INTERNATIONAL STANDARD ©sonec | SO/IEC 10179:1996(E)

Information technology — Processing languages — Document Style
Semantics and Specification Language (DSSSL)

1 Scope
This International Standard is designed to specify the processing of valid SGML documents.

DSSSL defines the semantics, syntax, and processing model of two languages for the
specification of document processing:

a) The transformation language for transforming SGML documents marked up in accordance
with one or more DTDs into other SGML documents marked up in accordance with other
DTDs. The specification of thistransformation processis fully defined by this International
Standard.

b) The style language, where the result is achieved by applying a set of formatting characteristics
to portions of the data, and the specification is, therefore, as precise as the application
requires, leaving some formatting decisions, such as line-end and column-end decisions, to
the composition and layout process.

The DSSSL style language is intended to be used in a wide variety of environments with

typographic requirements ranging from simple single-column layouts to complex multiple-

column layouts. This International Standard does not standardize a formatter nor does it

standardize composition or other processing algorithms. Rather, it provides the means whereby

an implementation may externalize ‘style characteristics’ and other techniques for associating
style information with an SGML document.

DSSSL provides a mechanism for specifying the use of ‘external processes’ to manipulate data.
The nature of these processes is outside the scope of DSSSL, but may include typical data
management functions, such as sorting and indexing; typical composition functions, such as
hyphenation algorithms; and graphics or multimedia processes for non-SGML data.

Documents that have already been formatted or do not contain any hierarchical structural
information or generic markup are not within the field of application of this International
Standard.

| SO/IEC 10179:1996 © ISO/IEC

DSSSL expresses specifications to be performed by some processor that accepts an input
document and produces an output document. DSSSL is independent of the type of formatter,
formatting system, or other transformation processor.

DSSSL includes

a) Constructs that provide access to, and control of, all possible marked-up information in an
SGML document, as well as mechanisms for string processing to allow for the manipulation
of non-marked up data. Thisis provided by the Standard Document Query Language (SDQL)
component of DSSSL.

NOTE 1 String processing is necessary so that no special ‘markers’ need be embedded in the source document to
indicate presentational changes. The display of a dropped or raised capital letter in a larger point size at the
beginning of a line or paragraph is an example of a case where string processing may be used to isolate the first
character or group of characters in order to achieve a desired presentational effect.

b) Provisions for specifying the relationship between one or more SGML documents as input to
atransformation process and zero or more resulting SGML documents as the output of the
process.

c) Provisionsfor specifying the relationships between the SGML document(s), as expressed in
the source Document Type Definition(s), and the result of the formatting process. The output
of the formatting process may be an 1SO/IEC 10180 Standard Page Description Language
(SPDL) document or it may be a document in some other, possibly proprietary, form.

d) Provisions for describing the typographic style and layout of a document.

e) Definitions of a machine-processable syntax for the representation of a DSSSL specification
and its various components.

f) Provisionsfor creating new DSSSL characteristics and their associated values, as well as new
flow object classes. These are declared in the declarations for the style language portion of
the DSSSL specification.

This International Standard isintended for use in awide variety of SGML application
environments, including both electronic publishing and conventional printing.

2 Conformance

DSSSL includes two independent languages, the transformation language and the style language,
which specify processing of an SGML document. A DSSSL specification contains a number of
process specifications, each of which uses either the style language or the transformation
language. A process specification that uses the style language is a style-specification. A process
specification that uses the transformation language is a transformati on-specification.

© ISO/IEC

| SO/IEC 10179: 1996(E)

If a style-specification complies with all the provisions of this International Standard, itisa
conforming DSSSL style-specification. If atransformation-specification complies with all the
provisions of this International Standard, it isaconforming DSSSL transformation-specification.

In both the style language and transformation language, some facilities are optional. Each
optional facility is associated with a named feature. A process specification that makes use of an
optional facility shall enable the feature with which it is associated using thef eat ur es element
type form.

A conforming DSSSL system shall support the style language, the transformation language, or
both the style language and the transformation language.

The documentation for a conforming DSSSL system shall state whether it supports the
transformation language or the style language or both and, for each language that the system
supports, shall state which features of the language it supports.

A conforming DSSSL system that supports the style language shall be able to process any
conforming SGML document using any conforming DSSSL style-specification that enables only
features of the style language that the DSSSL system is documented to support.

A conforming DSSSL system that supports the transformation language shall be able to process
any conforming SGML document using any conforming DSSSL transformation-specification
that enables only features of the transformation language that the DSSSL system is documented
to support.

Normative References

The following standards contain provisions which, through reference in thistext, consititute
provisions of this International Standard. At the time of publication, the editions indicated were
valid. All standards are subject to revision, and parties to agreements based on this I nternational
Standard are encouraged to investigate the possibility of applying the most recent editions of the
standards indicated below. Members of IEC and | SO maintain registers of currently valid
International Standards.

SO 8879:1986, Information processing — Text and office systems — Standard Generalized

Markup Language (SGML).

ISO/IEC 9541-1:1992, Information technology — Font information interchange — Part 1.
Architecture.

ISO/IEC 9541-2:1992, Information technology — Font information interchange — Part 2:
Interchange Format.

ISO/IEC 10744:1992, Information technology — Hypermedia/Time-based Structuring Language

(HyTime).

| SO/IEC 10179:1996 © ISO/IEC

ISO/IEC 10180:1995, Information technology — Processing languages — Standard Page
Description Language (SPDL).

ISO/IEC 9070:1991, Information technology — SGML support facilities — Registration
procedures for public text owner identifiers.

ISO/IEC 10646-1:1993, Information technology — Universal Multiple-Octet Coded Character
Set (UCS) — Part 1: Architecture and Basic Multilingual Plane.

SO 639:1988 Codes for the representation of names of languages.
ISO/IEC 3166:1993, Codes for the representation of names of countries.
ISO/IEC 6429:1992, Information technology — Control functions for coded character sets.

ISO/IEC 8601:1988, Data elements and interchange formats — Information exchange —
Representation of dates and times.

ISO/IEC 9945-2:1993, Information technology — Portable Operating System Interface (POSIX)
— Part 2: Shell and utility.

4 Definitions

For the purpose of this International Standard, the definitions given in 1SO 8879 and the
following definitions apply.

4.1 area
A rectangular box with afixed width and height produced by the formatting of aflow object. An
area can be imaged on a presentation medium to produce a set of marks.

4.2 association
A triple consisting of a query-expression, a transform-expression, and a priority-expression. The
priority-expression defaults to 0. Associations are used to control the transformation process.

4.3 atomic flow object
A flow object that has no ports.

4.4 auxiliary grove
A grove created by parsing nodes in another grove.

45 characteristic
A named parameter of aflow object.

4.6 complete grove
The grove that would be built using a grove plan that selected all the classes and properties from
the property set.

© ISO/IEC

| SO/IEC 10179: 1996(E)

4.7 component name
A name defined in a property set with three variants: a reference concrete syntax name, an
application name, and a full name.

4.8 creation origin
The node relative to which the position of anodein aresult grove is specified.

4.9 descendants
The union of the subtrees of the children of a node.

4.10 enumerator
A possible value of an enumeration data type.

4.11 flow object
A specification of atask to be performed by the formatter. A flow object has a class, which
specifies the kind of task, and characteristics which further parameterize the task.

4.12 formatting process
The process partially specified by the style language.

4.13 grove
A set of nodes connected into a graph by their nodal properties. A groveis built using agrove plan.

4.14 groveplan
A set of classes and properties selected from a property set.

4.15 groveroot
The unique node in a grove that has no origin.

4.16 intrinsic property
A property that is automatically part of a property set, without being defined in the property set.

4.17 line-progression-direction
A direction associated with inline areas. The line-progression-direction is perpendicular to the
inline-progression-direction of the inlined area.

4.18 nodal property
A property whose value is a node or list of nodes. Nodal properties are categorized by their
property set as subnode, irefnode, or urefnode.

4.19 node
An ordered set of property assignments. A node is a member of agrove, and belongs to a class
defined in the grove plan used to build its grove.

4.20 origin
For anode x, the node that exhibits for a subnode property a value that includes x. Every nodein
agrove other than the grove root has a unique origin.

| SO/IEC 10179:1996 © ISO/IEC

4.21 origin-to-subnoderelationship
The subnode property of the origin of a node that includes the node in its value.

4.22 port
A point on aflow object in aflow object tree to which an ordered list of flow objects can be
attached. A port is either the principal port of the flow object or it is named.

4.23 primitive datatype
A datatype that has no super type. The primitive data type of adatatypeisthe datatypeitself, if
the data type has no super type, and otherwise the primitive data type of the super type of the data

type.

4.24 property assignment
The assignment of a property value to a property name.

4.25 property set
A set of classes and properties with associated definitions.

4.26 process specification
The combination of the specification in a process specification element and the specificationsin
any other process specification elements that the process specification element is declared to use.

4.27 process specification element
An instance of atransformation-specification or style-specification element type form.

4.28 process specification part

A section of the process specification coming from a single process specification element. Any
process specification elements referred to using the use attribute are separate parts. A part of a
process specification takes precedence over any later parts of the process specification.

4.29 siblings (of a node)
The other nodes in the grove that occur in the value of the origin-to-subnode relationship property
of the origin of the node.

4.30 sosofo
A specification of a sequence of flow objects.

4.31 sourcegrove
The grove parsed to create an auxiliary grove.

4.32 spread
Consecutive back/front pair of pages in a page-sequence.

4.33 stream
An ordered list of flow objects attached to a port of aflow object.

4.34 subgrove
The union of a node and the values of the subnode properties of the node.

© ISO/IEC

| SO/IEC 10179: 1996(E)

5.1

4.35 subtree
A node together with the subtrees of its children.

4.36 synchronization set
A set of flow objectsin different streams whose relative positioning is constrained.

4.37 transformation process
The process specified by the transformation language. It transforms one or more SGML
documents into zero or more other SGML documents.

4.38 tree
The subtree of a node that has no parent.

4.39 verification grove

The grove that would be built by parsing the SGML document or subdocument generated from
the result grove using a grove plan that included all classes and properties of the SGML property
Set.

4.40 zone
One of four named subdivisions of a column. The four zones are: top-float, body-text, bottom-

float, and footnote. The positioning of an area to be placed in a column-set area container can be
controlled by labeling it with the name of a zone.

Notation and Conventions

Syntax Productions

In this International Standard, formal syntax is described in a manner similar to SO 8879 with
the following exceptions.

A sequence of expressions indicates that the expressions shall occur in the order shown. The,
operator is not used.

The occurrence indicators ?, +, and * have higher precedence than sequencing, which in turn has
higher precedence than the connectors| and & For example,

ab |cd*
isequivalent to
(@b) [(c(d¥))

A syntactic-literal isindicated by a monospaced typeface as shown.

syntactic-literal

| SO/IEC 10179:1996 © ISO/IEC

In a syntax production, double square brackets ([[]]) can be used to surround an or group. The
meaning of thisis similar to an and group. However, if any of the members of the or group have
a* or + occurrence indicator, then they can occur the number of times indicated but intermixed
with other members of the group. For example,

[& [b+]|c|d?]]

means a sequence containing only a's, b’s, ¢'s, and d'sin which any number of a's occur, one or
more b’s, exactly onec, and at most one d.

5.2 Procedure Prototypes
Each procedure is defined by a procedure prototype:
(foo a b)

Thisindicates that the identifier f 0o isbound in the top-level environment to a procedure that
has two arguments.

If the name of an argument is aso the name of atype, then that argument shall be of the named
type. The following naming conventions for arguments also imply type restrictions:

— obj : any object

— list:list

— @: quantity

— x: real number

— y: real number

— n: integer

— k: exact non-negative integer

If the procedure also accepts keyword arguments, the prototype is of the form:
(foo a b #'key keyl: key2:)

This indicates that the procedure in addition accepts two keyword arguments. The names of the
keyword arguments indicate the keywords that are used to specify them and do not constrain the

type.

© ISO/IEC

| SO/IEC 10179: 1996(E)

6

6.1

DSSSL Overview

A key feature of generalized markup is that the formatting and other processing information
associated with the document is separate from the generic tags embedded in it.

In any generalized markup scheme, there is a method for associating processing specifications
with the SGML markup. This method of association allows the information to be attached to
specific instances of elements as well as to general classes of element types. The primary goal of
DSSSL isto provide a standardized framework and methods for associating processing
information with the markup of SGML documents or portions of documents.

DSSSL isintended for use with documents structured as a hierarchy of elements. For the
purpose of describing in detail the concepts of DSSSL in the subsequent clauses of this
International Standard, SGML terminology is used.

DSSSL enables formatting and other processing specifications to be associated with these
elements to produce a formatted document for presentation. For example, a designer may wish
to specify that all chapters begin on a new recto page and that all tables begin with a page-wide
rule to be positioned only at the top or bottom of the page. During the DSSSL transformation
process, formatting information may be added to the result of the transformation. This
information may be represented as SGML attributes. These, in turn, may be used by the style
language to create formatting characteristics with specific values.

Areas of Standardization
DSSSL provides four distinct areas of standardization:

a) A language and processing model for transforming one or more SGML documents into zero
or more other SGML documents.

Thisis called the transformation language. This transformation is controlled by the
transformation-specification. A transformation-specification contains alist of associations.
An association contains up to three parts: the query-expressions, the transform-expressions,
and the optional priority-expressions. Functionally, this specification allows the user to
specify the creation of new structures, the replication of existing structures, and the reordering
and regrouping of existing structures.

b) A language for specifying the application of formatting characteristics onto an SGML
document.

The process that applies formatting and other formatting-related processing characteristics to
an SGML document is called the formatting process. This processis controlled by the style-
specification. A style-specification contains a sequence of construction rules. There are
several kinds of construction rules. For more details, refer to 12.4.1.

NOTE 2 It isimportant to note that for the DSSSL style language and the associated formatting process, DSSSL
does not standardize the processiitself, but merely standardizes the form and semantics of the style language

| SO/IEC 10179:1996 © ISO/IEC

controlling a portion of the process. The remaining formatting functions, such as line-breaking, column-breaking,
page-breaking, and other aspects of whitespace distribution, are not standardized and are under control of the
formatter.

¢) A query language, Standard Document Query Language, used for identifying portions of an
SGML document.

SDQL is part of both the DSSSL transformation language and the DSSSL style language. It
is used for navigating through the hierarchical structure of the SGML document, identifying
the relevant pieces of the SGML markup and content on which processing is to be performed.
SDQL adds additional datatypesto the DSSSL expression language. In addition to the full
query language, this International Standard defines a subset called the core query language.
For more information on the core query language, see 10.2.4. For a complete discussion of the
full SDQL, see clause 10.

d) An expression language.

The DSSSL expression language isused in SDQL, the DSSSL transformation language, and
the DSSSL style language. It is used to create and manipulate objects. In addition to the full
expression language, this International Standard defines a subset called the core expression
language. See 8.6. The DSSSL expression language is based on the Scheme Programming
Language as defined in the IEEE Scheme standard, R*RS. DSSSL uses only the functional,
side-effect free subset of Scheme. See clause 8 for a complete discussion of the DSSSL
expression language.

6.2 Conceptual Model
The DSSSL conceptual model has two distinct processes: (1) atransformation process and (2) a
formatting process. The two processes may be used in conjunction with each other, or each may
be used alone.

Anillustration of the DSSSL conceptual model is shown in Figure 1.

10

© ISO/IEC

| SO/IEC 10179: 1996(E)

DSSSL Specification

Transformation Style

Specification

Specification

4> \ <> y
SPDL or
SGML Transformer SGML —>] DSSSL-driven other
Document Document Formatter output
format
Source Transformation Result Formatting Output of
Document Process Document Process Formatter

6.3

6.3.1

Figure 1 — DSSSL Conceptual Model

The shaded areas indicate the parts of the processing model that are standardized by DSSSL.

DSSSL Languages

Each of the DSSSL processes is controlled by the appropriate DSSSL language. The
transformation language controls the transformation process. Likewise, the style language
controls aspects of the formatting process.

The Transformation Language

The transformation process transforms an SGML document into another SGML document under
the control of the transformation-specification. The SGML document that is the result of this
transformation process may then be used as input to the formatting process.

In the transformation process, a user identifies portions of the SGML document that are to be
mapped or transformed. For each node matching the specified portions of SGML content and
structure, the transformation is accomplished according to the specification describing the new
structures to be created.

All operations performed in this transformation process are independent of the later formatting
process. Operations during the transformation process may include the following:

— Combining structures

11

| SO/IEC 10179:1996 © ISO/IEC

6.3.1.1

SGML structures may be reordered and regrouped to create totally new structures. For
example, footnotes that are inline with footnote references according to the source DTD may
be collected to place the footnotes at the end of each chapter when the document is formatted.

— Creating new elements with user-specifiable relationships to other elements

New structures or attributes may be created. For example, special formatting descriptions
such as the need for a 3-point rule, expressed as an SGML attribute, may be associated with
every fifth row in a table to provide visual impact.

— Associating new descriptions with particular sequences of content

A sequence of elements in the source document may trigger the association of different
formatting characteristics. For example, a paragraph following a warning may be required to
be presented differently from all other paragraphs.

— Associating new descriptions with particular components of content

An association may be used to attach special formatting to particular strings of text that may
not be specially tagged in the source document, as, for example, in the replacement of the
character string ‘ISO’ with the 1SO logo.

DSSSL allows formatting information to be associated with, and dependent on, any combination
of the above. Both the content and structure of the SGML document can be modified.

The transformation language can be used to facilitate the formatting process as indicated in the
examples above, or it can be used to enhance or modify documents created in accordance with a
DTD that has changed over time. It may also be used to transform documents using a public
DTD into a proprietary or ‘in-house’ DTD.

The importance and use of the transformation language will vary depending on the SGML
application, the DSSSL application, the capabilities of the formatter, and the implementation.
Many formatting applications may require no transformation process at all.

Components of the Transformation Process

The component processes are:

a) Grove Building Processor
An SGML document is input to this process. The SGML document or subdocument is parsed
and is represented by a collection of nodes called a grove. A grove is similar to an element
tree, but may include other subtrees, for example, a subtree of attribute values. Relationships
in a grove are expressed in terms of properties. For a complete description of the grove and

SGML property definitions, see clause 9.

b) Transformer

12

© ISO/IEC

| SO/IEC 10179: 1996(E)

0)

The input to the transformation process includes the SGML document as created during the
grove building step and the transformation-specification.

The transformation-specification consists of a collection of associations. Each association
specifies the transformation of like objects in the source document into objects in the result
grove. Key to thistransformation isthat not only can each object be mapped to an explicit
location in the result grove, but it can also be mapped to alocation using the result of
transforming some other source object as a reference point.

The output of the transformation process is the result grove. The transformation process may
operate on multiple SGML documents as input to the process, and likewise may transform
them into multiple SGML documents. For a complete description of the transformation
process, see clause 11.

SGML Generator

The transformation process produces a grove that must be converted to an SGML document
for interchange, validation, and input to the formatting process. The SGML generator is used
for this purpose. The output of the SGML generator shall be avalid SGML document. For a
compl ete description of the SGML generator, see 11.4.

The model of the transformation processisillustrated in the Figure 2. Note that the shaded areas
indicate the components of the DSSSL specification standardized by this International Standard.

Transformation

DTD & Specification

SGML
Decl

Grove

Building SGML

Generator
| Process

Source Result
Grove Groves

Figure 2 — The Transformation Process

6.3.1.2 Model for Coded Characters, Characters, and Glyph Identifiers

There are three distinct components of this model:

13

| SO/IEC 10179:1996 © ISO/IEC

— the coded characters in the SGML source document,
— the characters in the grove,
— the glyph identifiers of the final result document.

The characters in the SGML source document are typically encoded in accordance with a
particular character encoding standard, such as ISO 8859-1 (‘Latin 1’). The SGML declaration
contains a specification of the character set either in the form of a description or in terms of
codepoints in one or more particular, normally standardized or at least registered, coded
character sets. It is, however, permitted to refer to a private coded character set as well as giving
just a description as a minimum literal of the coded character.

There are many character coding schemes. Some of these use non-spacing characters together
with a base character to represent a character with a diacritic. SGML also permits the use of
entity references to represent ‘non-keyable’ characters. For example, a lower case e with acute
accent may be represented, in the same document, as

— a single character,

— a non-spacing diacritic and e (2 characters),

— an e and combining diacritic (2 characters),

— the entity reference é.

This variation may cause problems in searching using regular expressions.

In DSSSL, the input characters are ‘normalized’ into a sequence of characters that each
represents a specific ‘meaning’ regardless of how it was originally encoded — as a single
character, as multiple characters in a particular character set, or as an entity reference. Each
DSSSL specification defines a single character repertoire. The character repertoire shall include
all characters used in the DSSSL specification, in the source groves, and in the flow object tree;
therefore, only these characters may be used. The declaration of each character also includes a set
of properties that may be significant in the formatting process, for example, that the character
represents a ‘word space’.

The DSSSL specification, which may have been encoded using a different coded character set
than the source document, is also translated into a sequence of characters belonging to the same
repertoire as the characters used in the DSSSL trees. All comparisons, such as matching an
element name, are performed by comparing these characters rather than using the coded
characters of the original SGML document.

A sequence of characters in the input grove may be manipulated by a transformation process into
another sequence under the control of a character-to-character map. This technique is typically
used when parts of the source document contain transliterated text.

14

© ISO/IEC

| SO/IEC 10179: 1996(E)

6.3.2

6.3.2.1

The characters in the input grove to the formatter are transformed into glyph identifiers during
the formatting process. The transformation is controlled by character-to-glyph and ligature-to-
glyph mapsin which one or more characters are mapped into one or more glyph identifiers. The
map to be used is not fixed for a document, but is expressed as a formatting characteristic that
may be specified for an area or for a portion of the input grove. Ligatures are specified by
mapping more than one character to a single glyph.

Additional properties specify the font to be used. Thisinformation, together with the glyph
identifier, selects an actual shape to be used in rendering. Hyphenation points are determined
based on the characters, but width calcul ations are based on the metrics of the actual rendering
shapes (i.e., based on the glyphs).

The Style Language

The term ‘formatting’ when used in this International Standard means any combination of the
following:

— the process that applies presentation styles to source document content and determines its
position on the presentation medium,

— the selection and reordering of content in the result document with respect to its position in
the input document,

— the inclusion of material not explicitly present in the input document, such as the generation
of new material,

— the exclusion of material from the input document in the result document.

DSSSL defines the visual appearance of a formatted document in terms of formatting
characteristics attached to an intermediate tree calldtbihebject tree. DSSSL allows enough
flexibility in the specification so that it is not tied to a set of composition or formatting

algorithms, i.e., line-breaking, page-breaking, or whitespace distribution algorithms, used by any
particular formatting system. These aspects of the layout process are specific to individual
implementations. In this International Standard, line-breaking and page-breaking rules may be
expressed in terms of constraints and other formatting characteristics that govern the formatting
process. The output of the formatter, undefined in this International Standard, is a formatted
document suitable for printing or imaging.

The formatting process uses the style-specification, which may include construction rules, page-
model definitions, column-set-model definitions, and other general and application-defined
declarations and definitions.

Components of the Formatting Process

The conceptual processes that constitute the formatting process are as follows:

a) Build grove from SGML document.

15

| SO/IEC 10179:1996 © ISO/IEC

6.3.2.2

6.3.2.3

b) Apply construction rules to the objects in the source grove to create the flow object tree.

¢) Define page and column geometry by characteristics on the page-sequence flow object and
column-set sequence flow objects referring to page-models and column-set-model s,
respectively.

d) Compose and lay out the content based on the rules specified by the semantics of the flow
object classes and the values of the characteristics associated with those objects. Each flow
object (an instance of aflow object class) is formatted to produce a sequence of areas having
explicit dimensions and positioned by a parent in the flow object tree.

Grove Building

The formatting process uses the same grove building step as the transformation process to
convert the SGML document into a grove of hierarchically structured objects. For more
information, see clause 9.

Flow Object Tree

The grove is then further processed, using the construction rules, to create aflow object tree
consisting of flow objects with the appropriate formatting and page-layout characteristics. For
the formal definition of the construction rules, see 12.4.1. Each flow object (except an atomic
flow object) has one or more sequences of flow object children. Each sequence of flow object
children is attached to a point of aflow object called aport. The port is either the principal port of
the flow object, or it may be named.

A flow object class defines a set of formatting characteristics that apply to some category of flow
objects. Each flow object class also defines a set of port names. The class of a child flow object
shall be compatible with the class and port name of the port to which it is attached. The flow
objects attached to any particular port are ordered, but there is no order defined between flow
objects attached to different ports of the same flow object.

The process of creating the flow object tree includes the following steps:
a) Formatting characteristics are associated with each flow object.

b) Nodes representing data characters from the grove are converted to character flow objects.
Each character flow object has characteristics governing glyph selection and style parameters
such as font family, font weight, etc.

In constructing the flow object tree, SDQL may be used to identify portions of the SGML
document that have specific formatting characteristics as well as those that can be treated
together for purposes of flowing onto the same column or page. The content that is flowed
together is placed as a sequence of flow objectsin a port of the parent in the flow tree.

NOTE 3 For example, if adocument consists of several normal paragraphs and some footnote paragraphs, the
footnote paragraphs can be grouped as the content of a port of the parent flow object that represents the footnote.
Similarly, the normal paragraphs can be grouped in a port of aflow object representing a sequence of columns.

16

© ISO/IEC

| SO/IEC 10179: 1996(E)

6.3.2.4 Flow Object Classes

Sequence flow abject class
Display-group flow object class
Simple-page-sequence flow object class
Page-sequence flow object class
Column-set-sequence flow object class
Paragraph flow object class
Paragraph-break flow object class
Line-field flow object class

Sideline flow object class

Anchor flow object class

Character flow object class

L eader flow object class
Embedded-text flow object class

Rule flow object class

External-graphic flow object class
Included-container-area flow object class
Score flow object class

Box flow object class

Side-by-side flow object class
Glyph-annotation flow object class

Alignment-point flow object class

The flow object classes and the characteristics that apply to them define the formatting
appearance and behavior of the contents of the document.

The following flow object classes are provided in this International Standard:

17

| SO/IEC 10179:1996 © ISO/IEC

6.3.2.5

6.3.2.6

Aligned-column flow object class
Multi-line-inline-note flow object class
Emphasizing-mark flow object class

Flow object classes for mathematical formulae
Flow object classes for tables

Flow object classes for online display

In addition, DSSSL applications may define their own set of flow object classes as well as their
own set of characteristics that may apply to these or to DSSSL -defined flow object classes.

Areas

The result of formatting a flow object is a sequence of areas. An areais arectangular box with a
fixed width and height. There are two types of areas: inline areas that are parts of lines and
display areas that are not directly parts of lines.

Both types of areas are positioned by a process of filling. The exact nature of the filling process
isdifferent for each of these types of areas. See 12.3 for more information on the filling of areas.

A display areais positioned by being filled into an area container. The size of an area container
may grow in the filling-direction, but is fixed in the other direction.

Page and Column Geometry

Page layout in DSSSL is specified by page-model characteristics on the page-sequence flow
object and column-set-model characteristics on the column-set sequence flow object.

The page-sequence flow object is formatted to produce a sequence of page areas. A page-model
is the specification of the possible structure and positioning of the area hierarchy of the page,
including the height and width of the page and the specification of page-regions. Page-regions
are area containers with fixed dimensions into which formatted content is placed as specified by
the page-region-flow-map. The page-region-flow-map provides the connection between the port
name and a page-region. Each of the page-regions may have a header and a footer specification.
For complete information on the page-sequence flow object and the associated page models, see
12.6.4and 12.6.4.1.

The column-set-sequence flow object is formatted to produce a sequence of column-set areas. A
column-set area contains a set of parallel columns. The structure and positioning of each
column-set areais controlled by the column-set-model to which it conforms. A column-set-
model specifies the possible hierarchy of areas for each column-set. Column-sets may be nested.
The column-set areais divided geometrically in adirection parallel to the filling direction into a
number of columns. Associated with each column-set may be zones that constrain the placement

18

© ISO/IEC

| SO/IEC 10179: 1996(E)

6.3.2.7

Document

of areas relative to other areas in the filling-direction. The alowed zones are: top-float, body-
text, bottom-float, and footnote.

The column-set-model specifies the possible structure and positioning of the area hierarchy of
the column-set through the column-subset specification, the filling-direction specification, width
and height specifications, etc. The column-subset specification includes a column-subset-flow-
map that indicates the ports from which the contents are flowed into the specified zone. The
column-set-model also supports spanning. For complete information on the column-set
sequence flow object, see 12.6.5; for complete information on the column-set-model, see
12.6.5.1.

Expression Language

The formatting process uses the core expression language defined in 8.6 or, as an optional
feature, the full expression language as described in 8.

Figure 3 illustrates the model of the formatting process.

Style
Specification

Flow Object

Tree > Formatter
Constructor

Formatted
Result
Document

Source Flow Object
Grove Tree

Figure 3 — Formatting Process

6.3.2.8 Model for Coded Characters, Characters, and Glyph Identifiers

The formatting process uses the model for coded characters, characters, and glyph identifiers
described in 6.3.1.2.

19

| SO/IEC 10179:1996 © ISO/IEC

7 DSSSL Specifications

A DSSSL specification isan SGML document conforming to the DSSSL document architecture.
The DSSSL document architecture is a document architecture conforming to the Architectural
Form Definition Requirements of 1SO/IEC 10744.

An SGML document can declare its conformance to the DSSSL document architecture by
including atoken Ar cBase in the APPINFO parameter of its SGML declaration and the
following declarationsin its DTD:

<?Ar cBase DSSSL>
<! NOTATI ON DSSSL PUBLI C "1 SO | EC 10179: 1996/ / NOTATI ON
DSSSL Architecture Definition Document//EN'
-- A docunent architecture conformng to the
Architectural Form Definition Requirenents of
| SO | EC 10744. --
>
<! ATTLI ST #NOTATI ON DSSSL
-- Support attributes for all architectures --
ArcFormA -- Attribute nane: architectural form--

NANVE #F|I XED DSSSL
ArcNant A -- Attribute nane: attribute renaner --
NANVE #FI XED DNanes
ArcBridA -- Attribute nane: bridge functions --
NANVE #FI XED DBri d
ArcDocF -- Architectural form nane: docunent el enment --
CDATA #FI XED dsssl -specification
Ar cVer -- Architecture version identifier --

CDATA #FI XED "1 SO’ | EC 10179: 1996"
>
<I'ENTI TY DSSSL SYSTEM CDATA DSSSL>

7.1 DSSSL Document Architecture

The DSSSL document architecture is defined by the following meta-DTD.

<!-- DSSSL Docunent Architecture -->

<IENTITY % decl arati ons
"features | baseset-encoding | literal-described-char | add-nane-chars
| add-separator-chars | standard-chars | other-chars
| conbine-char | map-sdata-entity | char-repertoire | sgnl-grove-plan”
>

<l'el enent dsssl-specification - O
((%decl arati ons;) *,
(style-specification | transformation-specification
| external -specification)+)>
<lattlist dsssl-specification
dsssl NAME dsssl -specification
ver si on CDATA #FI XED "1 SO | EC 10179: 1996"

20

© ISO/IEC

| SO/IEC 10179: 1996(E)

<lel enent transformation-specification - O

((%lecl arations;)*, transfornation-specification-body*)>
<lattlist transformation-specification

dsssl NAME transformation-specification

id |D # MPLI ED

desc CDATA #l MPLI ED

-- human readabl e description of specification --

partial (partial | conplete) conplete
-- is the specification conplete is or is it just a fragnent
to be used in other specifications? --

use
-- reftype(transformati on-specification|external -specification)
| DREFS #| MPLI ED -- Default: none --

entities
-- entities available to be specified as DID for validation
of result docunent --
ENTI TIES #I MPLI ED -- Default: none --
>

<lel enent style-specification - O

((%decl arations;)*, style-specification-body*)>
<lattlist style-specification

dsssl NAME styl e-specification

id |D # MPLI ED

desc CDATA #l MPLI ED

-- human readabl e description of specification --

partial (partial | conplete) conplete
-- is the specification conplete is or is it just a fragnment
to be used in other specifications? --

use -- reftype(styl e-specification|external-specification) --
| DREFS #| MPLI ED -- Default: none --
>
<l-- Assign a local IDto a specification in another document. -->

<l'el enent external -specification - O EMPTY>
<lattlist external-specification
dsssl NAME external -specification
id | D #REQU RED

docunment -- docunent containing spec --
ENTI TY #REQUI RED
specid -- id of spec in docunent --
NAME #| MPLI ED -- Default: first spec in document --
>
<!-- Declares features used by specification. -->

<lel enent features - O (#PCDATA)
-- lextype(featurenane*) -->
<lattlist features
dsssl NAME features

21

| SO/IEC 10179:1996 © ISO/IEC
>
<!-- Map character nunbers in a base character set to character nanes;
not needed when system knows a character set, and all characters
in character set have universal code. -->
<l'el enent baseset-encoding - O (#PCDATA)
-- lextype((nunber, charnane)*) -->
<lattlist baseset-encoding
dsssl NAME baseset - encodi ng
name CDATA #REQUI RED -- public identifier of baseset --
>
<!-- Map a character described in the SGW declaration with a minimumlitera
to a character nane. -->
<lelenent literal-described-char - O (#PCDATA)
-- lextype(charnane) -->
<lattlist literal-described-char
dsssl NAME literal -described-char
desc CDATA #REQUIRED -- the literal description --
>
<!-- Declare additional characters allowed in name within DSSSL notation. -->
<l'el enent add- name-chars - O (#PCDATA)
-- lextype(charname*) -->
<lattlist add-name-chars
dsssl NAME add- nane-chars
>
<I-- Declare additional characters allowed as separators within
DSSSL notation. -->
<l'el enent add-separator-chars - O (#PCDATA)
-- lextype(charname*) -->
<lattlist add-separator-chars
dsssl NAME add-separator-chars
>
<I-- Define characters associating names with universal codes. -->
<l'el enent standard-chars - O (#PCDATA)
-- lextype((charname, nunber))*) -->
<lattlist standard-chars
dsssl NAME st andard-chars
>
<!-- Define characters with no universal codes. -->
<lel enent other-chars - O (#PCDATA)
-- lextype(charname*) -->
<lattlist other-chars
dsssl NAME ot her-chars
>
<l-- Map an SDATA entity onto a character. -->
<l'el enent map-sdata-entity - O (#PCDATA)

-- lextype(charnane) -->

22

© ISO/IEC

| SO/IEC 10179: 1996(E)

<lattlist map-sdata-entity
dsssl NAME nmp-sdata-entity

name CDATA #|l MPLIED -- Default: mapping uses replacenment text only --
text CDATA #| MPLIED -- Default: mapping uses name only --

>
<!-- Declare character conbining. -->

<!'el enent conbi ne-char - O (#PCDATA)

-- |l extype(charnane, charnanme, charnanme+) -->

<lattlist conbine-char
dsssl NAME conbi ne-char
>

<!-- Declare a character repertoire. -->
<lel enent char-repertoire - O EMPTY>
<lattlist char-repertoire

dsssl NAME char-repertoire

name -- public identifier for repertoire --

CDATA #REQUI RED
>

<!-- Declare the grove plan for the SGW property set.

<!el enent sgnl-grove-plan - O EMPTY>
<lattlist sgnl-grove-plan
dsssl NAME sgni - grove-pl an

nodadd -- names of nodules to be added to default grove plan --
NAMES #| MPLI ED -- Default: none added --

>

<lel enent style-specification-body - - CDATA

-- content uses notation of DSSSL style |anguage -->

<lattlist style-specification-body
dsssl NAME styl e-specification-body

content ENTITY #CONREF -- Default: syntactic content --

>

<l'el enent transformation-specification-body - -

CDATA

-- content uses notation of DSSSL transformation | anguage -->

<lattlist transformation-specification-body

dsssl NAME transfornmation-specification-body
content ENTITY #CONREF -- Default: syntactic content --

The element type form dsssl - speci fi cat i on isacontainer for one or more process
specification element type forms. Declaration elementsin adsssl - speci fi cati on element
apply to all the process specification elementsin thedsssl - speci fi cati on element.

There are two types of process specification element type forms. The element type form
transformation-specificati on specifiesatransformation process. The element type
form st yl e- speci fi cat i on specifiesaformatting process. Instances of these element type
forms are called process specification elements. Each process specification element may be self-
contained, or it may make use of other process specification el ements of the same type. Process
specification elements are identified by an SGML unique identifier. A process specification

23

| SO/IEC 10179:1996 © ISO/IEC

element in one SGML document may use a process specification element in another SGML
document by using the ext er nal - speci fi cati on element type form to assign alocal
unique identifier to the process specification element in the other document. The combination of
a process specification element with the process specification elements that it usesis a process
specification.

A user specifies processing of an SGML document by identifying a process specification
element. The manner in which these elements are identified is system-dependent.

NOTE 4 A system may identify a process specification element with a system identifier for the document and an
optional unique identifier for the element within the document, with the first process specification element in a
document being used if no unique identifier is specified.

Each process specification element may contain elements, called body elements, whose content
specifies processing in a process-specific notation. For at r ansf or mat i on-

speci fi cati on, thisnotation isthe DSSSL transformation language; for ast yl e-

speci fi cati on, thisnotation isthe DSSSL style language. In addition, each process
specification element may contain declaration elements that contain information needed to parse
these notations.

The process specification described by a sequence of process specification elementsis
considered as a sequence of parts, where each part consists of declarations expressed using
element type forms, and a specification in the process-specific notation, called the body of the
part. The parts from a sequence of process specification elements consist of the sequence of
parts from the first process specification element, followed by the sequence of parts from the
next process specification element, and so on. The sequence of parts from a single process
specification element consists of a part constructed from the content of the process specification
element followed by the sequence of parts from the sequence of process specification elements
that it uses. The declarationsin the first part comprise the declarations contained in the process
specification element together with those contained in the dsssl - speci fi cat i on element
that contains the process specification element. The body of the first part consists of the
concatenation of the body elements contained in the process specification element.

A process specification shall be processed by first processing the declarations of all of the parts,
and then processing the bodies of al of the partsin order. Within asingle part, there shall not be
conflicting declarations; when two declarations in different parts conflict, the declaration in the
earlier part shall take precedence. Similarly, within the body of a single part, there shall not be
conflicting specifications, but when two specifications in the bodies of different parts conflict,
the specification in the earlier part shall take precedence.

The declarations of a process specification shall specify how each bit combination occurring in
the bodies of the parts of the specification and in all the SGML input documents are to be
converted to characters. Declarations may occur in any order. In particular, character names may
be used before they are declared.

Every character name used either in declarations or in body elements shall be declared using
either ast andar d- char s element type form, an ot her - char s element type form, or a
char - r epert oi r e element type form.

24

© ISO/IEC

| SO/IEC 10179: 1996(E)

7.1.1

7.1.2

7.1.3

7.1.4

All declaration element type forms other than thechar - repertoi re, f eat ures, andsgni -
grove- pl an element type formsrequirethechar set feature.

Features

Thef eat ur es element type form declares the features used by a specification. A process
specification shall declare all the features that it uses.

The content of the element shall be alist of feature names.
This declaration is cumulative.

SGML Grove Plan

Thesgml - gr ove- pl an element type form names additional modules that should be included
in the grove plan for the SGML property set. The nodadd attribute specifies the modules to be
added. The following modules are included automatically:

— baseabs

— prlgabsO

— instabs

For the transformation language, the prigabs1l module is also included automatically.

This declaration is cumulative.

Character Repertoire

Thechar - r epert oi r e element type form declares that the specification uses the character
repertoire whose public identifier is given by thene attribute.

A char -repert oi r e elementis equivalent to a sequence of instances of the element type
formsbaseset - encodi ng, | it eral -descri bed- char, add- nane- char s, add-

separ at or - char s, st andar d- char s, ot her - char s, andmap- sdat a- ent i ty, and of
character-property-declaration andadded-char-properties-declaration language forms.

Standard Characters

Thest andar d- char s element type form declares the names of characters in the character
repertoire which correspond to characters defined in ISO/IEC 10646-1 or ISO/IEC 6429. A
character in ISO/IEC 10646-1 or ISO/IEC 6429 is identified by its code in the corresponding
character set, called itgiversal code.

25

| SO/IEC 10179:1996 © ISO/IEC

7.1.5

7.1.6

The content of the element shall be alist of pairs of character names and numbers expressed in
decimal. It declares that each character name corresponds to the character with the universal
code specified by the following number.

A process specification shall declare character names for each of the following character
numbersin ISO/IEC 10646-1: 32 (space), 34 (quotation mark), 35 (number sign), 39
(apostrophe), 40 (left parenthesis), 41 (right parenthesis), 42 (asterisk), 43 (plus sign), 45
(hyphen-minus), 46 (full stop), 47 (solidus), 48 to 57 (digit zero to digit nine), 58 (colon), 59
(semicolon), 60 (less-than sign), 61 (equals sign), 62 (greater-than sign), 63 (question mark), 65
to 90 (Latin capital letter A to Latin capital letter Z), 92 (reverse solidus), and 97 to 122 (Latin
small letter ato Latin small letter z). It shall also declare character names for each of the
following character numbersin ISO/IEC 6429: 10 (line feed), and 13 (carriage return).

It shall be an error for a single character name to occur more than oncein the st andar d-
char s elementsin asingle part. The declaration for a character name in one part in the

st andar d- char s element type form takes precedence over any declaration for that character
namein any later parts.

A system may inherently know for a base character set identified by a public identifier with an
SO owner identifier how bit combinations in that character set correspond to universal codes.
Thus, if abase character set has aformal public identifier that includes an SO owner identifier,
and, for each character used by the document character set from that base character set, exactly
one character name is declared using the st andar d- char s element type form, then no
baseset - encodi ng element type form isrequired for that base character set.

Other Characters

The ot her - char s element type form declares the names of charactersin the character
repertoire which do not correspond to characters defined in I SO/IEC 10646-1 or 1SO/IEC 6429.

The content of the element shall consist of alist of character names.

EXAMPLE 1

<ot her - char s>
| 0goSGWML runic-f runic-u
</ ot her-char s>

These declarations are cumulative.

Baseset Encoding

The baseset - encodi ng element type form specifies how bit combinationsin an SGML
document whose meaning was declared in the SGML declaration to be that of a character number
in a base character set are to be converted to characters.

The content of abaseset - encodi ng element shall consist of alist of pairs of corresponding
character numbers, specified in decimal, and character names. It specifies the character names

26

© ISO/IEC

| SO/IEC 10179: 1996(E)

7.1.7

7.1.8

7.1.9

corresponding to character numbersin the character set whose public identifier is given by the
nanme characteristic.

Conflicts between baseset - encodi ng elements are resolved separately for each character
number. There can be multiple baseset - encodi ng elements for the same base character set,
but it shall be an error to have two specifications for the same character number in the same base
character set in asingle part.

EXAMPLE 2

<baseset - encodi ng nane="Character set for the Viking age runic script">
31 runic-f

32 runic-u

</ baseset - encodi ng>

Literal Described Character

Theliteral -descri bed-char element type form specifies that bit combinationsin an
SGML document whose meaning was declared in the SGML declaration using a minimum literal
egual to the value of the desc attribute are to be converted to the character whose name is
specified in the content of the element.

EXAMPLE 3

<literal -described-char desc="SGW User’'s G oup |ogo">
| 0goSGWL
</literal -described-char>

Sdata Entity Mapping

The map- sdat a- ent i t y element type form declares that areference to an internal SDATA
entity whose name is equal to the value of the nane attribute and/or whose replacement text is
equal to the value of thet ext attribute represents the character whose name is given in the
content of the element. The content of the element shall be a single character name.

If the grove plan includestheent i t y- nanme property for the sdat a node class, then an
SDATA entity shall be mapped by first searching for a mapping for its name and then, if no
mapping is found, searching for a mapping for its text.

EXAMPLE 4

<map-sdata-entity nane="Al pha" text="[Al pha]">greekA</ map-sdata-entity>
<map-sdata-entity nane="V.Beta" text="[V.Beta]">greekB</nap-sdata-entity>

Separator Characters

The add- separ at or - char s element type form declares characters as separator-characters
allowed in whitespace in the DSSSL transformation and style languages.

These declarations are cumulative.

27

| SO/IEC 10179:1996 © ISO/IEC

7.1.10 Name Characters

7.1.11

7.2

7.3

7.3.1

7.3.2

The add- nanme- char s element type form declares additional characters as added-name-
characters allowed in identifiersin the DSSSL transformation and style languages.

These declarations are cumulative.

Character Combination

The combi ne- char element type form contains alist of three or more character names. It
declares that a sequence of characters comprising the second and following characters shall be

replaced by the first character. Use of this element type form requires the conbi ne- char
feature.

