
26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 1

XML Processing Paradigms

Three different ways of

working with XML

Lars Marius Garshol,

STEP Infotek A/S

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 2

Before we begin

• This tutorial consists of two parts:
– a fixed core (as advertised)

– a set of extra optional material

• This frees gives us some choice in what we
want to cover after the fixed core

• As I talk, please make notes about what
you’d like to see in the optional section

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 3

Introduction

What this is all about

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 4

Why do we process?

• Conversion: move data to a useful format

• Data extraction: pick out data and use them

• Build in-memory structures for use in
programs (specialized extraction)

• Semantic validation

• Basically, move information out of the
XML serialization syntax and into use

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 5

The concept of representation

• Below are many different representations of the
number 223:
– DF (hexadecimal)

– 337 (octal)

– 11011111 (binary)

– two hundred and twenty-three (plain English)

– 2*100+2*10+3 (expression)

• These are all different ways of saying the same
thing

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 6

Representations of documents

• Similarly, XML documents have many possible
representations:
– a string of bytes read from a file (or a socket)

– a string of characters

– a sequence of parsing events

– a tree structure

– Lisp S-expressions

– records in a relational database

• These are all equivalent, but have different uses

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 7

Representations cont’d

• The XML document as a string of bytes is
singled out, because XML is mainly
intended for exchange across the network

• Similarly, RDBMSs single out the database
as a set of tables in a running server as the
main representation, because these are
mainly intended for interactive use as a
single-site storage mechanism

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 8

The XML processing model

• Relies heavily on the concept of a parser,
something that reads bytes and turns it into
elements, character data and attributes

• This is all the parser does: moving up some
levels of interpretation from bytes to XML
constructs (and processing these)

• On top of the parser other frameworks can
be built, but these aren’t parsers or part of it

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 9

The processing model, again

XML

document

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 10

The processing paradigms

• Event-based: attach actions to events like
new start tag, new end tag etc

• Tree-based: build a tree and work on it

• Declarative: describe what you want done,
and the software does it for you

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 11

Required tools

• A parser

• Event-based: nothing more required, though
many useful event-based frameworks exist

• Tree-based: a tree builder

• Declarative: a declaration language and
processor, usually a tree builder as well

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 12

Levels of abstraction

...60 63 120 109 108 32 118 101 114 105

...< x m l v e r s i

startDocument()
xmlDeclaration(...)
startElement(...)

Document

...

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 13

Levels of abstraction

• Byte sequence: rock-bottom

• Elements and attributes:
– Event sequence: better, nesting implicit

– Tree structure: even better, explicit nesting

• Application-specific
– Requires custom code, but enables you to

forget the XML representation of the
information

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 14

An example

• XBEL is a simple XML DTD for representing
bookmark collections

• To the operating system, an XBEL document is a
sequence of bytes with no meaning

• To XML software, it is an XML document, with
elements and attributes

• To XBEL software, it is a bookmark collection,
with folders, bookmarks and descriptions

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 15

Levels of information

• Basic logical:

– only gives you the logical document

• Full logical:

– the logical document + the DTD

• Basic lexical:

– logical + entity boundaries, comments, CDATA
sections/PCDATA

• Full lexical:

– whitespace in tags, character refs, DTD info...

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 16

Event-based processing

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 17

Turning bytes into events

<example>

<line>&quo;Hello,
world!&quo;</line>

</example>

• start document

• start element: example

• start element: line

• text: “Hello, World!”

• end element: line

• end element: example

• end document

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 18

Event-based processing

• The most low-level paradigm, which the
others can be built on top of

• For simple applications, event-based
processing is very natural and easy

• For more complex applications you need to
build an apparatus to keep track of state

• Some frameworks do this for you

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 19

Event-based processing

• Simple to implement

• Requires few resources

• Processing may be event-based even if the
framework gives access to the full tree

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 20

Some event-based frameworks

• Most native parser APIs

• SAX

• OmniMark

• Balise

• DSSSL

• SAXON

• MDSAX

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 21

Native parser APIs

• The following parsers have event-based
native APIs:
– expat

– SP

– sgmlop/xmllib

– xmlproc

– Lark

– XP

– TclXML

– XML::Parser

– Ælfred

– RXP

– and many others…

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 22

Native parser APIs

• Require you to register handlers for events,
either functions (C, tcl) or objects (Java,
Python)

• Usually also allow various options to be set

• Some have options to allow non-standard
behaviour

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 23

The expat API

• Application must register handler functions
like:

• void XML_StartElementHandler (void *userData,
const XML_Char *name, const XML_Char **atts)

• XML_EndElementHandler(void *userData,
 const XML_Char *name)

• XML_CharacterDataHandler(void *userData,
const XML_Char *s, int len)

• XML_ProcessingInstructionHandler(void
*userData, const XML_Char *target, const
XML_Char *data)

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 24

The expat API

• XML_UnknownEncodingHandler(void
*encodingHandlerData, const XML_Char *name,
XML_Encoding *info);

