– select expressions (value of first node selected)

– name expressions (name of first node selected)

– constant references

– macro argument references
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Macros

• It’s possible to define template pieces in one
place and then refer to them from many
different templates

• This is done via:
– macro

– invoke-macro
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Processing modes

• Allow parts of the document to be
processed more than once

• Useful for different views of the same
content
– Condensed views: tables of contents, indexes

– Differently sorted views
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Using modes

• Templates have a mode attribute which can
be used to place a template in a mode

• Apply-templates has a mode attribute which
can be used to specify which processing
mode to use

• Default rules are used if the mode does not
have suitable rules
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Demo

• Show xbel2.xsl

• Show rfc.xsl
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Mode pitfalls

• If there are intermediate elements between
the applying element and the applied
element, the mode will be lost

• This happens because the default rules kick
in

• Using select or an empty rule can solve the
problem
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Example

If there are no rules for b, this will go wrong:
<a><b><c/></b></a>

<xsl:template match=“a”>

  <xsl:apply-templates mode=“demo”/></…>

<xsl:template match=“c” mode=“demo”>

  …lots of useful stuff…

</xsl:template>
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Modular stylesheets

• import can be used to load in external
stylesheets

• include can be used to include external files
at any point in the style sheet
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Idioms

• To ignore an element:
– make a matching template which is empty

– you can use | between the element type names

• To get the contents of a sub-element:
– use xsl:apply-templates with select

– use xsl:value-of and select the element

– ditto for attributes
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Demo

• Show xbel3.xsl (improved per idioms)
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XSL flow objects

• An XML language for describing laid-out
documents

• Similar to the flow objects of DSSSL

• Intended to be interpreted directly by a
presentational program or converted to
presentational formats

• Only one implementation so far: FOP
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XSL flow objects

• Support for:
– paragraphs (blocks)

– links

– graphics

– rules

– lists

– page numbering
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Architectural forms

• Intended as a way of subtyping element
types, but is in fact a declarative processing
mechanism

• Uses a set of processing instructions and
special attributes to specify what processing
is wanted

• Completely declarative and very high-level
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Architectural forms

• Map documents from one DTD to another

• Processing instructions declare the forms

• Attributes on elements specify the mapping

• With an AF engine between your parser and
your application the mapping becomes
transparent
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How it works

• During processing a new transient (or
virtual) document is created

• Software can now operate on this virtual
document as if it were a normal document

• The virtual document (or architectural
document) can also be validated
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Architectural forms

• Standardized in an appendix to HyTime

• Implemented in:
– SP, James Clarks SGML parser

– XAF, a SAX parser filter in Java

– xmlarch, a SAX parser filter in Python

• Used heavily in HyTime, Topic Navigation
Maps and many advanced SGML apps
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Example document

<?IS10744:arch name="html"?>

<doc>

<head html=“title”>Sample document</head>

<txt html=“p”>

Sample sample sample. Sample. Blah.

</txt>

</doc>
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Mapped document

<html>

<title>Sample document</title>

<p>

Sample sample sample. Sample. Blah.

</p>

</html>



26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 159

Architectural forms

• Functionality:
– More than one form per document is possible

– Elements and attributes can be suppressed

– Attributes can be mapped to content and vice
versa

– The mapped document can be validated in
terms of the architectural DTD
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Common usage

• To define a common subset DTD of several
different variant DTDs

• To identify particular kinds of constructs inside
documents, across DTDs, such as:
– links

– tables

– elements with processing semantics

• Usually architectural attributes are #FIXED in the
DTD
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Demo

• Show arch.xml
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Weaknesses

• Declaration syntax a bit awkward:
– mixed with normal DTD declarations

• No globally unique element identifiers

• Mapping abilities are a bit weak

• Mappings can rarely be created between
DTDs that were not designed for it
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End of fixed core

• Alternatives:
– dealing with character encodings

– a real-world processing application

– HTML part of the DOM (brief)

– SAX 2 (brief)

– an example of DTD processing (very brief)

– audience suggestions
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Character sets

Bonus slides
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The basics

• Documents are stored as strings of bits

• Character sets and encodings are used to
enable us to store text in terms of bits

• A character set is just that, a set of
characters and a code point (number) for
each character

• This in itself is not enough
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Character sets and encodings

• A character encoding describes how a
sequence of character numbers is turned
into a string of bits

• For most character encodings this is just
done by representing the numbers in the
straightforward way

• There are some important exceptions,
though
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Important character sets

Charset Chars Bits Encoding

US-ASCII 128 7/8 Trivial

EBCDIC (several) 256 8 Trivial

iso-8859-x 191 8 Trivial

ISCII-xx 176 8 Trivial

JIS X-0208-19xx 6879 Variable Several

Unicode 47400 Variable Several

ISO 10646 47400 Variable Several
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Unicode/ISO 10646 encodings

Encoding Features

utf-7 7-bit encoding

utf-8 8-bits, US-ASCII below 128

utf-16 16-bits, non-trivial

UCS-2 16 bits, trivial, lower 65536

UCS-4 32 bits, trivial
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XML and character sets

• The standard uses the Unicode characters

• Character references (&#???;) refer to
Unicode code points

• Documents can use any encoding, but utf-8
and utf-16 are the defaults

• Other encodings must be declared in the
XML (or text) declaration of the entity
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XML and transport