Public Identifiers

Within this International Standard, public identifiers shall conform to the canonical string form
of apublic identifier defined in ISO/IEC 9070.

Lexical Conventions

Case Sensitivity

Upper- and lower-case forms of aletter are always distinguished.
NOTE 5 Traditionally Lisp systems are case-insensitive.

Identifiers

[1] identifier = initial (subsequent* final)? | peculiar-identifier
[2] initial = letter | special-initial | added-name-character

[3] letter=a|b|c|...|]z |A|B|C]|...|Z

[4] special-initial =special | :

[5] special = [$[%|&[* |/ |<[=]>]?]"[_|"

[6] subsequent = initial | digit | special-subsequent

[7] specia-subsequent=. |+ |-

[8] final = letter | special | added-name-character | digit | special-subsequent

[9] peculiar-identifier =+]- |...

28

© ISO/IEC

| SO/IEC 10179: 1996(E)

7.3.3

Most identifiers allowed by other programming languages are also acceptablein DSSSL. In
addition to letters and digits, identifiers may contain the characters $%&*/:<=>?" "+-. and
any characters declared as added-named-characters by the add-name-chars or char-
repertoire element type forms. Anidentifier shall not begin with a character that can begin a
number; however, +, - ,and ... areidentifiers. Anidentifier shall not end with : (unlessthe
entire identifier is:).

NOTE6 . .. arethree period characters and not a single ellipsis character.

Tokens, Whitespace, and Comments

[10] token = identifier | keyword | boolean | number | character | string | named-constant | glyph-
identifier |[(|) " |. | |, |.@

[11] delimiter = whitespace|(|) |" |;

[12] whitespace = space | record-start | record-end | tab | form-feed | separator-character

[13] comment = ; any-character-except-record-end*

[14] atmosphere = whitespace | comment

[15] intertoken-space = atmosphere*

Whitespace characters are spaces, record starts, record ends, and separator-characters.
Whitespace is used for improved readability and, as necessary, to separate tokens from each
other, atoken being an indivisible lexical unit such as an identifier or number, but is otherwise
insignificant. Whitespace may occur between any two tokens, but not within a token.
Whitespace may also occur inside a string, where it is significant.

A semicolon (;) indicates the start of acomment. The comment continues to the end of the
record on which the semicolon appears. Comments are invisible, but the record end is visible as
whitespace. This prevents a comment from appearing in the middle of an identifier or number.
intertoken-space may occur on either side of any token, but not within a token.

Tokens which require implicit termination (identifiers, numbers, characters, dot, and #!
constants) may be terminated by any delimiter, but not necessarily by anything else.

Expression Language

The expression language is inspired by the Scheme Programming Language defined in the IEEE
Scheme standard, R*RS. The following specification is based on this definition.

The expression language differs from Scheme in a number of ways:

29

| SO/IEC 10179:1996 © ISO/IEC

8.1

— The expression language uses only the functional, side-effect free subset of Scheme. Features
of Scheme that are not useful in the absence of side-effects have been removed (for example,
begin).

— The vector data type is not provided.

— A character object is uniquely identified by its name rather than its code.

— Dependencies in Scheme on the ASCII character set have been removed.

— The number data type is a subtype of a more general quantity data type that adds the concept
of dimension to a number.

— Continuations are not provided.

— Some optional features of'RS are not provided.
— Thegcd andl cmprocedures are not provided.
— Keyword arguments are provided.

In addition, DSSSL specifies certain choices that the definition of Scheme leaves open to
implementations.

A subset of the expression language, callectthe expression language, is defined in 8.6.

Overview of the Expression Language

Following Algol, the expression language is statically scoped. Each use of a variable is
associated with a lexically apparent binding of that variable.

The expression language has latent as opposed to manifest types. Types are associated with
values (also called objects) rather than with variables. (Some authors refer to languages with
latent types as weakly typed or dynamically typed languages.) Other languages with latent types
are other dialects of Lisp, APL, and Snobol. Languages with manifest types (sometimes referred
to as strongly typed or statically typed languages) include Algol 60, Pascal, and C.

All objects created in the course of a computation, including procedures, have unlimited extent.
No expression language object is ever destroyed. The reason that implementations do not
(usually!) run out of storage is that they are permitted to reclaim the storage occupied by an
object if they can prove that the object cannot possibly matter to any future computation. Other
languages in which most objects have unlimited extent include other dialects of Lisp and APL.

Implementations are required to be properly tail-recursive. This allows the execution of an
iterative computation in constant space, even if the iterative computation is described by a
syntactically recursive procedure. Thus, with a tail-recursive implementation, iteration may be

30

© ISO/IEC

| SO/IEC 10179: 1996(E)

8.2

8.2.1

expressed using the ordinary procedure-call mechanics, so that special iteration constructs are
useful only as syntactic sugar.

Procedures are objectsin their own right. Procedures may be created dynamically, stored in data
structures, returned as results of procedures, and so on. Other languages with these properties
include Common Lisp and ML.

Arguments to procedures are always passed by value, which means that the actual argument
expressions are evaluated before the procedure gains control, whether the procedure needs the
result of the evaluation or not. ML, C, and APL are three other languages that always pass
arguments by value. Thisis distinct from the lazy-evaluation semantics of Haskell, or the call-by-
name semantics of Algol 60, where an argument expression is not evaluated unlessitsvalueis
needed by the procedure.

The expression language, like most dialects of Lisp, employs afully parenthesized prefix
notation for expressions and (other) data; the grammar of the expression language generates a
sublanguage of the language used for data.

Basic Concepts
Variables and Regions

Any identifier that is not a syntactic-keyword may be used as a variable. A variable may name a
value. A variablethat does so is said to be bound to the value. The set of al visible bindingsin
effect at some point is known as the environment in effect at that point. The value to which a
variableis bound is called the variable' s value.

Certain expression types are used to bind variables to new values. The most fundamental of these
binding constructs is the lambda expression, because al other binding constructs can be
explained in terms of lambda expressions. The other binding constructs are | et , | et *, and

| et r ec expressions.

Like Algol and Pascal, and unlike most other dialects of Lisp except for Common Lisp, the
expression language is a statically scoped language with block structure. To each place where a
variableis bound in an expression there corresponds aregion of the expression text within which
the binding is effective. The region is determined by the particular binding construct that
establishes the binding; if the binding is established by alambda expression, for example, then its
region is the entire lambda expression. Every referenceto, or assignment of, avariable refersto
the binding of the variable that established the innermost of the regions containing the use. If
there is no binding of the variable whose region contains the use, then the use refers to the
binding for the variable in the top-level environment, if any; if there is no binding for the
identifier, it is said to be unbound.

31

| SO/IEC 10179:1996 © ISO/IEC

8.2.2

8.2.3

8.2.4

8.3

True and False

Any expression language value may be used as a boolean value for the purpose of a conditional
test. All values count astruein such atest except for #f. This International Standard uses the
word ‘true’ to refer to any value that counts as true, and the word ‘false’ to refer to #f.

External Representations

An important concept in the expression language (and Lisp) is thateft¢heal representation
of an object as a sequence of characters. For example, an external representation of the integer 28
is the sequence of characte28”, and an external representation of a list consisting of the
integers 8 and 13 is the sequence of charaqt8rsl‘3) '.

The external representation of an object is not necessarily unique. The list in the previous
paragraph also has the representation98 13)'and (8 . (13 . ()))".

Many objects have external representations, but some, such as procedures, do not.
An external representation may be written in an expression to obtain the corresponding object.

External representations may also be used for communicating between processes defined in this
International Standard.

The syntax of external representations of various kinds of objects accompanies the description of
the primitives for manipulating the objects.

Disjointness of Types

No object satisfies more than one of the following predicates:

bool ean?
pair?
synbol ?
keywor d?
quantity?
char?
string?
procedure?

These predicates define the tyjeslean, pair, symbol, keyword, quantity, char (or character),
string, andprocedure.

Expressions

An expression is a construct that returns a value, such as a variable reference, literal, procedure
call, or conditional.

[16] expression primitive-expression | derived-expression

32

© ISO/IEC

| SO/IEC 10179: 1996(E)

8.3.1

8.3.1.1

8.3.1.2

Expression types are categorized as primitive or derived. Primitive expression types include
variables and procedure calls. Derived expression types are not semantically primitive but can
instead be explained in terms of the primitive constructs. They are redundant in the strict sense of
the word, but they capture common patterns of usage, and are, therefore, provided as convenient
abbreviations.

Primitive Expression Types

[17] primitive-expression = variable-reference | literal | procedure-call | lambda-expression |
conditional

Variable Reference
[18] variable-reference = variable

An expression consisting of avariable is avariable reference. The value of the variable reference
is the value to which the variable is bound. It shall be an error to reference an unbound variable.

EXAMPLE5

(define x 28)
X 0o 28

[19] variable = identifier
[20] syntactic-keyword = expression-keyword | el se |=> | defi ne

[21] expression-keyword = quot e || anbda |i f |[cond |and |or |case |l et |l et* |
| etrec |quasi quot e |unquot e |unquot e-spl i ci ng

Any identifier that is not a syntactic-keyword may be used as a variable. DSSSL languages may
reserve identifiers as syntactic-keywords in addition to those listed above.

Literals

[22] literal = quotation | self-evaluating
[23] quotation =" datum| (quot e datum)
(quot e datum) evaluates to datum.

[24] datum = simple-datum | list

[25] simple-datum = boolean | number | character | string | symbol | keyword | named-constant |
glyph-identifier

datum may be any external representation of an expression language object. This notation is used
toinclude literal constantsin expressions. A glyph-identifier is allowed only within a style-
language-body.

33

| SO/IEC 10179:1996 © ISO/IEC

EXAMPLE 6
(quote a) 0O a
(quote (+ 1 2)) O (+12)

(quot e datum) may be abbreviated as’ datum. The two notations are equivalent in all

respects.

EXAMPLE 7

"a O a

") o0
(+12) O (+12)
"(quote a) O (quote a)
"Ta 0O (quote a)

[26] self-evaluating = boolean | number | character | string | keyword | named-constant | glyph-
identifier

Boolean constants, numerical constants, character constants, string constants, keywords,named
constants, and glyph identifiers evaluate ‘to themselves’; they need not be quoted.

EXAMPLE 8

" "abc" O "abc"
"abc" O "abc"

' 145932 0 145932
145932 0 145932
' Ht O #t

#t 0O #t

abc: 0 abc:
"abc: 0 abc:

8.3.1.3 Procedure Call
[27] procedure-call £ operator operand*)
[28] operator =expression
[29] operand =expression
A procedure call is written by simply enclosing in parentheses expressions for the procedure to

be called and the arguments to be passed to it. The operator and operand expressions are
evaluated, and the resulting procedure is passed the resulting arguments.

EXAMPLE 9
(+ 3 4) o 7
((if #f +*) 3 4) 0o 12

If more than one of the operator or operand expressions signals an error, it is system-dependent
which of the errors will be reported to the user.

© ISO/IEC

| SO/IEC 10179: 1996(E)

8.3.14

A number of procedures are available as the values of variablesin theinitial environment; for
example, the addition and multiplication procedures in the above examples are the values of the
variables + and * . New procedures are created by evaluating lambda expressions.

Procedure calls are also called combinations.

NOTE 7 In contrast to other dialects of Lisp, the operator expression and the operand expressions are always
evaluated with the same evaluation rules.

Lambda Expression
[30] lambda-expression = (| anbda (formal-argument-list) body)

A lambda expression evaluates to a procedure. The environment in effect when the lambda
expression was evaluated is remembered as part of the procedure. When the procedure is later
called with some actual arguments, the environment in which the lambda expression was
evaluated shall be extended by binding the variables in the formal argument list to the
corresponding actual argument values, and the body of the lambda expression shall be evaluated
in the extended environment. The result of the body shall be returned as the result of the
procedure call.

EXAMPLE 10
(lanmbda (x) (+ x X)) 0 a procedure
((lambda (x) (+ x x)) 4) O 8
(define reverse-subtract

(lambda (x y) (- y x)))
(reverse-subtract 7 10) o 3
(define add4

(let ((x 4))

(lanbda (y) (+ x y))))

(add4 6) O 10

[31] formal-argument-list = required-formal-argument* (#! opti onal optional-formal-
argument*)? (#! r est rest-formal-argument)? (#! key keyword-formal-argument*)?

[32] required-formal-argument = variable

[33] optional-formal-argument = variable | ((variableinitializer))
[34] rest-formal-argument = variable

[35] keyword-formal-argument = variable | ((variableinitializer))
[36] initializer = expression

When the procedure is applied to alist of actual arguments, the formal and actual arguments are
processed from left to right as follows:

35

| SO/IEC 10179:1996 © ISO/IEC

8.3.1.5

a) Variablesin required-formal-arguments are bound to successive actual arguments starting
with the first actual argument. It shall be an error if there are fewer actual arguments than
required-formal-arguments.

b) Next variablesin optional-formal-arguments are bound to remaining actual arguments. If
there are fewer remaining actual arguments than optional-formal-arguments, then the
variables are bound to the result of evaluating initializer, if one was specified, and otherwise
to #f. Theinitializer is evaluated in an environment in which all previous formal arguments
have been bound.

c) If thereisarest-formal-argument, then it isbound to alist of all remaining actual arguments.
These remaining actual arguments are also eligible to be bound to keyword-formal-
arguments. If there is no rest-formal-argument and there are no keywor d-formal-arguments,
then it shall be an error if there are any remaining actual arguments.

d) If #! key was specified in the formal-argument-list, there shall be an even number of
remaining actual arguments. These are interpreted as a series of pairs, where the first member
of each pair is a keyword specifying the argument name, and the second is the corresponding
value. It shall bean error if the first member of a pair is not akeyword. It shall be an error if
the argument name is not the same as a variable in a keywor d-for mal-argument, unless there
is arest-formal-argument. If the same argument name occurs more than once in the list of
actual arguments, then the first value is used. If there is no actual argument for a particular
keywor d-for mal-argument, then the variable is bound to the result of evaluating initializer if
one was specified, and otherwise to #f. Theinitializer is evaluated in an environment in which
all previous formal arguments have been bound.

NOTE 8 Useof #! key in aformal-argument-list in the transformation language or style language requires the
keywor d feature.

It shall be an error for avariable to appear more than once in a formal-argument-list.

EXAMPLE 11

((lambda x x) 3 4 5 6) 0O (345 6)

((lambda (x y #!'rest z) z)

345 6) O (5 6)

((lambda (x y #!'optional z #!'rest r #lkey i (j 1)) (list xy zi: i j:j))
345i: 61i: 7) O (345i: 6j: 1)

Conditional Expression

[37] conditional = (i f test consequent alternate)
[38] test = expression

[39] consequent = expression

[40] aternate = expression

36

© ISO/IEC

| SO/IEC 10179: 1996(E)

8.3.2

8.3.2.1

8.3.2.2

A conditional is evaluated as follows: first, test is evaluated. If it yields atrue value, then
consequent is evaluated and its value is returned. Otherwise, alternate is evaluated and its value
is returned.

EXAMPLE 12
(if (>3 2) "yes 'no) O yes
(if (> 2 3) "yes 'no) O no
(if (>3 2)

(- 32

(+ 3 2)) 01

Derived Expression Types

[41] derived-expression = cond-expression | case-expression | and-expression | or-expression |
binding-expression | named-let | quasiquotation

Cond-expression

[42] cond-expression = (cond cond-clauset) | (cond cond-clause* (el se expression))
[43] cond-clause = (test expression) | (test) | (test => recipient)

[44] recipient = expression

A cond-expression is evaluated by evaluating the test expressions of each successive cond-clause
in order until one of them evaluatesto a true value. When atest evaluates to atrue value, then the
result of evaluating the expression in the cond-clause is returned as the result of the entire cond
expression. If the selected cond-clause contains only the test and no expression, then the value
of the test is returned as the result. If the cond-clause contains a recipient, then recipient is
evaluated. Its value shall be a procedure of one argument; this procedure is then invoked on the
value of the test. If all tests evaluate to false values, and there is no else clause, then an error is
signaled; if there is an else clause, then the result of evaluating its expression is returned.

EXAMPLE 13

(cond ((> 3 2) 'greater)
((<32) "less)) O greater

(cond ((> 3 3) 'greater)
((< 3 3) "less)
(el se "equal)) 0 equal

Case-expression

[45] case-expression = (case key case-clause+) | (case key case-clause* (el se
expression))

[46] key = expression

[47] case-clause = ((datum*) expression)

37

| SO/IEC 10179:1996 © ISO/IEC

8.3.2.3

8.3.24

8.3.2.5

All the datums shall be distinct. A case-expression is evaluated as follows. key is evaluated and
its result is compared against each datum. If the result of evaluating key is equal (in the sense of
equal ?) to adatum, then the result of eval uating the expression in the corresponding case-
clauseis returned as the result of the case-expression. If the result of evaluating key is different
from every datum, and if there is an else clause, then the result of evaluating its expression isthe
result of the case-expression; otherwise, an error is signaled.

EXAMPLE 14

(case (* 2 3)

((2357) "prime)

((1 46 89) 'conposite)) O conposite
(case (car '(c d))

((aei ou) "vowel)

((wy) 'semvowel)

(el se "consonant)) O consonant

And-expression
[48] and-expression = (and test*)

The test expressions are evaluated from left to right, and the value of the first expression that
evaluatesto afalse valueisreturned. Any remaining expressions are not evaluated. If all the
expressions evaluate to true values, the value of the last expression is returned. If there are no
expressions then #t is returned.

EXAMPLE 15

(and (=2 2) (> 2 1)) O #t
(and (= 2 2) (< 2 1)) O #f
(and 1 2 'c "(f g)) O (f g)
(and) O #t

Or-expression
[49] or-expression = (or test*)

The test expressions are evaluated from left to right, and the value of the first expression that
evaluatesto atrue value isreturned. Any remaining expressions are not evaluated. If al
expressions evaluate to false values, the value of the last expression is returned. If there are no
expressions then #f is returned.

EXAMPLE 16

(or (=22) (>21)) O #t
(or (=22) (<21)) O #t
(or #f #f #f) O #f

Binding expressions

[50] binding-expression = let-expression | let* -expression | letrec-expression

38

© ISO/IEC

| SO/IEC 10179: 1996(E)

The three binding constructs| et , | et *, and | et r ec give the expression language a block
structure, like Algol 60. The syntax of the three constructsisidentical, but they differ in the
regions they establish for their variable bindings. Inal et expression, theinitial values are
computed before any of the variables become bound; inal et * expression, the bindings and
evaluations are performed sequentially; whilein al et r ec expression, al the bindings arein
effect while their initial values are being computed, thus allowing mutually recursive definitions.

[51] let-expression = (| et bindings body)

[52] bindings = (binding-spec*)

[53] binding-spec = (variableinit)

[54] init = expression

It shall be an error for avariable to appear more than once in any bindings. The inits are
evaluated in the current environment, the variables are bound to the results, and the result of

evaluating body in the extended environment is returned. Each binding of a variable has body as
its region.

EXAMPLE 17
(et ((x 2) (y 3))
(* xy)) 06
(et ((x 2) (y 3))
(let ((x 7)
(z (+ xY)))
(* z x))) 0 35

See also named-|et.
[55] let*-expression = (| et * bindings body)

A let*-expression is similar to alet-expression, but the bindings are performed sequentially from
left to right, and the region of a binding indicated by a binding-spec is that part of the let*-
expression to the right of the binding-spec. Thus, the second binding is done in an environment
in which the first binding is visible, and so on.

EXAMPLE 18

(let ((x 2) (y 3))
(let* ((x 7)

(z (+xy)))
(* z x))) o 70

[56] letrec-expression = (| et r ec bindings body)
Each variable in a binding-spec is bound to the result of evaluating the corresponding init, and

the result of evaluating body in the extended environment is returned. The inits are evaluated in
the extended environment. Each binding of a variable in a binding-spec has the entire letrec-

39

| SO/IEC 10179:1996 © ISO/IEC

8.3.2.6

8.3.2.7

expression asits region, making it possible to define mutually recursive procedures. It shall be an
error if the evaluation of aninit references the value of any of thevariables. In the most common
usesof | et rec, al theinits are lambda expressions, and thisrestriction is satisfied
automatically.

EXAMPLE 19

(letrec ((even?
(lanmbda (n)
(if (zero? n)
#t
(odd? (- n 1)))))
(odd?
(lanmbda (n)
(if (zero? n)
#f
(even? (- n 1))))))
(even? 88))
O #t

Named-let
[57] named-let = (| et variable (binding-spec*) body)

Named | et has the same syntax and semantics as ordinary | et except that variable is bound
within body to a procedure whose formal arguments are the bound variables and whose body is
body. Thus, the execution of body may be repeated by invoking the procedure named by
variable.

EXAMPLE 20

(let loop ((nunbers (3 -2 16 -5))
(nonneg " ())
(neg " ()))
(cond ((null? nunbers) (list nonneg neg))
((>= (car nunbers) 0)
(1 oop (cdr nunbers)
(cons (car nunbers) nonneg)
neg))
((< (car nunbers) 0)
(1 oop (cdr nunbers)
nonneg
(cons (car numbers) neg)))))
O ((613) (-5-2))

Quasiquotation
The following grammar for quasiquote expressions is not context-free. It is presented as arecipe
for generating an infinite number of production rules. Imagine a copy of the following rules for

D=1,2,3,.... Dkeeps track of the nesting depth.

[58] quasiquotation guasiquotation_1

40

© ISO/IEC

| SO/IEC 10179: 1996(E)

[59] template O = expression
[60] quasiquotation_D =* template_D | (quasi quot e template D)
[61] template D = simple-datum | list-template D | unquotation_D

[62] list-template D = (template-or-splice_D*) | (template-or-splice_D+ . template D) |
" template_D | quasiquotation_D+1

[63] unquotation D =, template D-1 | (unquot e template D-1)
[64] template-or-splice_D = template_D | splicing-unguotation_D
[65] splicing-unquotation D =, @emplate_D-1 | (unquot e- spl i ci ng template_D-1)

In quasiquotations, a list-template_D may sometimes be confused with either an unquotation_D
or asplicing-unquotation_D. The interpretation as an unquotation or splicing-unguotation_D
takes precedence.

‘Backquote’ or ‘quasiquote’ expressions are useful for constructing a list structure when most but
not all of the desired structure is known in advance. If no commas appear withamiieat e,

the result of evaluatingt enpl at e is equivalent to the result of evaluatingenp! at e. If a

comma appears within thteenpl at e, however, the expression following the comma is

evaluated (‘'unquoted’), and its result is inserted into the structure instead of the comma and the
expression. If a comma appears followed immediately by an at@&igthén the following

expression shall evaluate to a list; the opening and closing parentheses of the list are then
‘stripped away’ and the elements of the list are inserted in place of the comma at-sign expression
sequence.

EXAMPLE 21

“(list ,(+12) 4 O (list 3 4)

(let ((name "a)) ‘(list ,name ', name))
O (list a (quote a))

‘(a,(+12) ,dmap abs '(4 -5 6)) b)
O (a3456Dh)

“((foo ,(- 10 3)) ,@cdr '"(c)) . ,(car '(cons)))
O ((foo 7) . cons)

Quasiquote forms may be nested. Substitutions are made only for unquoted components
appearing at the same nesting level as the outermost backquote. The nesting level increases by
one inside each successive quasiquotation and decreases by one inside each unquotation.

EXAMPLE 22

‘“(a ‘(b ,(+12) ,(foo,(+13) d) e) f)
O (a‘(b,(+212) ,(foo44d) e) f)
(let ((namel ’x)
(nanme2 'vy))
‘(a ‘(b ,,nanel ,’,nane2 d) e))
O (a‘(b,x,'y d e

41

| SO/IEC 10179:1996 © ISO/IEC

8.4

The notations‘ template and (quasi quot e template) areidentical in al respects., expression
isidentical to (unquot e expression) , and, @xpression isidentical to (unquot e-
splicing expression) .

EXAMPLE 23

(quasiquote (list (unquote (+ 1 2)) 4)) O (list 3 4)
"(quasiquote (list (unquote (+ 1 2)) 4))
O “(list ,(+12) 4) i.e., (quasiquote (list (unquote (+ 1 2)) 4))

Unpredictable behavior may result if any of the symbols quasi quot e, unquot e, or
unquot e- spl i ci ng appear in positions within at enpl at e other than as described above.

Definitions

[66] definition = variable-definition | procedure-definition

Definitions may take two possible forms.

[67] variable-definition = (def i ne variable expression)

This syntax is primitive.

[68] procedure-definition = (def i ne (variable formal-argument-list) body)

Thisform is equivalent to

(define variable
(1 ambda (variable formal-argument-listy body)).

A definition that does not occur within an expression is known as atop-level definition.

A top-level definition

(define variable expression)

evaluates expression in the top-level environment and binds variable to the result in the top-level
environment.

EXAMPLE 24

(define add3
(lambda (x) (+ x 3)))

(add3 3) o 6
(define first car)
(first "(1 2)) o 1

A single variable shall not be defined by more than one top-level definition in any process
specification part. A top-level definition of avariable in a process specification part isignored if
that variable has been defined at the top level in a previous process specification part. See 7.1.

42

© ISO/IEC | SO/IEC 10179:1996(E)

The expression in atop-level definition shall not be evaluated until all top-level variables that
would be referenced by evaluating the expression have been defined.

NOTE 9 This constraint does not prevent the definition of mutually recursive procedures, because evaluating a
lambda expression does not reference variables that occur free within it.

It shall be an error if it isimpossible to evaluate all the expressions occurring in top-level
definitions in such away that this constraint is not violated.

The built-in definition of avariable may be replaced by atop-level definition. The replacement
definition shall be used for all references to that variable, even those that occur in process
specification parts preceding the part that contains the first top-level definition.

NOTE 10 Thisruleisnot easy to implement, but it allows built-in procedures to be added in future versions of this
International Standard without changing the meaning of any conforming DSSSL specifications.

[69] body = definition* expression

Definitions may also occur at the beginning of abody. These are known as internal definitions.
The variable defined by an internal definitionislocal to the body. The region of the binding isthe
entire body. For example,

(let ((x 5))
(define foo (lanmbda (y) (bar x y)))
(define bar (lanbda (a b) (+ (* a b) a)))
(foo (+ x 3))) O 45

A body containing internal definitions may always be converted into a completely equivalent
| et r ec expression. For example, thel et expression in the previous example is equivalent to

(et ((x 5))
(letrec ((foo (lanmbda (y) (bar x y)))
(bar (lanmbda (a b) (+ (* a b) a))))
(foo (+ x 3))))

Just as for the equivalent | et r ec expression, it shall be possible to evaluate each expression of
every internal definition in abody without referring to the value of any variable being defined.

8.5 Standard Procedures

This section describes the expression language's built-in procedures. The initial (or ‘top-level’)
environment starts out with a number of variables bound to useful values, most of which are
primitive procedures that manipulate data. For example, the vasibbles bound to a

procedure of one argument that computes the absolute value of a number, and thetvariable
bound to a procedure that computes sums.

It shall be an error for a procedure to be passed an argument of a type that it is not specified to
handle.

43

| SO/IEC 10179:1996 © ISO/IEC

8.5.1

8.5.1.1

8.5.1.2

Booleans
[70] boolean =#t |#f

The standard boolean objects for true and false are written as#t and #f. What really matters,

though, are the objects that the conditional expressions (i f , cond, and, or) treat as true or

false. The phrase ‘a true value’ (or sometimes just ‘true’) means any object treated as true by the
conditional expressions, and the phrase ‘a false value’ (or ‘false’) means any object treated as
false by the conditional expressions.

Of all the standard values, only #f counts as false in conditional expressions. Except for #f, all
standard values, including #t, pairs, the empty list, symbols, numbers, strings, and procedures,
count as true.

NOTE 11 Programmers accustomed to other dialects of Lisp should be aware that the expression language
distinguishes both #f and the empty list from the symbol ni | .

Boolean constants evaluate to themselves, so they don't need to be quoted in expressions.

EXAMPLE 25

#t O #t
#i O #f
" # O #f
Negation

(not obj)

not returns #t ifobj is false, and returns #f otherwise.

EXAMPLE 26

(not #t) O #f
(not 3) O #f
(not (list 3)) O #f
(not #f) o #t
(not " ()) O #f
(not (list)) O #f
(not 'nil) o #f

Boolean Type Predicate

(bool ean? obj)

bool ean? returns #t ifobj is either #t or #f and returns #f otherwise.

EXAMPLE 27

(bool ean? #f) O #t
(bool ean? 0) o #f
(bool ean? ' ()) O #f

© ISO/IEC

| SO/IEC 10179: 1996(E)

8.5.2

8.5.3

Equivalence

(equal ? obj 1 obj o)

The equal ? procedure defines an equivalence relation on objects. It returns#t if obj ; and obj »
should be regarded as the same object, and otherwise returns #f. For objects that have external
representations, two objects shall be the same if their external representations are the same. If
each of obj ; and obj , is of type boolean, symbol, char, pair, quantity, or string, then the
equal ? procedure shall return #t if and only if:

— obj 1 andobj , are both #t or both #f.

— obj 1 andobj , are both symbols and

(string=? (synbol->string obj1)
(symbol ->string obj2))
o #t

— obj 1 andobj 5 are both numbers, are numerically equal in the sernsganid are either both
exact or both inexact.

— obj 1 andobj , are both strings and are the same string according &1 thieng="
procedure.

— obj 1 andobj , are both characters and are the same character according bathe?
procedure.

— obj 1 andobj , are both the empty list.

— obj 1 andobj , are both pairs and the caratfj ; isequal ? to the car obbj , and the cdr of
obj 1 isequal ? to the cdr obbj ,.

If one ofobj ; andobj , is a procedure and the other is not, tagnal ? shall return #f. Ibbj ;
andobj , are both procedures thequal ? shall return #f ifobj ; andobj , would return a
different value for some arguments, and otherwise shall return either #t or #f.

NOTE 12 In other words equality for procedures is not well defined.

Pairs and Lists

A pair (sometimes calleddotted pair) is a record structure with two fields called the car and cdr
fields (for historical reasons). Pairs are created by the procednse The car and cdr fields are
accessed by the procedures andcdr . Pairs are used primarily to represent lists. A list may

be defined recursively as either the empty list or a pair whose cdr is a list. More precisely, the set
of lists is defined as the smallest ¥etuch that:

— The empty list is inx.

— If I'i st is in X then any pair whose cdr field containsst is also inX.

45

| SO/IEC 10179:1996 © ISO/IEC

The objectsin the car fields of successive pairs of alist are the elements of the list. For example,
atwo-element list isapair whose car is the first element and whose cdr is a pair whose car isthe
second element and whose cdr is the empty list. The length of alist isthe number of elements,
which is the same as the number of pairs.

The empty list is aspecial object of its own type (it is not a pair); it has no elements and its length
is zero.

NOTE 13 The above definitions imply that all lists have finite length and are terminated by the empty list.

[71] list = (datum*) | (datum+ . datum) | abbreviation

The most general notation (external representation) for pairs is the ‘dotted’ n@tafian c,)
wherec, is the value of the car field amd is the value of the cdr field. For examplée . 5)

is a pair whose car is 4 and whose cdr is 5. Notg that 5) is the external representation of
a pair, not an expression that evaluates to a pair.

A more streamlined notation may be used for lists: the elements of the list are simply enclosed in

parentheses and separated by spaces. The empty list is wyitteRor example,
(abcde

and
(a. (b. (c. (d. (e. NN

are equivalent notations for a list of symbols.

A chain of pairs not ending in the empty list is calledraproper list. Note that an improper list
is not a list. The list and dotted notations may be combined to represent improper lists:
(abc. d

is equivalent to
(a. (b. (c. d))

Whether a given pair is a list depends upon what is stored in the cdr field.
[72] abbreviation =abbrev-prefix datum
[73] abbrev-prefix= |* |, |, @

Within literal expressions, the formslatum, * datum, , datum, and, @latum denote the two-
element list whose first element are the symigoist e, quasi quot e, unquot e, and

unquot e- spl i ci ng, respectively. The second element in each cadatus. This

convention is supported so that arbitrary expressions and portions of the specification may be
represented as lists. That is, according to the DSSSL expression language grammar, every
expression is also adatum, and atransformation-language-body is a sequence aatums.

46

© ISO/IEC

| SO/IEC 10179: 1996(E)

8.5.3.1

8.5.3.2

8.5.3.3

8.5.3.4

Pair Type Predicate

(pair? obj)

Returns#t if obj isapair, and otherwise returns #f.

EXAMPLE 28

(pair? '(a . b)) O #t
(pair? '(a b c)) O #t
(pair? " ()) O #f

Pair Construction Procedure

(cons obj, objo)

Returns a pair whose car is obj ; and whose cdr is obj ».

EXAMPLE 29

(cons "a "()) O (a)

(cons "(a) "(b c d)) O ((a) bc d
(cons "a" '(b c)) O ("a" b c)
(cons "a 3) O (a. 3
(cons "(a b) 'c) O ((ab) . c)

car Procedure

(car pair)

Returns the contents of the car field of pai r. Notethat it shall be an error to take the car of the
empty list.

EXAMPLE 30

(car "(a b c)) 0 a
(car "((a) b c d)) 0 (a)
(car "(1 . 2)) o 1
(car " ()) O error

cdr Procedure

(cdr pair)

Returns the contents of the cdr field of pai r. Note that it shall be an error to take the cdr of the
empty list.

EXAMPLE 31

(cdr " ((a) b c d)) 0 (b c d
(cdr "(1 . 2)) o 2

(cdr " ()) O error

47

| SO/IEC 10179:1996

© ISO/IEC

8.5.3.5 c...r Procedures

8.5.3.6

(caar pair)
(cadr pair)
(cdar pair)
(cddr pair)

(caaar
(caadr
(cadar
(caddr
(cdaar
(cdadr
(cddar
(cdddr
(caaaar
(caaadr
(caadar
(caaddr
(cadaar
(cadadr
(caddar
(cadddr
(cdaaar
(cdaadr
(cdadar
(cdaddr
(cddaar
(cddadr
(cdddar
(cddddr

pair)
pair)
pair)
pair)
pair)
pair)
pair)
pair)
pair)
pair)
pair)
pair)
pair)
pair)
pair)
pair)
pair)
pair)
pair)
pair)
pair)
pair)
pair)
pair)

These procedures are compositions of car and cdr , where for example caddr could be defined

by

(define caddr (lanbda (x) (car (cdr (cdr x))))).

Arbitrary compositions, up to four deep, are provided. There are twenty-eight of these

proceduresin all.

Empty List Type Predicate

(null?

Returns #t if obj isthe empty list, and otherwise returns #f.

obj)

48

© ISO/IEC

| SO/IEC 10179: 1996(E)

8.5.3.7

8.5.3.8

8.5.3.9

8.5.3.10

List Type Predicate

(list? obj)

Returns #t if obj isalist, and otherwise returns #f. By definition, all lists have finite length and
are terminated by the empty list.

EXAMPLE 32

(list? "(a b c)) O #t
(list? "()) O #t
(list? "(a . b)) O #f

List Construction
(list obj ..)
Returns alist of its arguments.

EXAMPLE 33

(list "a (+ 3 4) 'c)
(list)

(a7 c)
0

oo

List Length

(length [ist)

Returnsthe length of // st.

EXAMPLE 34

(length "(a b c))

(length "(a (b) (c d e)))
(length " ())

Oooo
w

Lists Appendance

(append [/ist ..)

Returns alist consisting of the elements of the first / / st followed by the elements of the other
lists.

EXAMPLE 35

(append " (x) "(y)) O (xvy)
(append "(a) (b c d)) O (abcd
(append ’(a (b)) " ((c))) 0 (a (b) (c))

The last argument may actually be any object; an improper list resultsif the last argument is not
aproper list.

49

| SO/IEC 10179:1996 © ISO/IEC

8.5.3.11

8.5.3.12

8.5.3.13

8.5.3.14

EXAMPLE 36
(append "(a b) "(c . d)) O (abec. d
(append ' () ’a) 0 a

List Reversal

(reverse [ist)
Returns alist consisting of the elementsof / / st in reverse order.

EXAMPLE 37

(reverse "(a b c)) O (c b a)
(reverse "(a (b c) d (e (f)))) O ((e (f)) d (bc) a)

Sublist Extraction

(list-tail list k)
Returns the sublist of / i st obtained by omitting the first k elements. Li st -t ai | could be
defined by

(define list-tail
(lanmbda (x k)
(if (zero? k)
X
(list-tail (cdr x) (- k 1)))))

List Access

(list-ref list k)
Returnsthe kth element of / / st. (Thisisthesameasthecarof (l1ist-tail [/ist k).

EXAMPLE 38

(list-ref "(a b c d) 2) O ¢
(list-ref "(a b c d)
(i nexact->exact (round 1.8))) O ¢

List Membership

(menber obj [ist)

Returns the first sublist of / i st whose car isequal ? to obj , where the sublistsof / i st arethe
non-empty listsreturned by (1 i st-tail /ist k) for k lessthanthelengthof / j st. If obj
does not occur in /i st , then #f (not the empty list) is returned.

EXAMPLE 39

(menmber "a '(a b c)) O (abc)
(menmber b "(a b c)) O (b o)
(menmber "a (b c d)) o #f

50

© ISO/IEC

| SO/IEC 10179: 1996(E)

8.5.3.15

8.5.4

8.5.4.1

8.5.4.2

Association Lists

(assoc obj alist)

al i st (for ‘association list’) shall be a list of pairs. This procedure finds the first pairiiat
whose car field igqual ? to obj and returns that pair. If no pairat/ st hasobj as its car,
then #f (not the empty list) is returned.

EXAMPLE 40

(define e "((a 1) (b 2) (c 3)))
(assoc ’'a e) O (a1l)
(assoc 'b e) O (b 2)
(assoc 'd e) o #f

NOTE 14 Although they are ordinarily used as predicates, nenber and assoc do not have question marks in their
names because they return useful values rather than just #t or #f.

Symbols

Symbols are objects whose usefulness rests on the fact that two symbols are identical (in the
sense okqual ?) if and only if their names are spelled the same way. This is exactly the
property needed to represent identifiers, so most implementations of Lisp dialects use them
internally for that purpose. Symbols are useful for many other applications; for instance, they
may be used the way enumerated values are used in Pascal. Typically, two symbols may be
compared for equality in constant time, no matter how long their names.

[74] symbol =identifier
The rules for writing a symbol are exactly the same as the rules for writing an identifier.
Symbol Type Predicate

(synmbol ? obj)

Returns #t ifobj is a symbol, and otherwise returns #f.

EXAMPLE 41

(synbol ? ' foo) O #t
(synmbol ? (car "(a b))) O #t
(synbol ? "bar") O #f
(symbol ? "nil) O #t
(symbol? " ()) O #f
(symbol ? #f) O #f

Symbol to String Conversion

(synbol ->string synbol)

Returns the name afynbol as a string.

51

| SO/IEC 10179:1996 © ISO/IEC

8.5.4.3

8.5.5

8.5.5.1

8.5.5.2

EXAMPLE 42
(symbol ->string 'flying-fish) O "flying-fish"
(synbol ->string

(string->synbol "Malvina")) O "Malvina"

String to Symbol Conversion

(string->synbol string)

Returns the symbol whose nameis st ri ng. This procedure may create symbols with names
containing special characters, but it is usually a bad ideato create such symbols because they
have no external representation. See synbol - >st ri ng.

EXAMPLE 43
(equal ? ' m SSI SSl ppi ' ni ssi ssi ppi) o #f
(equal ? "bitBlt (string->synbol "bitBIt")) O #t

(equal ? " Jol | yWbg
(string->synbol
(symbol ->string ' Jol | ywg))) O #t
(string=? "K. Harper, MD."
(symbol ->string
(string->synbol "K. Harper, MD.")) O #t

Keywords

Keywords are similar to symbols. The main difference is that keywords are self-evaluating and
therefore do not need to be quoted in expressions. They are used mainly for specifying keyword
arguments.

[75] keyword = identifier:

A keyword is a single token; therefore, no whitespace is allowed between the identifier and the: .
The: isnot considered part of the name of the keyword.

Keyword Type Predicate

(keywor d? obj)

Returns #t if obj isakeyword, and otherwise returns #f.
Keyword to String Conversion

(keyword->string keyword)

Returns the name of keywor d as a string.

EXAMPLE 44
(keyword->string Argentina:) O "Argentina"

52

©ISO/IEC | SO/IEC 10179:1996(E)
8.5.5.3 String to Keyword Conversion
(string->keyword string)
Returns the keyword whose nameis st ri ng.
EXAMPLE 45
(string->keyword "foobar") O foobar:
8.5.6 Named Constants
[76] named-constant = #! opti onal |#!rest |#! key
Named-constants are used in formal-argument-lists. They are self-evaluating. The named objects
have their own unique (unnamed) type that is distinct from the type of any other object.
8.5.7 Quantities and Numbers
8.5.7.1 Numerical Types

The expression language provides a quantity data type which represents lengths and quantities
derived from lengths, such as areas and volumes. The SI meter is used as the base unit for
representing quantities. The name of this unit ism Any quantity may be represented as the
product of a number and the base unit raised to the power of an integer. The dimension of a
guantity is the power to which the base unit is raised when the quantity is so represented. A
quantity with dimension 0 is dimensionless.

It is convenient to be able to express quantities not only in terms of the base unit but also in terms
of other derived units.

[77] unit-declaration = (defi ne- uni t unit-name expression)

expression shall evaluate to a quantity. A unit-declaration declares the derived quantity unit-
name to be equivalent to this quantity. In this context, unit-name is a separate token.

Derived units for centimeters, millimeters, inches, picas, and points, corresponding to the
following declarations, are pre-defined.

(define-unit cm0.01m
(define-unit nm 0.001m
(define-unit in 0.0254m
(define-unit pt 0.0003527778m
(define-unit pica 0.004233333m

The number datatype is considered to be a subtype of quantity that represents dimensionless
quantities. The expression language provides two types of number: reals and integers. Integers
are considered to be a subtype of reals, and reals are a subtype of numbers. For example, the
integer 3 is also considered to be areal number, which, in turn, is considered to be a

53

| SO/IEC 10179:1996 © ISO/IEC

8.5.7.2

8.5.7.3

(dimensionless) quantity. The types quantity, number, real, and integer are defined by the
predicatesquant i t y?, nunber ?,real ?,andi nt eger ?.

Angle (or more precisely, plane angle) is considered to be a dimensionless quantity (the ratio of
two lengths). Theinteger 1 isequivalent to 1 radian. It isrecommended that r ad be declared as
the name of a derived unit equal to the dimensionless quantity 1.

Exactness

It is necessary to distinguish between quantities that are represented exactly and those that may
not be. For example, indexes into data structures shall be known exactly. In order to catch uses
of inexact quantities where exact quantities are required, the expression language explicitly
distinguishes exact from inexact quantities. This distinction is orthogonal to the dimension of

type.

Quantities are either exact or inexact. A quantity isexact if it was written as an exact constant or
was derived from exact quantities using only exact operations. A quantity isinexact if it was
written as an inexact constant, if it was derived using inexact ingredients, or if it was derived
using inexact operations. Thus, inexactness is a contagious property of a quantity.

If two implementations produce exact results for a computation that did not involve inexact
intermediate results, the two ultimate results shall be mathematically equivalent. Thisis
generaly not true of computations involving inexact quantities since approximate methods such
as floating point arithmetic may be used, but implementations should make the result as close as
practical to the mathematically ideal result.

Rational operations such as + should always produce exact results when given exact arguments.
If the operation is unable to produce an exact result, then it may either report the violation of an
implementation restriction, or it may silently coerce its result to an inexact value.

With the exception of i nexact - >exact , the operations described in this section shall
generally return inexact results when given any inexact arguments. An operation may, however,
return an exact result if it can prove that the value of the result is unaffected by the inexactness of
its arguments. For example, multiplication of any quantity by an exact zero may produce an
exact zero result, even if the other argument is inexact.

Implementation Restrictions

Implementations may also support only alimited range of numbers of any type, subject to the
requirements of this section. The supported range for exact numbers of any type may be
different from the supported range for inexact numbers of that type. For example, an
implementation that uses floating point numbers to represent al itsinexact real numbers may
support a practically unbounded range of exact integers while limiting the range of inexact reals
(and, therefore, the range of inexact integers) to the dynamic range of the floating point format.
All implementations are required to support exact integers between -2147483647 and
2147483647.