• XML_DefaultHandler(void *userData,
const XML_Char *s, int len)

• const XML_LChar XMLPARSEAPI
*XML_ErrorString(int code);

• int XMLPARSEAPI XML_Parse(XML_Parser parser,
const char *s, int len, int isFinal);

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 25

Problems

• All different, so if you want to switch
parsers you need to rewrite your application
(and learn a new API)

• General applications become parser-bound

• Also, utilities built for one parser only work
with that specific parser

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 26

SAX: Simple API for XML

• SAX is a standardized API to parsers,
developed on the xml-dev mailing list

• Currently supported by nearly all Java
parsers and all Python parsers

• Some attempts have been made at
translation into Delphi, C/C++ and Perl, but
nothing definite and widely supported has
yet emerged

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 27

SAX: How it works

Parser ApplicationSAX driver

Control messagesControl messages

Data events Data events

• The driver implements the SAX parser
interface, and at the same time acts as a native
application of the parser

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 28

SAX: Basic processing

• The SAX driver implements the Parser
interface, which has two Parse methods
(accepting an InputSource or a URL) and
some methods to set various handlers

• The application implements the
DocumentHandler interface, which has
methods for receiving data events

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 29

The Parser interface

• Has these methods:
– parse(sysid) / parse(InputSource)

– setDocumentHandler

– set*Handler

– setLocale

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 30

The DocumentHandler

• Methods:
– startElement(name, attrs)

– endElement(name)

– characters

– processingInstruction(target,data)

– startDocument()

– endDocument()

– setDocumentLocator(locator)

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 31

SAX: A simple example

class ExampleApp(saxlib.DocumentHandler):

 def __init__(self):

 self.count=0

 def startElement(self,name,attrs):

 self.count=self.count+1

 def endDocument(self):

 print “There were”,self.count,”elements.”

p=saxexts.make_parser() # Instantiates a parser

p.setDocumentHandler(ExampleApp())

p.parse(“test.xml”)

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 33

SAX: Error handling

• SAX requires you to register a separate
error handler to receive error events

• The same object may play both roles

• Three levels of errors exist:
– warnings: not true errors

– errors: validity errors

– fatal errors: well-formedness errors

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 34

The ErrorHandler

• Methods:
– warning(exception)

– error(exception)

– fatalError(exception)

• The exceptions contain the information
necessary to find the location of the error

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 35

SAX: Working with attributes

• Attribute information is provided by the
AttributeList interface

• Provides:
– attribute values and names

– complete enumeration

– attribute type information (if available)

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 36

AttributeList

• Methods:
– getLength()

– getName(ix)

– getType(ix) / getType(name)

– getValue(ix) / getValue(name)

• In Python these can be used as if they were
built-in lists or dictionaries

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 38

A common technique

• Characters event: add data into an internal
buffer
– event may be split

• Actually handle the contents of the element
in the endElement event

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 39

Demo

• Show XBEL example
– go through source

– run on cos_urls.xml

– run on pyhoo.xml

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 40

Another technique

• To stop parsing (because of errors or
whatever):
– throw a SAXParseException

– define your own subclass if:
• you need to provide more information

• you need to single out your own exceptions

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 41

SAX: Esoteric stuff

• InputSources can be used to feed input from
sources other than URLs to the parser

• It can also be used to implement your own
character encodings

• The EntityResolver handler allows you to
interpret system identifiers yourself, and
also to resolve public identifiers

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 42

SAX: More esoterica

• The DTDHandler lets you receive entity and
notation declarations

• The Locator can be used to get information
about the current location in the document

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 43

SAX: Complete view

DocumentHandler

Data events

Data events

Parser

ErrorHandler
Error events

DTDHandler

EntityResolver

Data events

Control results

Application

Control messages

Locator

Location queries

Location results

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 44

Java SAX helper classes

• ParserFactory: Can be used to create an
XML parser specified by a parameter or a
Java property

• LocatorImpl: Can be used to store copies of
location information

• AttributeListImpl: Can be used to store
copies of attribute lists

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 45

Python SAX helper classes

• ErrorRaiser

• ErrorPrinter

• ParserFactory
– creates parsers from predefined lists

• Locator
– like LocatorImpl

• AttributeMap
– like AttributeListImpl

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 46

Python SAX helper classes

• EventBroadCaster
– forwards events to all handlers in a list

• mllib
– implements the old-style Python interface

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 47

SAX: Event sources

• SAX events need not come from parsers in
the traditional sense

• Alternatives:
– A DOM walker

– An XSL implementation

– A program that generates XML

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 48

SAX: Parser filters

• Parser filters are objects that receive events
from the parser (or another filter) and pass
them on to the application (or another filter)

• Possible applications:
– implement namespaces outside parser

– implement architectural forms outside parser

– strip unnecessary whitespace

– implement attribute inheritance

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 49

SAX: Parser filters

DocumentHandlerParser ParserFilter ParserFilter

ParserFilter DocumentHandler

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 50

Advantages

• Processing components can be developed
that:
– can be mixed (more or less) freely