• When transferred over the network, the
protocol used may override the declaration

• For the MIME content-type text/xml, the
default is US-ASCII

• For application/xml it is utf-8/utf-16
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Conclusion

• Use whichever encoding you want

• Be sure to declare your encoding to avoid
problems with network transfers

• If you want characters not in Unicode you
have a problem
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An example processing
application

Free XML tools
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XMLtools

• A list of all the free XML tools I know of

• Started out as a simple hand-maintained list

• Was then expanded to list all the tools for
the CD-ROM of ‘The XML Handbook’

• At this point it became an XML application
with descriptions and other information
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Demo

• Just show the pages

• Show the search interface, but don’t
actually do a search
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XMLtools architecture

• Maintained as a single 125k XML
document

• Published into a set of static web pages
using Python scripts built on PyDOM

• Also published into a search index that is
accessed through Python CGI scripts
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Demo

• Show the XML source
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The different processes

• mkindex.py: Creates the search index

• report.py: Creates the main page

• prod_by_*.py: Creates the indexes

• updates.py: Creates the What’s new section
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Integration of the processes

• Uses a home-made GUI-based publishing
system developed in Java

• This automatically runs the scripts and
uploads the output using FTP

• Unfortunate architecture:
– requires a GUI

– requires separate processes, not a single one
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The processing structure

• A separate module swlib.py uses the DOM
to create an application-specific structure

• The various scripts access this using
specific interfaces and extract the
information they need

• Very much easier than working directly on
the DOM, because of the multiple-use
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The search scripts

• Index maker: Builds Python hashtables and
lists and dumps them using the marshal
module

• The search scripts then load these data
(which is very fast) and search in them
(which is pretty fast)
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Demo

• Go through source
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A quick look at the future

(19.Apr.99)

SAX 2
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Basics

• Defined as 100% backwards compatible

• Defined in a separate Java package

• Will also be translated to Python
immediately

• Extensible for third parties

• May perhaps not deal with filters
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New Parser2 interface

• Extends Parser

• Methods:
– get(id)

– set(id,obj)

– setHandler(id,handler)

– setFeature(id,state)
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IDs

• Use a URI scheme, just like namespaces

• No requirement that the ID point to
anything

• Various people wanted something similar to
Java package names, but have not won yet
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Features

• Validation

• External general entity resolution

• External parameter entity resolution

• Split characters events or not

• Namespace processing on/off

• Provide Locator (or don’t)



26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 187

Properties

• Namespace name separator

• Element stack (unresolved)

• Literal string associated with current event
(to get whitespace in tags etc)

• DOM node for current event (for DOM
traversers that fire SAX events)
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New AttributeList

• Parsers can now use a subclass of
AttributeList

• Provides information about entity references
in attribute values

• Unlikely to be needed or wanted by many,
but is required for full XML 1.0 compliance
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DTD handler

• Both event-based and object-based
proposals

• Both seem to include all logical information

• No clear winner as of yet
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LexicalHandler

• A separate handler

• Has:
– a comment event

– CDATA start/end events

– entity reference start/end events

– DTD start/end events

– the ability to discern internal/external subset
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HTML DOM
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What it contains

• Basically:
– HTMLDocument

– HTMLElement

– Specializations for elements with more
attributes

– HTMLCollection
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HTMLDocument

• Extends Document with:
– title, referrer, domain, URL, body, images,

applets, links, forms, anchors, cookies

– getElementById(id)

– getElementsByName(name)
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HTMLElement

• Extends Element with string attributes for
the HTML global attributes:
– id

– title

– lang

– dir

– className
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Extended element interfaces

• Contain an attribute for each HTML
attribute of the corresponding element type

• Most are strings, but some are boolean or
contain direct references to specific
elements
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dtddoc.py

A DTD documentation generator
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dtddoc.py

• Produces an HTML document with an entry
for each element type defined in the DTD

• Uses the DTD parser that xmlproc uses to
provide validation services

• This parser is 100% general, as is the data
structure it normally builds

• dtddoc.py uses both
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Demo

• Show how it works

• Show the dtddoc.py source

• Show the APIs and implementations
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What’s missing?

• An index of elements and attributes

• Notations, entities, parameter entities

• Information about parameter entity
structure?

• Textual documentation:
– some schema languages has this

– can also be provided with an external document
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Conclusion
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Declarative processing

• Understandable to non-programmers

• The easiest way to do it, if there is a
framework designed for what you want

• Not as flexible as full programming

• Often rather large systems with much to
learn
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Event-based processing

• The lowest-level solution

• The least resource-intensive solution

• Often the easiest solution for simple things

• Awkward for more complex things

• Can be used to build application-specific
data structures
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Tree-based processing

• Often awkward for simple processing

• Usually memory-intensive

• Best suited for tasks
– where parts of the document need to be

processed several times

– there are dependencies between different parts
of the document

– more than one pass is needed
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Goodbye!

• That’s it for now.

• The slides from this presentation are also
available at:

http://birk105.studby.uio.no/download/artikler/processing.pdf

• ZIP file with demo files will appear at:
http://birk105.studby.uio.no/download/
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