© ISO/IEC

| SO/IEC 10179: 1996(E)

8.5.7.4

An implementation shall support exact integers throughout the range of numbers that may be
used for indexes of lists and strings or that may result from computing the length of alist or
string. Thel engt h andst ri ng- | engt h procedures shall return an exact integer, and it shall
be an error to use anything but an exact integer as an index. Furthermore, any integer constant
within the index range, if expressed by an exact integer syntax, shall indeed be read as an exact
integer, regardless of any implementation restrictions that may apply outside thisrange. Finally,
the procedures listed below shall always return an exact integer result provided all their
arguments are exact integers and the mathematically expected result is representable as an exact
integer within the implementation:

+ - *
quoti ent r emai nder nmodul o
max nmn abs
floor ceiling truncate
round expt

If one of these procedures is unable to deliver an exact result when given exact arguments, then it
may either report a violation of an implementation restriction or it may silently coerceits result
to an inexact number. Such a coercion may cause an error later.

An implementation may use floating point and other approximate representation strategies for
inexact numbers.

This International Standard recommends, but does not require, that the IEEE 32-bit and 64-bit
floating point standards be followed by implementations that use floating point representations,
and that implementations using other representations should match or exceed the precision
achievable using these floating point standards.

In particular, implementations that use floating point representations shall follow these rules. A
floating point result shall be represented with at least as much precision as is used to express any
of the inexact arguments to that operation. It is desirable (but not required) for potentially
inexact operations such assqgr t , when applied to exact arguments, to produce exact answers
whenever possible (for example the square root of an exact 4 ought to be an exact 2). If, however,
an exact quantity is operated upon so as to produce an inexact result (asby sqrt), and if the
result is represented as a floating point number, then the most precise floating point format
available shall be used; but if the result is represented in some other way, then the representation
shall have at least as much precision as the most precise floating point format available.

If an implementation encounters an exact numerical constant that it cannot represent as an exact
quantity, then it may either report aviolation of an implementation restriction, or it may silently
represent the constant by an inexact quantity.

Syntax of Numerical Constants

[78] number = num-2 | num-8 | num-10 | num-16

[79] num-2 = #b sign? digit-2+

[80] num-8 =#o0 sign? digit-8+

55

| SO/IEC 10179:1996 © ISO/IEC

[81] num-16 = #x sign? digit-16+

[82] num-10 = #d? sign? decimal exponent? unit?

[83] decimal =digit-10+ |. digit-10+ | digit-10+ . digit-10*

[84] exponent = exponent-marker sign? digit+

[85] exponent-marker = e

[86] unit = unit-name (sign? digit-10+)?

[87] unit-name = letter+

[88] sign=+|-

[89] digit-2=0]1

[90] digit-8=01]1|2|3|4|5|6|7

[91] digit-10 = digit

[92] digit-16 =digit-10|a|b|c |d|e |f

[93] digit=0|1]2|3|4|5]6]|7]8]9

A gquantity may be written in binary, octal, decimal, or hexadecimal by the use of aradix prefix.
The radix prefixes are #b (binary), #0 (octal), #d (decimal), and #x (hexadecimal). With no

radix prefix, a quantity is assumed to be expressed in decimal.

A numerical constant isinexact if it contains adecimal point, an exponent or a unit; otherwise, it
is exact.

NOTE 15 The examples used in this section assume that any numerical constant written using an exact notation is
indeed represented as an exact quantity. Some examples also assume that certain numerical constants written using an
inexact notation may be represented without loss of accuracy; the inexact constants were chosen so that thisislikely to
be true in implementations that use floating point numbers to represent inexact quantities.

A numerical constant may have a unit suffix. Each unit-name shall be the name of the base unit
or shall be declared by a unit-declaration. A unit-name shall not be an exponent-marker. If no
number follows the unit-name, the constant is multiplied by the quantity associated with the unit.
If anumber with no sign or asign of + follows the unit-name, the constant is multiplied by the
guantity associated with the number name raised to the power of the following number. If a
number with asign of - follows the unit-name, the constant is divided by the quantity associated
with the unit-name raised to the power of the absolute value of the following number.

56

© ISO/IEC | SO/IEC 10179:1996(E)

8.5.7.5 Number Type Predicates

(quantity? obj)
(nunber? obj)
(real ? obj)
(integer? obj)

These type predicates may be applied to any kind of argument, including non-quantities. They
return #t if the object is of the named type, and otherwise they return #f. In general, if atype
predicate is true of a quantity, then all higher type predicates are also true of that quantity.
Consequently, if atype predicate is false for a quantity, then all lower type predicates are also
false for that quantity.

If x isan inexact real number, then (i nt eger ? x) istrueif andonly if (= x (round x)).

EXAMPLE 46
(real? 3) O #t
(integer? 3.0) O #t

NOTE 16 The behavior of these type predicates on inexact quantities is unreliable, since any inaccuracy may affect
the result.

8.5.7.6 Exactness Predicates

(exact? q)
(i nexact? Q)

These numerical predicates provide tests for the exactness of a quantity. For any quantity,
precisely one of these predicatesis true.

8.5.7.7 Comparison Predicates

(=91 92 g3 ...)
(< g1 92 g3 ...)
> g1 92 g3...)

(<= g1 92 q3...)
>= aq1 92 q3...)

These procedures return #t if their arguments are (respectively): equal, monotonically increasing,
monotonically decreasing, monotonically nondecreasing, or monotonically nonincreasing.

These predicates are required to be transitive.
The dimensions of all the arguments shall be identical.

NOTE 17 Whileitis not an error to compare inexact quantities using these predicates, the results may be unreliable
because a small inaccuracy may affect the result; thisis especially true of = and zer 0?.

57

| SO/IEC 10179:1996 © ISO/IEC

8.5.7.8

8.5.7.9

8.5.7.10

8.5.7.11

Numerical Property Predicates

(zero? Q)
(positive? Q@)
(negative? Q@)
(odd? n)
(even? n)

These predicates test a quantity for a particular property, returning #t or #f. See note above.

Maximum and Minimum

(max qp g ...)
(min q1 q» ..)
These procedures return the maximum or minimum of their arguments. The dimensions of all the

arguments shall be identical; the dimension of the result shall be the same as the dimension of the
arguments.

EXAMPLE 47
(max 3 4) o 4 ; exact
(max 3.9 4) O 4.0 ; inexact

NOTE 18 If any argument isinexact, then the result shall also be inexact (unless the procedure can prove that the
inaccuracy is not large enough to affect the result, which is possible only in unusual implementations). If mi n or max
is used to compare quantities of mixed exactness, and the numerical value of the result cannot be represented as an
inexact quantity without loss of accuracy, then the procedure may report a violation of an implementation restriction.

Addition

+ gq1..)

Returns the sum of its arguments, which shall al have the same dimension. The result shall have
the same dimension as the arguments.

EXAMPLE 48

(+ 3 4) o 7
(+ 3) o 3
(+) o o

Multiplication

¢ aq..)

Returns the product of its arguments. The dimension of the result shall be the sum of the
dimensions of the arguments.

EXAMPLE 49
(* 4) O 4
(*) o1

58

©ISO/IEC | SO/IEC 10179:1996(E)
8.5.7.12 Subtraction
(- 91 92
(- a
(- 91 92..)
With two or more arguments, returns the difference of its arguments, associating to the left; with
one argument, returns the negation of its argument. The dimensions of all the arguments shall be
identical. The dimension of the result shall be the same as the dimension of the arguments.
EXAMPLE 50
(- 3 4) o -1
(- 345) 0O -6
(- 3) o -3
8.5.7.13 Division
(' q1 9o
(¢ aq
(¢ g1 q...)
With two or more arguments, returns the quotient of its arguments, associating to the left; with
one argument, returns 1 divided by the argument. The dimension of the result shall be the
difference of the dimensions of each of the arguments.
EXAMPLE 51
(I 3 4 5) O 3/20
(/' 3) 0O 13
8.5.7.14 Absolute Value
(abs Q)
Returns the magnitude of its argument.
EXAMPLE 52
(abs -7) o 7
8.5.7.15 Number-theoretic Division

(quotient ny ny)
(remainder nq ny)
(modulo nq ny)

These procedures implement number-theoretic (integer) division: For positive integers n, and
Ny, if ngand n, are integers such that n; = nyng +n, and 0 < ny < Ny, then the following is true.

(quotient n; ny O n3
(remai nder ny ny) O ny
(rmodul 0 ny ny) O ny

59

| SO/IEC 10179:1996 © ISO/IEC

8.5.7.16

For integers n, and n, with n, not equal to 0,

(= ng (+ (* Ny (quotient nq nNy))
(remai nder Ny ny)))
0o #t

provided all numbersinvolved in that computation are exact. The value returned by quot i ent
aways has the sign of the product of itsarguments. r enai nder and nodul o differ on negative
arguments — theenmi nder is either zero or has the sign of the dividend, whereawmithel o
always has the sign of the divisor:

EXAMPLE 53

(rmodul 0 13 4) o 1

(remai nder 13 4) o 1

(rmodul o -13 4) o 3

(remai nder -13 4) o -1

(rmodul o 13 -4) o -3

(remai nder 13 -4) o 1

(rmodul o -13 -4) o -1

(remai nder -13 -4) o -1

(remai nder -13 -4.0) O -1.0 ; inexact

Real to Integer Conversion

(floor x)
(ceiling x)
(truncate x)
(round Xx)

These procedures return integers.

f 1 oor returns the largest integer not larger tlxanei | i ng returns the smallest integer not
smaller tharx. t r uncat e returns the integer closesttavhose absolute value is not larger than
the absolute value of. r ound returns the closest integerxprounding to even whexis
halfway between two integers.

NOTES

19 round roundsto even for consistency with the default rounding mode specified by the |EEE floating point
standard.

20 If the argument to one of these procedures is inexact, then the result shall also be inexact. If an exact valueis
needed, the result should be passed to thei nexact - >exact procedure.

EXAMPLE 54

(floor -4.3) o -5.0
(ceiling -4.3) o -4.0
(truncate -4.3) o -4.0

60

©ISO/IEC | SO/IEC 10179:1996(E)

(round -4.3) o -4.0
(floor 3.5) o 3.0
(ceiling 3.5) o 4.0
(truncate 3.5) o 3.0
(round 3.5) O 4.0 i nexact
(round 7) o 7

8.5.7.17 €"and Natural Logarithm
(exp x)
(log x)
Returns e raised to the power of x. | og computes the natural logarithm of x (not the base-ten
logarithm). If x is zero or negative, an error shall be signaled.

8.5.7.18 Trigonometric Functions
(sin x)
(cos Xx)
(tan x)
si n, cos, and t an return the sine, cosine, and tangent of their arguments, respectively. The
result shall be a number.

8.5.7.19 Inverse Trigonometric Functions
(asin x)
(acos Xx)
(atan x)
(atan q; qp)
asi n, acos, and at an return the arcsine, arccosine, and arctangent of their arguments,
respectively. Theresult shall be anumber. The two-argument variant of at an returns the angle
of the complex number whose real part is the numerical value of g, and whose imaginary part is
the numerical value of g4; the dimensions of g; and g, shall be identical.
asi n returnsavaluein therange -2 to /2. acos returnsavaueintherangeOto 1t at an
returns avalue in the range -1v2 to 172.

8.5.7.20 Square Root
(sart q)
Returns the square root of g. The dimension of g shall be even. The dimension of the result shall
be half the dimension of q. If g is negative, an error is signaled.

8.5.7.21 Exponentiation

(expt Xy Xp)

61

| SO/IEC 10179:1996 © ISO/IEC

8.5.7.22

8.5.7.23

8.5.7.24

Returns x, raised to the power x,. (expt x; 0) isdefined to be equal to 1.
Exactness Conversion

(exact - >i nexact Q)
(i nexact - >exact Q)

Exact - >i nexact returnsan inexact representation of q. The value returned is the inexact
quantity that is numerically closest to the argument. If an exact argument has no reasonably close
inexact equivalent, then a violation of an implementation restriction may be reported.

| nexact - >exact returns an exact representation of q. The value returned is the exact
quantity that is numerically closest to the argument. If an inexact argument has no reasonably
close exact eguivalent, then a violation of an implementation restriction may be reported.

These procedures implement the natural one-to-one correspondence between exact and inexact
integers throughout an implementati on-dependent range.

Quantity to Number Conversion

(quantity->nunber Q)

Returns the number of the quantity g.

Number to String Conversion

(nunber->string nunber)
(nunber->string nunber radix)

Radi x shall be an exact integer, either 2, 8, 10, or 16. If omitted, r adi x defaultsto 10. The
procedure nunber - >st r i ng takes a number and aradix and returns as a string an external
representation of the given number in the given radix such that

(let ((number nunber)
(radix radi x))
(equal ? nunber
(string->nunber (nunber->string nunber
radi x)
radi x)))

istrue. It shall bean error if no possible result makes this expression true.

If nunber isinexact, theradix is 10, and the above expression may be satisfied by aresult that
contains a decimal point, then the result contains a decimal point and is expressed using the
minimum number of digits (exclusive of exponent and trailing zeroes) needed to make the above
expression true; otherwise, the format of the result is unspecified.

The result returned by nunber - >st r i ng never contains an explicit radix prefix.

62

© ISO/IEC

| SO/IEC 10179: 1996(E)

8.5.7.25

8.5.8

NOTE 21 If nunber isan inexact number represented using floating-point numbers, and the radix is 10, then the
above expression is normally satisfied by aresult containing adecimal point. The unspecified case allows for
infinities, NaNs, and non-floating-point representations.

(format-nunber n string)

Returns a string representation of n. st ri ng specifies the format to use as follows:
— 1meansuse0,1,2 ...

— 01 means use 00, 01, 02, ... 10, 11 ... 100, 101 ... and similarly for any number of leading
zeros;

—ameansuse0, a, b, c, ... z, aa, ab, ...

— Ameansuse 0, A, B, C, ... Z, AA AB, ...

— i means use 0, i, ii, iii, iv, v, vi, vii, viii, iX, X, ...

— | means use O, I, II, lII, IV, V, VI, VII, VIII, IX, X, ...

(format-nunber-list /ist obj, obj,)

Returns a string representation/efst, wherel j st is a list of integersobj | specifies the

format to use for each number. It shall be either a single string specifying the format to use for
all numbers in the same mannef as mat - nunber or a list of strings with the same number of
members a$/ st specifying the format to use for each string in the same manher ast -

nunber . obj , is either a single string or a list of strings specifying the separator to be used
between the strings representing each number; it shall contain either a single string or a list of
strings with one fewer members thanst .

String to Number Conversion

(string->nunber string)
(string->nunber string radix)

Returns a number of the maximally precise representation expressed by thetgiven.

radi x shall be an exact integer, either 2, 8, 10, or 16. If supplizd), x is a default radix that
may be overridden by an explicit radix prefixanri ng (e.g.," #0177"). If radi x is not
supplied, then the default radix is 10.sKr i ng is not a syntactically valid notation for a
number, therst ri ng- >nunber returns #f.

EXAMPLE 55

(string->nunber "100") O 100
(string->nunber "100" 16) O 256
(string->nunber "1le2") 0O 100.0
Characters

The character object represents a character.

63

| SO/IEC 10179:1996 © ISO/IEC

[94] character = #\ any-character | #\ character-name

[95] character-name = letter (letter | digit |- |.)+

Characters are written using the notation #\ character or #\ character-name. For example:

— #\ a: lower-case letter ‘a’

— #\ A upper-case letter ‘A’

— #\ (: left parenthesis

— #\ : the space character

— #\ space: the preferred way to write a space

If the character in #\ any-character is alphabetic, then the character following any-character
shall be a delimiter character such as a space or parenthesis. This rule resolves the ambiguous
case where, for example, the sequence of charagterspace’ could be taken to be either a
representation of the space character or a representation of the ch&kactérfollowed by a

representation of the symbgldce.’

The character-name shall be the name of a character declared in the character repertoire
declaration.

Characters written in th# notation are self-evaluating. That is, they do not have to be quoted in
expressions.

8.5.8.1 Character Properties
Every character has a set of named properties. Each property has a default value.
[96] character-property-declaration(decl ar e- char - pr operty identifier expression)

This declaresdentifier to be a character property with the default value equal to the value of
expression.

[97] added-char-properties-declaratiofadd- char - pr opert i es keyword-argument-list
character+)

[98] keyword-argument-list =kéyword expression)*

The added-char-properties-declaration adds properties to each of tttearacters. Thekeyword-
argument-list specifies the properties to be added. Késvord specifies the property name, and
the expression specifies the property value. Each property either shall be a property that is pre-
defined in this International Standard or it shall be explicitly declared usihgracter-
property-declaration.

© ISO/IEC | SO/IEC 10179:1996(E)

The following character property is pre-defined:

— nuneri c- equi v: is an integer giving the numeric equivalent of the character or #f. The
default value is #f.

Additional properties are pre-defined for the style language.
8.5.8.2 Language-dependent Operations

Certain operations on characters such as case-conversion and collation are dependent on the
natural language for which the characters are being used. The language data type describes hov
language-dependent operations should be performed. Expressions may be evaluated with respec
to a current language. It shall be an error to call procedures which use the current language if
there is no current language.

Some of the procedures that operate on characters ignore the difference between upper case an
lower case. The procedures that ignore case haé (for ‘case-insensitive’) embedded in

their names. These procedures always behave as if they converted their arguments to upper case
These procedures all use the current language. See 8.5.8.5 for these procedures.

(1 anguage? obj)

Returns #t ifobj is of type language, and otherwise returns #f.

(current -l anguage)

At any point in a computation there may be a current langeage.ent - | anguage returns
the current language if there is one, and otherwise returns #f.

[99] default-language-declaration(decl ar e- def aul t - | anguage expression)

A default-language-declaration declares the current language which is used initially in the
evaluation of an expression. Texression shall evaluate to a language object.

(wi t h-1 anguage [anguage proc)

Thewi t h-1 anguage procedure callpr oc, which shall be a procedure of no arguments, with
| anguage as the current language.
8.5.8.2.1 Language Definition
[100] language-definition £def i ne- | anguage variable [[collation-specification? |
toupper-specification? |tolower-specification?]])
A language-definition definesvariable to be an object of type language.
8.5.8.2.1.1 Collation

65

| SO/IEC 10179:1996 © ISO/IEC

[101] collation-specification = (col | at e [[multi-collating-element-specification* | collating-
symbol-specification*]] order-specification)

A collation-specification determines the relative order of strings.

NOTE 22 The syntax of the collation-specification is based on 1SO 9945-2, which contains examples that may assist
the reader.

[102] multi-collating-element-specification = (el emrent multi-collating-element string)
[103] multi-collating-element = identifier

When two strings are compared, each string is divided up into collating elements. Each collating
element is either a single character or a sequence of consecutive characters that is to be treated as
asingle unit. A multi-collating-element-specification declares that the sequence of charactersin
the string is to be treated as a collating element. Within the order-specification, this collating
element isidentified by the multi-collating-element. Identifiers declared as multi-collating-
elements shall be distinct from those used as weight-identifiers.

[104] collating-symbol-specification = (synbol weight-identifier)
[105] weight-identifier = identifier

A collating-symbol -specification declares that weight-identifier is a symbolic identifier for a
weight, which may be used within the order-specification.

[106] order-specification = (or der sort-rules collation-entry*)
[107] sort-rules=(level-sort-rulest)

Each order specification defines a number of different comparison levels. If two strings compare
equal at thefirst level, they are compared at the second level. If they also compare equal at the
second level, they are compared at the third level. This processis repeated until there are no
more levels or until the strings compare unequal. The number of levelsin the order specification
is determined by the number of level-sort-rules.

[108] level-sort-rules = sort-keyword | ((sort-keyword+))

[109] sort-keyword =f or war d | backwar d | posi ti on

The level-sort-rules determine for each level how the strings are to be compared. At agiven
level, each col | ati ng- el emrent inthe strings to be compared is assigned zero or more
weights. Thisresultsin an ordered list of weights for each string.

Thebackwar d and f or war d sort-keywords determine the comparison direction for the level.

If thebackwar d sort-keyword is specified, then comparison proceeds from the last weight to the
first; otherwise, it proceeds from the first weight to the last.

66

© ISO/IEC

| SO/IEC 10179: 1996(E)

8.5.8.2.1.2

If the posi ti on sort-keyword is specified, then the position of the collating element
corresponding to each weight is considered when comparing weights. When comparing two
weights with different positions, the weight with the earlier position (in the comparison
direction) shall collate first.

A single level-sort-rules shall not contain both f or war d and backwar d.

[110] collation-entry = ((collating-element level-weight*)) | weight-identifier | collating-
element

Each collation entry is associated with a weight determined by its position in the order-
specification. The first collation entry is associated with the lowest weight, the second with the
next lowest weight, and so on.

When a collation-entry is aweight-identifier, then the effect of the collation-entry is to associate
the weight-identifier with the weight with which the collation-entry is associated.

A collation-entry that contains a collating-element serves two purposes. First, it assigns weights
for each level to the collating-element. Second, it makes collating-element stand for the weight
associated with the collation-entry when the collating-element is used in aweight.

If alevel-weight is not specified for some level, then the single weight associated with the
collation-entry shall be assigned. For example, acollation-entry of #\ a isequivalent to a
collation-entry of (#\a #\ a).

[111] collating-element = character | multi-collating-element | #t

When #t is used as a collating-element, then the specified weights are assigned to all collating
elements to which no weight has been explicitly assigned by a collation-entry.

[112] level-weight = weight | weight-list

[113] weight-list = (weight*)

The level-weight specifies the weights to be assigned for a particular level.
[114] weight = weight-identifier | multi-collating-element | character | string

Specifying a string is equivalent to specifying alist of the characters it contains.

Case Conversion
[115] toupper-specification = (t oupper case-conversion-list)
[116] tolower-specification = ('t ol ower case-conversion-list)

[117] case-conversion-list = ((character character))*

67

| SO/IEC 10179:1996 © ISO/IEC

8.5.8.3

8.5.8.4

8.5.8.5

8.5.8.6

8.5.8.7

In the case-conversion-list, the upper-case or lower-case equivalent of the first character in each
pair isthe second character in that pair according as the case-conversion-list occursin atoupper-
specification or a tol ower-specification.

Character Type Predicate

(char? obj)

Returns #t if obj isacharacter, and otherwise returns #f.

Character Comparison Predicates

(char=? charq chary)
(char<? charq chary)
(char>? charq chary)
(char<=? char, chary)
(char>=? char, chary)

These procedures impose a total ordering on the set of characters. All the procedures other than
char =? use the current language.

Case-insensitive Character Predicates

(char-ci=? char, chary)
(char-ci <? charq chars)
(char-ci>? charq chars)
(char-ci<=? char, chary)
(char-ci>=? char, chary)

These procedures are similar to char =? etc., but they treat upper-case and lower-case letters as
the same. All these procedures use the current language. For example, (char-ci =? #\ A
#\ a) returns#t.

Character Case Conversion
(char-upcase char)
(char-downcase char)

The procedures return the upper- or lower-case equivalent of char as defined by the current
language. If char has no upper- or lower-case equivalent, char isreturned.

Character Properties

(char-property synbol char)
(char-property synbol char obj)

Returns the value of the property synbol of char.If synbol isnot acharacter property, an
error issignaled. If char does not have a property synbol , then obj isreturned, or if obj was
not specified, the default value of the property is returned.

68

© ISO/IEC

| SO/IEC 10179: 1996(E)

8.5.9

8.5.9.1

8.5.9.2

Strings

Strings are sequences of characters.

[118] string=" string-element* "

[119] string-element = any-character-other-than-"-or-\ |\ " |\\ |\ character-name; ?

Strings are written as sequences of characters enclosed within doublequotes ("). A doublequote

may be written inside a string by escaping it with abackslash (\), asin

"The word \"recursi on\" has nany neani ngs."

A backslash may be written inside a string by escaping it with another backslash. Any character
may be written inside a string by writing its name after a backslash. The name shall be followed
by a semi-colon, unless there are no following characters in the string, or the following character
is not a subsequent. The name used here is the same asthe name used in #\ syntax for characters.

A string constant may continue from one record to the next and shall contain the characters that
separate the two records in the entity.

The length of astring is the number of charactersthat it contains. This number is a non-negative
integer that is fixed when the string is created. The valid indexes of a string are the exact non-
negative integers less than the length of the string. The first character of astring has index 0, the
second hasindex 1, and so on.

In phrases such as ‘the characterstofi ng beginning with indext art and ending with
indexend,’ it is understood that the indest ar t is inclusive and the indesnd is exclusive.
Thus, ifst art andend are the same index, a null substring is referred to, astdaif t is zero
andend is the length okt ri ng, then the entire string is referred to.

Some of the procedures that operate on strings ignore the difference between upper and lower
case by converting the strings to upper case before performing the operation. The versions that
ignore case have ti ' (for ‘case-insensitive’) embedded in their names.

String Type Predicate
(string? obj)
Returns #t ifobj is a string, and otherwise returns #f.

String Construction

(string char ...

Returns a string composed of the arguments.

69

| SO/IEC 10179:1996 © ISO/IEC

8.5.9.3

8.5.9.4

8.5.9.5

8.5.9.6

8.5.9.7

String Length

(string-length string)

Returns the number of charactersin the given st ri ng.

String Access

(string-ref string k)

k shall beavalidindex of st ri ng.string-ref returns character k of st ri ng using zero-
origin indexing.

String Equivalence

(string=? string, string,)
(string-ci=? string, stringy)

Return #t if the two strings are the same length and contain the same characters in the same
positions, and otherwise return #f. st ri ng- ci =? treats upper- and lower-case | etters as though
they were the same character, but st r i ng="? treats upper- and lower-case |etters as distinct
characters. st ri ng- ci =? usesthe current language.

(string-equiv? string, string, k)

Returns #t if the two strings compare the same at the first kK comparison levels of the collation
specification of the current language, and otherwise returns #f. k shall be strictly positive.

String Comparison

(string<? string, string,)

(string>? <string, string,)

(string<=? string, string,)

(string>=? string, string,)

(string-ci<? string, string,)

(string-ci>? string, string,)

(string-ci<=? string, string,)

(string-ci>=? string, string,)

These procedures are the lexicographic extensions to strings of the corresponding orderings on
characters. For example, st ri ng<? isthe lexicographic ordering on strings induced by the
ordering char <? on characters. If two strings differ in length but are the same up to the length

of the shorter string, the shorter string is considered to be lexicographically less than the longer
string. These procedures use the current language.

Substring Extraction

(substring string start end)

70

©ISO/IEC | SO/IEC 10179:1996(E)
Returns a string formed from the characters of st r i ng beginning with index st art (inclusive)
and ending with index end (exclusive).

8.5.9.8 String Appendance
(string-append string...)
Returns a string formed by the concatenation of the given strings.

8.5.9.9 Conversion between Strings and Lists
(string->list string)
(list->string chars)
string->list returnsalist of the characters that make up the given string. | i st->stri ng
returns a string formed from the charactersin thelist chars. string->list andli st -
>string areinverses so far asequal ? isconcerned.

8.5.10 Procedures

8.5.10.1 Procedure Type Predicate
(procedure? obj)
Returns#t if obj isaprocedure, and otherwise returns #f.
EXAMPLE 56
(procedure? car) O #t
(procedure? ’car) o #f
(procedure? (lanmbda (x) (* x Xx)))
O #t
(procedure? ’'(lanbda (x) (* x x)))
O #f
8.5.10.2 Procedure Application

(apply proc args)
(apply proc arg;... args)

Pr oc shall be aprocedure and ar gs shall be alist. Thefirst (essential) form calls pr oc with the
elements of ar gs asthe actual arguments. The second form is a generalization of the first that
calls pr oc with the elements of thelist (append (list arg;...) args) astheactua
arguments.

EXAMPLE 57
(apply + (list 3 4)) o 7

(define conpose
(lanbda (f Q)
(lambda args

(f (apply g args)))))

71

| SO/IEC 10179:1996 © ISO/IEC

8.5.10.3

8.5.10.4

8.5.11

((conmpose sqrt *) 12 75) o 30

Mapping Procedures over Lists

(map proc listq list,..)

The /i st sshall belists, and pr oc shall be a procedure taking as many arguments as there are
lists. If morethanone/ i st isgiven, then they shall all be the same length. map applies pr oc
element-wise to the elements of the / i st sand returns alist of the results, in order from left to
right.

EXAMPLE 58
(map cadr "((a b) (de) (g h))) 0O (beh)

(map (lanmbda (n) (expt n n))
(12 3 45)) O (1 4 27 256 3125)

(map + (1 2 3) "(4 5 6)) O (57 9)

External Procedures

(external-procedure string)

Returns a procedure object which when called shall execute the external procedure with public
identifier st ri ng. If the system is unable to find the external procedure, then #f is returned. The
arguments passed to the procedure object shall be passed to the external procedure. If the number
or type of arguments do not match those expected by the external procedure, then an error may
be signaled. The result of the external procedure shall be returned as the result of the call of the
procedure object.

External procedures should be side-effect free, and implementations are free to assume that they
are. They should be used to retrieve information from the system rather than to change the state
of the system.

Date and Time

(time)
(time->string k)
(time->string k bool ean)

t i me returns the number of seconds since 1970-01-01 00:00:00 GMT as an integer.

ti me->stri ng converts an integer representation as returned by t i ne of the time and date
into a string in the format of SO 8601.

If the bool ean argument is present and true, then the string representation shall bein GMT;
otherwise the string shall be in local time.

(time<? string, String,

72

© ISO/IEC

| SO/IEC 10179: 1996(E)

8.5.12

8.6

8.6.1

(tinme>? string, strings,)
(tinme<=? string, strings,)
(tinme>=? string, string,)

These procedures impose atotal ordering on the set of strings that represent dates and times in
SO 8601 format. It shall be an error if any argument does not represent a date or timein 1SO
8601 format.

Error Signaling

(error string)

error signalsanerror. The st ri ng argument describes the error. The action a system takes
when an error is signaled is system-dependent. In particular, the manner in which the error is
reported to the user is system-dependent. It should, however, use st ri ng in its report and
describe the context in which the error occurred. No valueisreturned fromerr or .

Core Expression Language

This clause defines a subset of the expression language called the core expression language. In
the core expression language, only those expressions and definitions allowed by the productions
in this clause are permitted, and only those procedures with prototypesin this clause are
available. Any expression or definition that isvalid in the core expression language has the same
meaning that it does in the full expression language.

Syntax

[120] expression = primitive-expression | derived-expression

[121] primitive-expression = variable-reference | literal | procedure-call | conditional

[122] variable-reference = variable

[123] variable = identifier

[124] literal = quotation | self-evaluating

[125] quotation =" datum | (quot e datum)

[126] datum = simple-datum | list

[127] simple-datum = boolean | number | character | string | symbol | keyword | glyph-identifier

[128] list = (datum*) |’ datum

[129] self-evaluating = boolean | number | character | string | keyword | glyph-identifier

73

| SO/IEC 10179:1996

© ISO/IEC

8.6.2

[130] procedure-call = (operator operand*)

[131] operator = expression

[132] operand = expression

[133] conditional = (i f test consequent alternate)
[134] test = expression

[135] consequent = expression

[136] alternate = expression

[137] derived-expression = cond-expression | case-expression | and-expression | or-expression

[138] cond-expression = (cond cond-clause+) | (cond cond-clause* (el se expression))

[139] cond-clause = (test expression)

[140] case-expression = (case key case-clauset) | (case key case-clause* (el se

expression))

[141] key = expression

[142] case-clause = ((datum*) expression)
[143] and-expression = (and test*)

[144] or-expression = (or test*)

[145] definition = (def i ne variable expression)
Procedures

(not obj)

(bool ean? obj)
(equal ? obj, obj o)

(null? obj)
(list? obj)
(list obj ..)

(length [ist)
(append [/ist ..)
(reverse | ist)
(list-tail list k)
(list-ref list k)
(member obj [ist)

74

© ISO/IEC | SO/IEC 10179:1996(E)

(synmbol ? obj)
(keyword? obj)
(quantity? obj)
(nunber? obj)
(real ? obj)
(integer? obj)

(=091 92 g3--2)
(< 91 92 g3--)
> 9192 93..)

(<= 41 G2 q3...)
(>= g1 g2 q3...)
(max q1 g5 ...)
(min g1 g»...)

+ q1-...)

* aqp-.)

- a1 92

- a9

(¢ a1 g2

(¢ q

(abs Q)

(quotient ny ny)
(remainder niy no)
(modulo nq ny)
(floor X)

(ceiling X)
(truncate X)

(round Xx)

(sart @)

(number->string nunber)
(number->string nunber radi x)
(string->number string)
(string->number string radix)

(char? obj)

(char=? char, chary)
(char-property symbol char)
(char-property symbol char obj)
(string? obj)

(string char ...

(string-length string)
(string-ref string k)
(string=? string, strings,)
(substring string start end)
(string-append string..)
(procedure? obj)

75

| SO/IEC 10179:1996 © ISO/IEC

9.1

(apply proc args)

(external - procedure string)
(time)

(time->string k)
(time->string k bool ean)
(error string)

Groves

A groveisaset of nodes constructed according to a grove plan. Every node in the grove belongs
to anamed classin the grove plan. A nodeis aset of property assignments, each consisting of a
property name and a property value.

A grove plan defines a set of classes and, for each class, an ordered set of properties.

For each property assignment of a node, there is a unique corresponding property of the node's
class whose name is the same as the name part of the property assignment. Thisisreferred to as
the property of the property assignment. The value part of a property assignment isreferred to as
avalue of the property of the property assignment. A nodeis said to exhibit avaluev for a
property p if thereis a property assignment of the node whose property is p and whose value part
isv. The properties for which the node exhibits a value are referred to as the properties of the
node.

The ordering of the properties of a class determines for nodes of that class the ordering of the
corresponding property assignments.

Every property value has adatatype. The definition of a property declares a certain datatype to
be possible for values of the property. This datatypeisreferred to as the declared data type of
the property.

In addition to simple abstract data types such as boolean or string, there are three special data
types called the nodal data types, whose values are nodes or lists of nodes. These are described
in9.3.3.

The definition of a property may also allow that property to have anull value in certain
circumstances, instead of avalue having the declared datatype. This null value isthe unique
object of the null datatype. The null data type can never be used as a declared data type.

Nodal Properties

A property of aclass may be a subnode property. The declared data type of a subnode property
shall be nodal. When a node exhibits a value for a subnode property, all the nodes in the value of
the property are in the same grove as the node exhibiting the value. The values of subnode
properties of nodes in the grove can be viewed as connecting all the nodes in the groveinto a
single tree with labeled branches. More precisely,

76

© ISO/IEC | SO/IEC 10179:1996(E)

— in any grove there is a unique node calledgtwe root that does not occur in the value of
any subnode property of a node.

— for every noden, other than the grove root, there is a unique rwaed there is a unique
propertyp such that both

— pis asubnode property, and
— 0 exhibits a value fop that is or includes.
o is called theorigin of n andp is called theorigin-to-subnode relationship of n.

— for every noden, other than the grove root, there exists a sequence of rmggag ... my
such thatm, is the grove rootn, isn, and, for eaci <i < k- 1, m is the origin ofm , ;.

This tree is referred to as the subnode tree. It is often useful for applications to deal with certain
subtrees of the subnode tree in which all the children of a node occur as part of the value of a
single property of the node. For this purpose, one property of the class can be distinguished as
the children property for the class. This is done indirectly by making one propertgdhtent

property for the class. If the data type of this property is nodal, then this is the children property,
otherwise the primitive data type of the data type shall be char or string and the property is the
data property of the node. The terohildren as applied to a node refers to the nodes occurring as
the value of the children property. The data of a node that has a children property is the data of
each of its children separated by the value ofdtita separator property, if any, of the class. A

node has garent if its origin has a children property which includes that node in its value; if a
node does have a parent, its parent will be the same as its origin. Thesganithout

qualification refers to the tree formed using these parent/children relationshipancéster s of

a node comprise the parent of the node, if any, together with the ancestors of the parent of the
node. Thdreeroot of a nodey, isx if x has no ancestors or otherwise is the node that is an
ancestor ok and that has no ancestors. ®itings of a node are an empty set for the grove root
and are otherwise the nodes in the value of the origin-to-subnode relationship property of the
node's origin other than the node itself.

NOTE 23 A node can have siblings even if it does not have a parent because its origin-to-subnode relationship
property need not be the children property of its origin.

Thesubtree of a node is the node together with the subtrees of its childrende3teadants of a

node are the subtrees of children of the node. A total ordering traésat der is defined on the

set of nodes in the subtree of any node: this ordering corresponds to a pre-order traversal of the
subtree in which a node is visited before its children.

There are two possibilities for properties with a declared data type that is nodal but which are not
subnode properties:

— The property may be anefnode (internal reference) property; for such a property the nodes
in the value are in the same grove as the node that exhibits the value. The subnode and
irefnode properties connect all the nodes in a grove into a single directed graph. The names of
the properties may be considered as labeling the arcs of the graph.

7

| SO/IEC 10179:1996 © ISO/IEC

9.2

— The property may be @refnode (unrestricted reference) property; for such a property the
nodes in the value may be in different groves from the node that exhibits the value. Thus, the
subnode, irefnode, and urefnode properties connect the nodes in multiple groves together into
a graph. The set of groves thus connected is calhygdeagrove.

Grove Plans

A grove plan specifies a selection of classes and properties from a property set. A property set is
defined by a property set definition expressed in SGML as described in 9.3.

For any source for the grove, the property set determinesmhgete grove that would be built
using a grove plan that selected all the classes and properties from the property set.

NOTE 24 The complete grove contains all the information that the parser is capable of making available about the
source of the grove. For any particular application, much of thisinformation may be irrelevant. The grove plan
provides away for an application to get a grove that contains just the information it requires.

The grove to be constructed from the grove plan shall be the same as a grove obtained by
modifying the complete grove in the following manner:

— To mark the subgrove of a node, first mark the node itself; then for each subnode property, if
the property is included in the grove plan, mark the subgrove of each node in the value whose
class is included in the grove plan. The nodes to be included in the grove are determined by
marking the subgrove of the grove root. Only nodes thereby marked will be included in the
constructed grove.

— A node in the constructed grove only exhibits values for those properties that are specified to
be included in the grove.

— If a node in the complete grove exhibits a value for an intrinsic property whose semantics are
that it is the name of a non-intrinsic property exhibited by the node, then if the non-intrinsic
property is not included in the grove plan, the node in the constructed grove shall exhibit a
null value for the intrinsic property.

— If a node in the complete grove exhibits a value for an intrinsic property whose semantics are
that it is a list of names of non-intrinsic properties exhibited by the node, then the node in the
constructed grove shall exhibit a value for the intrinsic property that is obtained from the
value in the complete grove by removing the names of any of the non-intrinsic properties not
included in the grove plan.

— If a node in the complete grove exhibits a value for an irefnode property that has a declared
value of node, but the value of the property is not marked for inclusion in the constructed
grove, then the node shall exhibit a null value for that property in the constructed grove.

— If a node in the complete grove exhibits a value for an irefnode property that has a declared
value of nodelist or nmndlist, then the value in the constructed grove is obtained by removing
from the value exhibited for the property in the complete grove all nodes that are not marked
for inclusion in the constructed grove.

78

© ISO/IEC | SO/IEC 10179:1996(E)

9.3 Property Set Definition
Property set definitions are described fully in the Property Set Definition Requirements of 1SO/
IEC 10744. This clause presents a simplified version that includes only those detail s necessary
for the understanding of this International Standard.
Thetop-level elementisapr opset element. The psn and f ul | nmattributes specify a short
SGML name and along descriptive name. At various places within the property set, the
following elements are allowed:

— desc contains a description of the object that is being defined by the element in which it
occurs.

— not e contains notes about the object being defined.
9.3.1 Common Attributes
9.3.1.1 Component Names

The name of a class, property, or enumerator is not a simple string but a triple of strings, each
appropriate for use as a name in a different context:

— The reference concrete syntax (RCS) name is appropriate for use in a context where a valid
name in the SGML reference concrete syntax is required.

— The application name specifies a name that is appropriate for use as an identifier in a
programming or scripting language. An application name can include multiple words
separated by spaces; the name must be transformed to be a valid identifier in the language in
which it is to be used, using the normal conventions of that language for multi-word
identifiers. For example, the application name ‘processing instruction’, when bound to a
programming language, might become ‘Processinglnstruction’, ‘processing-instruction’, or
‘PROCESSING_INSTRUCTION’, depending on the language.

— The full name is an unabbreviated name appropriate for use in documentation.

A three-part name of this kind is calleda@nponent name.

These three names are specified by attributes as follows:

— r csnmspecifies the RCS name of the property.

— appnmspecifies the application name of the property; this defaults to the RCS name.

— f ul I nmspecifies the full name of the property; this defaults to the application name.

79

| SO/IEC 10179:1996 © ISO/IEC

9.3.1.2

9.3.2

9.3.3

Specification Documents

Various elements occurring in a property set define components by referencing themin a
specification document. These elements use the following common attributes:

— sd specifies the specification document; this defaultS@gL. Formally, the value is the
name of a notation. Other allowed values@aFac for the General Facilities of ISO/IEC
10744 andSSSL.

— cl ause specifies the applicable clause of the specification document; for SGML this uses
the notation of ISO/IEC 13673.

Modules

A property set definition is divided into named modules each describegslpdul e element.
The attributes have the following meaning:

— r csnmgives the RCS name of the module.

— f ul I nmgives the full name.

— dependon lists the names of the modules on which this module depends.

— requi r ed specifies whether the module is required, that is, shall be included in every grove
plan. A value of equi r ed means that it is required; a valuenofequi r e means that it is
not. The default isr equi r e.

Including a module in a grove plan is equivalent to including in the grove plan:

— all the classes and properties defined within the module,

— any modules on which the module depends, and, recursively, any modules on which they
depend.

In addition to modules defined in property sets, there are a number of intrinsic modules defined
in this International Standard that are automatically part of every property set. Properties defined
in intrinsic modules are calladtrinsic properties. Intrinsic modules are treated as occurring

before all non-intrinsic modules.

Data Type Definition
Every data type is defined bydat adef element. The attributes have the following meaning:

— rcsnmgives the RCS name of the data type.

NOTE 25 Thereis no application name for a data type, because when the property set is used in a programming or
scripting language, each abstract data type has to be explicitly bound to one of the data types provided by the
language.

80

© ISO/IEC | SO/IEC 10179:1996(E)

— ful I nmgives the full name of the data type.

— nodal specifies whether the data type is nodal; the allowed valuesdet ornonnodal ;
the default ismonnodal .

— | i st of allows formal specification of the semantics of a data type in the case where the data
type is an ordered list or array of some other data type; that other data type is specified as the
value of the attribute.

— super allows for the formal specification of a subtyping hierarchy among defined data types;
the value of the attribute is a list of the names of the super types.

The primitive data type of a data type is the data type itself if the data type has no super type, and
otherwise is the primitive data type of the super type.

Some data types are defined in the following intrinsic module:

<psmodul e rcsnmeintrdt fullnne"intrinsic data types" required>
<dat adef rcsnnenode nodal >

<desc>

A singl e node.

<dat adef rcsnnenodel i st |istof=node nodal >
<desc>
An ordered list of zero or npre nodes

<dat adef rcsnnenmmdli st full nn¥"nanmed node |ist" super=nodelist nodal >
<desc>

This is a node list in which each node is uniquely identified within
the node-list by a name, which is the value of one of its properties.
A named node list identifies, for each class of node that occurs in
it, a property of that class, which has data type string, whose val ue
serves as the name of nodes of that class within that named node |ist.
In addition, a naned node-list also identifies, for each class of node
that occurs in it, a nornalization rule to be applied to a

string before it is conpared against the name of a node of that class
in the process of nane space addressing

<dat adef rcsnmrenum ful | nneenuner ati on>

<desc>

This is used for a data type that represents one of an enunerated set
of values, called enunerators. The possible enunerators are

defined in each context in which the enumdata type is used

<dat adef rcsnmechar ful |l nmecharacter>

<dat adef rcsnnestring |istof=char>

<dat adef rcsnn¥integer>

<dat adef rcsnneintlist fullnn="integer list" |istof=integer>

<dat adef rcsnnestrlist full nme"string list" listof=string>

81

| SO/IEC 10179:1996 © ISO/IEC

9.34

9.35

<dat adef rcsnnmeconmpnanme ful | nm=" conponent nane">

<desc>

A conponent nane, that is, a name with three variants, an RCS nane,
an application name, and a full nane.

<dat adef rcsnnmecnmist full nne"conponent nane list" |istof=conpnane>

</ psnodul e>

Class Definition

A classisdefined by acl assdef element. In addition to the component name attributes and
specification document attributes, the following attributes are allowed:

— conpr op identifies the content property of the class, if any.

— dseppr op identifies the data separator property of the class, if any. A class can have a data
separator property only if it has a children property (i.e., a nodal content property).

— mayadd identifies a category of classes that is used in the definition of the verification
mapping in the transformation language. See 11.4.1. Only thervaysald is allowed for
this attribute. The attribute name can be omitted for this attribute.