– are independent of parsers

– can be used with XML generators also

• Some filters exist already

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 51

Demo

• Go through filters.py source

• Show sax_esis2.py source

• Run on test.xml and show difference

• Play around with various combinations

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 52

SAX 2
• Is currently being discussed

• Is more open than SAX 1.0, by allowing for:
– querying of features by ID

– registering handlers by ID

– setting parameters, also by ID

• Some standard handlers will be specified in
SAX2, probably those for namespaces, lexical
information and DTD information

• A set of IDs is also specified

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 53

SAXON

• A framework for making XML processing
applications, built on SAX and the DOM

• Designed for processing that produces output

• Event-based, but gives you access to the document
tree

• Works by defining separate handler objects for
each element type

• Comes with a number of useful handlers

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 54

SAXON: How it works

Parser SAX driver SAXON

ElementHandler

ElementHandler

ElementHandler

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 55

SAXON internals

• Two main modes of operation:
– Distributor: calls handlers in document order

– Wanderer: ditto by default, but allows handlers
to influence the order by controlling processing

• Can use XSL patterns to select handlers and
apply processing

• Supports nearly all of XSL

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 56

Ready-made handlers

• ElementHandlerBase: Does nothing

• ElementCopier: Just copies the element

• ItemRenderer: Inserts user-defined text
before and after content, content is copied

• GroupRenderer: Like ItemRenderer, but
acts on a group of consecutive elements

• ItemSorter: Sort consecutive elements

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 57

More ready-made handlers

• NumberHandler: Used to number source
elements for use by other handlers

• ElementToAttributeConverter: Like it says,
but on source elements

• ElementSuppressor: Like it says

• ElementRedirector: Sends output from an
element to a specified Writer (which is
closed afterwards)

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 58

Conclusion

• SAXON makes it easier to develop
processing applications by:
– defining high-level components

– providing some standard components

– providing extra XSL-based facilities

• Cost:
– You have to learn it

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 59

MDSAX

• A framework for building SAX processing
applications

• Relies heavily on the concept of parser
filters

• Provides a default filter interface, a
common environment for filters (for
communication and resource sharing) etc

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 60

MDSAX services

• Shared element stack between filters

• Queue of operations to perform after the parsing is
complete

• Event routing concept (branching the event stream
into a tree, keeping element substacks for the
branches)

• XML markup language for setting up filter
configurations

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 61

MDSAX

MDSAX parsing context

Element stack

MDFilter MDFilter ApplicationSAX driver

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 62

MDSAX: Standard filters
• MDFlattenFilter: removes the tags of an

element, passing on the content

• MDAttlistFilter: validates attributes

• MDNamespaceFilter: performs namespace
processing

• MDInheritanceFilter: performs attribute
inheritance

• MDXAFFilter: architectural forms

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 63

DSSSL

• DSSSL is an ISO-standardized style sheet
and transformation language

• It can convert between SGML and XML
DTDs as well as to presentation formats

• It is event-based and uses a subset of
Scheme for programming

• Allows tree navigation and reprocessing

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 64

Scheme

• A small programming language in the Lisp family,
standardized in R5RS

• Very cleanly designed, with a functional bent, but
allows for several different programming styles

• Too limited in standardized tools (not features) for
large-scale development, although many
implementations provide these things as
incompatible extensions

• Much used as an embedded language

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 65

DSSSL: Basic workings

• DSSSL stylesheets contain constant
definitions, function definitions and rules

• Rules consist of a selector (defines which
events it applies to) and an action part

• Typical actions are:
– create formatting objects

– create SGML/XML output

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 66

DSSSL: Grove to flow objects

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 67

DSSSL: A simple example

(element document

 (make simple-page-sequence)

(element part

 (make paragraph))

(element emph

 (make sequence

 font-posture: ‘italic))

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 68

DSSSL: Current status

• The standard was finished in 1996

• Two main implementations exist:
– Jade: a DSSSL engine by James Clark

– HyBrick: a browser produced by Fujitsu

• More powerful than XSL

• Fewer implementations, less tutorials

• Less geared toward web use

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 69

Building your own structure

• Constantly thinking in terms of elements
and attributes has several disadvantages:
– it’s awkward (sub-optimal level of abstraction)

– it often means having to repeat work if you use
your data for more than one thing

– it means code depends on the exact shape of
your markup, making you vulnerable to
changes

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 70

DSSSL problems

• Documentation is sparse, especially on tree
navigation

• Some tasks are made awkward by the lack
of normal assignment

• A selector language like those of XSL and
CSS would have been nice

• Not everybody knows Scheme

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 71

DSSSL advantages

• Jade is good and blazingly fast

• Full programming, can process substrings

• It’s here now and complete

• Good support for paper-based formats

• Full-featured and very general formatting
model

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 72

Building your own structure

• A better approach can often be building an
application-specific data structure to hold
your data

• This is typically something you want to do
on top of an event-based interface

• In object-oriented languages the most
natural way to do this is to build an object
structure

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 73

Using the structure

• To generate files:
– by having ‘dumping’ methods in the classes

– by using iterators and visitors

• Other ways of navigating the structure are
also possible

• In some languages the structure can also be
serialized automatically (speed benefits are
usually small)

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 74

Demo

• Show
– bookmark.py source

– demo in interpreter

– run xbel_parse.py

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 75

Conclusion

• Event-based processing is
– low-overhead

– low-level

– often convenient

– standardized through SAX and DSSSL

– sometimes awkward

– useful for building your own data structures

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 76

Tree-based processing

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 77

Tree-based processing

• …where the document is parsed into a tree
structure, and processing is done by
traversing the tree

• Usually built on top of an event-based layer

• May be unpractical for very large
documents, unless the processor is very
smart (some are)

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 78

Tree-based vs. event-based

• Tree-based:
– a tree is built first, then your application gets a

reference to it and starts working

• Event-based:
– you specify actions that are executed on specific events

• Bottom line:
– if main loop in your code and a tree is available, it’s

tree-based

– if main loop in system code, and tree availabe, it’s not

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 79

Building a tree from bytes

<example>

<line>&quo;Hello,
world!&quo;</line>

</example>

example

line

"Hello, world!"

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 80

Alternatives

• The DOM (Document Object Model)

• Groves

• Ace

• Balise

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 81

DOM

• A language-independent API defined by the
W3C for tree-based processing

• Level 1: Deals with all logical aspects of
documents, with special handling of HTML

• Level 2: Stylesheets, DTD, filters/iterators,
ranges and namespaces (not yet finished)

• Defined in IDL, can be mapped
automatically to most languages

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 82

Intended uses

• In browsers:
– dynamic documents (with tweakable styles)

– information extraction (for use in applets and
web scripting)

• In editors:
– as a data model

• Server-side:
– for various kinds of processing

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 83

DOM usage

• Creating the tree:
– with a parser which builds from a document

– by calling ‘create___’ and ‘insert___’ methods

• Using it:
– to extract data

– modify the document

– locate specific parts (possibly using XPointer,
XQL or XSL patterns)

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 84

DOM implementations

• Java 9

• Python 2

• Delphi 1

• Perl 1

• Smalltalk 1

• tcl 1

• Common Lisp 1

• C++ 0.2

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 85

A DOM document

Element
'example'

Text
'"Hello, World!"'

Element
'line'

Document

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 86

The DOM classes

ProcessingInstruction

CDATASection

EntityReference

EntityNotationDocumentType

DocumentFragment

Document

CharacterData

Attr Element

TextComment

NamedNodeMap NodeList Node DOMImplementation

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 87

Structure

• Really consists of two APIs that duplicate
the same functionality:
– one based on Nodes and NodeLists, where

everything is generic

– one based on the detailed classes, with more
specialized attributes and methods

• The latter is defined because it is easier to
understand and work with

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 88

Document

interface Document : Node {

 readonly attribute DocumentType doctype;

 readonly attribute DOMImplementation implementation;

 readonly attribute Element documentElement;

 //create___ methods

};

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 89

Loading a DOM tree

from xml.dom import sax_builder

from xml.sax import saxexts

builder=sax_builder.SaxBuilder()

parser=saxexts.make_parser()

parser.setDocumentHandler(builder)

parser.parse(url)

builder.document now holds the document

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 90

DOMImplementation

interface DOMImplementation {

 boolean hasFeature(in DOMString feature,

 in DOMString version);

};

• Features
– HTML

– XML

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 91

Node highlights

• Attributes:
– nodeName

– nodeValue?

– nodeType

– ownerDocument

– parentNode

• Methods:
– cloneNode(deep)

– various tree
manipulation methods

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 92

Element highlights

• Attributes: tagName, childNodes, attributes

• Methods:
– getAttribute, setAttribute, removeAttribute

– insertBefore, replaceChild, removeChild,
appendChild, hasChildNodes

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 93

Attr

• Represents attributes on elements

• Attributes:
– name

– specified (a boolean)

– value

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 94

Text

• Attributes: data, length

• Methods:
– substringData

– appendData

– insertData

– deleteData

– replaceData

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 95

 A useful trick

• If the document contains entity or character
references (or comments/PIs) in element
content, text nodes may be fragmented

• The DOM offers a convenience method
‘normalize’ on elements, which can
normalize the children of the element

• ‘normalize’ is recursive

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 96

Some pitfalls

• Not all DOMs will know about entity
boundaries, CDATA sections etc

• So normalize will behave differently with
different parsers

• The best solution is perhaps to develop your
own

• If it’s SAX-based parser filters can be used

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 97

A very useful method

• Element.getElementsByTagName

• Returns the nodes in the sub tree with the
specified name (preorder)