Property Definition

A property is defined by pr opdef element. In addition to the component name attributes and
specification document attributes, the following attributes are allowed:

— cn specifies the class to which this property belongs. Wheroadef element occurs
within acl assdef element, the property belongs to that class. Otherwisentladtribute
shall be specified, specifying the class name. A vald@abf means that it belongs to all
classes of node; a value#gdr ove means that it belongs to the node at the root of the grove.

— dat at ype specifies the RCS name of the data type, as defined by a datadef element.

— ac specifies the classes allowed in the value of the property; this applies only if the data type
is nodal. The default is that any class is allowed in the value.

— acnnpr op applies when the data typensndl i st and specifies for each of the classes
allowed in the property value the name of the property that serves as the name of a node of
that class in the named node list. There shall be one property name for eachagass in

— st r nor mspecifies a string normalization rule applicable to the value. It applies when the
data type is a string, is a list of strings, or has a super type that is a string. The default is for no
normalization to be applied. Each string normalization rule shall be defineddyyalef
element.

NOTE 26 The upper-case substitution that SGML performs on general names when the reference concrete syntax
isused is an example of a string normalization rule.

82

© ISO/IEC

| SO/IEC 10179: 1996(E)

9.3.6

9.4

— noder el specifies whether the property is a subnode, irefnode, or urefnode property; this
applies only if the data type is nodal. The attribute name is usually omitted for this attribute.

— vr f yt ype categorizes the property as either derived, optional, or other for purposes of
defining the verification mapping in the transformation language. See 11.4.1. The default is
other. A property set shall not allow a node in a complete grove to exhibit an empty value for
a property that has a declared data type of nodelist or nmmdlist and a vrfytype of optional.

NOTE 27 This does not prohibit a node from exhibiting a null value for such a property.
— strl ex gives a lexical type. The value is a lexical type defined lbgxadef element. The

lexical type of a property is not used in this International Standard. The semantics of lexical
types are defined in ISO/IEC 10744.

A propdef can have subelements of the following types in additiatesx andnot e
elements:

— when specifies a condition that shall be satisfied for a node to exhibit a value with the
declared data type. If this condition is not satisfied, the node shall exhibit a null value for this

property.

— enundef defines the possible enumerators when the data type is enum. It has only the
component name attributes.

Normalization Rule Definition

A string normalization rule is defined byhar ndef element. It has ancsnmattribute and the
specification document attributes.

Intrinsic Properties

The following module defines the intrinsic properties of all nodes:

<psnodul e rcsnnri ntrbase full nme"intrinsic base" required>
<propdef rcsnnecl assnm appnne"cl ass nane" dat at ype=conpnane>

<desc>

The name of the node's class.

<propdef cn="#all" rcsnmegrovroot appnme"grove root" datatype=node irefnode>
<propdef cn="#all" rcsnmesubpns appnne"subnode property nanes"

dat at ype=cnnl i st >

<desc>

The names of all the subnode properties exhibited by the node

<propdef cn="#all" rcsnmral | pns appnn¥"all property nanes" datatype=cnmist>
<desc>
The nanmes of all the properties exhibited by the node.

<propdef cn="#all" rcsnmechil dpn appnn¥"chil dren property nane"
dat at ype=conpnane>

83

| SO/IEC 10179:1996 © ISO/IEC

<desc>
The name of the children property.
<when>
The class has a children property.

<propdef cn="#all" rcsnmrdat apn appnne"data property name" datatype=conpnanme>
<when>
The class has a data property.

<propdef cn="#all" rcsnmedseppn appnne"data sep property name"
ful l nn="data separator property nane" datatype=conpnane>
<when>

The class has a data separator property.

<propdef cn="#all" rcsnmeparent datatype=node irefnode>
<when>
The node has a parent.

<propdef cn="#all" rcsnmrtreeroot appnm="tree root" datatype=node irefnode>
<not e>

The value of this property for a node shall be the node itself

if the node has no parent.

</ note>

<propdef cn="#all" rcsnmrorigi n datatype=node irefnode>
<when>
The node is not the grove root.

<propdef cn="#all" rcsnmeotsrel pn appnm="origi n-to-subnode rel property nanme"
ful l nm="ori gi n-to-subnode rel ati onshi p property nane" datatype=conpname>
<when>

The node is not the grove root.
</ psnodul e>

<psmodul e rcsnmeintrhy fullnne"intrinsic hytinme">

<dat adef rcsnnm=grovepos appnn¥"grove position" strlex=GROVEPOS>
<desc>

A list each of whose nenbers is either (a) an integer, (b) a pair
consi sting of a conponent name and a string, (c) a pair consisting of
a conmponent name and an integer, or (d) a conmponent nane

<propdef cn="#all" rcsnnmegrovepos appnn¥"grove position" sd=GenFac
dat at ype=gr ovepos>
<desc>

The position of a node in a grove.

<propdef cn="#all" rcsnmrtreepos appnnm="tree position" sd=GenFac
dat at ype=intli st

strl ex="marker +">

<desc>

The position of a node in its tree in treeloc format.

<propdef cn="#all" rcsnmepat hpos appnm="path position" sd=GenFac
dat at ype=intli st
strl ex="(marker, mar ker) +">

© ISO/IEC

| SO/IEC 10179: 1996(E)

9.5

9.6

<desc>
The position of a node in its tree in pathloc format.
</ psnodul e>

<propdef cn="#grove" rcsnmeptreert appnne"principal tree root" sd=GenFac
dat at ype=node
i ref node>

Auxiliary Groves

It is sometimes convenient to group nodes in a grove in an application-dependent manner. This
is done by using nodes in the grove as the source for afurther parse, called anauxiliary parse. A
grove created by an auxiliary parseis called an auxiliary grove. The grove parsed to create the
auxiliary groveis called the source grove of the auxiliary grove. Each nodein an auxiliary grove
has an intrinsic urefnode property, sour ce, that points to those nodes in the source grove from
which it was derived.

<propdef cn="#all" rcsnmesource dat atype=nodeli st urefnode sd=DSSSL>

SGML Property Set

The property set for SGML is:

<l-- SGW Property Set -->

<!'doctype propset public "I1SQO | EC 10744: 1993/ DTD Property Set//EN'
"sgm prop. dtd">

<propset psn="sgm prop" full nm="SGW Property Set">

<desc>

Defines the classes and properties to be used in the construction of
groves fromthe parsing of SGW docunents

Cl asses and properties are classified as foll ows:
o Abstract or SGW document string (SDS)
0 SGW decl aration, docunent prolog, or docunent instance
o0 Required only for support of datatag, rank, shortref, |ink, subdoc
formal .

ESI' S corresponds roughly to the conbinati on of baseabs (base abstract),
prl gabs0O, and instabs (instance abstract).
</ desc>
<!--Note: C ause nunbering conforms to the rules specified in C ause 6.3
of 1SOIEC 13673, which defines how the conponents of
I SO | EC 8879 should be identified w thin conformance tests.
The first nunber/letter represents the clause nunber (letters
can be treated as hexadecinal in this docunent), the second
nunber identifies the sub-clause, the third the
sub-sub-cl ause, and the fourth the
sub- sub-sub-clause (if any) with the final nunmber/letter
identifying the paragraph number. (Productions
notes and items in a list are counted as separate paragraphs.)
Were figures are referred to, the clause, sub-clause, and
sub- sub-cl ause nunbers are replaced by FIG and the
sub- sub- sub- cl ause nunmber is replaced by the figure nunber
As an extension to | SO | EC 13673, subclauses in clause 4

85

| SO/IEC 10179:1996

© ISO/IEC

are referred to using nunbers of the form 4xxxy where xxx
is the deci mal subcl ause nunmber and y is the paragraph nunber
as normal .

-->

<l -- Base abstract classes and properties -->
<psnodul e rcsnmebaseabs ful | nm="base abstract">

<cl assdef rcsnmesgm doc appnne"sgm docunent” cl ause="62001">
<desc>
The parsed SGW. docunent or subdocunent. The root of the grove

<propdef subnode rcsnnesgnl csts appnne"sgnl constants" dat at ype=node
ac=sgnm csts clause="41170 41180">

<propdef rcsnnrappi nfo appnn¥"application info"

ful l nme"application information" datatype=string strlex=m ndata
cl ause="d6001" >

<desc>

Application information provided by the SGW decl aration

<when>

Aliteral was specified as the value of the APPI NFO paraneter
of the SGWL decl aration applicable to the docunent/subdocunent.

<propdef subnode rcsnneprol og dat at ype=nodel i st
ac="doct pdcl [|ktpdcl comdcl pi ssep" cn=sgm doc cl ause="71001">

<propdef subnode rcsnmeepil og dat atype=nodel i st ac="condcl pi ssep”
cn=sgnl doc cl ause="71002">

<desc>

O her prolog follow ng the docunent instance.

<cl assdef rcsnmesgml csts appnm="sgm constants" clause="b6004 c2101">
<desc>

A hol ding pen for selected nodes intrinsic to all SGW documents,

whi ch may be needed as irefnodes el sewhere

<not e>

This has no properties unless the srabs (shortref abstract)

or linkabs (link abstract) nodul es are included

<cl assdef rcsnmrattasgn appnm="attri bute assignment"
conpr op=val ue dsepprop=t okensep cl ause="79002">

<desc>

An attribute assignnent, whether specified or defaulted.
<not e>

In the base nodul e because of data attributes

<propdef subnode rcsnmrval ue dat at ype=nodel i st

ac="attval tk datachar sdata intignch entstart entend" cl ause="79401">
<not e>

If the attribute value is tokenized, the children are of type attvaltk;
ot herwi se, they are of the other allowed types.

<when>

The attribute is not an inpliable attribute for which there is no
attribute specification.

86

© ISO/IEC

| SO/IEC 10179: 1996(E)

<propdef rcsnnenane datatype=string strlex=name strnorm=genera
cl ause="93001" >

<propdef rcsnn¥inplied datatype=bool ean cl ause="b3407">
<desc>

True if and only if the attribute is an inpliable attribute
for which there is no attribute specification

<propdef rcsnn¥tokensep appnn¥"token sep" fullnne"token separator”
dat at ype=char cl ause="79400">

<desc>

The separator between the tokens of the value. Al ways equa

to the SPACE character in the concrete syntax.

<when>

The node has two or nore children of class attvaltk.

<cl assdef rcsnnrattvaltk appnn¥"attribute val ue token" conprop=token
cl ause="79305" >

<propdef rcsnnetoken datatype=string strlex=nntoken cl ause="93003">

<cl assdef rcsnmedat achar appnm="data char" full nm="data character"”
conprop=char cl ause="92002">

<propdef rcsnnrchar full nmrcharacter datatype=char clause="92003">
<desc>
The character returned by the parser to the application.

<cl assdef rcsnnrsdata
fullnme"internal specific character data entity reference result”
conprop=char cl ause="92101">

<propdef rcsnnrsysdata appnne"system data" datatype=string cl ause="43041">
<not e>

The repl acenent text of a specific character data entity is treated

as system data when referenced

<propdef rcsnnechar full nmecharacter datatype=char sd=DSSSL>

<desc>

The character associated with the SDATA entity by the map-sdata-entity
architectural form

<when>

A character has been associated with the SDATA entity by the

map- sdata-entity architectural form

<cl assdef rcsnmepi ful |l nn¥"processing instruction" clause="80000">

<desc>

Processing instruction

<propdef rcsnnrsysdata appnne"system data" datatype=string cl ause="80002">

</ psnodul e>

<l-- Prolog-related abstract classes and properties, level 0 -->

87

| SO/IEC 10179:1996 © ISO/IEC

<psnmodul e rcsnmeprl gabsO ful | nm="prol og abstract |evel 0" dependon=baseabs>

<propdef irefnode rcsnmegovdt appnn¥"governi ng doctype" datatype=node
ac=doct ype

cn=sgnl doc cl ause="71004">

<desc>

The docunent type that governs the parse. Wen there are nore than one
"active" docunent types specified, each active document type gives rise
to a separate parse, which, in turn, creates a separate sgni doc grove

<propdef subnode rcsnnedtlts appnm="doctypes and |i nktypes"

ful |l nm="docunent types and |ink types"

dat at ype=nmmdl i st ac="doctype |inktype" acnnprop="name name" cn=sgnl doc
cl ause="71001">

<desc>

The docunent types and link types declared in the prolog, in declaration
order.

<cl assdef rcsnmedoctype appnn¥"docunent type" clause="b1000">
<desc>

The abstraction of a document type declaration.

<not e>

It includes entities declared in that declaration’s DTD
entities treated as being declared therein because they

occur in a link type for which that DID is the source DTD
and entities declared in the base declarati on which may be
referenced when this document type is active

<propdef rcsnnenane dat atype=string strlex=name strnornegeneral clause="b1002">
<desc>

The nanme associated with the DTD by the docunment type declaration

necessarily al so the name of the type of the outernost el ement.

<propdef rcsnm=govrni ng appnnegover ni ng dat at ype=bool ean cl ause="71005">
<desc>

True if either this was the active docunment type or there was

no active docunent type and this is the base docunent type.

<not e>

The "governi ng" docunent type governs the parsing process.

If more than one docunent type is specified as "active",

each active docunent type gives rise to a separate parse

for which it is the governing docunent type, and thereby

produces a separate grove

<propdef subnode rcsnnm=genents appnn¥"general entities" datatype=nmmdli st
ac=entity acnnprop=nane cl ause="b1004">

<desc>

The general entities of the docunment or subdocunment declared in the DTD.
<not e>

Includes entities not explicitly declared, as discussed above

in the description of this class.

<not e>

If the DID provides a default declaration for undecl ared

general entity nanes, there is no entry in the list

corresponding to this declaration, nor any entry for any

such undecl ared nanme. (But such entities are in the

88

© ISO/IEC

| SO/IEC 10179: 1996(E)

entities property of the sgmdoc class.) See dfltent follow ng

<propdef subnode rcsnmenots appnmenot ati ons dat at ype=nmmdl i st ac=notation
acnnprop=nane cl ause="b1005">

<cl assdef rcsnneentity cl ause="60000">
<propdef rcsnnenane datatype=string strlex=nane strnornrentity clause="93001">
<propdef rcsnneenttype appnne"entity type" datatype=enum cl ause="a5502" >

<enundef rcsnnrtext ful l nm="SGW text">
<enundef rcsnmecdat a>

<enundef rcsnmrsdat a>

<enundef rcsnnendat a>

<enundef rcsnnesubdoc appnmesubdocunent >
<enundef rcsnnepi >

<propdef rcsnnrtext full nm="replacenent text" datatype=string clause="92101">
<when>
The entity is an internal entity.

<propdef subnode rcsnneextid appnm="external id" fullnn="external identifier"
dat at ype=node ac=extid cl ause="al601">

<when>

The entity is an external entity.

<propdef subnode rcsnnratts appnmrattri butes

dat at ype=nmmdl i st ac=attasgn acnnprop=nane cl ause="b4120">

<desc>

A list of data attribute assignnents, one for each declared attribute of
the entity in the order in which they were declared in the attribute
definition list declaration.

<when>

The entity is an external data entity.

<propdef rcsnnenot nane appnme"notati on nane" datatype=string strlex=nane
strnor m=general cl ause="79408">

<when>

The entity is an external data entity.

<propdef irefnode rcsnmenot ati on dat at ype=node ac=not ati on cl ause="b4001">
<when>

The entity is an external data entity.

<cl assdef rcsnmrnotation full nme"data content notation" clause="b4000">

<propdef rcsnnrnane dat atype=string strlex=name strnornrgeneral clause="79441">

<propdef subnode rcsnnrextid appnm="external id" fullnn="external identifier"
dat at ype=node ac=extid cl ause="al601">

<cl assdef rcsnmrextid appnm="external id" full nm="external identifier"
cl ause="al1600" >

<propdef rcsnnepubi d appnm="public id" full nm="public identifier"

89

| SO/IEC 10179:1996 © ISO/IEC

dat at ype=string strlex=m ndata cl ause="al602">
<when>
The external identifier contained an explicit public identifier.

<propdef rcsnnesysid appnne"systemid" full nm="systemidentifier"
dat at ype=string cl ause="al603">

<when>

The external identifier contained an explicit systemidentifier.

<propdef optional rcsnmegensysi d appnm="generated systemid'
ful l nn="generated systemidentifier"

dat at ype=stri ng>

<desc>

The systemidentifier generated by the systemfromthe externa
identifier and other information available to the system
<when>

The external identifier is not the external identifier of

the default entity.

</ psnodul e>

<I-- Docunent instance related abstract classes and properties -->
<psnodul e rcsnmei nstabs ful | nm="i nst ance abstract" dependon=baseabs>

<propdef subnode rcsnm=docel em appnm="docunent el enent" dat atype=node
ac=el enent cn=sgm doc cl ause="72003">

<desc>

The docunent el ement for the governing docunent type

<propdef irefnode rcsnmrel ements dat at ype=nnmmdl i st ac=el enent acnnprop=id
cn=sgnl doc cl ause="73001">

<desc>

Al'l the elenents in the document which have unique identifiers in the
order in which they are detected by the parser: parents occur

before children; siblings occur in left-to-right order.

<propdef irefnode rcsnmrentities datatype=nmmdlist ac=entity acnnprop=nane
cn=sgnm doc cl ause="94410">

<desc>

The explicitly declared general entities fromthe governi ng docunent

type, followed by the defaulted entities

<not e>

This includes both internal and external entities. It does not

i ncl ude unnaned entities.

<propdef subnode rcsnnedfltents appnn="defaulted entities" datatype=nmmdli st
ac=entity acnnprop=nanme cn=sgnl doc cl ause="94412">

<desc>

An entity for each entity name in the docunent that referenced

the default entity in the governing docunent type.

<!-- Attribute value token -->
<propdef irefnode rcsnmrentity datatype=node ac=entity cn=attvaltk

cl ause="79401" >
<when>

90

© ISO/IEC

| SO/IEC 10179: 1996(E)

Decl ared value of attribute is ENTITY or ENTITIES.

<propdef irefnode rcsnmenot ati on dat at ype=node ac=notation cn=attvaltk
cl ause="79408" >

<when>

Decl ared val ue of attribute is NOTATI ON

<propdef irefnode rcsnmreferent datatype=node ac=el ement cn=attvaltk
cl ause="79403" >

<when>

Decl ared val ue is | DREF or | DREFS.

<cl assdef rcsnmeel enent conprop=content clause="73000">

<propdef rcsnnegi full nm"generic identifier" datatype=string strlex=nane

strnor m=general clause="78001">
<desc>
Generic identifier (element type nane) of elenment.

<propdef derived rcsnnrid ful |l nm="uni que identifier" datatype=string
strl ex=nane strnorm=general clause="79403">

<when>

A unique identifier was specified for the el ement.

<propdef subnode rcsnnratts appnmrattri butes

dat at ype=nmmdl i st ac=attasgn acnnprop=nane cl ause="79301">
<desc>

A list of attribute assignnents, one for each declared attribute
of the elenent in the order in which they were declared in the
attribute definition list declaration

<propdef subnode rcsnmecontent datatype=nodeli st

ac="dat achar sdata el ement extdata subdoc pi nsignch ignrs ignre repos
usemap uselink entstart entend ssep condcl nsstart nsend ignnrkup”

cl ause="76001">

<cl assdef rcsnmeext data appnn¥"external data"

fullnm"reference to external data" clause="a5500">

<desc>

The result of referencing an external data entity.

<propdef rcsnneentnane appnne"entity nane" datatype=string strlex=nane
strnornrFentity cl ause="a5101">

<propdef irefnode rcsnmeentity datatype=node ac=entity cl ause="94410">
</ psnodul e>
<l-- Base SDS cl asses and properties -->

<psmodul e rcsnmrbasesdsO ful | nm="base SGW docunent string |evel 0"
dependon=baseabs>

<l-- Sdata -->

<propdef optional rcsnmrentname appnme"entity name" datatype=string

91

| SO/IEC 10179:1996

© ISO/IEC

strl ex=nane strnormeentity cn=sdata cl ause="a5101">

<propdef irefnode rcsnmrentity datatype=node ac=entity cn=sdata
cl ause="94410">

<l-- Processing instruction -->

<propdef rcsnneent nane appnne"entity nane" datatype=string strlex=nane
strnorneentity cn=pi clause="a5101">

<when>

The processing instruction resulted fromreferencing a Pl entity.

<propdef irefnode rcsnmeentity datatype=node ac=entity cn=pi

cl ause="94410" >

<when>

The processing instruction resulted fromreferencing a Pl entity.

<l-- Entity -->

<propdef rcsnnedflted appnmedef aul t ed dat atype=bool ean cn=entity

cl ause="94412">

<desc>

True if this was created because of a reference to the default entity.

</ psnodul e>

<psnodul e rcsnmrbasesds1 ful | nm"base SGWL. docunent string |evel 1"
dependon=basesds0>

<propdef subnode optional rcsnmeentref appnne"entity ref"
fullnme"entity reference" datatype=nodeli st

ac="gendel m nane ssep entstart entend refendre shortref" cn=p

cl ause="94401">

<desc>

The markup of the entity reference.

<not e>

ssep, entstart, and entend may occur only in a name group in a naned
entity reference

<when>

The processing instruction resulted fromreferencing a Pl entity with
a nanmed entity reference or a short reference

<propdef subnode optional rcsnmropen appnn="open delint

ful | nm="open delimter" datatype=node ac=gendel m cn=pi cl ause="80001">
<when>

The processing instruction did not result fromreferencing a Pl entity.

<propdef subnode optional rcsnmecl ose appnm="cl ose delinf

fullnme"cl ose delimter" datatype=node ac=gendel m cn=pi cl ause="80001">
<when>

The processing instruction did not result fromreferencing a Pl entity.

<l-- Attribute -->

<propdef irefnode rcsnmrattspec appnn="attribute spec" fullnm="attribute

speci fication"

92

© ISO/IEC

| SO/IEC 10179: 1996(E)

dat at ype=nodel i st ac="nane ssep gendelmliteral attvalue" cn=attasgn
cl ause="79002" >

<when>

The attribute was specified rather than defaulted or inplied.

<propdef irefnode rcsnmrattval sp appnm="attri bute val ue spec”
fullnme"attri bute val ue specification" datatype=node
ac="attvalue literal" cn=attasgn cl ause="79301">

<when>

The attribute is not inplied.

<!-- Data character -->

<propdef rcsnnwintrplch appnn¥"interp replaced char"
fullnm="interpretation replaced character" datatype=char cn=datachar
cl ause="al1704" >

<desc>

The character that was repl aced.

<not e>

When a sequence of RE and/or SPACE characters in a mnimumlitera
is replaced by a single SPACE character, then the first

character is represented by a datachar possibly with an intrplch
property, and the other characters are represented by an intignch
<when>

The data character replaced another character

when a literal was interpreted: a SPACE character that replaced a
RE or SEPCHAR in an attribute value literal or an RE in a mni num
literal.

<propdef subnode optional rcsnmenanecref appnm="naned char ref"

ful l nme" named character reference" datatype=nodeli st

ac="gendel m nane refendre" cn=datachar cl ause="95001">

<when>

The data character was the replacenent of a naned character reference.

<propdef subnode optional rcsnmenuncref appnm="nureric char ref"

ful l nme" nueri ¢ character reference" datatype=nodeli st

ac="gendel m name crefcnum refendre" cn=datachar cl ause="95001">

<when>

The data character was the replacenent of a nuneric character reference.

<l-- Specific character data -->

<propdef subnode optional rcsnnemarkup dat at ype=nodel i st
ac="gendel m name ssep entstart entend refendre shortref" cn=sdata

cl ause="94401">

<not e>

ssep, entstart, and entend can occur only in a name group in a naned
entity reference

<cl assdef rcsnmessep appnnm="s sep" full nm"s separator" mayadd
cl ause="62100">

<propdef rcsnnechar full nmecharacter datatype=char clause="92003">

<propdef subnode optional rcsnmenanecref appnm="naned char ref

93

| SO/IEC 10179:1996

© ISO/IEC

ful l nme" naned character reference" datatype=nodeli st
ac="gendel m name refendre" clause="95001">

<when>

The character was the replacenent of a named character reference

<cl assdef rcsnmecomment cl ause="a3002">

<pr opdef subnode optional rcsnnFopen appnn="open delinf
ful l nn="open delimter" datatype=node ac=gendel m cl ause="a3002" >

<propdef rcsnnrchars full nmecharacters datatype=string clause="92101">
<desc>
The characters in the coment (excluding the comdeliniters).

<propdef subnode optional rcsnmecl ose appnnme"cl ose delinf
fullnm="cl ose delimter" datatype=node ac=gendel m cl ause="a3002">

<cl assdef rcsnmecondcl appnme"coment decl” ful Il nme"coment decl aration”
conpr op=mar kup mayadd cl ause="a3001" >

<propdef subnode rcsnnemar kup dat at ype=nodel i st ac="comment ssep"
cl ause="a3001" >

<cl assdef rcsnmei gnnr kup appnm="i gnored mar kup" conprop=mar kup

cl ause="77002 94405 c3007">

<desc>

Ignored narkup. Either a start-tag or end-tag that is ignored because
it contains a document type specification that contains a name group
none of the nanes in which is the nane of an active docunent type, or
a general or paraneter entity reference that is ignored because it
contains a nane group none of the nanes in which is the nane of an
active docunment or link type, or a link set use declaration that is

i gnored because its link type nane is not an active link type

or a general entity reference in an attribute value literal in

a start-tag that is itself ignored markup, or an entity declaration
that is ignored because the entity was already decl ared.

<propdef subnode rcsnnFmar kup dat at ype=nodel i st
ac="gendel m name ssep attvalue literal entstart entend refendre"
cl ause="74001 75001 94401 c3001">

<cl assdef rcsnmeentstart appnm="entity start" conprop=narkup>
<desc>

The start of the replacenent text of an entity.

<not e>

The end shall be marked by an entend node. This is the result of an
entity reference that was replaced by the parser

<propdef subnode optional rcsnmemarkup dat at ype=nodel i st
ac="gendel m name ssep entstart entend refendre shortref">
<desc>

The markup of the entity reference.

<propdef optional rcsnmrentname appnme"entity name" datatype=string
strlex=name strnormrentity>

94

© ISO/IEC

| SO/IEC 10179: 1996(E)

<propdef irefnode rcsnmeentity datatype=node ac=entity clause="a5201">

<cl assdef rcsnmeentend appnne"entity end" cl ause="94500">
<desc>
The end of an entity reference that was replaced by the parser.

<cl assdef rcsnmensi gnch appnne"nmarked section ignored char”
ful l nm="marked section ignored character” clause="a4204">
<desc>

A character that has been ignored within a nmarked section

<propdef rcsnnechar full nmecharacter datatype=char clause="92101">

<cl assdef rcsnmrintignch appnm="interp ignored char"
fullnm="interpretation ignored char" clause="79303 al1704">

<desc>

A character in a literal that was ignored when the literal was
interpreted: an RS in an attribute value literal or in a minimumliteral
an RE or SPACE character in a mnimumliteral that inmediately

foll owed anot her RE or SPACE character in a mnimmliteral,

or an RE or SPACE character that was the first or |ast character
inamnmmliteral.

<propdef subnode optional rcsnmenanecref appnm="naned char ref"
ful | nme" named character reference" datatype=nodeli st
ac="gendel m name refendre" clause="95001">

<when>

The character was the replacement of a named character reference

<propdef rcsnnechar full nmecharacter datatype=char clause="92101">

<cl assdef rcsnm=gendel m appnn¥"general delin' fullnn="general delimter"
cl ause="FI G30" >

<desc>

A general delimter.

<propdef subnode optional rcsnmenanecref appnm="naned char ref"
ful l nme" named character reference" datatype=nodeli st
ac="gendel m name refendre" clause="95001">

<not e>

This may happen only for a delinmter that is the first child

of its parent or the value of a close delimter property.
<when>

The first character of the delimter was entered with a naned
character reference

<propdef rcsnn¥rol e datatype=string strnornmrrcsgener clause="96001 FI G30">
<desc>
The name of the delimter role.

<propdef optional rcsnmrorigdel m appnm="original delint
fullnm"original delimter" datatype=string clause="92102 FlI G2">
<desc>

The delimter as originally entered before any upper-case substitution

<cl assdef rcsnnmrFnane cl ause="93001" >

95

| SO/IEC 10179:1996 © ISO/IEC

<desc>

A nane within markup.

<not e>

Names in attribute values are represented by nodes of type attvaltk
rat her than nane.

<propdef rcsnneorignane appnn¥"origi nal nanme" datatype=string clause="93005">
<desc>

The characters of the nane as originally entered before

any upper-case substitution

<cl assdef rcsnmername appnnme"reserved name" cl ause="d4701" >
<desc>
A token in markup that is recognized as a reserved nane.

<propdef rcsnn¥refnane appnne"ref nane" full nn¥"reference nane"
dat at ype=string strnormercsgener clause="d4704">

<desc>

The reference reserved nane.

<propdef optional rcsnnForignane appnn¥"origi nal nane" datatype=string
cl ause="93005" >

<desc>

The reserved nane as originally entered before any upper-case
substitution

<cl assdef rcsnmeliteral conprop=val ue cl ause="al201 79302 al701 al603">
<desc>

A paraneter literal, attribute value literal, mninmumliteral, or
systemidentifier.

<propdef subnode optional rcsnmropen appnm="open delint
ful l nm="open delimter" datatype=node ac=gendel m cl ause="96100 FI G30">

<propdef subnode rcsnmeval ue dat at ype=nodel i st

ac="entstart entend datachar sdata intignch"

cl ause="a1202 91001 al702 80002">

<desc>

Interpreted value of literal.

<not e>

If the literal is an attribute value literal for a tokenized val ue
the value of the literal represents the attribute value before

t okeni zation but after interpretation

<propdef subnode optional rcsnmecl ose appnm="cl ose delinf
fullnme"cl ose delimter" datatype=node ac=gendel m cl ause="96100 FI G30">

<cl assdef rcsnmenunber cl ause="93002">

<desc>

A nunber in markup that is not a character number in

a character reference

<not e>

Numbers in attribute values are represented by nodes of type attvaltk
rat her than nunber.

<propdef rcsnnedigits datatype=string strlex=nunber clause="93002">

96

© ISO/IEC

| SO/IEC 10179: 1996(E)

<cl assdef rcsnmecref cnum appnm="char ref char nunber”

full nn="character reference character nunber"” clause="95001">

<desc>

A character number occurring in a character reference.

<not e>

The nuneric value of the nunber is determ ned by the char property of
t he datachar node

<propdef optional rcsnnendigits appnn¥"n digits" full nm"nunber of digits"

dat at ype=i nt eger cl ause="95003 93002" >
<desc>
The nunber of digits used to specify the val ue.

<cl assdef rcsnmerefendre appnnme"ref end re" fullnne"reference end RE"
cl ause="94502" >

<desc>

An RE in narkup that is used as a reference end.

<cl assdef rcsnmeattval ue appnm="attribute val ue" cl ause="79400">
<desc>

An attribute value specification that is an attribute val ue
rather than an attribute value literal

<not e>

Do not confuse this with the attasgn cl ass.

<propdef rcsnneval ue datatype=string clause="93005">
<desc>
The val ue before any upper-case substitution.

<cl assdef rcsnmennt oken appnm="nane token" cl ause="93003">

<desc>

A nane token in markup

<not e>

This is used only for nane tokens in nane token groups in

decl ared val ues. Nanme tokens in attribute values are represented by
nodes of type attvaltk rather than nntoken.

<propdef rcsnmeori gname appnm="origi nal nane token" datatype=string
cl ause="93005" >

<desc>

The characters of the nane token as originally entered before

any upper-case substitution.

<cl assdef rcsnmensstart appnm="narked section start"

ful | nm"marked section declaration start" conprop=nmarkup cl ause="a4002">
<desc>

The part of a marked section declaration preceding the marked section

<propdef subnode optional rcsnnemarkup dat at ype=nodel i st
ac="gendel m rnanme ssep entstart entend conment ignnrkup" clause="a4002">
<not e>

First child will be gendelmfor ndo, last will be gendel mfor

dso.

<propdef rcsnn¥status datatype=enum cl ause="a4201">

97

| SO/IEC 10179:1996

© ISO/IEC

<desc>
Ef fective status of nmarked section

<enundef rcsnn¥i gnore>
<enundef rcsnmecdat a>
<enundef rcsnn¥rcdat a>
<enundef rcsnnrFi ncl ude>
<enundef rcsnnet enp>

<cl assdef rcsnnensend appnne"nmar ked section end" conprop=markup
cl ause="a4003" >

<propdef subnode optional rcsnnenmarkup dat at ype=nodel i st ac=gendel m
cl ause="Fl GBe FI G3h">

<not e>

WII be a gendelmfor the nsc and a gendel mfor the ndc.

</ psnodul e>

<l-- SGW Declaration-related abstract classes and properties -->

<psnmodul e rcsnmesdcl abs ful | nm="sgml decl arati on abstract" dependon=baseabs>

<propdef rcsnnrsgm ver appnn¥"sgnm version" datatype=string strlex=nmi ndata

cn=sgnl doc cl ause="d0002" >

<desc>

The minimumliteral specified as the first paranmeter of the SGW
decl aration applicable to this docunent or subdocunent.

<propdef subnode rcsnn=docchset appnne"docunent char set"
ful | nm="docunent character set" datatype=node ac=charset cn=sgnl doc
cl ause="d1001" >

<propdef subnode rcsnmecapset appnme"capacity set" datatype=node
ac=capset cn=sgml doc cl ause="d2001">

<propdef rcsnneEsynscope appnn¥"syntax scope"
ful l nme"concrete syntax scope" datatype=enum cn=sgnl doc cl ause="d3002" >

<enundef rcsnnFi nstance>
<enundef rcsnmedocunent >

<propdef subnode rcsnmedcl syn appnme"decl syntax"
ful l nm="decl ared concrete syntax" datatype=node ac=syntax cn=sgmi doc
cl ause="d4001" >

<propdef subnode rcsnmerefsyn appnn¥"ref syntax"

full nm="ref erence concrete syntax" datatype=node ac=syntax cn=sgni doc
cl ause="d4002 e0001 FI Gr0">

<desc>

The reference concrete syntax used for the SGW decl arati on and,

if the concrete syntax scope is | NSTANCE, the prolog

<not e>

Not a property of sgm csts because it depends on the docunment character
set.

98

© ISO/IEC

| SO/IEC 10179: 1996(E)

<propdef irefnode rcsnmeprosyn appnne"prol og syntax"

ful l nn="prol og concrete syntax" datatype=node ac=syntax cn=sgm doc
cl ause="d4001" >

<desc>

The concrete syntax for the prol og.

<propdef subnode rcsnn¥features fullnn¥"feature use" datatype=node
ac=features cn=sgm doc cl ause="d5001" >

<cl assdef rcsnmecharset appnn¥"char set" full nme"character set"
conprop=chdescs cl ause="d1000" >

<pr opdef subnode rcsnnrchdescs appnn¥"char descs"
ful l nm="character descriptions" datatype=nodelist ac=chardesc
cl ause="d1101" >

<cl assdef rcsnmechardesc appnme"char desc" full nme"character description”
cl ause="d1122">

<propdef rcsnnedescnum appnn¥"desc set nunber"
ful l nm="descri bed set character nunber" datatype=integer clause="d1123">

<propdef rcsnnenchars appnme"n chars" full nme"nunber of characters”
dat at ype=i nteger cl ause="d1125">

<propdef rcsnnebasenum appnn¥"base set nunber"

full nm="base set character nunber" datatype=i nteger clause="d1124">
<when>

Character description included a base set character nunber.

<propdef rcsnnrbaseset appnm="base char set" full nne"base character set"
dat at ype=string strl ex=m ndata cl ause="d1111">

<desc>

The public identifier of the base character set.

<when>

Character description included a base set character nunber.

<propdef rcsnnedesclit appnne"desc literal"

ful l nm"description literal" datatype=string strlex=m ndata
cl ause="al1701" >

<when>

Character description not entered as base set nunber.

<cl assdef rcsnmesyntax full nn="concrete syntax" cl ause="d4000">

<not e>

This represents a concrete syntax bound to this docunent’s docunent
character set. Characters are characters in the docunent character set
not in the syntax reference character set.

<propdef rcsnneshunctrl appnn¥"shunchar control s" datatype=bool ean
cl ause="d4204" >

<desc>

True if SHUNCHAR i ncl uded CONTRCLS

<propdef rcsnneshunchar full nm="shunned character nunbers"
dat atype=intlist clause="d4201">

99

| SO/IEC 10179:1996 © ISO/IEC

<propdef subnode rcsnnesynchset appnne"syntax ref char set"
ful l nne"syntax-reference character set" datatype=node ac=charset
cl ause="d4301" >

<propdef rcsnnrre full nm"record end" datatype=char cl ause="d4401">
<propdef rcsnners full nm"record start" datatype=char cl ause="d4401">
<propdef rcsnnespace datatype=char cl ause="d4401">

<pr opdef subnode rcsnnraddfuns appnn¥"added functi on chars"
ful l nn="added function characters" datatype=nmdlist ac=addfun
acnnprop=nane cl ause="d4401" >

<propdef rcsnnelcnnstrt datatype=string clause="d4503">
<propdef rcsnnrucnnstrt datatype=string clause="d4504">
<propdef rcsnn¥l cnnchar datatype=string cl ause="d4505" >
<propdef rcsnnrucnncthar datatype=string cl ause="d4506" >

<propdef rcsnnrsubstgen appnn¥"subst general nanes"

ful l nm="substitute general nanes" datatype=bool ean cl ause="d4507" >
<desc>

True if CENERAL YES is specified in NAMVECASE

<propdef rcsnnrsubstent appnn¥"subst entity nanes"

ful l nm"substitute entity names" datatype=bool ean cl ause="d4507" >
<desc>

True if ENTITY YES is specified in NAMECASE

<propdef subnode rcsnmegdasns appnm="general delim assocs"

ful l nme"general delinmter role associations"

dat at ype=nmmdl i st ac=dl nrl as acnnprop=rol e cl ause="d4611">

<desc>

There is a termfor every general delimter role whether or not

it is changed fromthat prescribed by the reference concrete syntax
The terms occur in al phabetical order of their (abstract-syntax)
rol e nanes.

<propdef rcsnnesrdel ns appnn¥"shortref delins"
full nme"short reference delimters" datatype=strlist clause="d4621">

<propdef subnode rcsnneslitasns appnm="syntax literal assocs"

full nme"syntax literal associations" datatype=nmmdlist ac=synlitas
acnnpr op=r ef nanme cl ause="d4701" >

<desc>

The syntax literal/reserved nane associations specified by the concrete
syntax. There is a termfor every reserved name whet her or not

it is changed fromthat prescribed by the reference concrete syntax

The terms occur in al phabetical order of the syntactic literals

<propdef rcsnmFattcnt datatype=i nteger cl ause="Fl 41">
<propdef rcsnnrattspl en datatype=integer clause="Fl &42">

100

© ISO/IEC | SO/IEC 10179:1996(E)

<propdef rcsnnebseql en dat at ype=i nteger cl ause="Fl 43" >
<propdef rcsnnrdtagl en dat at ype=i nteger cl ause="Fl (44" >
<propdef rcsnnedt enpl en dat at ype=i nt eger cl ause="Fl 45" >
<propdef rcsnneentl vl datatype=i nteger cl ause="Fl G46">
<propdef rcsnmegrpcnt datatype=i nteger cl ause="FI 47">
<propdef rcsnnegrpgtcnt dat atype=i nteger clause="Fl 48">
<propdef rcsnmegrpl vl datatype=i nteger cl ause="FI G49">
<propdef rcsnnelitlen datatype=integer clause="Fl&a">
<propdef rcsnnenanel en dat at ype=i nt eger cl ause="Fl &4b">
<propdef rcsnnenornsep dat atype=i nteger clause="Fl G4c">
<propdef rcsnnepil en datatype=i nteger clause="Fl 4d">
<propdef rcsnnetagl en datatype=i nteger cl ause="Fl Gde">
<propdef rcsnnetagl vl datatype=i nteger clause="Fl G4f">

<cl assdef rcsnmraddf un appnne"added function char”
ful l nme"added function character"” clause="d4400">

<propdef rcsnnrnanme datatype=string strlex=nane strnornrgenera
cl ause="d4402" >

<propdef rcsnneclass full nme"function class" datatype=enum cl ause="d4403" >
<enundef rcsnmef unchar>
<enundef rcsnmensi char >
<enundef rcsnmensochar >
<enundef rcsnmeEnsschar >
<enundef rcsnnrsepchar>

<propdef rcsnnrchar full nmecharacter datatype=char clause="95003">
<desc>
Character assigned to function

<cl assdef rcsnmedl nrl as appnm="delimrol e assoc"

fullnm="delinter role association" clause="d4610">

<desc>

The associ ation, made by a concrete syntax, of a character string with
an abstract-syntax delimter role.

<propdef rcsnn¥rol e datatype=string strnornrrcsgener clause="d4612">
<desc>
The name of the role.

<propdef rcsnn=del m appnnedelim ful |l nm=del i mi ter datatype=string
strnor m=general cl ause="d4611">

<desc>

The string to be used in the docunent.

<cl assdef rcsnmesynlitas appnm="syntactic literal assoc"

full nme"syntactic literal association" clause="d4700">

<desc>

The associ ation, nmade by a concrete syntax, of a reserved nanme with
an abstract-syntax syntactic literal.

<propdef rcsnnesynlit appnm="syntactic literal"

dat at ype=string strnormercsgener clause="d4702">

<desc>

The syntactic literal. (Mre precisely, the name which when encl osed in

101

| SO/IEC 10179:1996

© ISO/IEC

doubl e quotation marks becones the syntactic literal.)

<propdef rcsnnrresnane appnne"reserved nane" datatype=string strlex=nane

strnor m=general cl ause="d4702">

<desc>

The reserved nane to be used in the docunent.

<not e>

In the reference concrete syntax, the syntactic literal is
identical to the reserved nane.

<cl assdef rcsnmecapset appnne"capacity set" cl ause="d2000">

<propdef rcsnn¥total cap dat atype=i nteger cl ause="FI G51">
<propdef rcsnnmeentcap dat atype=i nteger cl ause="FI G52">
<propdef rcsnneentchcap dat atype=i nteger cl ause="FI G53">
<propdef rcsnnrel encap dat atype=i nt eger cl ause="Fl G54">
<propdef rcsnmegrpcap datatype=i nteger cl ause="FI G55">
<propdef rcsnneexgrpcap dat atype=i nteger cl ause="Fl G56" >
<propdef rcsnneexnnctap dat atype=i nteger clause="Fl G7">
<propdef rcsnmeattcap datatype=i nteger cl ause="FI G58">
<propdef rcsnnrattchcap datatype=i nteger cl ause="FI G59">
<propdef rcsnnravgrpcap dat atype=i nteger cl ause="Fl Gsa">
<propdef rcsnnenotcap dat atype=i nteger cl ause="F|I G5b">
<propdef rcsnnenotchcap dat atype=i nteger cl ause="FI Gsc">
<propdef rcsnnri dcap dat atype=i nteger clause="FI| Gsd">
<propdef rcsnn¥idrefcap datatype=integer clause="Fl Gse">
<propdef rcsnnemapcap dat atype=i nteger cl ause="FI G5f">
<propdef rcsnn¥l ksetcap dat at ype=i nteger cl ause="FI Gg">
<propdef rcsnn¥l knncap dat at ype=i nt eger cl ause="Fl G5h" >

<cl assdef rcsnnefeatures full nmE"feature use" clause="d5000">

<propdef rcsnnrdat atag dat at ype=bool ean cl ause="d5101" >
<desc>
True if DATATAG is YES

<propdef rcsnnrom ttag dat atype=bool ean cl ause="d5101" >
<desc>
True if OMTTAG is YES

<propdef rcsnnerank dat atype=bool ean cl ause="d5101" >
<desc>
True if RANK is YES

<propdef rcsnnrshorttag datatype=bool ean cl ause="d5101" >
<desc>
True if SHORTTAG i s YES.

<propdef rcsnnesinpl e dat at ype=i nt eger cl ause="d5201">
<desc>
0if SIMPLE is NO

<propdef rcsnn¥inplicit datatype=bool ean cl ause="d5201" >
<desc>
True if IMPLICIT is YES

102

© ISO/IEC

| SO/IEC 10179: 1996(E)

<propdef rcsnneexplicit datatype=integer clause="d5201">
<desc>
0 if EXPLICIT is NO

<propdef rcsnmeconcur datatype=i nteger cl ause="d5301">
<desc>
0 if CONCUR is NO

<propdef rcsnnmesubdoc dat at ype=i nt eger cl ause="d5301">
<desc>
0 if SUBDOC i s NO

<propdef rcsnnm=fornal datatype=bool ean cl ause="d5301" >
<desc>
True if FORMAL is YES

</ psnodul e>
<l-- SGW Decl aration-related SGW docunent string classes and properties

<psnodul e rcsnnrsdcl sds ful | nn¥"SGWL decl aration SGML. document string"
dependon=basesds1>

<propdef subnode optional rcsnmesgm dcl appnm="sgm decl"

ful | nme" SGWL decl arati on" dat at ype=node ac=sgnl dcl cn=sgnl doc
cl ause="d0001" >

<when>

SGWL decl aration was explicitly present.

<propdef rcsnnesdcltype appnm="sgm decl type"
ful l nm=" SGWL decl aration type" datatype=enum cn=sgmi doc cl ause="62300">

<enundef rcsnneexplicit>
<desc>
The SGW declaration was explicitly specified.

<enundef rcsnn¥inplied>
<desc>
The SGW decl aration was inplied.

<enundef rcsnnrEi nherit>

<desc>

The SGW decl aration cones fromthe SGW docunent of which
this is a subdocunent.

<cl assdef rcsnmesgm dcl appnm="sgm decl" full nm="SGW decl aration”
conpr op=mar kup cl ause="d0000" >

<propdef subnode rcsnnemar kup dat at ype=nodel i st

ac="ssep coment nanme nunber rnanme literal gendel nf' cl ause="d0001">
<not e>

Al so includes any s separators before the SGW decl aration

last child is gendel mfor ndc delimter

</ psnodul e>

103

| SO/IEC 10179:1996

© ISO/IEC

<l-- Prolog-related abstract classes and properties, level 1 -->

<psnmodul e rcsnmeprl gabsl ful | nm="prol og abstract |evel 1"
dependon=pr | gabs0>

<propdef subnode rcsnnrattdefs appnm="attribute defs"
fullnme"attribute definitions" datatype=nmdlist ac=attdef acnnprop=nane
cn=not ati on cl ause="b3002">

<propdef irefnode rcsnmrattdef appnne"attribute def"
fullnm="attribute definition" datatype=node ac=attdef cn=attasgn
cl ause="b3003" >

<propdef irefnode rcsnmeel entype appnnm="el enent type" datatype=node ac=el ent ype

cn=el enent cl ause="b2101">

<propdef subnode rcsnnedfltent appnne"default entity" datatype=node ac=dfltent

cl ause="a5105" cn=doct ype>

<when>

The DTD decl ared a default for undeclared entity nanes. (Each such
undecl ared name is associated with an entity using this node as

a pattern, but in certain cases, the systemnmay not select the

same entity for each nane.)

<propdef subnode rcsnnrel ent ps appnn¥"el enent types" datatype=nmdli st
ac="el ent ype ranksten' acnnprop="gi ranksteni' cn=doctype clause="b2101"
<desc>

Generic identifiers or rank stens used to name el enents

<propdef subnode rcsnneparnments appnm="paraneter entities"

dat at ype=nmmdl i st ac=entity acnnprop=nanme cn=doctype

cl ause="b1004" >

<not e>

Includes entities not explicitly declared, as discussed above in
the description of this class.

<cl assdef rcsnmeel entype appnm="el enent type"
full nm="el enent type definition" clause="b2000">

<propdef rcsnnegi full nm="generic identifier" datatype=string
strl ex=nane strnorm=general clause="78002">

<propdef rcsnnromitstrt appnn¥"onmit start tag" datatype=bool ean
cl ause="b2202">

<desc>

True if start-tag minimzation was "O'.

<when>

El enent type declaration specified omitted tag mnim zation.

<propdef rcsnnrom tend appnm="onmit end tag" datatype=bool ean
cl ause="b2203">

<desc>

True if end-tag mnimzation was "O'

<when>

El enent type declaration specified omitted tag mnim zation.

104

© ISO/IEC

| SO/IEC 10179: 1996(E)

<pr opdef

<enundef
<desc>
Decl ar ed

<enundef
<desc>
Decl ar ed

<enundef
<desc>
Decl ar ed

<enundef
<desc>
Cont ent

<enundef
<desc>
Cont ent

<pr opdef

rcsnmecont ype appnme"content type" datatype=enum cl ause="b2300">
rcsnnrcdat a>

content of CDATA

rcsnner cdat a>

content of RCDATA.

rcsnmeenpt y>

content of EMPTY

r csnmeany>

nodel of ANY.

rcsnmenodel grp appnm=" nodel group" >

nodel that is a nodel group

subnode rcsnnmenodel grp appnne"nodel group" dat at ype=node

ac=nodel grp cl ause="b2402">

<when>

El ement type declaration includes content nodel that has a nodel group

<pr opdef
<when>

rcsnimrexcl s appnnrexcl usi ons datatype=strlist clause="b2521">

Contype is any or nodel grp

<pr opdef
<when>

rcsnmei ncl s appnnri ncl usi ons dat at ype=strlist clause="b2511">

Contype is any or nodel grp

<pr opdef

subnode rcsnnrattdefs appnm="attribute defs"

fullnme"attribute definitions" datatype=nmdlist ac=attdef acnnprop=nane
cl ause="b3003" >

<cl assdef

rcsnmenodel grp appnm=" nodel group" conprop=t okens

cl ause="b2402" >

<desc>
A nodel
<not e>

group or a data tag group.

A data tag group is represented by a nodel group node with connector

equal to

seq whose first token is an el emk and whose second token

is a pcdatatk.

<pr opdef
<desc>

Connect or

<enundef
<enundef
<enundef

rcsnmeconnect appnmeconnect or dat at ype=enum cl ause="b2410" >
used within nodel group.
r csnmrand>

rcsnnror >
rcsnnrseq>

105

| SO/IEC 10179:1996 © ISO/IEC

<propdef rcsnneoccur appnne"occur indicator" fullnnmE"occurrence indicator”
dat at ype=enum cl ause="b2420" >

<when>

Model group has an occurrence indicator

<enundef rcsnneopt >
<enundef rcsnnepl us>
<enundef rcsnn¥rep>

<propdef subnode rcsnnet okens appnme"content tokens" datatype=nodeli st
ac="nodel grp pcdatatk el entk" clause="b2403">

<cl assdef rcsnmepcdat atk appnm="pcdata token" clause="b2404">
<cl assdef rcsnmeel entk appnne"el ement token" cl ause="b2405">

<propdef rcsnnegi fullnme"generic identifier" datatype=string
strl ex=nane strnorm=general clause="b2405">

<propdef rcsnneoccur appnm="occur indicator" fullnnE"occurrence indicator”
dat at ype=enum cl ause="b2405" >

<when>

El enent token has an occurrence indicator

<enundef rcsnnropt >
<enundef rcsnnepl us>
<enundef rcsnn¥rep>

<cl assdef rcsnmeattdef appnme"attribute def" fullnnm="attribute definition"
conprop=df | tval clause="b3003">

<propdef rcsnnenane datatype=string strlex=name strnornm=genera
cl ause="b3201">

<propdef rcsnnedcltype appnn¥"decl val ue type"
ful l nm"decl ared val ue prescription type" datatype=enum cl ause="b3301">

<enundef rcsnmecdat a>

<enundef rcsnnrentity>

<enundef rcsnnrentities>

<enundef rcsnnrEi d>

<enundef rcsnn¥i dref>

<enundef rcsnn¥idrefs>

<enundef rcsnmeEnanme>

<enundef rcsnneEnanes>

<enundef rcsnneEnnt oken>

<enundef rcsnneEnnt okens>

<enundef rcsnnenunber >

<enundef rcsnneEnunbers>

<enundef rcsnneEnut oken>

<enundef rcsnneEnut okens>

<enundef rcsnneEnotati on>

<enundef rcsnnennt kgrp appnne"nanme token group">
<desc>

The decl ared val ue was a nane token group

106

© ISO/IEC

| SO/IEC 10179: 1996(E)

<propdef rcsnnetokens datatype=strlist clause="b3301">
<desc>

A list of strings specifying the allowed tokens.
<when>

Decl ared value is a nane token group or a notation

<propdef rcsnnedflttype appnne"default val ue type" datatype=enum
cl ause="b3401">

<enundef rcsnnrval ue>
<desc>
The default value was an attribute val ue specification w thout #FIXED.

<enundef rcsnnefi xed>
<enundef rcsnnerequired>
<enundef rcsnmecurrent >
<enundef rcsnmeconref >
<enundef rcsnn¥inplied>

<propdef subnode rcsnnedfltval appnne"default val ue" datatype=nodeli st
ac="attval tk datachar sdata intignch entstart entend" cl ause="b3409">
<when>

The default value includes an attribute val ue specification.

<propdef irefnode rcsnmecurgrp appnn¥"current group" datatype=nodeli st
ac=attdef clause="b3001">

<desc>

Al the attdef nodes that represent the sane attribute definition
and which will therefore share the sane current val ue.

<not e>

There will be as many nmenbers as there were associ ated el ement types
in the attribute definition |list declaration

that declared this attribute definition.

<when>

The default value type is CURRENT.

<propdef rcsnnecurattix appnn="current attribute index" datatype=integer
cl ause="b3001" >

<desc>

The nunber of preceding attribute definitions in the docunent type
declaration with a default val ue type of CURRENT.

<not e>

Al the attdef nodes in the value of the curgrp property of an attdef
node will exhibit the same value for the curattix property.

Two attdef nodes will share the sane current value just in case they
exhibit the same value for the curattix property

<when>

The default value type is CURRENT.

<cl assdef rcsnmedfltent appnne"default entity">

<propdef rcsnnrenttype appnnme"entity type" datatype=enum cl ause="a5502" >
<enundef rcsnnrtext full nnE"SGW text">

<enundef rcsnmecdat a>
<enundef rcsnnesdata>

107

| SO/IEC 10179:1996 © ISO/IEC

<enundef rcsnnendat a>
<enundef rcsnnrsubdoc appnmesubdocunent >
<enundef rcsnnFpi >

<propdef rcsnnetext datatype=string fullnm="repl acement text"
cl ause="92101">

<when>

The default entity declaration declares an internal entity.

<propdef subnode rcsnmeextid appnme"external id"

full nme"external identifier" datatype=node ac=extid cl ause="al601">
<when>

The default entity declaration declares an external entity.

<propdef subnode rcsnnratts appnmFattri butes

dat at ype=nmmdl i st ac=attasgn acnnprop=nane cl ause="b4120">

<desc>

A list of data attribute assignnents, one for each declared attribute of the
entity in the order in which they were declared in the attribute

definition list declaration.

<when>

The default entity declaration declares an external entity.

<propdef rcsnnenot nane appnme"notati on nanme" datatype=string strlex=nane
strnor mrgeneral cl ause="79408">

<when>

The default entity declaration declares an external entity.

<propdef irefnode rcsnmenot ati on dat at ype=node ac=not ati on cl ause="b4001">
<when>
The default entity declaration declares an external entity.

</ psnodul e>
<l-- Prolog-related SDS cl asses and properties -->

<psnmodul e rcsnmeprl gsds ful |l nm="prol og SGW. docunent string"
dependon=basesds1>

<propdef irefnode rcsnmrentdcl appnm="entity decl"
fullnm="entity decl aration" datatype=node ac=entdcl cn=entity
cl ause="a5001" >

<propdef irefnode rcsnmrentdcl appnm="entity decl"
fullnme"entity decl aration" datatype=node ac=entdcl cn=dfltent
cl ause="a5001" >

<propdef irefnode rcsnmenotdcl appnm="notation decl"
ful l nm"not ati on decl arati on" datatype=node ac=notdcl cn=notation
cl ause="b4001" >

<propdef irefnode rcsnmrattdl dcl appnme"attribute def |ist decl"
fullnm"attribute definition list declaration" datatype=node ac=attdl dc
cn=notation cl ause="b4111">

<when>

The notation has an associ ated ATTLI ST.

108

© ISO/IEC

| SO/IEC 10179: 1996(E)

<propdef irefnode rcsnmeel t pdcl appnne"el ement type decl”
ful l nn="el ement type declaration"” datatype=node ac=el t pdcl cn=el entype
cl ause="b2001">

<propdef irefnode rcsnmrattdl dcl appnme"attribute def list decl"”
fullnme"attribute definition |list declaration”

dat at ype=node ac=attdl dcl cn=el entype cl ause="b3001">

<when>

The el ement type has an associ ated ATTLI ST decl arati on

<propdef irefnode rcsnmedoct pdcl full nne"docunent type declaration”
dat at ype=node ac=doct pdcl cn=doctype cl ause="b1001">

<propdef irefnode rcsnmrattval sp appnm="attri bute val ue spec”
fullnme"attribute val ue specification”

dat at ype=node ac="attvalue literal" cn=attdef clause="79002">
<when>

Default value includes attribute value specification

<cl assdef rcsnmedoct pdcl ful | nm="docunment type decl aration" mayadd
cl ause="b1000" >

<propdef subnode rcsnnemar kup dat at ype=nodel i st

ac="ssep comment nane rnanme literal msstart msend nsignch entstart entend
conmdcl pi eltpdcl entdcl notdcl attdldcl usenmap srmapdcl”
cl ause="b1001">

<not e>

First child is gendelmfor ndo delinmiter; last is gendelm

for ndc delimter. If there is an external entity, its entend node

wi |l appear immedi ately before the gendelmfor the dsc delimter,

if there is one, and otherwi se i Mmedi ately before the gendel m node

for the ndc delimter.

<propdef irefnode rcsnmedoctype appnm="docunent type" datatype=node
ac=doct ype cl ause="b1008">

<propdef subnode rcsnmeentity datatype=node ac=entity cl ause="b1008">
<when>
Document type decl aration includes external identifier

<cl assdef rcsnmrattdl dcl appnm="attribute def |ist decl"
fullnm="attribute definition |list declaration" mayadd cl ause="b3000" >

<propdef subnode rcsnnemar kup dat at ype=nodel i st
ac="ssep comment entstart entend gendel m name nntoken attvalue literal"
cl ause="b3001" >

<propdef irefnode rcsnmrasselt ps appnm="assoc el ement types"

ful | nm"associ ated el ement types" datatype=nodelist ac=el entype

cl ause="b3001" >

<desc>

The el ement types to which the attribute definition list is applicable
ordered as their nanmes occur in the attribute definition

list declaration. This does not include undefined el ement types.

109

| SO/IEC 10179:1996 © ISO/IEC

<propdef irefnode rcsnmrassnots appnm="assoc notations"
ful l nn="associ at ed notations" datatype=nodelist ac=notation clause="b3001">

<cl assdef rcsnmeel t pdcl appnne"el ement type decl”
ful l nm="el enent type declaration" nayadd cl ause="b2000" >

<propdef subnode rcsnnemar kup dat at ype=nodel i st
ac="ssep comment entstart entend gendel m name nunber" cl ause="b2001">

<propdef irefnode rcsnmeel entype appnm="el enent type"
ful l nn="el ement type" datatype=node ac=el entype cl ause="b2101">

<cl assdef rcsnmeentdcl appnne"entity decl” full nme"entity decl aration”
mayadd cl ause="a5000" >

<desc>

An entity declaration that is not ignored

<propdef subnode rcsnnemar kup dat at ype=nodel i st
ac="entstart entend ssep coment gendel m nane rnane literal attval ue"
cl ause="a5001" >

<propdef subnode rcsnmeentity datatype=node ac=entity cl ause="a5201">
<desc>
The entity declared by the entity declaration.

<cl assdef rcsnn¥notdcl appnne"notation decl”
ful l nme"not ati on decl arati on" nayadd cl ause="b4000" >

<propdef subnode rcsnnemar kup dat at ype=nodel i st
ac="entstart entend ssep coment literal nane rname" clause="b4001">

<propdef irefnode rcsnmenot ati on dat at ype=node ac=not ati on cl ause="b4001">
<desc>
The decl ared notati on.

</ psnodul e>
<!-- Docunent instance-related SDS cl asses and properties -->
<psmodul e rcsnmei nstsdsO ful | nm="i nstance SGWL docunent string |evel 0">

<propdef derived rcsnnri ncl uded dat at ype=bool ean cnh=el enent >
<desc>
True if and only if the elenent was an included subel ement.

<propdef derived rcsnnenonitend appnne"nust onit end tag" datatype=bool ean
cn=el enent cl ause="b2209" >

<desc>

True if and only if the end tag for the element had to be onmitted

because the el ement had a decl ared content of enpty or

an explicit content reference

</ psnodul e>

<psmodul e rcsnmri nstsds1l ful | nme"i nstance SGWL docunent string |evel 1"
dependon="i nst sdsO0 basesds1">

110

© ISO/IEC

| SO/IEC 10179: 1996(E)

<l-- Elenent -->

<propdef subnode optional rcsnmestarttag appnne"start tag" datatype=nodeli st
ac="gendel m name ssep entstart entend literal attval ue" cn=el enent

cl ause="74001">

<not e>

First child is gendel mfor stago

Nodes of type entstart and entend can occur only

in the docunment type specification

<when>

A start-tag was specified for the el ement.

<propdef subnode optional rcsnmrendtag appnne"end tag" datatype=nodeli st
ac="gendel m name ssep entstart entend ignnrkup" cn=el enent cl ause="75001">
<not e>

First child is gendelmfor etago or net. Nodes of type entstart,

entend, and ignnrkup can occur only in the docunment type specification
<when>

An end-tag (not a data tag) was specified for the el enent.

<l-- Data character -->

<propdef rcsnnenovedre appnne"noved re" dat atype=bool ean cn=dat achar
cl ause="7610a" >

<desc>

True if and only if this character is an RE that was deemed to occur
at a point other than that at which it in fact occurred

<not e>

A node of type repos will indicate the position at which

it in fact occurred.

<propdef irefnode rcsnmerepos appnme"re position" datatype=node cn=dat achar
ac=repos cl ause="7610a">

<desc>

The position at which this RE character in fact occurred

<when>

This character is an RE that was deened to occur at a point other

than that at which it in fact occurred

<propdef subnode optional rcsnnemarkup dat at ype=nodel i st
ac="gendel m nanme ssep entstart entend refendre shortref" cn=extdata
cl ause="94401 94402">

<desc>

The markup of the entity reference.

<not e>

ssep, entstart, and entend can occur only in a name group in a naned
entity reference

<cl assdef rcsnmrignrs appnme"ignored rs" clause="76101">

<desc>

An RS that was ignored because of the rules in 7.6.1 of |SO 8879
<propdef subnode optional rcsnmenanecref appnm="naned char ref"
ful l nme"named character reference" datatype=nodeli st
ac="gendel m name refendre" clause="95001">

111

| SO/IEC 10179:1996 © ISO/IEC

<when>
The character was the replacenent of a named character reference

<cl assdef rcsnmeignre appnm="i gnored re" cl ause="76100">

<desc>

An RE in content that was ignored because of the rules in 7.6.1 of 1SO
8879.

<not e>

This occurs at the point where the RE originally occurred rather

than at the point it was determ ned that the RE should be ignored

<propdef subnode optional rcsnmenanecref appnm="naned char ref"
ful l nme"nanmed character reference" datatype=nodeli st
ac="gendel m name refendre" clause="95001">

<when>

The character was the replacenent of a named character reference

<cl assdef rcsnmerepos appnme"re position" clause="7610a">

<desc>

The original position of an RE that was deemed by the rules of clause
7.6.1 of 1SO 8879 to occur at some point other than that at which it
in fact occurred.

<not e>

For each node of type repos, there will be a node of type datachar
with a property novedre that is true

<propdef irefnode rcsnmere appnne"record end" datatype=node ac=dat achar
cl ause="7610a" >

<desc>

The character for which this is the repos.

</ psnodul e>

<!-- Datatag-rel ated abstract classes and properties -->
<psnodul e rcsnm=dt gabs ful | nn="dat at ag abstract" dependon=baseabs>

<propdef derived rcsnnedat at ag dat at ype=bool ean cn=el enent cl ause="73201">
<desc>

True if and only if a data tag served as the end tag of the el enment.

<not e>

The data characters conprising the data tag will follow the elenent in

the content of the containing el ement.

<propdef rcsnme=dtgtenps appnm="data tag tenpl ates" datatype=strlist
ch=el entype cl ause="b2444">

<when>

The nodel group was a data tag group

<propdef rcsnnedtgptenp appnn¥"data tag paddi ng tenpl ate" datatype=string
cn=el entype cl ause="b2445">

<when>

The nodel group was a data tag group whose data tag pattern included a
data tag padding tenpl ate.

</ psnodul e>

112

© ISO/IEC | SO/IEC 10179:1996(E)

<I-- Rank-rel ated abstract classes and properties -->
<psnmodul e rcsnmer ankabs ful | nme"rank abstract” dependon=prl gabsi1>

<propdef derived rcsnmeranksuff appnme"rank suffix" datatype=string
cn=el entype cl ause="b2114">

<when>

The elenment type in the el enent type declaration included a rank suffix.

<propdef rcsnnerankstem appnm="rank stent datatype=string cn=el entype
cl ause="b2113">

<when>

The el enment type in the elenent type declaration used a ranked el enent
or ranked group.

<propdef rcsnnerankgrp appnne"rank group" datatype=strlist cn=el entype
cl ause="b2112">

<desc>

The rank stens in the ranked group

<when>

The el ement type declaration included a ranked group

<cl assdef rcsnmerankstem appnme"rank stem' cl ause="b2113">

<propdef rcsnnrstem datatype=string strlex=nane strnornrgenera
cl ause="b2113">

<desc>

Name of rank stem

<propdef irefnode rcsnmeel emt ps appnn="el ement types"
dat at ype=nodel i st ac=el entype cl ause="b2112">

<desc>

The el ement types for which this is a rank stem

</ psnodul e>

<l-- Shortref-related abstract classes and properties -->
<psnodul e rcsnmesrabs ful | nn="shortref abstract" dependon=prl| gabs0>

<propdef subnode rcsnneenptynmap appnn="enpty short ref map"

full nm="empty short reference nap" datatype=node ac=srmap cn=sgmnl csts
cl ause="b6004" >

<desc>

The enpty short reference nap.

<propdef subnode rcsnmesrmaps appnn¥"short ref maps"

ful l nm="short reference maps" datatype=nmmdli st ac=srmap acnnmprop=nane
cn=doct ype cl ause="b1006">

<not e>

Does not include #EMPTY map.

<propdef rcsnnesrmapnm appnne"short ref map nane"

ful l nm="short reference map nanme" datatype=string strlex=rni name
strnor mrgeneral cn=el entype cl ause="b6004" >

<when>

The el ement type has an associ ated short reference map.

113

| SO/IEC 10179:1996 © ISO/IEC

<propdef irefnode rcsnmesrmap appnnme"short ref map"

full nme"short reference map" dat at ype=node ac=srmap cn=el ent ype
cl ause="b6101" >

<when>

The el ement type has an associ ated short reference map

<cl assdef rcsnmesrmap appnme"short ref map" fullnme"short reference map"
cl ause="b5000" >

<propdef rcsnnenane datatype=string strlex=name strnornegeneral clause="b5002">
<when>
Map is not the inplicitly declared #EMPTY nap

<propdef subnode rcsnnemap dat at ype=nmmdl i st ac=srassoc acnnprop=shortref
cl ause="b5004" >

<cl assdef rcsnmesrassoc appnn¥"short ref assoc”
full nme"short reference association" clause="b5004">

<propdef rcsnnrshortref appnn¥"short ref"
full nm="short reference delinmter" datatype=string strnormgenera
cl ause="b5004" >

<propdef rcsnnrentnane appnn¥"entity name" datatype=string strlex=nane
strnornFentity clause="b5004">

<propdef irefnode rcsnmeentity datatype=node ac=entity cl ause="b5001">
</ psnodul e>

<l-- Shortref-related SDS cl asses and properties -->
<psnmodul e rcsnmesrsds ful Il nme"shortref SGW docunent string"
dependon=basesds1>

<cl assdef rcsnmrusemap appnne"short ref use decl"”
full nm"short reference use declaration" conprop=narkup cl ause="b6000" >

<propdef subnode rcsnnFmar kup dat at ype=nodel i st

ac="entstart entend ssep coment gendel m nane rnane ignnrkup"

cl ause="b6001" >

<not e>

First child is gendelmfor ndo delinmiter; last is gendelmfor ndc
delimter.

<propdef irefnode rcsnmrasselt ps appnm="assoc el ement types"

ful l nm"associ ated el ement types" datatype=nodelist ac=el entype

cl ause="al1501" >

<not e>

SGWL specifies that this does not include elenment types which had
al ready been associated with a nap.

<when>

The short reference use declaration includes an associ ated el ement

t ype.

<propdef irefnode rcsnmesrmap dat at ype=node ac=srmap cl ause="b6002" >

114

© ISO/IEC

| SO/IEC 10179: 1996(E)

<cl assdef rcsnmeshortref appnm="short ref"
full nme"short reference delimter" clause="e4620">

<propdef rcsnnrori gdel m appnm="origi nal delint
fullnn="original delimter" datatype=string cl ause="96601">
<desc>

The short reference delimter as originally entered

<propdef subnode optional rcsnmenanecref appnm="naned char ref"
ful l nm="nanmed character reference" datatype=nodeli st
ac="gendel m name refendre" clause="95001">

<when>

The first character of the delimter was entered with a naned
character reference

<cl assdef rcsnmesrmapdcl appnm="short ref map decl”
full nme"short reference mappi ng decl arati on” mayadd cl ause="b5000" >

<propdef subnode rcsnnemar kup dat at ype=nodel i st

ac="entstart entend ssep coment gendel mnane rnane literal"

cl ause="b5001" >

<not e>

First child is gendelmfor ndo delinmiter; last is gendelmfor ndc
delimter.

<propdef irefnode rcsnmenap dat at ype=node ac=srnap cl ause="b5001">
</ psnodul e>

<I-- Link-related abstract classes and properties -->
<psnmodul e rcsnmel i nkabs ful | nm="1ink abstract" dependon=prl| gabs0>

<propdef subnode rcsnneenptyl ks appnn="enpty |ink set" datatype=node ac=linkset

cn=sgm csts cl ause="c3004">
<desc>
Enpty link set used to disable current Iink set.

<propdef subnode optional rcsnnmesinplel k appnme"sinple Iink info"
fullnme"sinmple link information" datatype=nmdlist ac=sinplelk
acnnprop=l i nkset cn=el ement cl ause="c1431">

<when>

El enent is the document elenment and there are active sinple link
processes.

<propdef irefnode rcsnnelinkatts appnne"link attributes"”

dat at ype=nmmdl i st ac=attasgn acnnprop=nanme cnh=el enent cl ause="c1402">
<desc>

A list of attribute assignnents, one for each declared Iink attribute
of the elenent.

<not e>

The origin of the link attributes will be the link rule.

<propdef derived rcsnnersltgi appnm="result gi"

fullnme"result element generic identifier" datatype=string strlex=nane
strnor megeneral cn=el ement cl ause="c2202">

<when>

115

| SO/IEC 10179:1996 © ISO/IEC

There is an applicable link rule which is an explicit link rule whose
result element is not inplied.

<propdef irefnode rcsnmersltel em appnm="result el enent type"

dat at ype=node ac=el entype cn=el enent cl ause="c2202">

<when>

There is an applicable link rule which is an explicit link rule whose
result elenent is not inplied.

<propdef irefnode rcsnnrrsltatts appnn¥"result attributes"

dat at ype=nmmdl i st ac=attasgn acnnprop=nanme cn=el enent cl ause="c2203">
<not e>

The origin of the attributes will be the link rule.

<when>

There is an applicable link rule which is an explicit link rule whose
result element is not inplied.

<propdef irefnode rcsnmel ksetinf appnm="link set info"

fullnm="link set information" datatype=nodelist ac=linkrule cn=el enent
cl ause="c2205" >

<desc>

Link rules in the current |ink set whose source elenent type is inplied
<when>

There is an active explicit |ink process.

<propdef irefnode rcsnmel ksetinf appnm="link set info"

fullnm="link set information" datatype=nodelist ac=linkrule cn=datachar>
<desc>

Link rules in the current Iink set whose source elenent type is inplied
<when>

There is an active explicit link process and the character occurs

in content.

<cl assdef rcsnmesi npl el k appnm="sinmpl e link info"
fullnme"sinmple link information" clause="c1430">

<propdef rcsnn¥linktype appnm="Ilink type" datatype=string strlex=nane
strnor m=general clause="c1001">

<desc>

The link type name of the sinple link process.

<propdef subnode rcsnmrFatts appnnrFattri butes
dat at ype=nnmmdl i st ac=attasgn acnnprop=nane cl ause="c1402">

<cl assdef rcsnmelinktype appnm="Ilink type">

<propdef rcsnnenane datatype=string strlex=name strnornrgeneral
cl ause="c1002" >

<propdef rcsnnractive dat atype=bool ean>
<desc>
True if and only if link type is active

<propdef rcsnn¥ltkind appnm="link type kind"
ful l nm="kind of link type" datatype=enum cl ause="c1001" >
<enundef rcsnn¥sinpl e>

116

© ISO/IEC

| SO/IEC 10179: 1996(E)

<enundef rcsnneinplicit>
<enundef rcsnneexplicit>

<propdef rcsnnesrcnane appnme"source docunent type nanme" datatype=string
strl ex=nane strnorm=egeneral clause="c1302">

<propdef irefnode rcsnmesource appnm="source docunent type" datatype=node
ac=doct ype cl ause="¢1305 c1306">

<not e>

For a sinple link type, this will always be the base docunent type

<propdef rcsnnersltname appnm="result docunent type nanme" datatype=string
strl ex=nane strnorm=general clause="c1303">

<propdef irefnode rcsnmeresult appnm="result docunent type" datatype=node
ac=doct ype cl ause="¢1306">

<when>

The link type is an explicit link type

<pr opdef subnode rcsnn¥inil kset appnn¥"initial |ink set" datatype=node
ac=l i nkset cl ause="c2004">
<when>

The link type is not sinple.

<pr opdef subnode rcsnn¥idl kset appnn¥"id |ink set" datatype=node ac=linkset

cl ause="¢c2300" >
<when>
The link type declaration subset includes an ID link set declaration

<propdef subnode rcsnmel i nksets appnme"link sets" datatype=nmmdli st
ac=l i nkset acnnprop=nanme cl ause="c1401">

<not e>

Does not include # N TI AL or #EMPTY or ID link set

<cl assdef rcsnmelinkset appnne"link set" conprop=lkrul es clause="c2000">

<propdef rcsnnenane datatype=string strlex=nanme strnornrgeneral
cl ause="¢c2003" >

<when>

Link set is not #l N TIAL nor #EMPTY nor the ID link set.

<propdef subnode rcsnmel krul es appnm="1ink rul es" datatype=nodeli st
ac=l i nkrul e cl ause="c2002">

<cl assdef rcsnmelinkrul e appnm="link rule" clause="c2002">

<propdef rcsnmrassgi s appnne"assoc gis"

ful l nm"associ ated generic identifiers" datatype=strlist strlex=nanme
cl ause="c2101">

<desc>

The names of the associ ated el enent types.

<when>

The link rule is not an explicit link rule whose source el ement type
is inplied.

<propdef irefnode rcsnmrasselt ps appnm="assoc el ement types"

117

| SO/IEC 10179:1996 © ISO/IEC

ful l nm="associ ated el ement types" datatype=nodelist ac=el entype
cl ause="¢2101">

<when>
The link rule is not an explicit link rule whose source el ement type
is inplied.

<propdef rcsnnrid full nm="uni que identifier" datatype=string strlex=nane
strnor m=general clause="c2301">

<when>

Link rule occurs in IDIlink set declaration

<propdef irefnode rcsnmrusel i nk dat at ype=node ac=li nkset clause="c2104">
<when>
The link rule includes a USELI NK paraneter.

<propdef rcsnnrusel knm appnne"usel i nk name" datatype=string strlex=rniname
strnor megeneral clause="c2104">

<desc>

The link set named by the USELI NK paraneter.

<when>

The link rule includes a USELI NK paraneter.

<propdef derived rcsnnrpost| krs appnn¥"postlink restore" datatype=bool ean
cl ause="c2101">

<desc>

True if the link rule includes a POSTLINK paraneter of #RESTORE

<propdef irefnode rcsnmepost| kst appnm="postlink set" datatype=node
ac=l i nkset cl ause="c2101">

<when>

The link set specification did not specify #RESTORE

<propdef rcsnnepost| knm dat at ype=string strl ex=rni name strnornrgenera
cl ause="c2101" >

<desc>

The token specified for the link set specification followi ng POSTLI NK
<when>

The link rule includes a POSTLI NK paraneter.

<propdef subnode rcsnn¥linkatts appnm="link attributes"
dat at ype=nnmmdl i st ac=attasgn acnnprop=nane cl ause="c2102">

<when>
The link rule is not an explicit link rule whose source el ement type
is inplied.

<propdef rcsnnersltgi appnm="result gi"
fullnm="result element generic identifier" datatype=string strlex=nane
strnor megeneral cl ause="c2202">

<when>
The link rule is an explicit link rule whose result elenent type is
not inmplied.

<propdef irefnode rcsnmersltel em appnme"result el enent type" datatype=node
ac=el entype cl ause="c2202">

<when>

The link rule is an explicit link rule whose result elenent type is

118

© ISO/IEC

| SO/IEC 10179: 1996(E)

not inplied.

<propdef subnode rcsnnersitatts appnne"result attributes”

dat at ype=nmmdl i st ac=attasgn acnnprop=nane cl ause="c2203">

<when>

The link rule is an explicit link rule whose result elenent type is
not inmplied.

</ psnodul e>

<l-- Link-related SDS cl asses and properties -->
<psnodul e rcsnnel i nksds ful I nm="link SGML docunent string"
dependon=basesds1>

<propdef irefnode rcsnnel ksetdcl appnne"link set decl™”
fullnme"li nk set declaration" datatype=node ac="Iksetdcl idlkdcl"
cn=li nkset cl ause="¢c2001">

<when>

Link set is not #EMPTY.

<propdef irefnode rcsnmel kt pdcl appnm="link type decl"
fullnm="link type declaration" datatype=node ac=l kt pdcl cn=linktype
cl ause="c1001" >

<cl assdef rcsnn¥l kt pdcl appnn¥"link type decl" fullnn¥"link type declaration”

mayadd cl ause="¢1000" >

<propdef subnode rcsnnrmarkup dat atype=nodel i st

ac="ssep conment nane rnane literal nsstart nsignch nsend
entstart entend pi condcl entdcl attdldcl |ksetdcl idlkdcl"
cl ause="c1001" >

<propdef irefnode rcsnnelinktype appnm="link type" datatype=node
ac=l i nktype>

<propdef subnode rcsnmeentity datatype=node ac=entity cl ause="c1004">
<when>

Link type definition includes external identifier.

<cl assdef rcsnmel ksetdcl appnm="link set decl" fullnm="link set declaration"
mayadd cl ause="¢c2000" >

<propdef subnode rcsnnemar kup dat at ype=nodel i st
ac="entstart entend ssep coment gendel m nanme rnane literal attval ue"
cl ause="c2001" >

<propdef irefnode rcsnmelinkset appnnm="link set" datatype=node
ac=l i nkset cl ause="c2001">

<cl assdef rcsnnridl kdel appnm="id |ink set decl"
fullnm"ID link set declaration" mayadd cl ause="c2300">

<propdef subnode rcsnnFmar kup dat at ype=nodel i st
ac="entstart entend ssep conment gendel m nanme rnane literal attval ue"
cl ause="c2301">

119

| SO/IEC 10179:1996

© ISO/IEC

<propdef irefnode rcsnmeli nkset appnne"link set" datatype=node ac=linkset

cl ause="¢c2301" >

<cl assdef rcsnmeusel i nk appnne"link set use decl"”

fullnme"li nk set use declaration"” conprop=nmarkup cl ause="c3000">
<desc>

A link set use declaration that is not ignored.

<propdef subnode rcsnnemar kup dat at ype=nodel i st

ac="entstart entend ssep comment gendel m nane rnane ignnrkup"
cl ause="c3001" >

<not e>

First child is gendelmfor ndo delinmiter; last is gendelm
for ndc delimter.

<propdef derived rcsnnerestore datatype=bool ean cl ause="¢3002">
<desc>
True if the link set specification specified #RESTORE

<propdef irefnode rcsnmelinkset datatype=node ac=linkset clause="c3002">
<when>
The link set specification did not specify #RESTORE

<propdef rcsnn¥l kset nm dat at ype=string strlex=rni name strnormgenera
cl ause="¢c3002" >

<desc>

The token specified for the link set specification

<propdef rcsnnelinktpnm appnn="link type nane" datatype=string
strl ex=nane strnorm=general clause="c3001">

<propdef irefnode rcsnnelinktype appnm="link type" datatype=node
ac=li nktype cl ause="c3001">

</ psnodul e>

<!-- Subdoc-rel ated abstract classes and properties -->
<psnodul e rcsnmesubdcabs ful | nne"subdoc abstract" dependon=baseabs>

<cl assdef rcsnmesubdoc appnmesubdocunent full nme"reference to subdocunent">

<desc>
The result of referencing a subdocunent entity.

<propdef rcsnneent nane appnne"entity nane" datatype=string strlex=nane
strnornrentity cl ause="a5101" >

<propdef irefnode rcsnmeentity datatype=node ac=entity cl ause="c5501">
</ psnodul e>

<l-- Subdoc-rel ated SDS cl asses and properties -->

<psmodul e rcsnmesubdcsds ful | nme" subdoc SGWML docurent string”

dependon="basesdsl subdabs" >

<propdef subnode optional rcsnmenarkup dat at ype=nodeli st
ac="gendel m name ssep entstart entend refendre shortref" cn=subdoc

120

© ISO/IEC

| SO/IEC 10179: 1996(E)

cl ause="94401">

<desc>

The markup of the entity reference.

<not e>

ssep, entstart, and entend can occur only in a name group in a naned
entity reference

</ psnodul e>

<l-- Formal public identifier-related abstract classes and properties -->
<psnmodul e rcsnmef pi abs full nn="formal public identifier abstract”
dependon=baseabs>

<pr opdef subnode optional rcsnnefpi appnm="formal public id"
fullnme"formal public identifier" datatype=node ac=fpi cn=extid
cl ause="a2001" >

<when>

FORMAL YES was specified in the SGW decl arati on.

<cl assdef rcsnnfpi appnm="formal public id" fullnm"formal public identifier"
cl ause="a2000" >

<not e>

The string which is the value of each of the string-val ued properties
provided by this class is the mnimum data specified as such in the

governi ng productions, w thout any acconpanying "“//", "-//", "+//|"

or s characters.

<propdef rcsnnmFownertp appnn¥"owner type" datatype=enum cl ause="a2100">
<desc>
Type of owner identifier.

<enundef rcsnn¥i so>
<enundef rcsnneregi st appnn¥eregi stered>
<enundef rcsnnmeunregi st appnneunregi st er ed>

<propdef rcsnn=ownerid appnm="owner id" full nm="owner identifier"
dat at ype=string strl ex=m ndata cl ause="a2100">

<propdef rcsnnetextclas appnm="text class" fullnm"public text class"
dat at ype=enum cl ause="a2210" >
<enundef rcsnnecapacity>
<enundef rcsnmecharset >
<enundef rcsnmedocunent >
<enundef rcsnmedtd>

<enundef rcsnmeel enent s>
<enundef rcsnnmeentities>
<enundef rcsnn¥l pd>

<enundef rcsnn=nonsgm >
<enundef rcsnmenotati on>
<enundef rcsnmeshortref>
<enundef rcsnmesubdoc>
<enundef rcsnmesynt ax>
<enundef rcsnmnrt ext >

<propdef rcsnmrunavail appnnmrunavail abl e dat at ype=bool ean cl ause="a2202" >
<desc>

121

| SO/IEC 10179:1996 © ISO/IEC

True if and only if unavail able text indicator was specified

<propdef rcsnnetextdesc appnm="text description”
ful l nn="public text description" datatype=string strlex=m ndata cl ause="a2221">

<propdef rcsnn¥textlang appnn¥"text |anguage"

ful l nm="public text | anguage" datatype=string clause="a2231">
<when>

The text identifier included a public text |anguage

<propdef rcsnn¥textdseq appnne"text designating sequence"

ful l nm="publ i c text designating sequence" datatype=string clause="a2241">
<when>

The text identifier included a public text designating sequence

<propdef rcsnnetextdver appnm="text display version"

ful l nm="public text display version" datatype=string clause="a2251">
<when>

The text identifier included a public text display version

(that is, there was a // following the public text |anguage

or public text designating sequence).

</ psnodul e>

<l-- String Normalization Rules -->
<nor ndef rcsnmegeneral sd=SGWL. cl ause="d4506" >
<desc>
Decl ared concrete syntax general namecase substitution
<nor ndef rcsnneentity sd=SGWL cl ause="d4506" >
<desc>
Decl ared concrete syntax entity namecase substitution.
<nor ndef rcsnn¥rcsgener sd=SGW cl ause="d4506" >
<desc>
Ref erence concrete syntax general nanecase substitution.

<dat adef rcsnn¥integer | extype=integer>
<dat adef rcsnn¥bool ean | extype=bool ean>

<dat adef rcsnnestrlist fullnne"string list" listof=string | extype=strlist>
<dat adef rcsnneintlist fullnn="integer list" listof=int |extype=intlist>
<!-- Lexical Types -->

<!-- Datatypes -->
<l exdef |tn=bool ean nor m nodel ="[01] " >

<l exdef |tn=integer unorm nodel=""0"|nmarker">

<l exdef Itn=intlist norm nodel ="integer+">

<l exdef Itn=literal spec sd=SGWL cl ause="96107">
<desc>

Delimted literal as in declared concrete syntax. Character reference
can be used to enter delinmter string within literal, as in SGW
docunent s.

<l exdef ltn=strlist normnodel="literal,(’, ,literal)*">
<desc>
String list in so-called "comm-delinted ASCII" format supported by

dat a base and spreadsheet prograns. The literals, exclusive of their
delimters, shall conformto the applicable |exical type of the
i ndi vi dual strings.

122

© ISO/IEC | SO/IEC 10179:1996(E)

<l-- Oher lexical types -->

<l exdef |tn=m ndata spec sd=SGWL cl ause="al702">

<desc>M ni num dat a.

<l exdef |tn=NAME spec sd=SGWL cl ause="93001" >

<desc>Nane in declared concrete synt ax.

<l exdef |tn=NMICKEN spec sd=SGMWML cl ause="93004">

<desc>Nane token in declared concrete syntax.

<l exdef |tn=nunber spec sd=SGW cl ause="93002">

<desc>Nunber in declared concrete syntax.

<l exdef |tn=nnthar spec sd=SGW cl ause="92103">

<desc>Nane character in declared concrete syntax.

<l exdef |tn=ATTNAME nnsp provi der=el enent property=atts sd=SGWL cl ause="b3201">
<desc>Nane of attribute of an el ement.

<l exdef |tn=attspecs spec sd=SGWL cl ause="79001" >

<desc>Attri bute specification list.

<l exdef |tn=ENTITY nnsp provider=sgnm doc property=entities sd=SGWL
cl ause="a5101" >

<desc>Ceneral entity nane.

<l exdef |tn=IDREF nnmsp provi der=sgm doc property=el enents sd=SGWL
cl ause="79403" >

<desc>I D of an element (specified in docunment).

<l exdef 1tn=d nnsp provider=dtd property=el ent ps sd=SGW cl ause="78001" >
<desc>El ement type nane (if dtd:effective is true).

<l exdef |tn=rni name spec sd=SGWL>

<desc>A nane optionally preceded by an RNl deliniter.

9.7 DSSSL SGML Grove Plan

A DSSSL specification has a single grove plan specified by the sgmi - gr ove- pl an
architectural form in the DSSSL specification. See 7.1.2.

10 Standard Document Query Language

SDQL adds two data types to the expression language, node- | i st and nanmed- node- | i st .
It also adds some additional syntax for expressions: in SDQL, in any context in which an
expression is allowed, a special-query-expression is also allowed.

A subset of SDQL called the core query language is defined in 10.2.4.
Thenode- | i st datatype represents an ordered list of zero or more nodesin agrove.

NOTES
28 Thereis no node datatype. A single node is represented by anode- | i st with asingle member.
29 A node-list will typically be implemented in alazy fashion. In other words, the internal representation of a node-

listis not alist of nodes, but a representation of the specification that constructed the node-list. For example, if an
application usesthenode- | i st - count procedure on anode-list, it would be inefficient to build the node-list, count

123

| SO/IEC 10179:1996 © ISO/IEC

10.1

10.1.1

10.1.2

it, and then discard the node-list; it would be better simply to count how many distinct nodes match the node-list’s
specification.

A node-list with a single member is referred to as a singleton node-list.
The nanmed- node- | i st datatypeisasubtype of thenode- | i st datatype that represents a
node- | i st each of whose members has a string-valued property that uniquely identifies the

node in the node-list.

nl isused for an argument that shall be anode-list. sn/ isused for an argument that shall be a
singleton node-list. nn/ isused for an argument that shall be a named-node-list.