• * returns all nodes

• Very useful to avoid sequence dependencies

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 98

Demo

• Demonstrate dom_load and arch2.xml

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 99

Demo

• Demonstrate some examples:
– dom_create.py

– dom_xbel.py

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 100

DOM Level 2

• Interfaces for stylesheets (CSS only, so far)

• Events: HTML 4.0 ones + mutation events

• Iterators: allow for iteration over subsets of
nodes (in depth-first sequence) in the tree

• Filters: can be used to filter iterators

• Ranges: operations on a document range

• Namespaces: no information yet

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 101

Further levels

• Functionality for:
– DTDs and schemas

– Validation

– Concurrent access

– Access control

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 102

Groves

• A formalism for defining data models

• Has been used to define data models for
SGML and HyTime

• Consists of nodes with associated properties

• Property sets define modules and node
classes (of which nodes are instances)

• Node properties are typed and constrained

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 103

The uses of groves

• Groves can be used to define data models
for practically anything

• These data models easily translate into APIs
for working with the data

• The SGML property set can be used for
working with XML documents as well

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 104

Grove implementations

• GroveMinder

• Jade (for DSSSL tree navigation)

• PyGrove

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 105

SGML node classes

• SgmlDocument The document

• Element Element instances

• AttributeAssignment Attribute instances

• CharData Textual data

• Pi Processing instrs.

• Comment Comments

• ElementType Element type

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 106

SgmlDocument

• Some of the properties:
– GoverningDoctype: the DTD

– DocumentElement: the root element

– Elements: list of elements with IDs

• In the two first cases, the value is another
node

• In the third it’s a named node list

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 107

Element

• Some properties:
– Gi: Element type name (string)

– Id: The element ID, if any (string)

– Attributes: The attributes (named node list)

– Content: Element content (node list)

– ElementType: Element type node

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 108

An example implementation

• Paul Prescod’s PyGrove, which uses SP to
build the grove

• Simple API:
– nodes are Python objects, with properties as

attributes

– classes are Python classes

– node lists are Python lists

– named node lists are dictionaries (hashes)

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 109

Demo

• Run Pauls PyGrove with the browser, just
to show what this looks like

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 110

Declarative processing

(do-what-i-mean)

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 111

Declarative processing

• You specify what you want, your processor
delivers it

• Very high-level, not as flexible as Turing-
complete solutions

• Usually less efficient than event-based
solutions, also usually tree-based

• Solutions often large or incomplete

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 112

Comparison with others

• No programming

• Processing control is done by describing the
desired result, not how to get there

• XSL strains the definition somewhat, but is
at heart declarative

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 113

Alternatives

• XSL (eXtensible Style Language)

• Architectural forms

• PatML

• xtr2any

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 114

eXtensible Style Language

• The W3C style language for XML

• Uses a mostly XML-based syntax with some
‘extensions’

• Declarative: you specify what you want, not how
to get there

• Several Java implementations exist, as does one
Python implementation

• Supported by MSIE 5.0

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 115

A warning

• Please note that these slides were written
when the 19981216 WD was current, and so
are no longer in sync with the current
working draft...

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 116

The XSL model

Source tree

Stylesheet

Processor Result tree

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 117

XSL: How it works

• Two parts:
– the transformation language:

• used to transform from XML to some result format

• uses selectors and actions like DSSSL

• written in XML

– the formatting language
• an XML vocabulary with formatting semantics

• intended to be used to create screen layout and
results in presentational formats

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 118

The transformation language

• Consists of template rules (plus plus)

• Each template has a pattern that is matched
against the source tree and a template which
generates a part of the result tree

• Both XSL and result tree pieces are XML,
namespaces are used to tell them apart

• A pattern syntax is embedded in attributes

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 119

<xsl:stylesheet>

• The root element of XSL stylesheets

• Specifies the result namespace

• Example:
<xsl:stylesheet

xmlns:xsl=“http://www.w3.org/TR/WD-xsl”

 xmlns:html=“http://www.w3.org/TR/REC-html40”

 result-ns=“html”>

 ...

</xsl:stylesheet>

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 120

Template rules

<xsl:template match=“…”>

 …result elements here…

</xsl:template>

• xsl:apply-templates indicates where to insert
results from children

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 121

XSL: An example rule

<xsl:template match="document">

 <fo:basic-page-sequence>

 <xsl:apply-templates/>

 </fo:basic-page-sequence>

</xsl:template>

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 122

XSL: Equivalent HTML example

<xsl:template match="document">

 <html:html>

 <html:title>Demo</html:title>

 <html:body>

 <xsl:apply-templates/>

 </html:body>

 </html:html>

</xsl:template>

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 123

Patterns

• XSL patterns serve a dual role:
– they are used for matching, so that templates

can select which nodes to work on

– they are used for selection, relative to a current
node

• This last role makes it possible to use
patterns for generating values and as tests in
conditional statements

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 124

A basic pattern tutorial

• ‘foo’ matches all elements of the foo type

• ‘foo | bar’ matches all foo and bar elements

• ‘foo/bar’ matches all bars that have foo parents

• ‘foo//bar’ matches all bars that have foo
ancestors

• ‘@baz’ matches all baz attributes

• It is also possible to match comments, PIs and
plain text

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 125

Select patterns

• ‘.’ selects the current node

• ‘bar’ selects all bar children of the current node

• ‘./bar’ does the same thing

• ‘.//bar’ selects all bar descendants

• ‘.[@baz]’ matches the baz attribute of the current
node

• It is also possible to select comments, PIs and
plain text

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 126

Tests

• Patterns can contain tests within []s

• Tests can contain:
– select patterns (true if they select something)

– first-of-any(), first-of-type()

– last-of-any(), last-of-type()

– not(...test...)