Primitive Procedures

The procedures in this clause are the primitive procedures, in the sense that all other procedures
in SDQL could be defined in terms of the procedures in this clause, but no procedure in this
clause is capable of being defined in terms of the other proceduresin this clause.

Application Binding

(current-node)

Returns a singleton node-list. The semantics of this are defined by the context in which the
SDQL expression occurs.

(current-root)

Returns a singleton node-list. The semantics of this are defined by the context in which the
SDQL expression occurs.

Node Lists

(node-list? obj)

Returns#t if obj isanode-list, and otherwise returns #f.
(node-list-enpty? nl)

Returns#t if nl isthe empty node-list, and otherwise returns #f.
(node-list-first nl)

Returns a node-list containing the first member of n/ , if any, and otherwise returns the empty
node-list.

(node-list-rest nl)

Returns a node-list containing all members of n/ except the first, if n/ has at |east one member,
and otherwise returns the empty node-list.

124

©ISO/IEC | SO/IEC 10179:1996(E)

(node-list nlq nly..)
Returns the node-list that results from appending the members of n/ 4, nl 5, If there are no
arguments, returns the empty node-list.
(node-list=? nl{ nly)
Returns #t ifn/ ; andn/ , are the same node-list, that is, they contain the same members in the
same order, and otherwise returns #f.
(node-1list-no-order nl)
Returns a node-list that has the same members bsit in an unspecified order.
NOTE 30 Animplementation may be able to implement (node- | i st - no- order q) more efficiently than q.

10.1.3 Named Node Lists
(nanmed- node-1ist? obj)
Returns #t ifobj is a named-node-list and otherwise returns #f.
(naned- node string nnl)
Returns a singleton node-list comprising the nodenih whose name ist ri ng, if there is such
a node, and otherwise returns the empty nodeslisti ng is normalized according to the string
normalization rule associated witin/ before being compared to the names of the members of
nnl .
(naned- node-list-normalize string nnl synbol)
Returnsst ri ng normalized according to the normalization rule of the named nodmlist
applicable to nodes of clasygnbol .
(naned- node- i st-nanes nnl)
Returns a list of the names of the membersrdf in the same order as1/ . The result shall be
a list of strings with the same number of membersrds

10.1.4 Error Reporting

(node-list-error string nl)

This signals an error in a similar way to #ver or procedure. When an error is signaled with
node- 1 i st-error, the system should report to the user that the error is associated with the
nodes inn/ . The manner in which this is done is system-dependent.

125

| SO/IEC 10179:1996 © ISO/IEC

10.1.5

10.1.6

Application Name Transformation

In al contextsin SDQL, application names are transformed by replacing each space with a
hyphen and adding a question mark (?) to the application names of properties whose declared
datatype is boolean.

Property Values

(node-property propnane snl #!'key default: null: rcs?:)

Returns the value that the node represented by sn/ exhibits for the property pr opnane. If the
node does not exhibit the property pr opnane, then if thedef aul t : issupplied, it isreturned;
otherwise, an error issignaled. If the node exhibits anull value for the property, thenif nul | : is
supplied, it isreturned; otherwise, if def aul t : issupplied, it isreturned; otherwise, an error is
signaled.

propnamne shal be asymbol or a string specifying either the application name (transformed as
specified in 10.1.5) or the RCS name of the property. pr opnane is compared against the
property name in a case-independent manner.

Property values are represented as expression language objects according to their abstract data
type:

— An abstract character is represented by an object of type char.
— An abstract string is represented by an object of type string.

— An abstract boolean is represented by an object of type boolean.
— An abstract integer is represented by an object of type integer.
— An abstract integer list is represented by a list of integers.

— An abstract string list is represented by a list of strings.

— An enumeration is represented by a symbol whose name is equal to the application name of
the enumerator (transformed as specified in 10.1.5).

— A component name is represented by a symbol. The name of the symbol shall be the
application name (transformed as specified in 10.1.5), unlesge#% argument is supplied
with a true value, in which case the RCS name will be used.

— An abstract component name list is represented by a list of the symbols that represent each
component name.

— An abstract node is represented by a singleton node-list.

— An abstract nodelist is represented by an object of type node-list.

126

© ISO/IEC

| SO/IEC 10179: 1996(E)

10.1.7

10.2

10.2.1

— An abstract nmndlist is represented by an object of type named-node-list.
— Null values have no representation in the expression language.

SGML Grove Construction

(sgnml -parse string #!'key active: parent:)

Returns a node-list containing a single node that is the root of a grove built by parsing an SGML
document or subdocument using the SGML property set.i ng is the system identifier of the
SGML document entity or SGML subdocument enti&et i ve: is a list of strings specifying

the names of the active DTD or LPDs. At most one DTD shall be actiyar &nt : is

specified, then the entity to be parsed is an SGML subdocument entity, and the value shall be a
singleton node-list in the grove in which the subdocument should be treated as being declared.
This uses the default grove plan, which is determined in an application-dependent manner.

Derived Procedures

For some procedures, a formal definition in the expression language is supplied. These formal
definitions do not handle errors. A correct implementation would need first to verify that
arguments meet the requirements indicated by the procedure prototypes and the procedure
description.

HyTime Support

Use of the facilities in this clause in the style or transformation languages requings$ e
feature.

The grovepos abstract data type is represented by a list each of whose members is
— an integer,

— a list containing a symbol and a string, or

— a list containing a symbol and an integer.

(val ue-propl oc propnane snl #!key apropsrc?: default:)

Returns the value that the membewsai exhibits for the property namegud opnane.
propnane shall be a symbol or string, interpreted as fortbee- pr oper ty procedure. If
the member on/ does not exhibit a value f@r opnane or exhibits a null value, then if
defaul t: is supplieddef aul t : shall be returned; otherwise, an error shall be signaled.
apropsrc?: , if true, has the same effect as specifyinganopsr ¢ attribute with a value of
apr opsr c for the codepr opl oc form in ISO/IEC 10744.

(l'ist-proploc propname nl #! key apropsrc?: ignore-nissing?:)

127

| SO/IEC 10179:1996 © ISO/IEC

Returns alist of objects, one for each member of n/ , where each object is the value that the
member of n/ exhibitsfor pr opnane. pr opnane shall be asymbol or string, interpreted as for
thenode- pr oper t y procedure. If some member of n/ does not exhibit avalue for pr opnane
or exhibitsanull value, thenif i gnor e- m ssi ng?: istrue, theresulting list shall contain no
object for that member; otherwise, an error shall be signaled. apr opsr c?: , if true, has the same
effect as specifying an apr opsr c attribute with avalue of apr opsr ¢ for the code pr opl oc
formin ISO/IEC 10744.

(node- i st-proploc propname nl #!key apropsrc?: ignore-nissing?:)

Returns the node-list that results from concatenating the values that each member of n/ exhibits
for pr opnane. propnane shall be asymbol or string, interpreted as for thenode- property
procedure. For the class of each member of n/ , pr opnane shall be noda. If some member of
nl does not exhibit avalue for pr opnane or exhibits anull value, thenif i gnor e-

m ssi ng?: istrue, the resulting node-list shall contain no nodes for that member; otherwise, an
error shall be signaled. apr opsr c?: , if true, has the same effect as specifying an apr opsr c
attribute with avalue of apr opsr ¢ for the code pr opl oc formin ISO/IEC 10744.

(listloc dimist nl #!'key overrun:)
(listloc dimist |ist #!'key overrun:)
(listloc dinmist string #!'key overrun:)

This addresses the members of the second argument in the same manner asthel i st | oc
architectural form defined in ISO/IEC 10744. Returns a node-list, list, or string according to the
type of the second argument. di n i st isalist of integers. overrun: isone of the symbols
error,wap,truncate,orignore. Thedefaultiserror.

(nanel oc nniist nnl #! key ignore-mn ssing?:)

Returns a node-list containing one member for each member of nni i st, wherenni i st isa
string, symbol, or alist of strings and/or symbols. It shall be an error if any member of nni i st
does not match the name of some member of n/, unlessi gnor e- m ssi ng?: istrue.
(groveloc list nl #!'key overrun:)

Returns alist of nodes located in the same manner as with the gr ovel oc architectural form of
ISO/IEC 10744. | i st isalist in the same format as the representation of the grovepos abstract
datatype. overrun: isinterpreted aswith listloc.

(treeloc marklist nl #!key overrun: treecon®:)

Returns alist of nodes located in the same manner aswith thet r eel oc architectural form of
ISO/IEC 10744. mar ki i st islist of integers. over run: isinterpreted aswithl i st oc.

t reecon®: , if true, correspondsto at r eecomattribute with avalue of t r eecom

(pathloc dinist nl #!'key overrun: treecon?:)

128

© ISO/IEC

| SO/IEC 10179: 1996(E)

Returns alist of nodes located in the same manner as with the pat hl oc architectural form of
ISO/IEC 10744. di nl i st isalist of integers. overr un: isinterpreted aswith| i st oc.
t reecon?: , if true, correspondsto at r eecomattribute with avalue of t r eecom

(relloc-anc dimist nl #!'key overrun:)
(relloc-esib dimist nl #'key overrun:)
(relloc-ysib dimist nl #'key overrun:)
(relloc-des dimist nl #!'key overrun:)

Returns a list of nodes |ocated in the same manner aswith ther el | oc architectural form of 1SO/
IEC 10744. The proceduresrel | oc-anc,rel | oc-esi b,rell oc-ysib,andrell oc-
des correspond to values for ther el at i on attribute of anc, esi b, ysi b, anddes. di nf i st
isalist of integers. overrun: isinterpreted aswithl i st oc.

NOTE 31 Relations of parent and children are handled by par ent and chi | dr en procedures.

(datatok nl #!'key filter: concat: catsrcsp: catressp: tokensep:
ascp: stop: mn: max: nlword: stenf:)

Returns alist of nodes located in the same manner as with the dat at ok architectural form of
|SO/IEC 10744.

—filter: is asymbol having one of the values allowed forfthiet er attribute.
— concat : is one of the symbolsat shi , cat sl o, cattk, cat shitk,cat sl otk,
catrhitk,catrl ot k, ornconcat interpreted in the same manner asdbacat

attribute.

— catsrcsp:,catressp:,tokensp:, andascp: are strings interpreted in the same
manner as the attributes with the same name.

— nl wor d: is a string specifying an 1ISO 639 language code.

— st en®: , if true, has the same effect as specify8 EMfor thenl wor d attribute.
— st op: is alist of strings specifying a stop list; the default is the empty list.

— i n: is an integer specifying the minimum untruncated token length.

— max: is an integer specifying the maximum untruncated token length.

(make-grove string nl)

make- gr ove constructs a new grove and returns a node-list containing the grovereotng
is the name of a grove plam. is the source text.

129

| SO/IEC 10179:1996 © ISO/IEC

(literal-match string nl #!'key |evel: boundary:
mn-hits: max-hits:)

(hyl ex-match string nl #!'key nornP: |evel: boundary:
mn-hits: max-hits:)

These functions construct a new grove using the Data Tokenizer Property Set containing one
tokenized string node for each non-overlapping match found in the data of each member of n/ .
A node-list of all tokenized string nodes is returned.

— boundary: is one of the symbokodeod, sodi ec, i sceod, ori sci ec, which shall be
interpreted in the same manner aslibandar y attribute of theHyLex element defined in
ISO/IEC 10744.

— l evel : is a number of comparison levels in the collation specification of the current
language on which string comparison shall be performéd\itl : is not specified, strings
shall be compared simply by comparing their constituent characters for equality.

— m n-hits: andmax- hits: are strictly positive integers specifying the minimum and
maximum number of hits: any match whose parent node does not contain a number of hits
within the specified range shall be excluded from the list of nodes returned. The default for
m n-hits: is1l. Ifmax- hits: is not specified, there shall be no maximum.

— nor n®?: is a boolean specifying whether the lexical model shall be normalized.

(conpare proc Iist)

Returns #t ifor oc applied to each successive pair of strings returns #t, yoinere is an
argument of two strings that returns a boolean. This could be defined by:

(define (conpare proc |)
(if (null?1)
#t
(let loop ((prev (car 1))
(rest (cdr 1)))
(cond ((null? rest) #t)

((proc prev (car rest))
(loop (car rest) (cdr rest)))
(el'se #f)))))

(ordered-may-overlap? nl)
(ordered-no-overlap? nl)

Each node shall be in an auxiliary grove, and the source nodes of all the nodes shall be in a single
tree. Returns #t if the source nodes are ordered within that tree, and otherwise returns #f. For
or der ed- no- over | ap?, the source nodes are considered to be ordered if, for each argument
node, all of its source nodes are before any of the source nodes of the next argument node. For
or der ed- may- over | ap?, the source nodes are considered to be ordered if, for each argument
node, the first of its source nodes is before the first of the source nodes of the next argument
node.

(span nl synbol)

130

© ISO/IEC

| SO/IEC 10179: 1996(E)

10.2.2

Each node shall be in an auxiliary grove, and the source nodes of all the nodes shall bein asingle
tree. Returnsthe number of quanta between the first and the last source nodes. synbol
specifies the quantum. It shall have one of the values allowed for thefi | t er : argument of the
dat at ok procedure.

List Operations

These procedures are similar to procedures on normal lists.
(empty-node-1list)

Returns an empty node-list.

(node-1list-reduce nl proc obj)

If n/ has no members, returns obj , and otherwise returns the result of applying node- | i st -
reduce to

— a node-list containing all but the first membemnof{
— proc, and
— the result of applyingr oc to obj and the first member of/ .

node- | i st-reduce could be defined as follows:

(define (node-list-reduce nl conbine init)
(if (node-list-empty? nl)
init
(node-1list-reduce (node-list-rest nl)
combi ne
(conmbine init (node-list-first nl)))))

(node-list-contains? nl snl)

Returns #t ifn/ contains a node equal to the membesmf, and otherwise returns #f. This
could be defined as follows:

(define (node-list-contains? nl snl)
(node-1list-reduce nl
(lanbda (result i)
(or result
(node-list=? snl i)))
#f))

(node-list-renmove-duplicates nl)

Returns a node-list which is the sameiAsexcept that any member of which is equal to a
preceding member of/ is removed. This could be defined as follows:

(define (node-list-renove-duplicates nl)
(node-1list-reduce nl

131

| SO/IEC 10179:1996 © ISO/IEC

(lanbda (result snl)
(if (node-list-contains? result snl)
result
(node-list result snl)))

(enpty-node-list)))
(node-1ist-union #!'rest args)

Returns a node-list containing the union of al the arguments, which shall be node-lists. The
result shall contain no duplicates. With no arguments, an empty node-list shall be returned. This
could be defined as follows:

(define (node-list-union #!'rest args)
(reduce args
(lambda (nl1 nl 2)
(node-list-reduce nl2
(lanbda (result snl)
(if (node-list-contains? result
snl)
resul t
(node-list result snl)))
nl 1))
(empty-node-list)))

wherer educe isdefined as follows:

(define (reduce list conbine init)
(let loop ((result init)

(list list))
(if (null? list)
result

(l oop (conbine result (car list))

(cdr 1ist)))))

(node-list-intersection #!'rest args)

Returns a node-list containing the intersection of all the arguments, which shall be node-lists.
The result shall contain no duplicates. With no arguments, an empty node-list shall be returned.
This could be defined as follows:

(define (node-list-intersection #!rest args)
(if (null? args)
(enpty-node-1list)
(reduce (cdr args)
(lambda (nl1 nl2)
(node-list-reduce nl1l
(lanbda (result snl)
(if (node-list-contains? nl2 snl)
(node-list result snl)
result))
(enpty-node-list)))
(node-list-renove-duplicates (car args)))))

(node-list-difference #!'rest args)

132

© ISO/IEC

| SO/IEC 10179: 1996(E)

Returns a node-list containing the set difference of all the arguments, which shall be node-lists.
The set difference is defined to be those members of the first argument that are not members of
any of the other arguments. The result shall contain no duplicates. With no arguments, an empty
node-list shall be returned. This could be defined as follows:

(define (node-list-difference #!'rest args)
(if (null? args)
(enpty-node-1list)
(reduce (cdr args)
(lambda (nl1 nl2)
(node-list-reduce nl1l
(lanbda (result snl)
(if (node-list-contains? nl2 snl)
resul t
(node-list result snl)))
(enpty-node-list)))
(node-list-renove-duplicates (car args)))))

(node-list-symmetric-difference #lrest args)

Returns a node-list containing the symmetric set difference of all the arguments, which shall be
node-lists. The symmetric set differenceis defined to be those nodes that occur in exactly one of
the arguments. The result shall contain no duplicates. With no arguments, an empty node-list
shall be returned. This could be defined as follows:

(define (node-list-symetric-difference #!rest args)
(if (null? args)

(enpty-node-1list)

(reduce (cdr args)
(lambda (nl1 nl 2)

(node-list-difference (node-list-union nl1l nl2)
(node-list-intersection nl1 nl2)))

(node-list-renpve-duplicates (car args)))))

(node-list-map proc nl)

For each member of n/ , applies pr oc to a singleton node-list containing just that member and
appends the resulting node-lists. It shall be an error if pr oc does not return a node-list when
applied to any member of n/ . This could be defined as follows:

(define (node-list-map proc nl)
(node-1list-reduce nl
(lanbda (result snl)
(node-list (proc snl)
result))
(enmpty-node-list)))

(node-1list-union-map proc nl)

For each member of n/ , applies pr oc to a singleton node-list containing just that member and
returns the union of the resulting node-lists. It shall be an error if pr oc does not return a node-
list when applied to any member of n/ . This could be defined as follows:

133

| SO/IEC 10179:1996 © ISO/IEC

(define (node-Ilist-union-map proc nl)
(node-1list-reduce n
(lanbda (result snl)
(node-list-union (proc snl)
result))
(enpty-node-list)))

(node-1list-some? proc nl)

Returns #t if, for some member of n/ , pr oc does not return # when applied to a singleton node-
list containing just that member, and otherwise returns #f. An implementation is allowed, but not
required, to signal an error if, for some member of n/, pr oc would signal an error when applied
to asingleton node-list containing just that member. This could be defined as follows:

(define (node-list-sone? proc nl)
(node-1list-reduce n
(lanbda (result snl)
(if (or result (proc snl))
#t
#t))
#t))

(node-1list-every? proc nl)

Returns #t if, for every member of n/, pr oc does not return # when applied to a singleton node-
list containing just that member, and otherwise returns #f. An implementation is allowed to
signal an error if, for some member of n/ , pr oc would signal an error when applied to a
singleton node-list containing just that member. This could be defined as follows:

(define (node-list-every? proc nl)
(node-1list-reduce n
(lanbda (result snl)
(if (and result (proc snl))
#t
#f))
#t))

(node-list-filter proc nl)

Returns a node-list containing just those members of n/ for which pr oc applied to asingleton
node-list containing just that member does not return #f. This could be defined as follows:

(define (node-list-filter proc nl)
(node-1list-reduce n
(lanbda (result snl)
(if (proc snl)
(node-list snl result)
result))
(enpty-node-list)))

(node-list->list nl)

Returns alist containing, for each member of n/, asingleton node-list containing just that
member. This could be defined as follows:

134

© ISO/IEC

| SO/IEC 10179: 1996(E)

(define (node-list->list nl)
(reverse (node-list-reduce nl
(lanbda (result snl)
(cons snl result))

"))

(node-list-length nl)
Returns the length of n/ . This could be defined as follows:

(define (node-list-length nl)
(node-1list-reduce nl
(lanbda (result snl)
(+ result 1))

0))

(node-list-reverse nl)

Returns a node-list containing the members of n/ in reverse order. This could be defined as
follows:

(define (node-list-reverse nl)
(node-1list-reduce nl
(lanbda (result snl)
(node-list snl result))
(enpty-node-list)))

(node-list-ref nl k)

Returns a node-list containing the kth member of n/ (zero-based), if thereis such a member, and
otherwise returns the empty node-list. This could be defined as follows:

(define (node-list-ref nl i)
(cond ((<i 0)
(enpty-node-list))

((zero? i)
(node-list-first nl))
(el se
(node-list-ref (node-list-rest nl) (- i 1)))))

(node-list-tail nl k)

Returns the node-list comprising all but the first k members of n/ . If n/ has k or fewer members,
returns the empty node-list. This could be defined as follows:

(define (node-list-tail nl i)
(cond ((< i 0) (enpty-node-list))
((zero? i) nl)
(el se
(node-list-tail (node-list-rest nl) (- i 1)))))

(node-list-head nl k)

Returns a node-list comprising the first kK membersof n/ . If n/ has k or fewer members, returns
nl . This could be defined as follows.

135

| SO/IEC 10179:1996 © ISO/IEC

(define (node-list-head nl i)
(if (zero? i)
(enpty-node-1list)
(node-list (node-list-first nl)
(node-list-head nl (- i 1)))))

(node-list-sublist nl kqi ky

Returns a node-list containing those members of n/ that are preceded in n/ by at least k4
members but fewer than k, members. Thisis equivalent to selecting those members whose zero-
based index in n/ isgreater than or equal to k; but lessthan k,. This could be defined as
follows:

(define (node-list-sublist nl i j)
(node-list-head (node-list-tail nl i)
(-3 1)))
(node-list-count nl)
Returns the number of distinct members of n/ . This could be defined as follows:

(define (node-list-count nl)
(node-list-1ength (node-list-renove-duplicates nl)))

(node-list-last nl)

Returns a node-list containing the last member of n/ , if n/ isnot empty, and otherwise returns
the empty node-list. This could be defined as follows:

(define (node-list-last nl)
(node-list-ref nl
(- (node-list-length nl) 1)))

When using node- | i st - sone?, node-1ist-every?, node-list-filter,andnode-
| i st-uni on- map, thefirst argument is often alambda expression with avariable. A syntax
that avoids the need to use an explicit lambda expression in this case is provided in this
International Standard.

[146] specia-query-expression = there-exists?-expression | for-all ?-expression | select-each-
expression | union-for-each-expression

[147] there-exists?-expression = ('t her e- exi st s? variable expression expression)

An expression

(there-exists? var nl-expr expr)

isequivalent to:

(node-1ist-some? (lanbda (var) expr) nl-expr)
Read this as. there existsa var in nl - expr such that expr.

[148] for-all?-expression = (f or - al | ? variable expression expression)

136

© ISO/IEC

| SO/IEC 10179: 1996(E)

10.2.3

An expression

(for-all? var nl-expr expr)

isequivalent to:

(node-list-every? (lanbda (var) expr) nl-expr)
Read thisas. for al var innl - expr, expr.
[149] select-each-expression = (sel ect - each variable expression expression)

An expression

(sel ect-each var nl-expr expr)

isequivalent to:

(node-list-filter (lanbda (var) expr) nl-expr)

Read this as. select each var in nl - expr such that expr.

[150] union-for-each-expression = (uni on- f or - each variable expression expression)

An expression

(union-for-each var nl-expr expr)

isequivalent to:

(node-1ist-union-map (lanmbda (var) expr) nl-expr)
Read this as. the union of, for each var in nl - expr, expr.

Generic Property Operations
These procedures work with any grove, but use only intrinsic properties.

The result of many of the following procedures is the mapping of afunction on a node over a
node-list, which is defined to be the node-list that results from appending in order the result of
applying the function to each member of the node-list.

(node-list-property propname nl)

Returns the mapping over n/ of the function on a node that returns the value that the node
exhibits for the property pr opnane or an empty node-list if the node does not exhibit a value or
exhibitsanull value for pr opnane. propnane can be specified in any of the ways allowed for
the node- pr oper ty procedure. It shall be an error if any nodein n/ exhibits a non-null, non-
nodal value for pr opnane. This could be defined as follows:

(define (node-list-property prop nl)
(node-list-map (lanbda (snl)

137

| SO/IEC 10179:1996 © ISO/IEC

(node-property prop snl default: (enpty-node-list)))
nl))

(origin nl)
Thisis equivalent to:

(define (origin nl)
(node-list-property 'origin nl))

(origin-to-subnode-rel snl)

Returns the value that the member of sn/ exhibitsfor theori gi n-t o- subnode-rel -
property-nane property, or #f if it does not exhibit a value or exhibits anull value. This
could be defined as follows:

(define (origin-to-subnode-rel snl)
(node-property 'origin-to-subnode-rel-property-name snl default: #f))

(tree-root nl)

Thisis equivalent to:

(define (tree-root nl)
(node-list-property "tree-root nl))

(grove-root nl)

Thisis equivalent to:

(define (grove-root nl)
(node-1list-property "grove-root nl))

(children nl)

Returns the mapping over n/ of the function on a node that returns the value of the node’s
children property, if any, and otherwise the empty node-list. This could be defined as follows:

(define (children nl)
(node-list-map (lanbda (snl)
(let ((childprop (node-property ’children-property-nane
snl
default: #f)))
(if childprop
(node-property chil dprop
snl
default: (enpty-node-list))
(enpty-node-list))))
nl))

(data nl)

Returns a string containing the concatenation of the data of each member of n/. The dataof a
nodeis:

138

© ISO/IEC

| SO/IEC 10179: 1996(E)

— if the node has a data property, the value of its data property converted to a string, if
necessary,

— if the child has a children property, the concatenation of the data of each of the children of the
node, separated by the value of the data separator property, if it has a non-null value, or

— otherwise, an empty string.

(parent nl)

This is equivalent to:

(define (parent nl)
(node-list-property "parent nl))

(source nl)

This is equivalent to:

(define (source nl)
(node-1list-property "source nl))

(subtree nl)

Returns the mapping over of the function on a node that returns the subtree of a node, where
the subtree of a node is defined to be the node-list comprising the node followed by the subtrees
of its children. This could be defined as follows:

(define (subtree nl)
(node-list-map (lanbda (snl)
(node-list snl (subtree (children snl))))

nl))
(subgrove nl)

Returns the mapping over of the function on a node that returns the subgrove of a node, where
the subgrove of a node is defined to be the node-list comprising the node followed by the
subgroves of members of the values of each of the node's subnode properties. This could be
defined as follows:

(define (subgrove nl)
(node-1list-nmap
(lanbda (snl)
(node-1list snl
(subgrove
(apply node-li st
(map (| anbda (nane)
(node-property nane snl))
(node- property ’'subnode- property-nanes
) sni))))))
n

(descendants nl)

139

| SO/IEC 10179:1996 © ISO/IEC

Returns the mapping over n/ of the function on a node that returns the descendants of the node,
where the descendants of a node are defined to be the result of appending the subtrees of the
children of the node. This could be defined as follows:

(define (descendants nl)
(node-list-map (lanbda (snl)
(subtree (children snl)))

nl))

(ancestors nl)

Returns the mapping over n/ of the function on a node that returns the ancestors of the node,
where the ancestors of a node are an empty node-list if the node is atree root, and otherwise are
the result of appending the ancestors of the parent of the node and the parent of the node. This
could be defined as follows:

(define (ancestors nl)
(node-list-map (lanbda (snl)
(let lToop ((cur (parent snl))
(result (enpty-node-list)))
(if (node-list-enpty? cur)

resul t

(l oop (parent snl)
(node-list cur result)))))

nl))

(grove-root-path nl)

Returns the mapping over n/ of the function on a node that returns the grove root path of the
node, where the grove root path of anode is defined to be an empty node-list if the node is the
groveroot, and otherwise is the result of appending the grove root path of the origin of the node
and the origin of the node. This could be defined as follows:

(define (grove-root-path nl)
(node-list-map (lanbda (snl)
(let lToop ((cur (origin snl))
(result (enpty-node-list)))
(if (node-list-enpty? cur)

resul t

(loop (origin nl)
(node-list cur result)))))

nl))
(rsiblings nl)

Returns the mapping over n/ of the function on a node that returns the reflexive siblings of the
node, where the reflexive siblings of anode are defined to be the value of the origin-to-subnode
relationship property of the node' s origin, if the node has an origin, and otherwise the node itself.
This could be defined as follows:

(define (rsiblings nl)
(node-list-map (lanbda (snl)
(let ((rel (origin-to-subnode-rel snl)))
(if rel
(node-property re

140

© ISO/IEC | SO/IEC 10179:1996(E)

(origin snl)
default: (enpty-node-list))
snl)))
nl))

(i preced nl)

Returns the mapping over n/ of the function on a node that returns the immediately preceding
sibling of the node, if any. This could be defined as follows:

(define (ipreced nl)
(node-list-map (lanbda (snl)
(let loop ((prev (enpty-node-list))
(rest (siblings snl)))
(cond ((node-list-enpty? rest)
(enpty-node-list))
((node-list=? (node-list-first rest) snl)
prev)
(el se
(loop (node-list-first rest)
(node-list-rest rest))))))
nl))

(ifollow nl)

Returns the mapping over n/ of the function on a node that returns the immediately following
sibling of the node, if any. This could be defined as follows:

(define (ifollow nl)
(node-list-map (lanbda (snl)
(let loop ((rest (siblings snl)))
(cond ((node-list-enpty? rest)
(enpty-node-list))
((node-list=? (node-list-first rest) snl)
(node-list-first (node-list-rest rest)))
(el se
(loop (node-list-rest rest))))))
nl))

(preced nl)

Returns the mapping over n/ of the function on a node that returns the preceding siblings of the
node, if any. This could be defined as follows:

(define (preced nl)
(node-list-map (lanbda (snl)
(let loop ((scanned (enpty-node-list))
(rest (siblings snl)))
(cond ((node-list-enpty? rest)
(enpty-node-list))
((node-list=? (node-list-first rest) snl)
scanned)
(el se
(l oop (node-list scanned
(node-list-first rest))

141

| SO/IEC 10179:1996 © ISO/IEC

(node-list-rest rest))))))
nl))

(follow nl)

Returns the mapping over n/ of the function on a node that returns the following siblings of the
node, if any. This could be defined as follows:

(define (follow nl)
(node-list-map (lanbda (snl)
(let loop ((rest (siblings snl)))
(cond ((node-list-enpty? rest)

(enpty-node-list))

((node-list=? (node-list-first rest) snl)
(node-list-rest rest))

(el se
(l oop (node-list-rest rest))))))

nl))

(grove-before? snlq, snl,)

Returns#t if snl 1 isstrictly before snl/ , in grove order. Itisan error if sn/ { and sn/ , are not
in the same grove. This could be defined as follows:

(define (grove-before? snll snl2)
(let ((sorted
(node-list-intersection (subgrove (grove-root snl1l))
(node-list snll snl2))))
(and (= (node-list-length sorted) 2)
(node-list=? (node-list-first sorted) snll1))))

(sort-in-tree-order nl)

Returns the members of n/ sorted in tree order. Any duplicates shall be removed. It isan error
if the members of n/ arenot all in the same tree. This could be defined as follows:

(define (sort-in-tree-order nl)
(node-list-intersection (subtree (tree-root nl))

nl))

(tree-before? snlq snly)

Returns#t if sn/ q isstrictly before sn/ , intree order. Itisanerror if sn/ {and snl, arenotin
the same tree. This could be defined as follows:

(define (tree-before? snll snl2)
(let ((sorted
(sort-in-tree-order (node-list snll snl2))))
(and (= (node-list-length sorted) 2)
(node-list=? (node-list-first sorted) snl1))))

(tree-before nl)

Returns the mapping over n/ of the function on a node that returns those nodes in the same tree
as the node that are before the node. This could be defined as follows:

142

© ISO/IEC

| SO/IEC 10179: 1996(E)

10.2.4

(define (tree-before nl)
(node-list-map (lanbda (snl)
(node-list-filter (lanmbda (x)
(tree-before? x snl))
(subtree (tree-root snl))))

nl))

(property-1lookup propname snl if-present if-not-present)

If snl exhibits anon-null value for the property pr opnane, pr operty-1 ookup returnsthe
result of applying i f - pr esent to that value, and otherwise returns the result of calling 7 f -
not - pr esent without arguments. pr opnane can be specified in any of the ways allowed for
the node- pr operty procedure. This could be defined as follows:

(define (property-lookup nane snl if-present if-not-present)
(let ((val (node-property name snl default: #f)))
(cond (val (if-present val))
((node-property nanme snl default: #t) (if-not-present))
(else (if-present val)))))

(sel ect-by-class nl sym

Returns a node-list comprising members of n/ that have node class sym symis either the
application name (transformed as specified in 10.1.5) or the RCS name of the class.

(sel ect-by-property nl sym proc)

Returns a node-list comprising those members of n/ that have a non-nodal property named sym
that exhibits a non-null value such that pr oc applied to it returns atrue value.

(sel ect-by-null-property nl sym
Returns a node-list comprising members of n/ for which the property symexhibits anull value.
(sel ect-by-m ssing-property nl syn)

Returns a node-list comprising members of n/ for which the property symdoes not exhibit a
value.

Core Query Language

This clause defines a subset of SDQL. In addition to the procedures defined in this clause, the
current-node,node- i st-enpty?,node-Ilist?, parent,andnode-1ist-error
procedures are allowed in the subset. This subset is designed so that a node-list never contains
more than one node and so that any node that it does contain is always of type element.

In the following procedures, the argument that is of type node-list can be omitted and defaults to
(current-node). osnl/ (optiona singleton node-list) denotes an argument that shall be a
node-list containing zero or one nodes.

143

| SO/IEC 10179:1996 © ISO/IEC

10.2.4.1

10.2.4.2

Navigation
(ancestor string osnl)

Returns a node-list containing the nearest ancestor of osn/ with agi equal to st ri ng, or an
empty node-list if there is no such ancestor or if osn/ isempty.

(gi osnl)

Returns the value of the gi property of the node contained in osnl or #f if osnl isempty or if
osnl hasnogi property or anull gi property.

(first-child-gi osnl)

Returns the value of the gi property of the first child of osn/ of classel enrent or #f if osnl is
empty or has no such child.

(id osnl)

Returns the value of thei d property of the node contained in osnl or #f if osnl isempty or if
osnl hasnoi d property or anull i d property.

Counting

(chil d- nunber snl)

Returns the child number of sn/. The child number of an element is one plus the number of
element siblings of the current element that precede in tree order the current element and that
have the same generic identifier as the current element.

(ancestor-child-nunber string snl)

Returns the child number of the nearest ancestor of sn/ whose generic identifier isst ri ng, or
#f if there is no such ancestor.

(hi erarchical -nunber /ist snl)

Returns alist of non-negative integers with the same number of membersas/ i st. /i st shall
be alist of strings. The last member is the child number of the nearest ancestor of sn/ whose
generic identifier is equal to the last member of / / st , the next to last member is the child
number of the nearest ancestor of that element whose generic identifier is equal to the next to last
member, and so on for each member of / / st .

(hierarchical -nunber-recursive string snl)
Returns alist of non-negative integers. The last member of thelist isthe child number of the

nearest ancestor of the sn/ element whose generic identifier isequal to st ri ng, the next to last
member is the child number of the nearest ancestor of that element whose generic identifier is

144

© ISO/IEC

| SO/IEC 10179: 1996(E)

10.2.4.3

equal to st ri ng, and so on for each ancestor of the current element with generic identifier equal
to st ri ng. Notethat the length of thislist isthe nesting level of st ri ng.

(el ement - nunber snl)
Returns the number of elements before or equal to sn/ with the same gi as sn/ .
(el ement-nunber-list [ist snl)

Returns alist of non-negative integers, one for each member of / j st, which shall be alist of
strings, where the i-th integer is the number of elements that:

— are before or equal t&n/,
— have a generic identifier equal to thh member of j st, and

— if i is greater than 1, are after the last element beafetevhose generic identifier is equal to
thei-1th member of j st.

NOTES
32 In effect the counter for each argument is reset at the start of the element referred to by the previous argument.
33 An element is considered to be after its parent.

34 This procedure could be used to number footnotes sequentially within a chapter (by using the last number in the
list). It could also be used to number headings in a document whose DTD lacks container €lements.

Accessing Attribute Values

In the following procedures, attribute values are represented as strings by applyiagahe
procedure to that t ri but e- assi gnnent node.

(attribute-string string osnl)

Returns a string representation of the attribute with name eqealiog of osn/ , or #f if
osnl has no such attribute, or the attribute is impliecgsn/ is empty.

(inherited-attribute-string string osnl)

Returns a string representation of the attribute with name egsationg of osn/ or of the
nearest ancestor okn/ for which this attribute is present and not implied, or #f if there is no
such element oosnl/ is empty. For the purpose of this procedure, a node is considered an
ancestor of itself.

(inherited-elenent-attribute-string string, string,
osnl)

145

| SO/IEC 10179:1996 © ISO/IEC

10.2.4.4

10.2.4.5

Returns a string representation of the attribute with name equal to st r i ng, of the nearest
ancestor of osn/ whose generic identifier is equal to st ri ng; and for which this attribute is
present and not implied, or #f if thereis no such element or osn/ isempty. For the purpose of
this procedure, anode is considered an ancestor of itself.

Testing Current Location

(first-sibling? snl)

Returns#t if sn/ has no preceding sibling that is an element with the same generic identifier as
itself, and otherwise returns #f.

(absolute-first-sibling? snl)
Returns #t if sn/ has no preceding sibling that is an element, and otherwise returns #f.
(last-sibling? snl)

Returns#t if sn/ has no following sibling that is an element with the same generic identifier as
itself, and otherwise returns #f.

(absol ute-1last-sibling? snl)

Returns#t if sn/ has no following sibling that is an element, and otherwise returns #£.
(have-ancestor? obj snl)

obj shall be either astring or alist of strings. 1f obj isastring, thenhave- ancest or ? returns
#tif snl has an ancestor with a generic identifier that matches that string and otherwise returns
#f. If obj isalist of strings, then have- ancest or ? returns#t if sn/ has an ancestor with
generic identifier equal to the last member of obj , which itself has an ancestor with generic
identifier equal to the next to last member of obj , and so on for each member, and otherwise
returns #f.

Entities and Notations

snl here determines the document in which to find the entity.

(entity-public-id string snl)

Returns the value of the public-id property of the value of the external-id property of the general
entity whose nameis st r i ng in the governing document type of the same grove as sn/ , or #f if
thereis no such entity or the entity has a null value for the external-id property or the external-id
has anull value for the public-id property.

(entity-systemid string snl)

Returns the value of the system-id property of the value of the external-id property of the general
entity whose nameis st r i ng in the governing document type of the same grove as sn/ , or #f if

146

© ISO/IEC

| SO/IEC 10179: 1996(E)

thereis no such entity or the entity has a null value for the external-id property or the external-id
has anull value for the system-id property.

(entity-generated-systemid string snl)

Returns the value of the generated-system-id property of the value of the external-id property of
the general entity whose nameis st ri ng in the governing document type of the same grove as
snl , or #f if there is no such entity or the entity has anull value for the external-id property or
the external-id has a null value for the generated-system-id property.

(entity-text string snl)

Returns the value of the text property of the general entity whose nameis st ri nginthe
governing document type of the same grove as snl , or #f if thereis no such entity or the entity
has a null value for the text property.

(entity-notation string snl)

Returns the value of the notation-name property of the general entity whose nameisstri ngin
the governing document type of the same grove as snl , or #f if thereis no such entity or the
entity has anull value for the notation-name property.

(entity-attribute-string string, string, snl)

Returns a string representation of the value of the attribute named st r i ng, of the general entity
whose name is st r i ng4 in the governing document type of the same groveassn/ , or #f if there
is no such entity or the entity has no such attribute or the attribute is implied.

(entity-type string snl)

Returns the value of the entity-type property of the general entity whose nameisst ri nginthe
governing document type of the same grove as snl , or #f if thereis no such entity or the entity
has a null value for the entity-type property.

(notation-public-id string snl)

Returns the value of the public-id property of the value of the external-id property of the general
notation whose nameis st r i ng in the governing document type of the same grove as snl , or #f
if there is no such notation or the external-id has a null value for the public-id property.
(notation-systemid string snl)

Returns the value of the system-id property of the value of the external-id property of the general
notation whose nameis st r i ng in the governing document type of the same grove as snl , or #f

if there is no such notation or the external-id has a null value for the system-id property.

(notation-generated-systemid string snl)

147

| SO/IEC 10179:1996 © ISO/IEC

10.2.4.6

10.2.5

Returns the value of the generated-system-id property of the value of the external-id property of
the general notation whose nameis st r i ng in the governing document type of the same grove
as snl , or #f if there is no such notation or the external-id has a null value for the generated-
system-id property.

Name Normalization

(general - nane-normal i ze string snl)

Returns st r i ng transformed using the general namecase substitution string normalization rule
of the grovein which sn/ occurs. This could be defined as follows:

(define (general -name-nornalize string snl)
(nanmed- node-list-nornalize string
(node-property el ements (grove-root snl))
"el ement))

(entity-name-normalize string snl)

Returns st r i ng transformed using the entity namecase substitution string normalization rule of
the grovein which sn/ occurs. This could be defined as follows:

(define (entity-nane-normalize string snl)
(nanmed- node-list-nornalize string
(node-property 'entities (grove-root snl))
‘entity))

SGML Property Operations

These procedures make use of particular properties that are defined by the property set for
SGML.

(attributes nl)

Thisis equivalent to:

(define (attributes nl)
(node-list-property "attributes nl))

(attribute string nl)

Returns the mapping over n/ of the function that returns the member of the value of the
attri but es property whose nameisequal to st ri ng. Thiscould be defined as follows:

(define (attribute nane nl)
(node-list-map (lanbda (snl)
(naned-node name (attributes snl)))

nl))

(element-with-id string snl)

148

© ISO/IEC

| SO/IEC 10179: 1996(E)

Returns a singleton node-list returning the element in the same grove as sn/ whose unique
identifier is st ri ng, if there is such an element, and otherwise returns the empty node-list. sn/
defaultsto (cur r ent - node) .

(referent nl)

Thisis equivalent to:

(define (referent nl)
(node-list-property "referent nl))

(match-el ement? pattern snl)

Returns#t if sn/ isanode of class element that matches pat t er n. pat t er n iseither alist or a
single string or symbol. A string or symbol is equivalent to alist containing just that string or
symbol. Thelist can contain strings or symbols. The element matches the list if the last string or
symbol matches the gi of the element, and the next to last matches the gi of the element’ s parent,
and so on. Each string or symbol may optionally be followed by alist containing an even
number of strings or symbols, which are interpreted as attribute name and value pairs all of
which the element whose gi matches the preceding string or symbol shall have.

For example,

(match-elenent? " (el (al vl a2 v2) e2 (a3 v3) e3 ed) n)

returns true if

— the gi ofn ise4,

— the gi ofn's parent i3,

— the gi ofn's grandparent is2,

— n's grandparent has a attribute with a value equal to v3,

— the gi ofn's great grandparentéd,

— n's great grandparent hasa attribute with a value equal @, and

— n's great grandparent hasah attribute with a value equal tdl.

snl defaults to the node-list returned by the r ent - node procedure.

When a string or symbol in the pattern is compared against a property value, and the property
value was subject to upper-case substitution, upper-case substitution shall also be performed on
the string before comparison.

(select-elements nl pattern)

149

| SO/IEC 10179:1996 © ISO/IEC

10.3

10.3.1

Returns a node-list comprising those members of n/ that match pat t er n as defined by the
mat ch- el ement ? procedure.

(g-element pattern nl)
(g- el enent pattern)

Searches in the subgroves whose roots are each members of n/ for elements matching pat ¢t er n,
as defined by the mat ch- el ement ? procedure. n/ defaults to the node-list returned by
current - node.

(g-class symbol nl)
(g-cl ass synbol)

Searches in the subgroves whose roots are each members of n/ for nodes whose classis
synbol . nl defaultsto the node-list returned by cur r ent - node.

(g-sdata string nl)
(g-sdata string)

Searches in the subgroves whose roots are each members of n/ for nodes whose class is sdata
and the value of whose sysdata property is st ri ng. nl defaults to the node-list returned by
current-node.

Auxiliary Parsing
Word Searching

Use of the facilitiesin this clause in the style or transformation languages requires thewor d
feature.

(word-parse nl string)
(wor d-parse nl)

This builds a new grove by performing an auxiliary parse using the Data Tokenizer Property Set.
string, if specified, isthe 1SO 639 language code of the language which should be assumed for
the purposes of determining what constitutes aword. The algorithm to be used is not specified in
this International Standard.

<propset psn=datatok full nm="Data Tokeni zer Property Set">

<cl assdef rcsnn¥tokroot appnn¥"tokenized root" conprop=strings>
<propdef rcsnnestrings datatype=nodelist ac=tokenstr>

<cl assdef rcsnnrtokenstr appnn¥"tokeni zed string" conprop=string>
<propdef rcsnnestring datatype=string>

For each member of n/, atokenized string node is created for each word in the data of that
member. The root of the auxiliary grove has these tokenized string nodes as children. A node-
list of all the tokenized string nodes is returned. If amember, x, of n/ contains another member,

150

©ISO/IEC | SO/IEC 10179:1996(E)
y, of n/ asadescendant, then the data of y is removed from the data of x before x is parsed for
words.