– and/or

• Test follow an expression and refine it

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 127

Demo

• Show a simple demo (make it on the fly!)

• Show xbel.xsl

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 128

Conditional inclusion

<xsl:template match=“p>

 <fo:block>

 <xsl:if test=‘.[@class=“warning”]’>

 Warning:

 </xsl:if>

 </fo:block>

 <xsl:apply-templates/>

</xsl:template>

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 129

More conditionals

<xsl:choose>

<xsl:when test=‘.[@class=“warning”]’>

 Warning: <xsl:apply-templates/>

 </xsl:when>

 <xsl:when test='.[@class=“Danger”]'>

 DANGER: <xsl:apply-templates/>

 </xsl:when>

 <xsl:otherwise>

 <xsl:apply-templates/>

 </xsl:otherwise>

</xsl:choose>

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 130

Direct processing

• for:each can be used inside a template to repeat
parts of it for each of the nodes in a select
expression

• The for:each contains a template that is
instantiated each time it matches

• This allows for easy iteration over list- and table-
like structures

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 131

for-each example

<vendor>

 <name>…</name>

 …

 <product …>

 <product …>

 <product …>

 <product …>

</vendor>

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 132

for-each example use

<xsl:template match=“vendor”>

 …header stuff…

 <xsl:for-each select=“product”>

 …name and description…

 </xsl:for-each>

</xsl:template>

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 133

Generating attributes

• Three ways:
– string expressions in attribute values of literal

result elements

– using xsl:attribute

– xsl:attribute-set

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 134

Generating attributes 1

• The easiest way of generating an attribute
value is often by using string expressions

• These are simply placed inside an attribute
value in a template rule and surrounded
with {}

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 135

Generating attributes 2

• It’s also possible to use xsl:attribute to
create attributes, like so:
<html:a>

<xsl:attribute name=“href”>…value…

</xsl:attribute>

…link text…

</html:a>

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 136

Generating attributes 3

• xsl:attribute-set “defines a named set of
attributes” which can later be instantiated

• Given
<xsl:attribute-set name=“td-attrs”>

 <xsl:attribute name=“align”>left</…>

 <xsl:attribute name=“valign”>top</…>

</xsl:attribute-set>

• ...

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 137

Generating attributes 3b

• …you can do:
<html:td>

 <xsl:use name=“td-attrs”/>

 …element content…

</html:td>

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 138

Counters

• number can be used, using the count and
multi attributes to control counting

• It can also be done explicitly with
– counter/counters

– counter-increment

– counter-reset

– counter-scope

• Several kinds of numbering are available

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 139

Sorting

• sort elements can be inserted as children of
apply-templates to specify what to sort on

• sort elements use select patterns to select
the values to sort on

• Several kinds of lexicographical sorting are
available, as is numerical sorting

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 140

Node copy

• copy can be used to produce a copy of the
node in the source tree that triggered at
template instantiation

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 141

Generation

• value-of lets you insert the value of a string
expression in the result tree

• String expressions use
– select expressions (value of first node selected)

– name expressions (name of first node selected)

– constant references

– macro argument references

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 142

Macros

• It’s possible to define template pieces in one
place and then refer to them from many
different templates

• This is done via:
– macro

– invoke-macro

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 143

Processing modes

• Allow parts of the document to be
processed more than once

• Useful for different views of the same
content
– Condensed views: tables of contents, indexes

– Differently sorted views

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 144

Using modes

• Templates have a mode attribute which can
be used to place a template in a mode

• Apply-templates has a mode attribute which
can be used to specify which processing
mode to use

• Default rules are used if the mode does not
have suitable rules

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 145

Demo

• Show xbel2.xsl

• Show rfc.xsl

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 146

Mode pitfalls

• If there are intermediate elements between
the applying element and the applied
element, the mode will be lost

• This happens because the default rules kick
in

• Using select or an empty rule can solve the
problem

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 147

Example

If there are no rules for b, this will go wrong:
<a><c/>

<xsl:template match=“a”>

 <xsl:apply-templates mode=“demo”/></…>

<xsl:template match=“c” mode=“demo”>

 …lots of useful stuff…

</xsl:template>

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 148

Modular stylesheets

• import can be used to load in external
stylesheets

• include can be used to include external files
at any point in the style sheet

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 149

Idioms

• To ignore an element:
– make a matching template which is empty

– you can use | between the element type names

• To get the contents of a sub-element:
– use xsl:apply-templates with select

– use xsl:value-of and select the element

– ditto for attributes

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 150

Demo

• Show xbel3.xsl (improved per idioms)

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 151

XSL flow objects

• An XML language for describing laid-out
documents

• Similar to the flow objects of DSSSL

• Intended to be interpreted directly by a
presentational program or converted to
presentational formats

• Only one implementation so far: FOP

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 152

XSL flow objects

• Support for:
– paragraphs (blocks)

– links

– graphics

– rules

– lists

– page numbering

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 153

Architectural forms

• Intended as a way of subtyping element
types, but is in fact a declarative processing
mechanism

• Uses a set of processing instructions and
special attributes to specify what processing
is wanted

• Completely declarative and very high-level

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 154

Architectural forms

• Map documents from one DTD to another

• Processing instructions declare the forms

• Attributes on elements specify the mapping

• With an AF engine between your parser and
your application the mapping becomes
transparent

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 155

How it works

• During processing a new transient (or
virtual) document is created

• Software can now operate on this virtual
document as if it were a normal document

• The virtual document (or architectural
document) can also be validated

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 156

Architectural forms

• Standardized in an appendix to HyTime

• Implemented in:
– SP, James Clarks SGML parser

– XAF, a SAX parser filter in Java

– xmlarch, a SAX parser filter in Python

• Used heavily in HyTime, Topic Navigation
Maps and many advanced SGML apps

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 157

Example document

<?IS10744:arch name="html"?>

<doc>

<head html=“title”>Sample document</head>

<txt html=“p”>

Sample sample sample. Sample. Blah.

</txt>

</doc>

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 158

Mapped document

<html>

<title>Sample document</title>

<p>

Sample sample sample. Sample. Blah.

</p>

</html>

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 159

Architectural forms

• Functionality:
– More than one form per document is possible

– Elements and attributes can be suppressed

– Attributes can be mapped to content and vice
versa

– The mapped document can be validated in
terms of the architectural DTD

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 160

Common usage

• To define a common subset DTD of several
different variant DTDs

• To identify particular kinds of constructs inside
documents, across DTDs, such as:
– links

– tables

– elements with processing semantics

• Usually architectural attributes are #FIXED in the
DTD

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 161

Demo

• Show arch.xml

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 162

Weaknesses

• Declaration syntax a bit awkward:
– mixed with normal DTD declarations

• No globally unique element identifiers

• Mapping abilities are a bit weak

• Mappings can rarely be created between
DTDs that were not designed for it

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 163

End of fixed core

• Alternatives:
– dealing with character encodings

– a real-world processing application

– HTML part of the DOM (brief)

– SAX 2 (brief)

– an example of DTD processing (very brief)

– audience suggestions

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 164

Character sets

Bonus slides

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 165

The basics

• Documents are stored as strings of bits

• Character sets and encodings are used to
enable us to store text in terms of bits

• A character set is just that, a set of
characters and a code point (number) for
each character

• This in itself is not enough

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 166

Character sets and encodings

• A character encoding describes how a
sequence of character numbers is turned
into a string of bits

• For most character encodings this is just
done by representing the numbers in the
straightforward way

• There are some important exceptions,
though

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 167

Important character sets

Charset Chars Bits Encoding

US-ASCII 128 7/8 Trivial

EBCDIC (several) 256 8 Trivial

iso-8859-x 191 8 Trivial

ISCII-xx 176 8 Trivial

JIS X-0208-19xx 6879 Variable Several

Unicode 47400 Variable Several

ISO 10646 47400 Variable Several

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 168

Unicode/ISO 10646 encodings

Encoding Features

utf-7 7-bit encoding

utf-8 8-bits, US-ASCII below 128

utf-16 16-bits, non-trivial

UCS-2 16 bits, trivial, lower 65536

UCS-4 32 bits, trivial

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 169

XML and character sets

• The standard uses the Unicode characters

• Character references (&#???;) refer to
Unicode code points

• Documents can use any encoding, but utf-8
and utf-16 are the defaults

• Other encodings must be declared in the
XML (or text) declaration of the entity

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 170

XML and transport

• When transferred over the network, the
protocol used may override the declaration

• For the MIME content-type text/xml, the
default is US-ASCII

• For application/xml it is utf-8/utf-16

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 171

Conclusion

• Use whichever encoding you want

• Be sure to declare your encoding to avoid
problems with network transfers

• If you want characters not in Unicode you
have a problem

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 172

An example processing
application

Free XML tools

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 173

XMLtools

• A list of all the free XML tools I know of

• Started out as a simple hand-maintained list

• Was then expanded to list all the tools for
the CD-ROM of ‘The XML Handbook’

• At this point it became an XML application
with descriptions and other information