(sel ect-tokens nl string)
Returns a node-list containing each member of n/ that is atokenized-string node with ast ri ng
property equal to st ri ng.
10.3.2 Node Regular Expressions
Use of the facilitiesin this clause in the style or transformation languages requires ther egexp
feature.
The regexp type represents a node regular expression. A node regular expression is an object
that can be used to perform an auxiliary parse of agrove. Thisauxiliary parse creates a new
grove that contains nodes that group together nodes that correspond to nodes in the original
grove. The semantics of a node regular expression define for any node-list s and any node-list ¢
that isasublist of s whether ¢ matches the node regular expression with respect to s. Thisis
defined inductively for each of the procedures that construct regexps. s isreferred to as the
search list.
A node-list s immediately precedes anode-list t with respect to anode-list x that contains al the
members of both s and ¢ if
— s is empty, or
— t is empty, or
— the member of that occurs latest ir occurs inx before the element afthat occurs first
in x, and
— there is no node ir that
» follows in x all those members of that occur ins, and
» precedes ix all those members of that occur irt .
(regexp? obj)
Returns #t ifobj is a regexp, and otherwise returns #f.
10.3.3 Regexp Constructors

The procedures in this section construct regexp objects that are used by the subparsing
procedures.

(regexp-node proc)

151

| SO/IEC 10179:1996 © ISO/IEC

Returns aregexp that matches a node-list with respect to any search list if the node-list contains
exactly one node and pr oc applied to that node-list returns a true value.

(regexp-seq regexp, regexp, ... regexpy)

Returns aregexp that matches a node-list with respect to a search list x if the node-list can be
splitinto sublists s, s,,..., §, such that r egexp; matches 5 with respect to the search list x for 1
< i< nand such that s, immediately precedes s;,.; with respect to xfor 1<i<n-1

(regexp-or regexp, regexp,... regexp,)

Returns a regexp that matches a node-list with respect to a search list x if, for somei such that 1 <
i < n, the node-list matches r egexp; with respect to x.

(regexp-and regexpy regexp, ... regexpy)

Returns aregexp that matches a node-list with respect to a search list x if, for every i such that 1
<i £ n, the node-list matches r egexp; with respect to x.

(regexp-rep regexp)

Returns a regexp that matches a node-list with respect to asearch list x if the node-list is empty or
if there is some integer n = 1 such that the node-list can be split into sublists s;,s,,...,$, such that
s, matches r egexp for each i such that 1 < i < nand such that s immediately precedes s, with
respect to x for each i suchthat 1<i<n-1

(regexp-plus regexp)

Returns aregexp that matches a node-list with respect to a search list x if there is some integer n
> 1 such that the node-list can be split into sublists s, s,...,S, such that s; matches r egexp for
each i such that 1 < i < nand such that 5 immediately precedes s, with respect to x for each i
suchthat 1<i<n-1

(regexp-opt regexp)

Returns aregexp that matches a node-list with respect to a search list x if either the node-list is
empty or the node-list matches r egexp with respect to x.

(regexp-range regexp ki ko)

Returns aregexp that matches a node-list with respect to a search list x if there is some integer n
with k; £ n < Kk, such that the node-list can be split into sublists s;,s,, ...,$, such that 5 matches
regexp for eachi such that 1 < i < nand such that 5 immediately precedes 5.1 with respect to x
for eachi suchthat 1<i < n-1 If kq iszero, then the returned regexp shall match the empty
node-list.

(string->regexp String)

152

© ISO/IEC

| SO/IEC 10179: 1996(E)

10.3.4

11

Returns the regexp represented by st ri ng. It shall bean error if st ri ngisnot avalid
representation of an extended regular expression as defined in 1SO 9945-2. A normal character in
st ri ng matches anode with achar property whose value is that character.

NOTE 35 This could be implemented in terms of the above primitives.

Regular Expression Searching Procedures

The procedures in this clause use regexp objects to create a new auxiliary grove using the
Regular Expression Property Set asfollows:..

<propset psn=regexp full nnm="Regul ar Expression Property Set">
<cl assdef rcsnmeroot conprop=groups sd=DSSSL>

<desc>

The root of the grove.

<propdef rcsnmegroups dat atype=nodel i st ac=group sd=DSSSL>
<cl assdef rcsnmegroup sd=DSSSL>

(regexp-search nl regexp)

Returns a new auxiliary grove built using the regexp property set. The grove contains one group
node for each sublist of n/ that matches r egexp with respect to n/ . The source property of each
group node contain the nodes in the matching sublist.

NOTE 36 The source property is an intrinsic property of every node in an auxiliary grove.

(regexp-search-di sjoint nl regexp)

Thisisthe same asr egexp- sear ch except that the sublists are digoint. When two sublists
overlap, if one sublist has a member that occursin n/ before all members of the other sublist,
then the first sublist is preferred. If one sublist contains another sublist as a proper sublist, then
the containing sublist is preferred.

Transformation Language

This clause describes the DSSSL transformation language. Syntactically, the DSSSL
transformation language is a data content notation as defined by 1SO 8879. The content of an
element in this notation is parsed as a transfor mati on-language-body.

[151] transformation-language-body = [[unit-declaration* | added-char-properties-declaration*
| character-property-declaration* | transliteration-map-definition* | language-definition™ |
default-language-declaration? | definition* | association*]]

The transformation language uses the expression language defined in clause 8 and SDQL defined
in clause 10.

A transformation process requires a single grove as input, which is transformed as specified by
the associations. An association may cause other groves to be transformed. The grove being
transformed is referred to as the current grove.

153

| SO/IEC 10179:1996 © ISO/IEC

111

11.2

Features

The following features are optional in the transformation language:

— Theconbi ne- char feature allowsharacter-combination-declarations.

— Thekeywor d feature allows#! key in formal-argument-lists.

— Thenul ti - sour ce feature allows use of the ansf or m gr ove procedure.

— Thenul ti-resul t feature allows multiple result groves.

— Ther egexp feature allows the use of node regular expressions described in 10.3.2.
— Thewor d feature allows the use of the facilities for word searching described in 10.3.1.

— Thehyt i ne feature allows the use of the facilities for HyTime location addressing described
in 10.2.1.

— Thechar set feature allows the use of the declaration element type forms otherhihan
repertoire,features, andsgm - grove- pl an.

Associations

The transformation process is specified by a collection of associations.

[152] association £=> query-expression transform-expression priority-expression?)
[153] query-expression expression

[154] transform-expressionexpression

[155] priority-expression &xpression

Each association has up to three components:

— aquery-expression returning a node-list; an associatiompaentially applicable to any node
in the node-list returned by its query-expression.

— atransform-expression that is evaluated for each of the nodes to which the association is

applicable. The value returned describes the node or nodes in the result grove corresponding

to the selected node in the source grove.

— an optionapriority-expression that affects whether the association actually applies to a node
to which it is potentially applicable.

154

© ISO/IEC

| SO/IEC 10179: 1996(E)

11.3

11.3.1

A query-expression shall evaluate to anode-list. All the nodes in the node-list returned by a
query-expression shall be nodes in the current grove or shall be nodesin an auxiliary grove
whose source grove is the current grove. Auxiliary groves are described in 9.5. In aquery-
expression, thecur r ent - r oot procedure and cur r ent - node procedure return a singleton
node-list containing the root of the current grove.

A priority-expression shall evaluate to an integer. The number specifies the priority of the
association. If the priority-expression is omitted for an association, the priority of the
association is 0. Larger numbers indicate higher priorities.

Each node to which an association is potentially applicable has a constituent set of nodes in the
current grove. When the node is in the current grove, the constituent set contains just that node.
When the node isin an auxiliary grove, then the constituent set contains the nodes in the current
grove that occur in the value of the source property of the node in the auxiliary grove. An
association is actually applicable to any node, n, to which it is potentially applicable unless some
higher priority association applies to a node whose constituent set contains a node that isin the
constituent set of n.

Transform-expression

Within atransform-expression, the cur r ent - node procedure returns a singleton node-list
containing the node that is being transformed.

Each transform-expression shall return an object of type create-spec or of type transform-grove-
spec or a (possibly empty) list of objects each of type create-spec or transform-grove-spec. Each
create-spec describes a subgrove to be created at a specified place in the result grove. The
subgrove may consist either of a single node or of multiple nodes forming a subgrove rooted in a
single node. The place at which the subgrove is to be created may be specified as the root of a
result grove, or it may be specified relative to some other node in the result grove.

For each node that is created in the result grove, links are created from each of the constituent
nodes of the node whose transformation resulted in creation of the node in the result grove to the
created node. Theselinks arereferred to asarrows. An arrow is labeled with an expression
language object. The start-point of an arrow is called the transformation origin of its end-point.
The arrow for anode in the source grove says where that node was transformed to. The labels on
the arrows distinguish between different transformations that were applied to anode. The
transform-expression for a node either specifies that the created subgrove shall be the root of a
result grove or specifies the position of the created subgrove in the result grove relative to anode
in the result grove to which some other node in the source grove was transformed.

Subgrove-spec
The subgrove to be created is described using an object of type subgrove-spec.

(subgrove-spec #!key node: subgrove: class: add: null: renove:
children: sub: I abel: sort-children:)

155

| SO/IEC 10179:1996 © ISO/IEC

Returns an object of type subgrove-spec.

Thenode: argument shall be a singleton node-list; it specifies that the node at the root of the
created subgrove shall have the same class as the value of node: , the same non-nodal, non-
intrinsic properties as the value of node: (as modified by theadd: and r enpbve: arguments),
and the same null-valued properties as the value of node: (except as modified by the nul | :
andr enpve: arguments).

The subgr ove: argument shall be a singleton node-list; it specifies the creation of a subgrove
that is a copy of the subgrove rooted in the argument node.

Thecl ass: argument isasymbol specifying the class of the node to be created. Exactly one of
thenode: , subgrove: , and cl ass: arguments shall be specified.

Theadd: argument specifies non-nodal, non-intrinsic properties with non-null values that shall
be added to the node. Theadd: argument shall be alist of two-element lists whose first member
is the name of a property and whose second member is the value of that property. The property
shall be anon-nodal, non-intrinsic property of the node’s class. The value for a property
specified inthe add: argument replaces any value for that property that the node specified by
the node: argument had.

Thenul | : argument isalist of symbols specifying the names of additional non-intrinsic
properties of the node which shall have null values. This replaces any non-null property which
the node would have by virtue of the node: argument.

Ther enmove: argument isalist of non-intrinsic properties which the node specified by the
node: argument has and which the node to be created should not have; it defaults to the empty
list. This may be used to remove properties with both null and non-null values.

Thesub: argument isalist specifying subnodes for the node at the root of the subgrove returned
by subgr ove- spec. The members of the list shall be lists whose first member is a symbol
specifying the name of the subnode property and the rest of whose members are subgrove-specs
specifying the nodes in the value of the property. This argument defaults to the empty list.

Thechi | dren: argument isalist of subgrove-specs specifying the nodes in the value of the
children property of the node at the root of the subgrove returned by subgr ove- spec.

NOTE 37 These can also be specified using the sub: argument, but using chi | dr en: is often more convenient.
This argument defaults to the empty list.

Thel abel : argument specifies the label for the arrow which shall be created from the
transformed node in the source grove to the node at the root of the subgrove being created in the

result grove. It may be any expression language object. The default value is #f.

Thesort-chil dren: argument isaprocedure that affects the ordering of the children of the
root node. See 11.3.2.

156

©ISO/IEC | SO/IEC 10179:1996(E)
Classes and properties are named by their application names as defined in the SGML property
set, with the usual transformation described in 10.1.5.
11.3.2 Create-spec

(create-spec? obj)

Returns#t if obj isof typecr eat e- spec, and otherwise returns #f .
(create-root obj sg)

Returns a create-spec specifying the creation of the root of aresult grove. sg is a subgrove-spec
for the root of the result grove. obj isan identifier for the result grove.

(create-sub snl sg #!'key property: label: result-path: optional
uni que:)

(create-preced snl sg #!'key |l abel: result-path: optional: unique:)
(create-follow snl sg #!'key |label: result-path: optional: unique:)

create-sub,create-preced, andcreat e-f ol | owreturn a create-spec specifying that
for each arrow labeled | abel : with astart-point of sn/ the subgrove specified by sg shall be
created in the result grove. The evaluation of thecr eat e- sub, cr eat e- pr eced, or

creat e- f ol | ow procedures does not of itself cause the creation of nodes in the result grove; a
create-spec that is not returned by atransform-expression shall be ignored.

| abel : can be any expression language object; it defaults to #f .

If opti onal : is#f, thenit shall be an error if there never is any such arrow; opt i onal :
defaults to #f .

resul t - pat h: isaprocedure that for each arrow is applied to a result-node-list whose only
member is the end-point of the arrow. r esul t - pat h: may be applied to this result-node-list at
various points in the construction of the grove. At some point in the construction of the grove, it
shall return aresult-node-list that contains exactly one member. Thisisthe creation origin. At
no point shall it return aresult-node-list that contains more than one member. If resul t -

pat h: isnot specified, it defaults to the identity procedure.

For cr eat e- sub, property: isasymbol or string specifying a property name. This property
shall be a subnode property of the creation origin, and the subgrove shall be created as a member
of that property of the creation origin. If thepr operty: argument is omitted, it defaults to the
children property of the creation origin; it shall not be omitted if the creation origin has no
children property. For cr eat e- pr eced, the subgrove shall be created as a preceding sibling of
the creation origin. For cr eat e- f ol | ow, the subgrove shall be created as a following sibling
of the creation origin.

Two subgroves are said to have the same creation method if and only if the roots of the
subgroves were created with the same creation origin and same creation procedure and, if the
creation procedure was cr eat e- sub, the same pr opnane.

157

| SO/IEC 10179:1996 © ISO/IEC

11.3.3

If uni que: isnot #f , then this subgrove shal be the only one that is ever created with the same
creation method asthis one. uni que: defaultsto #f .

When uni que: is#f, therelative order of subgroves created with the same creation method is
determined in away that isindependent of the order in which the subgroves are created. Let the
immediately dependent siblings of a node be those siblings of the node that were created with a
creation origin of that node using thecr eat e- f ol | owor cr eat e- pr eced procedures. Let
the dependent siblings of a node be the immediately dependent siblings of the node together with
the dependent siblings of the immediately dependent siblings. Let the creation siblings of a
subgrove to be inserted be those nodes that were created with the same creation procedure and
with the same creation origin. In addition, if asubgroveisto beinserted usingcr eat e- sub,
then any nodes that will be siblings of the inserted subgrove and were created as part of the same
subgrove as the origin node shall be treated as creation siblings. The position of a subgrove to be
inserted isfirst determined relative to its creation siblings. 1t isthen inserted in such away that it
follows al the dependent siblings of all those creation siblings that it is to follow and precedes all
the dependent siblings of all those creation siblings that it is to precede so that there is no node
between it and its creation origin that is neither a creation sibling nor a dependent sibling of a
creation sibling.

When the node at the root of the subgrove is a child of the node that will be the origin of the
subgrove, the position of the subgrove among its creation siblings is determined by the ordering
predicate of the origin node. The ordering predicate is the procedure specified by thesort -

chi | dren: argument to thesubgr ove- spec procedure. The ordering predicate is passed the
transformation origins of two nodes in the result grove that are to be compared. It shall return
true if the first is before the second. If no ordering predicate was specified, then the t r ee-

bef or e? procedure shall be used as an ordering predicate. In this case, it shall be an error if the
transformation origins of the subgrove and its creation siblings are not al in the same tree. When
the node at the root of the subgrove is not a child of the origin node, then the position of the
subgrove among its creation siblings is determined in the same way as for the children of anode
with an ordering predicate of gr ove- bef or e?.

An arrow triggers another arrow if the second arrow was created by a call to a create procedure
that specified the start-point of the first arrow as the first argument and specified the label of the
first arrow asthel abel : argument. It shall be an error if there is a sequence of arrows where
each arrow triggers the next arrow and where the last arrow has the same start-point and label as
the first arrow.

NOTE 38 This requirement avoids the possibility of an infinite loop.

Result-node-list

A result-node-list represents alist of nodes in the result grove. A subset of the operations
permitted on node-lists are permitted on result-node-lists. In a prototype, an argument name r n/
shall be of type result-node-list.

NOTE 39 The alowed operations are designed to ensure that if a node in the result grove is contained in the result-
node-list that results from evaluating an expression at some point in the construction of the result grove, then that node

158

© ISO/IEC

| SO/IEC 10179: 1996(E)

11.3.4

shall be contained in the result-node-list that results from evaluating that expression at any subsequent point in the
construction of the result grove.

(node-list-union rnl ..)

(node-list-intersection rnl ..)
(children rnl)
(attributes rnl)

(preced rnl)

(follow rnl)

(parent rnl)

(ancestors rnl)

(descendants rnl)

(origin rnl)

(select-by-class rnl sym
(select-by-property rnl sym proc)
(select-by-null-property rnl sym
(select-by-missing-property rnl sym

These procedures behave in the same way as the corresponding operations on node-lists except
that the return value is of type result-node-list rather than node-list.

(select-by-relation rnl i proc)
Returns a result-node-list containing those nodes contained in r n/ which are such that pr oc

applied to aresult-node-list containing exactly that node returns a result-node-list containing/ or
more nodes. For example,

(lambda (x)
(select-by-relation (children x)
1
(lambda (y)

(sel ect-el ements (descendants y) "para"))))
selects those children of a node that have a descendant element with a gi of para.
(select-by-attribute-token rnl stringy string,)
Returns a result-node-list containing those nodesin r n/ that have an attribute named st ri ng,
and that have an attribute with a child of class attribute-value-token with a token property equal

to st ri ng, after any applicable string normalization.

Transform-grove-spec

An object of type transform-grove-spec represents a grove to be transformed in addition to the
current grove.

(transform-grove-spec? obj)

159

| SO/IEC 10179:1996 © ISO/IEC

Returns#t if obj isof typet ransf or m gr ove- spec, and otherwise returns #f .
(transformgrove snl obj ..)

snl shall betheroot of agrove. t ransf or m gr ove creates anew grove from sn/ by adding
at ransf or m ar gs property to the grove root whose valueis alist containing obj , ..., and
returns an object of type transform-grove-spec specifying the transformation of that new grove.

(sel ect-grove nl obj)

Returns a node-list containing those member# ofvhose grove root hasta ansf or m ar gs
property that contains a member equabbg .

11.3.5 SGML Prolog Parsing

(sgnl - parse-prolog string)

Returns a node-list containing a single node that is the root of a grove built by parsing the prolog
of an SGML documenst ri ng is the system identifier of the SGML document entity. This is
built using the default grove plan modified to exclude the instabs module.

NOTE 40 This procedureistypically used to specify the subgr ove: argument to the subgr ove- spec: procedure
when the source and result groves have different DTDs.

11.4 SGML Document Generator

The SGML document generator generates an SGML document or subdocument from a result
grove. The operation of the SGML document generator is specified in ternverdfcation

grove, which is the grove that would be built by parsing the SGML document or subdocument
generated from the result grove using a grove plan that included all classes and properties of the
SGML property set.

NOTE 41 Animplementation is not required to build a verification grove.

A result grove ivalid if it is possible to generate a conforming SGML document or

subdocument from the result grove such that there is a verification mapping from the result grove
to the verification grove which meets the requirements specified in 11.4.1. If the result grove is

valid, an implementation shall generate such a document or subdocument. An implementation
shall report that a result grove is not valid if and only if the result grove is not valid.

11.4.1 Verification Mapping
Any result grove satisfies the following requirements:

— A node in the result grove does not exhibit a value for a property with a declared data type
that is nodal unless the property is a subnode property.

— A node in the result grove never exhibits a value for a property that is in the derived category.

160

© ISO/IEC

| SO/IEC 10179: 1996(E)

The verification mapping, V, maps each node in the result grove to a node in the verification
grove. V(n) denotes the result of applying V to the node n; n[p] denotes the value that n exhibits
for property p. A node n' in the verification grove is said to be grounded if and only if thereisa
node n in the result grove such that V(n) isn'.

V shall satisfy the following requirements:

— If nis the root of the result grove, th&(n) shall be the root of the verification grove.

— For each distinain andn in the result grovey(m) shall be distinct fronv(n).

— For each in the result grovey(n) shall have the same classnas

— For each noda in the result grove, and each non-intrinsic proppmyith a non-nodal
declared data type for whial{n) exhibits a null valuey shall exhibit a null value fgo unless
p is in the derived or optional category.

— For each noda in the result grove, and each non-intrinsic proppifiyr whichV(n) exhibits
a non-null, non-nodal value,shall exhibit a value fgo unlessp is in the derived or optional

category.

— A node in the verification grove shall be grounded if its class is not in the mayadd category
and either

— any of its siblings are grounded, or
» the origin of the node is grounded, and
» the origin-to-subnode relationship property of its origin is not in the optional category.

— For each noda in the result grove, and for each non-intrinsic propeftyr whichn exhibits
a null value V(n) shall exhibit a null value fqp.

— For each noda in the result grove, and for each non-intrinsic non-nodal propéddywhich
n exhibits a non-null valua[p] shall be equal, after any applicable string normalization
specified for the property by the property sety(o)[p].

— For each noda in the result grove and each subnode progewith a declared data type of
node for whichn exhibits a non-null valué/(n[p]) shall be equal t&(n)[p].

— For each noda in the result grove and each subnode progewith a declared data type of
nodelist or nmndlist for which exhibits a non-null value, and for each nade n[p], V(s)
shall be inv(n)[p].

— For each noda in the result grove and each subnode progewiyth a declared data type of
nodelist for whichn exhibits a value, and for any nodesnds in n[p], if r precedes in the
result grove)(r) shall preced&/(s) in the verification grove.

161

| SO/IEC 10179:1996 © ISO/IEC

11.4.2

12

The transliteration property described in 11.4.2 is not considered in the verification mapping.

As an exception to these rules, a node in the verification grove of class attribute-assignment need
not be grounded if the rules of 1SO 8879 that apply with an SGML declaration that specified
SHORTTAG YES would not require the attribute to be specified.

Transliteration

[156] transliteration-map-definition = (defi ne-transliterati on- map variable
transliteration-entry)

[157] trandliteration-entry = (character character-list)
[158] character-list = (character+)

A trangliteration-map-definition binds variable to an object of type transliteration-map. The
trangliteration-map specifies a tranditeration in which certain characters are represented by
seguences of one or more other characters. Each trandsliteration entry specifies that the first
character is represented by the sequence of charactersin the character-list.

(transliteration-nmap? obj)
Returns#t if obj isof type transliteration-map, and otherwise returns #f.

Each node in aresult grove can have a non-nodal transliteration property whose valueis an
object of type trandliteration-map. If no transliteration property is specified for a node, the value
of the trandliteration property is the value of the transliteration property of the origin of the node.
If no transliteration property is specified for the root node of aresult grove, then the value shall
be an empty trandliteration map.

For each consecutive sequence of data-char nodes in the result grove with the same
trangliteration property, the sequence of characters that the sequence of charactersin the result
grove represents with respect to the transliteration-map shall be output instead of the sequence of
charactersin the result grove. In case of ambiguity, the longest trandliteration-entry shall be
used.

Style Language

This clause describes the DSSSL style language. Syntactically, the style language is a data
content notation, as defined in 1SO 8879. The content of an element in this notation is parsed as a
style-language-body.

[159] style-language-body = [[unit-declaration* | definition* | construction-rule* | mode-
construction-rule-group* | application-flow-object-class-declaration* | application-
characteristic-declaration* | application-char-characteristic+ property-declaration* | initial-
value-declaration* | reference-value-type-declaration* | page-model-definition* | column-set-

162

© ISO/IEC

| SO/IEC 10179: 1996(E)

12.1

model -definition* | added-char-properties-declaration* | character-property-declaration* |
language-definition* | default-language-declaration?]]

The style language described in this International Standard uses the core expression language
described in 8.6 or, optionally, the full expression language described in clause 8, and the core
query language described in 10.2.4 or, optionally, the full query language (SDQL) described in
clause 10.

[160] style-language-expression = make-expression | style-expression | with-mode-expression

Within a style-language-body, an expression may be a style-language-expression.

NOTE 42 A style-expression is used to specify the values for inherited characteristics.

Features
The following features are optional in the style language:

— Theexpr essi on feature allows the full expression language. Without this feature only the
core expression language shall be used.

— Themul ti - process feature allows the unrestricted usgobcess- chi | dren and
related procedures as described in 12.4.4.

— Thequery feature allows use of the full query language described in 10 and related facilities
described in this clause. Without this feature only the core query language shall be used. This
implies therrul ti - process feature.

— Ther egexp feature allows the use of node regular expressions described in 10.3.2.

— Thewor d feature allows the use of the facilities for word searching described in 10.3.1.

— Thehyt i e feature allows the use of the facilities for HyTime location addressing described
in 10.2.1.

— Theconbi ne- char feature allowgharacter-combination-declarations.
— Thekeywor d feature allows#! key in formal-argument-lists.

— Thesi de- by- si de feature allows use of the side-by-side and side-by-side-item flow object
classes.

— Thesi del i ne feature allows use of the sideline flow object class.

— Theal i gned- col umm feature allows use of the aligned-column flow object class.

163

| SO/IEC 10179:1996 © ISO/IEC

— Thebi di feature allows use of the right-to-left writing-mode and the embedded-text flow
object class.

— Theverti cal feature allows use of the top-to-bottom writing-mode.

— Thenat h feature allows use of the flow object classes for mathematical formulae described
in 12.6.26.

— Thet abl e feature allows use of the flow object classes for tables described in 12.6.27.

— Thet abl e- aut o- wi dt h feature allows the widths of table columns to be computed
automatically. This implies thieabl e feature.

— Thesi npl e- page feature allows use of the facilities for simple page layout described in
12.6.3.

— Thepage feature allows use of the page-sequence and column-set-sequence flow object
classes and related features.

— Thenul ti - col umm feature allows use of column-sets containing more than one column.
This implies thepage feature.

— Thenest ed- col um- set feature allows use of a column-set-sequence flow object with a
column-set-sequence flow object ancestor. This impliesthe i - col unm andpage
features.

— Thegeneral -i ndi r ect feature allows use of trgener al -i ndi rect - sosof o
procedure.

— Thei nl i ne- not e feature allows use of the inline-note flow object class.

— Thegl yph- annot at i on feature allows use of the glyph-annotation flow object class.
— Theenphasi zi ng- mar k feature allows use of the emphasizing-mark flow object class.
— Thei ncl uded- cont ai ner feature allows use the included-container flow object class.

— Theact ual - char act eri sti c feature allows use of thect ual - ¢ procedures for each
inherited characteristic.

— Theonl i ne feature allows use of the facilities described in 12.6.28.
— Thef ont - i nf o feature allows use of the facilities described in the 12.5.7.
— Thecr oss-r ef er ence feature allows the use of tpeocess-el ement-with-id

procedure. Thehar set feature allows the use of the declaration element type form other
thanchar -repertoire,features, andsgmn - grove- pl an.

164

© ISO/IEC

| SO/IEC 10179: 1996(E)

12.2

12.3

Flow Object Tree

A flow object tree is an abstract representation of the merger of the formatting specification and
the source document. The nodes of the flow object tree are flow objects. Each flow object is of
atype called aflow object class. A flow object is said to be an instance of itsclass. A flow
object also has a set of characteristics. The characteristics that are applicable to aflow object
depend on the flow object’sclass. A flow object’s class and characteristics together constitute a
specification of the desired formatting behavior of the flow object.

Each flow object has a set of ports to each of which an ordered list of flow objects can be
attached. The set of ports may be empty. One port of each flow object that has any ports may be
distinguished as the principal port. The principal port is unnamed. Every other port has a name
which uniquely identifiesit in the context of its flow object. The list of flow objects attached to a
port is known as a stream, and the members of the list are called members of the stream. Thereis
asingle flow object in the flow object tree that is not amember of any stream. Thisflow object is
called the root of the flow object tree. Every other flow object in the flow object treeisa
member of exactly one stream. This stream isreferred to as the flow object’s stream. The flow
object to which aflow object’ s stream is attached is called theflow parent of the flow object. The
set of portsthat aflow object hasis controlled by its class, and for some classes also by its
characteristics. A flow object that has no portsis called an atomic flow object, and a flow object
class whose instances are always atomic is an atomic flow object class. The relative positioning
of flow objectsin different streams can be constrained by synchronizing the flow objects. In
addition, the value of a characteristic may result in the creation of aflow object.

Areas

The concept of an areais used to give semantics to flow objects. The result of formatting a flow
object other than the root flow object is a sequence of areas. The nature of these areasis not fully
specified by this International Standard. An areais arectangular box with afixed width and
height. An areais also a specification of a set of marks that can be imaged on a presentation
medium. An areamay contain other areas. In particular, an area may contain a glyph.
Information may be attached to areas depending on the flow object that produced the area and the
context in which it isto be used. Areas are of two types: display areas and inline areas. Each type
of areais placed in adifferent way. For an illustration of the concept of displayed and inlined
areas, see Figure 4.

165

| SO/IEC 10179:1996

© ISO/IEC

Inline area
(graphic in box)

Formula is
an inline
area.

12.3.1 Display Areas

This is DSSSL illustrative Text.

It will be used in various

forms in the DSSSL pictures

to illustrate certain points.
Here is an inline graphic Dispicy
that is run info the area

sentence. (formui)

This is DSSSL illustrative Text.

It will be used in various
forms in the DSSSL pictures

to illustrate certain points.
This paragraph includes an
inline formula as shown, such
as[E=mc2.

Figure 4 — Displayed and Inlined Areas

Display areas are areas that are not directly parts of lines. A display area has an inherent absolute

orientation.

NOTE 43 Informally, the box has an arrow on it saying ‘this way up’.

The positioning of display areasis specified by area containers. An area container hasits own

coordinate system with its origin at the lower left corner, the positive x-axis extending
horizontally to the right and the positive y-axis extending vertically upward.

An area container has afilling-direction specified in terms of its own coordinate system. The
filling-direction gives a starting edge and an ending edge which are opposite to each other. The
size of an area container is always fixed in the direction perpendicular to the filling-direction.
This means that the lengths of the starting and ending edges are always fixed and equal to each

other.

166

© ISO/IEC

| SO/IEC 10179: 1996(E)

Starting edge .
of area container Starting

edge of
area A
Display Area A
< , - >
Display-Size
Solid gray box Ending
represents edge of
area area A
container
\ Starting
. edge of
Display Area B area B
Filling-direction of displayed
area placed inside an area
container
Ending
v edge of
area B

v

Ending edge
of area container

Figure 5 — Area Containers and Display Areas

The size of an area container in the filling-direction may be fixed or it may be specified to grow
as necessary to contain the areas with which it isfilled. The display areas with which an area
container isfilled are always created so that their size in the direction perpendicular to the filling-
direction is equal to the size of the area container in that direction. Thisis called the display-size
of thearea. An areacontainer isfilled with a sequence of display areas as follows. The first
display areais positioned with its starting edge aligned with the area container’ s starting edge.
The next display areais then positioned with its starting edge on the previous area’ s ending edge,
and soon. Thisisillustrated in Figure 5.

An area container resulting from an included-container-area flow object may also specify a
rotation to be applied to each of the display areas with which it isto be filled. The angle of
rotation is restricted to be a multiple of 90 degrees. This rotation is applied to each display area,
thus changing the display area’ s starting and ending edges.

NOTE 44 It is possible to have paragraphs with lines with different placement directions on the same page without
using rotation. See Figure 15.

167

| SO/IEC 10179:1996 © ISO/IEC

The direction between a display ared s starting and ending edges is the placement direction of the
display area. A display area also has an associated writing-mode that is perpendicular to the
area’ s placement direction. Thisisillustrated in Figure 6.

Display-Size
< '

This is DSSSL illustrative Text. i

Plaocement
Direction

It will be used in various
forms in the DSSSL pictures
fo illustrate certain poinfts.
This paragraph includes an
inline formula as shown, such
as E=mc2

Left-to-right Writing Mode

Figure 6 — Placement Direction for Left-to-Right Writing-Mode

Writing-mode may be left-to-right, right-to-left, or top-to-bottom. See Figure 7.

Eastern Western

o oy = | Top-to-Bottom
Writing Mode | |

l l —> —>
Left-to-Right 1 2 3
Writing Mode
| J
4 5

Figure 7 — Different Writing-modes

168

© ISO/IEC | SO/IEC 10179:1996(E)

12.3.2 Inline Areas

Inline areas are areas that are parts of lines. An inline area has a position point that lies on one
edge of its box and an orientation called the escapement direction, which is perpendicular to the
edge of the box on which the position point lies. The point on the box which liesin the
escapement direction from the position point and is on the opposite edge of the box is called the
escapement point of the inline area.

NOTE 45 Informally the box has an arrow pointing from the position point that says ‘place me so that the arrow lies
parallel to the line I'min’.

Inline areas are positioned to form lines in the following manner. The writing-mode for a
paragraph gives an inline-progression direction for the paragraph. There is a placement point
associated with the process of constructing aline. Thefirst inline areais oriented so that its
escapement direction is the same as the inline-progression direction of the paragraph, and the
point on the inline area’ s box opposite to the position point becomes the current placement point.
The next areais placed so that its position point is coincident with the current placement point
and oriented so that its escapement direction is the same as the inline-progression direction of the
paragraph. The point on theinline area’ s box opposite to the position point becomes the current
placement point for placing the next area. Thisisillustrated in Figure 8.

inline-progression Left-to-right writing mode
direction
Placement
Position Point path
of second X

XX.Eg=mc’ + 10X.X

) Position Point of
Escapement Point inline area containing . Placement point
of second X pigcement point for next Math formula Escapement point of for next inline area

inline area (math formula) inline area containing
math formula

Figure 8 — Inline Area Placement and Positioning

The use of kerning modifies this positioning asillustrated in Figure 9.

169

| SO/IEC 10179:1996 © ISO/IEC

Left-to-right writing mode

inline-progression

direcﬂy
Plocement

path

—_— >
@) (b)

(@) ()

(a) Position point

(b) Nominal escapement point

(c) Escapement point
adjusted for kering

Figure 9 — Paositioning with Kerning

The path containing the position points of the inline areas, which have the direction determined
by the paragraph’ s writing-mode, is known as the placement path. Thisisillustrated in Figure 10
for the left-to-right writing-mode and in Figure 11 for the right-to-left writing-mode.

170

© ISO/IEC

| SO/IEC 10179: 1996(E)

‘ placement path

/N TN
position point escapement pointE escapement direction

Figure 10 — Glyph Positioning for the Left-to-Right Writing-Mode

escapement direction placement path

<

/u position point

escapement point

Figure 11 — Glyph Positioning for the Right-to-Left Writing-Mode

There are additional steps in the process when the paragraph uses more than one writing-mode.
For example, in Figure 12, there is an inline-progression direction of left-to-right for the English
text and an inline-progression direction of right-to-left for the Hebrew text. In addition, line
breaking becomes more complex in this case.

Standard generalized DNTPD 37T DYINDMN NANTT OO ITIN T IMIND I 1PN
M7 12302 IR FIRNIT? SGML-2 W7 11 3 Markup Language (SGML)

DYPEHN-2T IR FIREITT TP .DYT2I0M IRT AN YT SYEHND O 012
VI3 12 R T BOOND TI29)2 03X SN SGML . 3T MIND
DIDIYPRD PTMT AP S DTN Y IR TP S N3N 2190
IR INEIN

Figure 12 — Mixed Writing-Mode for Hebrew and English

171

| SO/IEC 10179:1996

© ISO/IEC

The alignment mode specified by the alignment mode property for the font resource also
influences how glyphs are positioned, asillustrated in Figure 13. There are characteristics on
inlined flow objects that can modify this process.

position point in
nominal alignment mode

placement path

Aninline area also has aline-progression direction, which is perpendicular to the inline-

ST al

position point
in nominal
alignment mode

escapement point
in nominal
alignment mode

position point (shifted)

escapement point (shifted)
position point . . - o .
- osition point/ Positiop point in nominal
x:&'g%@ggt P P alignment mode

escapement point escapement point

in nominal
alignment mode

Figure 13 — Scripts with Mixed Alignment Modes

progression direction for its paragraph. Certain characteristics of inline areas are specified in

terms of the line-progression direction.

12.3.3 Inlined and Displayed Flow Objects

A flow object that is to be formatted so as to produce a sequence of inline areasis said to be
inlined. A flow object that is to be formatted so as to produce a sequence of display areasis said
to be displayed. Instances of some flow object classes can only be inlined; instances of others
can only be displayed; and instances of others can be either inlined or displayed. Inthelast case,
whether aflow object isto beinlined or displayed is controlled by the characteristics of the flow
object or by whether the flow objects attached to its ports are themselves inlined or displayed.
The class of aflow object determines for each port of that flow object whether the flow objects
associated with that port shall be inlined, or whether they shall be displayed, or whether they may
be either inlined or displayed.

NOTE 46 The included-container-area flow object described in 12.6.16 allows a flow object that can only be
displayed to occur indirectly in aline without causing a break. For example, one may wish to mix vertical Japanesein

aline of English text without causing a break.

172

© ISO/IEC

| SO/IEC 10179: 1996(E)

12.3.4

Attachment Areas

A display area can have a number of associated inline areas called attachment areas. These are
illustrated in Figure 14 which shows the use of sidelines and graphics as attachment areas on
either side of the display area.

NOTE 47 Attachment areas are used for sidelines, line numbers, and marginalia.

Sideline Left-to-right wiiting mode
(changemark)
\ (@ Separation
@ &
<« >
2 '
L XX Eg=mc’ + 10«
Alignment
points for + (3 s (a) Aignment Pposition

sideline

point point

animals2.ttf

/. G *(a)

Position Escapement Alignment

point

point point

(a) Attachment
points

Figure 14 — Attachment Areas

Each attachment areais positioned relative to a point on the display area’ s box called the
attachment point for the attachment area. The attachment point may be different for each of the
attachment areas of the display area. An attachment point lies on an edge of the display areathat
is parallel to the placement direction.

There is a specification for each attachment area that indicates which such edge of the display
areait is attached to. Each attachment area has an alignment point and is positioned so that the
attachment area’ s alignment point is at the same position in the placement direction as the
corresponding attachment point on the display area.

Each attachment area has a specified separation from the display area. |If the attachment point is
on the edge that is at the start in the direction determined by the writing-mode, then the
separation is the distance in that direction from the attachment area’s alignment point to the
attachment point, and the attachment area’ s alignment point is its escapement point. If the

173

| SO/IEC 10179:1996 © ISO/IEC

12.4

1241

attachment point is on the edge that is at the end in the direction determined by the writing-mode,
then the separation is the distance in that direction from the attachment point to attachment area’'s
alignment point, and the attachment area’ s alignment point isits position point.

NOTE 48 A negative value for the separation means that the attachment point isinside the display area.

Flow Object Tree Construction
Construction Rules

[161] construction-rule = query-construction-rule | id-construction-rule | element-construction-
rule | root-construction-rule | default-element-construction-rule

The construction-rulesinast yl e- speci fi cati on (see 7.1) specify how anodein the
source grove is to be processed. Each construction-rule matches some (possibly empty) set of the
nodes in a source grove. Refer to 9 for information about groves and their use in this
International Standard.

A construction-rule includes a construct-expression, which is an expression returning an object
of type sosofo. A sosofo is a specification of a sequence of flow objects to be added to the flow
object tree. See 12.4.3. When aconstruction-rule is applied to a node, its construct-expression is
evaluated. The node to which it is applied becomes the current node for the evaluation of the
construct-expression.

The most specific construction-rule (as defined below) that matches the node is applied to the
node.

NOTE 49 Processing a node has no side-effects; it just returns avalue.

A node is processed with respect to a current processing mode. In addition to named processing
modes that are specified with mode-construction-rule-groups, thereis an initial processing mode
that is unnamed. construction-rules not in any mode-construction-rule-group can match nodes
both when the processing mode is the initial processing mode and when it is a named processing
mode.

A flow object tree is constructed from a source grove by processing the root node of the source
grovein theinitial processing mode; the flow objects specified by the resulting sosofo are added
as children of the root of the flow object tree. The flow objects specified by this sosofo shall all
be unlabeled, and shall either be all of class scroll, or shall be all of class page-sequence or
simple-page-sequence.

[162] mode-construction-rule-group = (node mode-name construction-rule*)
[163] mode-name = identifier

A construction-rule in a mode-construction-rule-group matches a node only when the current
processing mode is mode-name.

174

© ISO/IEC | SO/IEC 10179:1996(E)

The relative specificity of construction-rules is determined as follows:

— A construction-rule in amode-construction-rule-group is more specific than any
construction-rule not in amode-construction-rule-group.

— Among construction-rules that have the same specificity according to the preceding rule, a
construction-rule in one part of &t yl e- speci fi cati on is more specific than any
construction-rule in a subsequent part (see 7.1).

— Among construction-rules that have the same specificity according to the preceding rules,
each of the following is more specific than the next:

query-construction-rule

id-construction-rule

— element-construction-rule

default-element-construction-rule

root-construction-rule

— A query-construction-rule is more specific than anothguery-construction-rule with a lesser
priority.

— An element-construction-rule with aqualified-gi containing two or morgis is more specific
than anotheelement-construction-rule with noqualified-gi or with aqualified-gi containing
fewergis.

It shall be considered an error if there are two or more equally specific construction rules that
match the node.

In addition toconstruction-rules explicitly specified irstyle-language-bodys, there is an implicit
default construction-rule. The default construction rule matches any node in a source grove but
is less specific than any explicitly specifieghstruction-rule. The result returned by the default
construction-rule shall depend on the type of node to which it is applied:

— for a node of classgnl - docunent , it shall return(pr ocess- chi | dren).

— for a node of classl enent , it shall return pr ocess- chi | dren).

— for a node with @har property, it shall retur(nake character).

— for a node of clasat t ri but e- assi gnnent , it shall return pr ocess- chi | dren).

— for any other kind of node, it shall retufenpt y- sosof o) .

175

| SO/IEC 10179:1996 © ISO/IEC

[164] query-construction-rule = (quer y style-query-expression construct-expression priority-
expression?)

A query-construction-rule matches any node in the node-list returned by the style-query-
expression. query-construction-rules require the quer y feature.

[165] style-query-expression = expression

A style-query-expression shall return an object of type node-list. Within a style-query-
expression, thecur r ent -r oot and cur r ent - node procedures both return the grove root of
the grove being processed.

[166] construct-expression = expression

A construct-expression shall return an object of type sosofo. When the quer y feature is enabled,
within a construct-expression, the cur r ent - node procedure shall return the current node.

[167] priority-expression = expression

The priority-expression specifies the priority of the query-construction-rule. It shall evaluate to a
number. If the priority-expression is omitted, then the priority shall be 0. Bigger numbers
indicate higher priorities.

[168] element-construction-rule = (el enent (gi | qualified-gi) construct-expression)

[169] gi = string | symbol

[170] qudified-gi = ((gi+))

An element-construction-rule matches any node of classel enent that matches the gi or
qualified-gi. A node matches a gi if its generic identifier is equal to the string or symbol. A node
matches a qualified-gi if it matches the last gi in the qualified-gi, and its parent matches the next
to last gi, and so on for each gi in the qualified-gi.

[171] default-element-construction-rule = (def aul t construct-expression)

A default-element-construction-rule matches any node of class el enent .

[172] root-construction-rule = (r oot construct-expression)

A root-construction-rule matches any node of classsgm - docunent .

[173] id-construction-rule = (i d unique-id construct-expression)

[174] unique-id = symbol | string

An id-construction-rule matches any node of classel enent that has aunique identifier equal to
unique-id.

176

© ISO/IEC

| SO/IEC 10179: 1996(E)

12.4.2

12.4.3

Primary Flow Object

A flow object is associated with a node in a source grove if it was constructed when that node
was the current node and the flow object occurs in the flow object tree, that is, not within a
reference value or a characteristic value. Flow objects constructed using the implicit default
construction rule are considered to be associated with the nodes in the source grove for which the
rule was applied, just as for flow objects constructed using explicit construction rules.

One flow object associated with a node is more closely associated with the node than another
flow object associated with the node if:

— the one flow object was constructed when the current processing mode was the initial
processing mode, and the other flow object was constructed when the current processing
mode was some mode other than the initial processing mode, or

— the one flow object contains directly or indirectly the other flow object.

If there is a flow object associated with a node that is more closely associated with the node than
any other flow object associated with the node, then that flow object psithary flow object
for the node.

Sosofos

An object of type sosofo is a specification of a sequence of flow objects to be added to the flow
object tree.