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 174

Demo

• Just show the pages

• Show the search interface, but don’t
actually do a search

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 175

XMLtools architecture

• Maintained as a single 125k XML
document

• Published into a set of static web pages
using Python scripts built on PyDOM

• Also published into a search index that is
accessed through Python CGI scripts

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 176

Demo

• Show the XML source

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 177

The different processes

• mkindex.py: Creates the search index

• report.py: Creates the main page

• prod_by_*.py: Creates the indexes

• updates.py: Creates the What’s new section

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 178

Integration of the processes

• Uses a home-made GUI-based publishing
system developed in Java

• This automatically runs the scripts and
uploads the output using FTP

• Unfortunate architecture:
– requires a GUI

– requires separate processes, not a single one

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 179

The processing structure

• A separate module swlib.py uses the DOM
to create an application-specific structure

• The various scripts access this using
specific interfaces and extract the
information they need

• Very much easier than working directly on
the DOM, because of the multiple-use

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 180

The search scripts

• Index maker: Builds Python hashtables and
lists and dumps them using the marshal
module

• The search scripts then load these data
(which is very fast) and search in them
(which is pretty fast)

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 181

Demo

• Go through source

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 182

A quick look at the future

(19.Apr.99)

SAX 2

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 183

Basics

• Defined as 100% backwards compatible

• Defined in a separate Java package

• Will also be translated to Python
immediately

• Extensible for third parties

• May perhaps not deal with filters

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 184

New Parser2 interface

• Extends Parser

• Methods:
– get(id)

– set(id,obj)

– setHandler(id,handler)

– setFeature(id,state)

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 185

IDs

• Use a URI scheme, just like namespaces

• No requirement that the ID point to
anything

• Various people wanted something similar to
Java package names, but have not won yet

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 186

Features

• Validation

• External general entity resolution

• External parameter entity resolution

• Split characters events or not

• Namespace processing on/off

• Provide Locator (or don’t)

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 187

Properties

• Namespace name separator

• Element stack (unresolved)

• Literal string associated with current event
(to get whitespace in tags etc)

• DOM node for current event (for DOM
traversers that fire SAX events)

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 188

New AttributeList

• Parsers can now use a subclass of
AttributeList

• Provides information about entity references
in attribute values

• Unlikely to be needed or wanted by many,
but is required for full XML 1.0 compliance

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 189

DTD handler

• Both event-based and object-based
proposals

• Both seem to include all logical information

• No clear winner as of yet

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 190

LexicalHandler

• A separate handler

• Has:
– a comment event

– CDATA start/end events

– entity reference start/end events

– DTD start/end events

– the ability to discern internal/external subset

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 191

HTML DOM

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 192

What it contains

• Basically:
– HTMLDocument

– HTMLElement

– Specializations for elements with more
attributes

– HTMLCollection

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 193

HTMLDocument

• Extends Document with:
– title, referrer, domain, URL, body, images,

applets, links, forms, anchors, cookies

– getElementById(id)

– getElementsByName(name)

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 194

HTMLElement

• Extends Element with string attributes for
the HTML global attributes:
– id

– title

– lang

– dir

– className

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 195

Extended element interfaces

• Contain an attribute for each HTML
attribute of the corresponding element type

• Most are strings, but some are boolean or
contain direct references to specific
elements

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 196

dtddoc.py

A DTD documentation generator

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 197

dtddoc.py

• Produces an HTML document with an entry
for each element type defined in the DTD

• Uses the DTD parser that xmlproc uses to
provide validation services

• This parser is 100% general, as is the data
structure it normally builds

• dtddoc.py uses both

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 198

Demo

• Show how it works

• Show the dtddoc.py source

• Show the APIs and implementations

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 199

What’s missing?

• An index of elements and attributes

• Notations, entities, parameter entities

• Information about parameter entity
structure?

• Textual documentation:
– some schema languages has this

– can also be provided with an external document

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 200

Conclusion

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 201

Declarative processing

• Understandable to non-programmers

• The easiest way to do it, if there is a
framework designed for what you want

• Not as flexible as full programming

• Often rather large systems with much to
learn

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 202

Event-based processing

• The lowest-level solution

• The least resource-intensive solution

• Often the easiest solution for simple things

• Awkward for more complex things

• Can be used to build application-specific
data structures

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 203

Tree-based processing

• Often awkward for simple processing

• Usually memory-intensive

• Best suited for tasks
– where parts of the document need to be

processed several times

– there are dependencies between different parts
of the document

– more than one pass is needed

26.Apr.98 XML Europe ‘99 Lars Marius Garshol, STEP Infotek A/S 204

Goodbye!

• That’s it for now.

• The slides from this presentation are also
available at:

http://birk105.studby.uio.no/download/artikler/processing.pdf

• ZIP file with demo files will appear at:
http://birk105.studby.uio.no/download/

	Introduction
	Event-based processing
	SAX
	SAXON
	MDSAX
	DSSSL

	Tree-based processing
	DOM
	Groves

	Declarative processing
	XSL
	Architectural forms

	Optional parts
	Character sets
	Example application
	SAX2
	HTML DOM
	dtddoc.py

	Conclusion