NOTES

50 The expression language never operates on flow objects directly; it only operates on their specifications using the
sosofo data type.

51 Animplementation will use the information in a sosofo to construct portions of the flow object tree when a sosofo
isreturned by a construct-expression in aconstruction-rule that has been applied to some node in a source grove.

Each flow object specified by a sosofo may be labeled with a symbol. A sosofo whose members
are all unlabeled is called anlabeled sosofo.

NOTE 52 A flow object islabeled by specifying al abel : argument in a make-expression.
(sosof 0? obj)
Returns #t ifobj is a sosofo, and otherwise returns #f.

[175] make-expression @rake flow-object-class-name keyword-argument-list content-
expression*)

[176] content-expressionexpression

177

| SO/IEC 10179:1996 © ISO/IEC

The result of evaluating a make-expression is a sosofo (the result sosofo) whose first specified
member is aflow object of the class named by the flow-object-class-name. This flow object is
called the constructed flow object. Each content-expression shall return an object of type sosofo.
The sosofos returned by the content-expressions are concatenated to form the content sosofo. No
content-expressions shall be specified if the flow-object-class-name is of an atomic flow object
class. If the flow-object-class-name is not of an atomic flow object class and the make-expression
contains no content-expressions, then a content-expression with the effect of (pr ocess-

chi | dren) shall be used.

Each make-expression has a content map that maps labels to ports. Each flow object specified in
the content sosofo is considered in turn. If it isunlabeled, it is appended to the stream attached to
the principal port of the constructed flow object, if the constructed flow object has a principal
port, otherwise this shall be an error. If itislabeled, and the label is one that is mapped by the
content map, then the flow object is appended to the stream attached to the port of the flow object
to which that label is mapped. Otherwise, the flow object is appended to the result sosofo; these
flow objects are after the constructed flow object in the result sosofo.

A keyword shall be treated as part of the keyword-argument-list rather than as a content-
expression. If the same keyword occurs more than once in the keyword-argument-list, it shall not
be an error, but all except the first occurrence shall be ignored. The following keywords are
allowed in the keyword-argument-list:

— A keyword that is the name of a characteristic and specifies the value of that characteristic for
the flow object (unless it is an inherited characteristic that is overridden) as described in
12.4.6. If the characteristic is not inherited, then the characteristic shall be one that is
applicable to the constructed flow object.

— A keywordf or ce! ¢: wherec is the name of an inherited characteristic that specifies the
value of that characteristic for the flow object and prevents overriding of that value as
described in 12.4.6.

— A keyword that is the name of a reference value type and specifies that the constructed flow
object has a reference value of that type with the specified value.

— use: specifying a style to be used for the constructed flow object as described in 12.4.6. The
value shall be a style object or #f indicating that no style shall be used.

— cont ent - map: specifying the content map for th@ke-expression. The value shall be a
list of lists of two objects, where the first object is a symbol that specifies a label and the
second object is either a symbol specifying the name of a port or #f specifying the principal
port. No label shall occur more than once in a content map.

If the cont ent - map: argument is not specified, then a content map shall be used that for
each non-principal port of the flow object contains a list of two symbols both equal to the
name of the port.

— | abel : specifying the label for the constructed flow object in the result sosofo. This
argument shall be a symbol.

178

© ISO/IEC

| SO/IEC 10179: 1996(E)

[177] flow-object-class-name = identifier
Any identifier that is the name of aflow object classis aflow-object-class-name.

[178] application-flow-object-class-declaration = (decl ar e- f | ow obj ect - cl ass
identifier string)

This declares identifier to be a flow-object-class-name for a class with a public identifier
specified by string.

[179] with-mode-expression = (wi t h- node mode-specification expression)

[180] mode-specification = mode-name | #f

A with-mode-expression eval uates expression with the processing mode specified by mode-
specification. A mode-specification of #f indicates theinitial unnamed processing mode. The
mode-name in mode-specification shall have been specified in a mode-construction-rule-group.
(enpty-sosof 0)

Returns an empty sosofo.

(literal string..)

Returns a sosofo containing one flow object of class character for every char instri ng, ... in

the same order. Each character flow object is constructed as if by evaluaake expression

with char act er as theflow-object-class-name and achar : argument specifying the

character.

(process-chil dren)

Returns the sosofo that results from appending the sosofos that result from processing in order
the children of the current node. When the current node is ofsggds docurnent , the value

of thedocunent - el enent property is treated as being the children of the node.
(process-children-trim

Returns the sosofo that results from appending the sosofos that result from processing in order
the children of the current node after removing any leading and trailing sequence of nodes that
have achar property with the nput - whi t espace property true.

(process-nmat ching-children pattern...)

Returns the sosofo that results from appending the sosofos that result from processing in order
those children of the current node that match any of pat t ern, ... A patt er n shal be an object

179

| SO/IEC 10179:1996 © ISO/IEC

that is allowed as the second argument to the mat ch- el errent ? procedure. It isinterpreted as
itisby mat ch- el enent ?.

(process-first-descendant pattern...)

Returns the sosofo that results from processing the first descendant in tree order of the current
node that matches any of pat t ern, ... A patt er n shall be an object that is allowed as the
second argument to the match-element? procedure. Itisinterpreted asit is by match-
element? .

(process-element-with-id string)

Returns the sosofo that results from processing the element in the same grove as the current node
whose unique identifier is st ri ng, if there is such an element, and otherwise returns an empty
sosofo. This procedure requires the cross-reference feature.

(process-node-list ndlist)

Returns the sosofo that results from appending the sosofos that result from processing the
members of the nd/ i st inorder. Thisrequiresthe query feature.

(map-constructor procedure node-1ist)

For each nodein node- I i st, procedur e is evaluated with that node as a current node.
procedur e shall be aprocedure of no arguments and shall return a sosofo. map-
constructor shall return the sosofo that results from concatenating the results of evaluating
the procedure. This requiresthe query feature.

(sosof o-append sosofo ...)

Returns the sosofo that results from appending sosof o ...

(sosof o-1 abel sosofo synbol)

Returns a sosofo that results from labeling with synbol each member of sosof o that is
currently unlabeled. A new sosofo is constructed; neither the sosof o nor its members are
modified.

(sosof o-di scard-1 abel ed sosofo synbol)

Returns a sosofo that results from discarding from sosof o any flow object that is labeled with
synmbol . A new sosofo is constructed; the sosof o is not modified.

(next-match)
(next-match style)

180

© ISO/IEC

| SO/IEC 10179: 1996(E)

12.4.4

12.4.5

Returns the sosofo that results from applying the next most specific construction rule that
matches the current node. If st y/ e is specified, then that style shall become the current
overriding style for the evaluation of that construction rule.

Multi-process Feature

A call to any of the procedures pr ocess- chi | dren, process-children-trim
process- nat chi ng-chil dren, or process-first-descendant isadescending
recursive call if:

— it does not occur during the evaluation of a captecess- node- set orprocess-
el ement-with-id, and

— it does not occur during the evaluation of the value of a reference value.

Unless therul ti - pr ocess feature is enabled, it shall be an error if there occur two

descending recursive calls both made when the same node was the current node and when the
same processing mode was the current processing mode.

Styles

A style object contains a set of expressions specifying values for inherited characteristics.

[181] style-expression Est yl e keyword-argument-list)

Evaluates to an object of type style. The following keywords are allowed keytiver d-
argument-list:

— A keyword that is the name of an inherited characteristic and specifies the value of that
characteristic for the style (unless overridden) as described in 12.4.6.

— A keywordf or ce! ¢: wherec is the name of an inherited characteristic that specifies the
value of that characteristic for the style and prevents overriding of that value as described in
12.4.6.

— use: specifying another style whose characteristics are to be added to this style as described
in12.4.6.

NOTE 53 A style-expression isinterpreted in asimilar manner to a make-expression with an atomic flow object class
that has only inherited characteristics.

(style? obj)

Returns #t ifobj is of type style, and otherwise returns #f.

(nmerge-style style..)

181

| SO/IEC 10179:1996 © ISO/IEC

12.4.6

Returns a style abject constructed by merging st y/ e, ... The expression for a characteristicin
the returned style object is the expression for that characteristic in the first of the argument style
objects that contains an expression for that characteristic.

Characteristic Specification

Every characteristic isinherited unlessit is explicitly specified not to be in this International
Standard. For each inherited characteristic, there is an expression in this International Standard
specifying theinitial value for that characteristic. Each non-inherited characteristic has a default
value.

While a construct-expression is being evaluated, a current overriding style isin effect. When the
processing of anode starts, the current overriding style is empty. The next-match procedure
can change the current overriding style during the evaluation of a construct-expression. That
construct-expression may, in turn, call next-match to change the current overriding style, and
So on.

The expression specifying an inherited characteristic ¢ for aflow object is determined when the
make-expression is evaluated using the first of the following rules that is applicable:

— If a keyword off or ce! ¢: was specified, then the corresponding expression shall be used.
— If the current overriding style contains an expressiorcfdhen that expression shall be used.
— If a keyword ofc: was specified, then the corresponding expression shall be used.

— If use: was specified on the flow object, and the corresponding style object specifies an
expression for, then that expression shall be used.

— Otherwise, an expressidin nheri t ed- ¢) shall be used.

The set of characteristics and corresponding expressions for a style object is determined in a
similar manner during the evaluation of giy@e-expression. For each inherited characteristic

the expression that the style object hascftg determined using the first of the following rules
that is applicable:

— If a keyword off or ce! ¢: was specified, then the corresponding expression shall be used.
— If the current overriding style contains an expressiorcfdhen that expression shall be used.

— If a keyword ofc: was specified, then the corresponding expression shall be used.

— If use: was specified on the flow object, and the corresponding style object specifies an
expression for, then that expression shall be used.

If none of these rules are applicable, then the style object contains no expression for

182

© ISO/IEC | SO/IEC 10179:1996(E)

For each non-inherited characteristic ¢ applicable to some flow object, if the make-expression for
that flow object specifiesthe c: keyword, then the corresponding expression shall be evaluated
and used; otherwise, the default for that characteristic shall be determined as specified for that
characteristic and flow object class.

The expression specifying the value of a characteristic in a make-expression or style-expression
shall not be evaluated immediately; instead the expression shall be associated with the
characteristic in the created flow object or style object. The values of the free variablesin the
expression are remembered and are used when the expression is evaluated, as with alambda
expression. The current node is also remembered and restored for the evaluation of the
expression.

When the flow object tree has been sufficiently constructed so that the position of aflow object
in the flow object tree has been determined, then the expressions specifying the values for the
characteristics applicable to that flow object shall be evaluated.

An expression specifying the value of a characteristic shall be evaluated with respect to two flow
objects, which are referred to as the value flow object and the specification flow object. The value
of acharacteristic for aflow object is determined by evaluating the expression specifying that
characteristic with both the value flow object and the specification flow object equal to that flow
object.

(inherited-c)

For any inherited characteristic, ¢, thereisaprocedurei nheri t ed- c. This procedure shall be
used only in the evaluation of an expression specifying avalue for a characteristic. The
procedure returns the result of evaluating the expression that specifies ¢ for the flow parent of the
specification flow object; this expression is evaluated with the value flow object unchanged and
with the specification flow object equal to the flow parent of the current specification flow
object. If the current specification flow object has no flow parent because it occurs as a
characteristic value of some flow object, then that flow object shall be treated as the flow parent
for this purpose. If the current specification flow object has no flow parent because it isused in a
gener ate-specification or a decoration-specification, then the page-sequence or column-set-
sequence flow object that is using the page-model or column-set-model in which that generate-
specification or decor ation-specification occurs shall be treated as the flow parent for this
purpose. Otherwise, if the current specification flow object has no flow parent then

i nherit ed- c returnsthe result of evaluating the expression specifying the initial value of c;
thereis no specification flow object during the evaluation of this specification, and it shall be an
error if it callsi nheri t ed- ¢ for any inherited characteristic c.

The procedurei nher i t ed- ¢ behaves differently when:
— the flow parent of the specification flow object is a table or a table-part;

— the value flow object is a table-cell of that table or table-part or is in a table-cell of that table
or table-part; and

183

| SO/IEC 10179:1996 © ISO/IEC

— the table or table-part contains a table-column flow object that specified has the same
column number as that table-cell.

In this casej nher i t ed- ¢ shall return the result of evaluating the specification of the
table-column; this expression shall be evaluated with the value flow object unchanged and with
the specification flow object equal to the table flow object.

(actual -¢)

For each inherited characteristicact ual - ¢ shall return the value af for the value flow

object. This procedure shall be used only in the evaluation of an expression specifying a value for
a characteristic. It shall be an error to ealt ual - ¢ with a value flow object of in the course

of determining the value af for f. Use of this procedure requires #et ual -

characteristic feature.

(char-script-case string, objq... string,, 0bj,1 0bj,)

This procedure shall be used only in the evaluation of an expression specifying avalue for an
inherited characteristic. There shall be an odd number of arguments. All arguments other than
the last shall be interpreted as a series of pairs, where the first member of the pair isastring
specifying a public identifier, and the second member is any object. If the value flow object is
not a character flow object or is a character flow object that has a script property that is not #f,
then char - scri pt - case shall return its last argument. Otherwise, the value of the script
characteristic shall be compared in turn against the first member of each argument pair; if it
matches, then the second member shall be returned; if there is no match, then the last argument
shall be returned.

NOTE 54 For example, in formatting Japanese text, it is common to use different fonts for the Katakana, Han, and
Latin portions of the text.

[182] application-characteristic-declaration = (decl ar e- char act eri sti c identifier string
expression)

This declares identifier to be an additional inherited characteristic. It also has the effect of
declaring proceduresi nherited-identifier andactual -identifier.Thestringisa
public identifier specifying the semantics of the characteristic. If an implementation does not
recognize the specified public identifier, it shall ignore uses of the characteristic. The expression
is the specification of theinitial value of the characteristic.

[183] application-char-characteristic+property-declaration = (decl ar e- char -
characteristic+property identifier string expression)

This declares identifier to be an additional non-inherited characteristic of a character flow object
and also declares identifier to be an additional character property. The string shall be a public
identifier specifying the semantics of the characteristic. The default value of the characteristic is
the value of the identifier property of the character that isthe value of the char : characteristic
of the flow object. The default value of the property is the value of expression. This expression

184

© ISO/IEC

| SO/IEC 10179: 1996(E)

12.4.7

shall be evaluated normally; it shall not be evaluated in the special way that the val ues of
characteristics are evaluated, nor shall it be evaluated with respect to a current node.

[184] initial-value-declaration = (decl are-i ni ti al - val ue identifier expression)

This declares theinitial value of the inherited characteristic identifier to be an expression. This
shall not be used for characteristics declared with an application-characteristic-declaration.

Synchronization of Flow Objects
Facilitiesin this clause require the page feature.

It is sometimes necessary to constrain the relative positioning of flow objectsin different
streams. For example, afootnote might be constrained to be on the same page as the
corresponding reference, or a sidenote might be constrained to be at the same vertical position as
itsreference. Such constraints are specified by creating a synchronization set. A
synchronization set is a set of flow objects whose relative positioning is constrained. A flow
object contains information describing the synchronization setsto which it belongs. A flow
object can belong to any number of synchronization sets. For every synchronization set, there
shall be aflow object, the synchronizing flow object, that is a flow ancestor of al the flow objects
in the synchronization set. In addition, each stream of that flow object can contain (either directly
or as a descendant) at most one flow object in the synchronization set.

(sync sosofo, sosof o,
#! key type: mn: max:)

Creates a synchronization set whose members are the first member of sosof 0, and the first
member of sosof 0,. sync returns a sosofo comprising:

a) acopy of thefirst flow object of sosof 0, with added synchronization information,

b) any remaining flow objects of sosof o4,

c) acopy of thefirst flow object of sosof 0, with added synchronization information, and

d) any remaining flow objects of sosof o,.

Thet ype: argument isasymbol specifying the type of constraint on the areas created by
formatting the synchronized flow objects. Themni n: and max: arguments are integers that
further specify the type of constraint. The value of max: shall be greater than or equal to that of
m n:. mn: and max: defaultto 0. The permitted valuesfort ype: are:

— page specifying that the number of pages separating

a) the first of the areas created from the first synchronized flow object from

b) the first of the areas created from the second synchronized flow object

185

| SO/IEC 10179:1996 © ISO/IEC

12.5

12.5.1

shall not be lessthan mi n: nor greater than max: . The synchronizing flow object shall be a
page-sequence flow object or a column-set-sequence flow object with a page-sequence flow
object as an ancestor. The number of pages from one area to another areais defined to be the
index, among all the pages of the page-sequence, of the page on which the second area lies
minus the index of the page on which thefirst arealies.

NOTE55 If mi n: were-1and max: were 2, then thefirst of the areas created from the second synchronized flow
object would be constrained to be either on the page before the first of the areas created from the first synchronized
flow object, on the same page as the first of the areas created from the first synchronized flow object, on the page
after thefirst of the areas created from the first synchronized flow object, or on the next page after that.

— spr ead specifying that the number of spreads from the first of the areas created from the first
synchronized flow object to the first of the areas created from second synchronized flow
object shall not be less thann: nor greater thamax: . The synchronizing flow object shall
be a page-sequence flow object or a column-set-sequence flow object with a page-sequence
flow object as an ancestor.

— col um specifying that the first of the areas created from the first synchronized flow object
and the first of the areas created from the second synchronized flow object shall be in the
same column-subset and that the number of columns from the first of the areas created from
the first synchronized flow object to the first of the areas created from the second
synchronized flow object shall be betweam: andnax: . The synchronizing flow object
shall be of class column-set-sequence.

The default value afype: ispage.
(side-sync [ist)

Creates a synchronization set containing the first members of each of the menibexs, of
which shall be a list of two or more sosofesde- sync returns the sosofo that results from
concatenating the members of the list except that the first member of each sosofo is replaced by a
copy with added synchronization information. The first areas produced by each member of the
synchronization set are constrained to be positioned in the same column-set so that the position
of their placement paths is the same in the filling-direction, possibly adjusted for any difference
in alignment mode.

Common Data Types and Procedures

Layout-driven Generated Text

This clause describes the facilities for generating text when the value of the text to be generated
at some point in the flow object tree may not be known until some formatting has been done. The
facilities in this clause require tipage feature.

NOTE 56 Examples of layout-driven generated text include page numbers, per-page footnote numbers, and dictionary
heads.

186

© ISO/IEC | SO/IEC 10179:1996(E)

Each such piece of generated text is represented by an indirect flow object. An indirect flow
object contains a specification for alist of flow objects. The result of formatting an indirect flow
object isthe result of formatting the list of flow objects it specifies. Indirect flow objects are
created only by using the proceduresin 12.5.1.1 and are not created using the normal flow object
creation mechanism. The content of the indirect flow object is defined to be the list of flow
objects that it specifies. For the purposes of inheritance, the contents of an indirect flow object
have the indirect flow object as their flow parent.

The generated-object data type is the specification of an expression-language object. The kernel
of a generated-object is defined to be the object that is specified. The kernel of a generated-
object is not available directly but only through the proceduresin 12.5.1.1.

(gener at ed- obj ect ? obj)
Returns#t if obj is of type generated-object, and otherwise returns #f.
12.5.1.1 Constructing Indirect Sosofos

(general -indi rect-sosof o procedure generat ed- obj ect ...)

Returns a sosofo containing a single indirect flow object, the content of which is an unlabeled
sosofo that is the result of applying the pr ocedur e to alist of the kernels of the gener at ed-
obj ect s. Thisrequiresthegener al - i ndi r ect feature.

(asis-indirect-sosofo gener at ed- obj ect)

Returns a sosofo containing a single indirect flow object whose content is the kernel of
gener at ed- obj ect . The kernel of gener at ed- obj ect shall be a sosofo.

NOTE 57 Typicaly, the generated-object is created by one of the proceduresin 12.5.1.3.
(number-indirect-sosofo gener at ed- obj ect #'key format: add: multiple:)

Returns a sosofo containing a single indirect flow object whose content is the kernel of
gener at ed- obj ect , which shall be an integer converted to a string and then to a sosofo. The
keyword arguments control the conversion of the integer to a string as follows:

— format : is a string specifying the format to use for conversion of the number as in the
f or mat - nunber procedure. The defaultis 1.

— add: is an integer to be added to the kernejeher at ed- obj ect before conversion. The
default is 0.

—nul tipl e: isaninteger. The integers to be converted that are not multiples of this integer
shall be converted to the empty string. The integer specified idithe argument shall be
added to the kernel gfener at ed- obj ect before testing whether it is a multiple. The
default is 1.

187

| SO/IEC 10179:1996 © ISO/IEC

12.5.1.2 Layout Numbering

The following procedures al return a generated-object whose kernel is a number that may
depend on the result of formatting. Whenthefi r st - ar ea- of - node: and| ast - ar ea- of -
node: arguments are allowed, the number is specified relative to areference area. At most one
of thefi r st -area-of -node: and| ast - ar ea- of - node: arguments shall be supplied. If
thefirst-area- of - node: argument is supplied, then its value shall be a node, and the
reference areaisthe first arearesulting from the primary flow object of that node. If thel ast -
ar ea- of - node: argument is supplied, then its value shall be anode, and the reference areais
the last area resulting from the primary flow object of that node. One of fi r st - ar ea- of -
node: orl ast - ar ea- of - node: shall be supplied unless either:

— there is a current node when the procedure is evaluated, in which case the reference area is the
first area resulting from the primary flow object of the current node, or

— the procedure is used withinganerate-specification, in which case the reference area is the
generated area, or

— the procedure is used in the construction of a decoration area, in which case the reference area
is the decorated area.

Although a column is not an area, in this clause it is treated as an area, and an area is deemed to
be in a particular column if it is in the column-set of that column and if that column is the first
column in the column-set that the area spans.

It shall be an error to use one of the procedures defined in this clause in such a way that it
requires the primary flow object of a node that has no primary flow object.

(page- number #! key first-area-of-node: |ast-area-of-node:)

Returns a generated-object whose kernel is the number of pages before or the same as the
reference area.

(cat egory- page- nunber #!key first-area-of-node: |ast-area-of-node:)

Returns a generated-object whose kernel is the number of pages before or the same as the
reference area that has the same category as the page that is or that contains the reference area.

(page- nunber -i n- node nd)
Returns a generated-object whose kernel is the number of pages that:

— are before or contain the first of the areas generated by the indirect-sosofo in which the
generated-object is used, and

— contain areas from the flow object that correspondsito

NOTE 58 This procedure could be used within a table header or footer.

188

© ISO/IEC

| SO/IEC 10179: 1996(E)

125.1.3

(total - node- page- nunbers nd)

Returns a generated-object whose kernel is the total number of pages that contain an areafrom
the primary flow object associated with nd.

(col um-nunber #!key first-area-of-node: |ast-area-of-node:)

Returns a generated-object whose kernel is the number of columns in the same column-subset as
the reference areathat is before or the same as the reference area.

(f oot not e- nunber synmbol #! key first-area-of-node: |ast-area-of-node:)

Returns a generated-object whose kernel is the number of footnote areas that are before or the
same as the reference area and are descendants of the nearest ancestor of the reference areathat is
of the type specified by synbol , whichisone of page, page- r egi on, or col unm. For this
purpose, afootnote areais an areawhich isthe first in the sequence of areas produced from a
flow object whose stream is directed into the footnote zone of a column-set-sequence flow
object.

(l'i ne-nunber synbol #!key first-area-of-node: |ast-area-of-node:)

Returns a generated-object whose kernel isthe number of line areas that are before or the same as
the reference area and are descendants of the nearest ancestor of the reference areathat is of the
type specified by synbol , where synbol is one of page, page-r egi on, col um, or

par agr aph. Line areas from paragraphs for which the nunber ed- | i nes?: characteristic
was #f shall not be counted.

Reference Values
A flow object may have a number of named objects associated with it called reference values.
[185] reference-value-type-declaration = (decl ar e- r ef er ence- val ue-t ype identifier)

A reference-value-type-declaration declares identifier to be the name of areference-value type.
The identifier shall not be the name of a characteristic or of any other keyword argument
accepted by a make-expression.

(first-area-reference-value symbol #! key default: inherit:)
(I ast-area-reference-value synmbol #! key default: inherit:)
(1 ast - precedi ng-area-reference-val ue symbol #!'key default:)
(all-area-reference-val ues synbol #!key unique: inherit:)

Each of these procedures may be used only in a generate-specification or in the construction of a
decoration area. The context in which these procedures are used determines alist of areas, the
associated-areas list, on which these procedures operate.

When the procedures are used in the construction of a decoration area, the associated-areas list
contains just the decorated area. When the procedures are used in a generate-specification in a

189

| SO/IEC 10179:1996 © ISO/IEC

header -specification, footer-specification, or footnote-separ ator-specification in a column-
specification, then the associated-area list contains the areas that are placed in the same column-
set area container and that are in the body-text zone and that overlap the column. When the
procedures are used in a gener ate-specification in a header-specification or footer-specification,
or in a page-region-specification, then the associated-area list contains the areas that are placed
in the same page-region area container as the generated area.

A flow object iseligible if
— it has a reference valwsynbol , or
— it has an ancestor with a reference vayebol , andi nheri t: is specified and is not #f.

Therelevant reference value for an eligible flow object is the reference \glado/ of the
eligible flow object, if the eligible flow object has the reference valaebol , and otherwise is
the reference valugynbol of the nearest ancestor of the eligible flow object that has the
reference valusynbol .

first-area-reference-val ue does a pre-order traversal of the flow object tree searching
for the first eligible flow object that produces an area that

— is one of the areas in the associated-area list, or
— is contained in one of the areas in the associated-area list

and returns a generated-object whose kernel is the value of the relevant reference value for that
flow object. When a flow object has more than one stream, then each stream is searched
separately. If the search finds flow objects in more than one stream, then the flow object that is
earlier in the layout order of the area is returned. If the search finds no flow object, the value of
thedef aul t : argument is returned, which shall be a generated-object.

| ast - ar ea-r ef er ence- val ue behaves the same faisr st - ar ea-r ef er ence- val ue
except that the order of the search is reversed.

| ast - precedi ng- ar ea-r ef er ence- val ue does a pre-order traversal of the flow object
tree searching for the last eligible flow object, all of whose areas are before all the areas in the
associated-areas list, and returns a generated-object whose kernel is the value of the relevant
reference value for that flow object. If no flow object is found, the value afehaul t :

argument is returned, which shall be a generated-object.

NOTE 59 This procedure might be used inthe def aul t: argument for thef i r st - ar ea-r ef er ence- val ue
procedure.

al | -ar ea-reference-val ues does a pre-order traversal of the flow object tree searching

for all eligible flow objects that produce an area that is, or is contained in, one of the areas in the
associated-area list; it returns a generated-object whose kernel is a list containing the value of the
relevant reference value for each such eligible flow object in the order in which it was found. If
uni que: is not #f, then duplicate (in the senseeglial ?) values shall be discarded.

190

© ISO/IEC | SO/IEC 10179:1996(E)

12.5.2 Length Specification
An object of typel engt h- spec specifies alength as alinear combination of other lengths that
may not be currently known. Whenever a value of type length-spec is required, alength (a
quantity of dimension 1) may always be used.
(+ length-spec ...
(- length-spec..)
(* [length-spec x)
(* x Il ength-spec)
(/ Iength-spec x)
(/ x Ilength-spec)
These procedures behave in the same way as their counterparts on quantities, except that they
shall return alength-spec if any of their arguments is alength-spec (as opposed to just alength).
(display-size)
This procedure shall be used only in the evaluation of an expression specifying avaluefor a
characteristic. The value flow object shall be a displayed flow object. It returns a length-spec
specifying the display-size of the value flow object.

12.5.3 Decoration Areas

Facilities in this clause require the page feature.

An area container may be ‘decorated’ with one or more other areas d=utedtion areas.
Decoration areas do not affect how parent areas treat the decorated area; in particular, they shall
not change the width or height of the decorated area.

(decoration-area sosofo #!key placenent-point-x:
pl acenent - point-y: placenent-direction:)

Returns an object of type decoration-area. $heof o can specify a single flow object of any
class that can be used inline. The result of formatting és®f o is used as the decoration area.
The decoration area has a placement point and a placement direction specified by the other
arguments. The inline area produced bysheof o is placed so that its position point lies on
the placement point of the decoration area and its escapement direction is in the placement
direction of the decoration area.

pl acenent - poi nt - x: is a length-spec specifying the distance between the bottom left corner
of the decorated area and the placement point of the decoration area in the x-direction of the
decorated are@l acenent - poi nt -y: is a length-spec specifying the distance between the
bottom left corner of the decorated area and the placement point of the decoration area in the y-
direction of the decorated argd.acenent - di r ecti on: is one of the symbolseft -t o-
right,right-to-1eft, ortop-to-bottomgiving the placement direction of the

191

| SO/IEC 10179:1996 © ISO/IEC

12.5.4

12541

12.5.4.2

decoration arearelative to the orientation of the decorated area. In this case, the line-progression
direction of the decoration areais the placement direction of the decorated area.

(decor at ed- ar ea- w dt h)
(decor at ed- ar ea- hei ght)

decor at ed- ar ea- wi dt h and decor at ed- ar ea- hei ght return alength-spec specifying,
respectively, the width and height of the area to be decorated. They may be used in the
specification for the pl acenent - poi nt - x: and pl acenent - poi nt -y: arguments of a
decoration-area.

Spaces

Display Spaces

Objects of type display-space are used to describe the desired space between displayed areas.
(di spl ay-space? obj)

Returns #t if obj isan object of type display-space, and otherwise returns #f.

(di spl ay-space [ength-spec #!'key min: max: conditional?: priority:)

Returns an object of type display-space. | engt h- spec specifies the nominal size of the space.
nm n: andnax: arelength-specs specifying the minimum and maximum size of the space. These
both default to the nominal size. pri ori ty: iseither aninteger or the symbol f or ce. The
default is 0. Higher integers indicate higher priorities. When two display-spaces are adjacent,
then if one has a higher priority than the other, the minimum, nominal, and maximum values
from the higher priority space shall be used, and the lower priority space shall be ignored. If the
priorities are equal, but one display-space has a higher nominal value than the other, then the
minimum, nominal, and maximum values from the space with the higher nominal value shall be
used, and the other space shall be ignored. Otherwise, the priorities and nominal values are both
equal; in this case, that nominal value, the lesser of the maximum values, and the greater of the
minimum values shall be used. A priority of f or ce isconsidered greater than any other priority.
However, if both prioritiesaref or ce, then the nominal, minimum, and maximum values shall
be added together. Thecondi ti onal : argument is aboolean; if true, the space shall be
discarded if it starts an area. The default is #t.

NOTE 60 This allows spaces to disappear at page or column breaks.

Inline Spaces

Objects of type inline-space are used to describe the desired space between inline areas.
(inline-space? obj)

Returns #t if obj isan object of type inline-space, and otherwise returns #f.

192

© ISO/IEC

| SO/IEC 10179: 1996(E)

12.5.5

12.5.6

(inline-space [/ ength-spec #!'key mn: max:)

Returns an object of type inline-space. | engt h- spec specifies the nominal size of the space.
nm n: and max: arelength-specs specifying the minimum and maximum size of the space. These
both default to the nominal size.

Glyph Identifiers

Glyph identifiers are represented by objects of type glyph-id.

(gl yph-id? obj)

Returns #t if obj isaglyph-id, and otherwise returns #f.

(gl yph-id string)

Returns a glyph-id with public identifier st ri ng.

[186] glyph-identifier = afii-glyph-identifier

[187] &fii-glyph-identifier = #Adigit-10+

An afii-glyph-identifier is asingle token; therefore, no whitespace is allowed between the #A and
the digits. An afii-glyph-identifier represents the glyph-id returned by

(glyph-id "1SO 1 EC 10036/ RA// d yphs:: n")

where n is the same sequence of digits occurring in the afii-glyph-identifier with leading zeros
removed. The value represented by the digits shall be between 1 and 232-1.

Glyph Substitution Tables

An object of type glyph-subst-table represents a one-to-one mapping from glyph-ids to glyph-
ids.

(gl yph-subst-tabl e? obj)

Returns #t if obj is of type glyph-subst-table, and otherwise returns #f.

(gl yph-subst-table /ist)

Returns an object of type glyph-subst-table. / i st shall contain alist of pairs of glyph-ids. In the
resulting glyph-subst-table, the substitution for the first member of each pair is the second
member. The substitution for any glyph-id that does not occur as the first member of apair is
itself. If aglyph-id occurs as the first member of more than one pair, then the substitution for that

glyph-id is the second member of the first pair that has that glyph-id asits first member.

(gl yph-subst gl yph-subst-tabl e gl yph-id)

193

| SO/IEC 10179:1996 © ISO/IEC

12.5.7

Returns the glyph-id that substitutes for g/ yph- i d in the glyph-subst-table.

Font Information
Facilitiesin this clause requirethe f ont - i nf o feature.

(font-property string list
#! key size: nane: fam|y-nane: weight: posture: structure:
proportionate-wi dth: witing-node:)

Returns the value of a property in afont resource. The argumentsnane: ,fam | y- nane: ,
wei ght : , posture:,structure:,orproportionate-w dth: selectthefontinthe
same manner as the corresponding characteristics, with a prefix of f ont - added, of a character
flow object. Thesi ze: argument is alength specifying the size of the font, which shall be
supplied if the ISO/IEC 9541-1 data type of the value is REL-RATIONAL. stringisastring
representing a public identifier specifying the name of the property. /i st isalist, each of whose
membersis either:

— a string, or
— a list of three strings and an object.

The property value to be returned shall be determined as follows. Initially, the active property-list
is the font-resource property-list. Each membedriaft in turn shall set the active property-list
to a property-list nested in the active property-list, as follows:

— If the member is a string, then it shall set the property-list to the property-list that is the value
of the property of that name in the active property-list.

— Otherwise, the active property-list shall be searched for a property whose name is equal to the
first string. The value of the property shall be a property-list. The active property-list shall be
set to the value of the property in that list whose name is equal to the second string and whose
value is a property-list that contains a property whose name is equal to the third string and
whose value is equal to the fourth member of the list.

Finally, the value of the property whose nametisi ng in the active property-list shall be
returned.

The optionalwr i ti ng- nbde: argument shall have one of the value$t -t o-ri ght,
right-to-left,ortop-to-bottom The valud eft-to-right is equivalent to
prefixing/ i st with the list
("1SQ | EC 9541- 1/ / WRMODES"

"1 SO | EC 9541- 1/ / WRMODE"

"1SO | EC 9541- 1/ / WRMODENAME"
"1SO | EC 9541-1//LEFT- TO- Rl GHT")

and so on for the other allowed values.

194

© ISO/IEC | SO/IEC 10179:1996(E)

The object returned shall depend on the data type of the value of the property as defined in SO/
IEC 9541-1:

— for a BOOLEAN property, a boolean value shall be returned.

— for a STRUCTURED-NAME, a string containing the 1ISO 9070 canonical representation shall
be returned.

— for MATCH-STRING or MESSAGE, a string shall be returned.

— for OCTET, INTEGER, CARDINAL, or CODE, a number shall be returned.

— for REL-RATIONAL, a length shall be returned which is obtained by scaling the font size.
— for ANGLE, a number shall be returned corresponding to the angle in degrees.

— for an OCTET-STRING, a list of integers shall be returned.

— for a value-list or an ordered-value-list, a list containing the result of converting the members
of the value-list or ordered-value-list shall be returned.

Other types of values shall cause an error to be signaled.

12.5.8 Addresses

An address object shall be used as the destination of a hypertext link. An address object
represents the address of one or more objects.

(address? obj)

Returns #t ifobj is an object of type address, and otherwise returns #f.

(address-1ocal ? address)

Returns #t if theaddr ess is local to the current document, and otherwise returns #f.
(address-visited? address)

Returns #t ifaddr ess has been visited, and otherwise returns #f.

(hytime-1inkend)

Returns an object of type address. The current node shall be an element conforming to the clink
architectural form as defined in ISO/IEC 10744. The address identifies the linkend of the current

node.

(idref-address string)

195

| SO/IEC 10179:1996 © ISO/IEC

12.5.9

The st ri ng isdivided into one or more space-separated tokens, and an object of type address
shall be returned representing the elements whose unique 1D is one of the tokens.

(current-node-address)
Returns an address object representing the current node.
(entity-address string)

The st ri ng isdivided into one or more space-separated tokens, and an object of type address
shall be returned representing the entities whose names are the tokens.

(sgm - docunent - address string, Sstringo)

st ri ngq shall be the system identifier of an SGML document entity and st ri ng, shall bea
unique ID in that SGML document. Returns an address object representing the element in the
SGML document that has that unique ID.

(node- | i st-address node-1ist)

Returns an address object representing the nodesin node- I i st. This procedure requires the
query feature.

NOTE 61 External procedures may be used to allow other addressing mechanisms.

Color
A color shall always be specified with respect to a col or-space.

(col or-space string arg...)

Returns an object of type color-space. The st ri ng specifies a public identifier identifying the
color-space family. The remaining arguments specify parameters to the color-space family. The
type and number of the remaining arguments depend on the col or-space family as described
below.

(color-space? obj)

Returns #t if obj isa color-space, and otherwise returns #f.

(color col or-space arg ...

Returns an object of type color. col or - space isthe color-space relative to which color isto be
specified. The type and number of the remaining arguments depend on the color-space family to
which col or - space belongs. If no arguments other than col or - space are specified, then

the default color in col or - space is returned.

NOTE 62 Thisisnormally black.

196

© ISO/IEC | SO/IEC 10179:1996(E)

(color? obj)

Returns #t if obj isacolor, and otherwise returns #f.

This International Standard defines the following color-space families:

— ISO/IEC 10179:1996//Color-Space Family::Device Gray

— ISO/IEC 10179:1996//Color-Space Family::Device RGB

— ISO/IEC 10179:1996//Color-Space Family::Device CMYK

— ISO/IEC 10179:1996//Color-Space Family::Device KX

— ISO/IEC 10179:1996//Color-Space Family::CIE LAB

— ISO/IEC 10179:1996//Color-Space Family::CIE LUV

— ISO/IEC 10179:1996//Color-Space Family::CIE Based ABC

— ISO/IEC 10179:1996//Color-Space Family::CIE Based A

The semantics of each of these color-space families is that of the corresponding color-space
family in ISO/IEC 10180. The additional arguments required dyor - space when one of

these color-space families is specified as the first argument are determined by the parameters of
the corresponding Color-Space Object in ISO/IEC 10180. When the ISO/IEC 10180 Color-
Space Object has no parameterd, or - space takes no additional arguments. When the ISO/
IEC 10180 Color-Space Object has a single parameter of type Dictiamadrgt - space

accepts a keyword argument for each key allowed in the Dictionary. The name of each keyword
is derived from the name of the Dictionary key by inserting a hyphen before each upper-case
letter in the name that is not the first letter and that is followed by a lower-case letter, and by then
mapping all characters to lower-case. The type of each keyword argument shall be determined
by the type of the corresponding Dictionary value:

— If the ISO/IEC 10180 type is a number, then the argument type shall be a number.

— If the ISO/IEC 10180 type is a procedure, then the argument type shall be a procedure.

— If the ISO/IEC 10180 type is a reference to a vector of numbers, then the argument type shall
be a list of numbers of the same length.

— If the ISO/IEC 10180 type is a reference to a vector of procedures, then the argument type
shall be a list of procedures of the same length.

The number and type of the additional arguments required lyother procedure when the

first argument is a color-space that belongs to one of these families shall be determined by the
number and type of the argument required by the ISO/IEC 10180 SetColor operator to specify a
color in the corresponding ISO/IEC 10180 color-space. These additional arguments are all

197

| SO/IEC 10179:1996 © ISO/IEC

12.6

12.6.1

12.6.2

required arguments (not keyword arguments). Their types are determined from the ISO/IEC
10180 types in the same manner as the argumentsfor col or - space. The default color for each
color-space is determined by the value that | SO/IEC 10180 defines the CurrentColor Graphics
State Variable to have immediately after execution of the SetCol orSpace operator for the
corresponding 1SO/IEC 10180 color-space.

NOTE 63 A color specified in a color-space with a procedure argument may be transformed in a device-independent
manner to a color specified in a color-space without any procedure arguments. There is, therefore, no need when
implementing the style language with output to an ISO/IEC 10180 device to be able to compile an arbitrary expression
into the language defined in ISO/IEC 10180.

Flow Object Classes

Sequence Flow Object Class

A sequence flow object classis formatted to produce the concatenation of the areas produced by
each of itschildren. It hasasingle principal port. Its children may beinlined or displayed.

NOTE 64 A sequence flow object is useful for specifying inherited characteristics. For example, a sequence flow
object with a specification of af ont - post ur e: characteristic may be constructed for an emphasized phrase element

in a paragraph.

A port of aflow object shall accept a sequence flow object if and only if it would accept each of
the flow objects in that sequence.

Display-group Flow Object

A display-group flow object classis formatted to produce the concatenation of the areas
produced by each of its children. It hasasingle principal port. Its children shall al be displayed,
and it isitself displayed.

NOTE 65 It will, therefore, cause aline break in a paragraph even if the display-group has no content.
The following characteristics are applicable:

— coal esce-i d: is a string specifying the coalesce-id of the flow object, or #f if the flow
object has no coalesce-id. This characteristic is not inherited. The default value is #f. If the
areas from two or more flow objects with the same coalesce-id are flowed into thecgame
fl oat,bottomfl oat, orf oot not e zone of a column-set area, then the areas from the
second and subsequent such flow objects shall be discarded. A value other than #f is allowed
for this characteristic only if the flow object is flowed intb @p- f | oat , bott om f | oat
orf oot not e zone of a column-set.

— posi tion-preference: is either #f or one of the symbdlsp orbott om This applies
if the flow object is directed into a port on a column-set-sequence flow object that is flowed
into both the top-float and bottom-float zones of a column-subset and indicates whether the
areas from this flow object may be flowed into only one of the zones. This characteristic is not
inherited. The default value is #f.

198

© ISO/IEC

| SO/IEC 10179: 1996(E)

— space- bef or e: is an object of type display-space specifying space to be inserted before, in

the placement direction, the areas produced by the flow object. This characteristic is not
inherited. The default is for no space before to be inserted.

space- af t er: is an object of type display-space specifying space to be inserted after, in
the placement direction, the areas produced by the flow object. This characteristic is not
inherited. The default is for no space after to be inserted.

keep-wi t h- previ ous?: is a boolean specifying whether the flow object shall be kept in
the same area as the previous flow object. This characteristic is not inherited. The default
value is #f.

keep-wi t h- next ?: is a boolean specifying whether the flow object shall be kept in the
same area as the next flow object. This characteristic is not inherited. The default value is #f.

br eak- bef or e: is #f or one of the symbofsmge, page- r egi on, col unm, orcol umm-
set specifying that the flow object shall start an area of that type. This characteristic is not
inherited. The default is #f.

br eak- aft er: is #f or one of the symbofmge, page- r egi on, col um, orcol um-
set specifying that the flow object shall end an area of that type. This characteristic is not
inherited. The default is #f.

keep: is one of the following:

— #t meaning that the areas produced by this flow object shall be kept together within the
smallest possible area.

— the symbopage indicating that the areas produced by the flow object shall lie within the
same page; in this case, the flow object shall have an ancestor flow object of class page-
sequence.

— the symbotol um- set indicating that the areas produced by the flow object shall lie
within the same column set; in this case, the flow object shall have an ancestor of class
column-set-sequence.

— the symbotol um indicating that the areas produced by the flow object shall lie within
the same column set, and that the first column that each area spans in the column set shall
be the same.

— #f indicating that this characteristic is to be ignored.

This characteristic is not inherited. The default value is #f.

may- Vi ol at e- keep- bef ore?: is a boolean which, if true, specifies that constraints
imposed by th&eep: characteristics of ancestor flow objects on the relative positioning of

this flow object and its previous flow object may not be respected. This characteristic is not
inherited. The default value is #f.

199

| SO/IEC 10179:1996 © ISO/IEC

— may- vi ol at e- keep- af t er ?: is a boolean which, if true, specifies that constraints
imposed bykeep: characteristics of ancestor flow objects on the relative positioning of this
flow object and its next flow object may not be respected. This characteristic is not inherited.
The default value is #f.

12.6.3 Simple-page-sequence Flow Object Class

The facilities in this clause require thenpl e- page feature.

A simple-page-sequence flow object class is formatted to produce a sequence of page areas. A
simple-page-sequence flow object has a single principal port that accepts any displayed flow
object.

NOTE 66 The simple-page-sequence flow object is intended for systems that wish to provide avery simple page
layout facility. More complex page layouts can be obtained with the page-sequence and column-set-sequence flow
object classes.

A simple-page-sequence flow object shall not be allowed within the content of any other flow
object class.

A simple-page-sequence may have a single-line header and footer containing text that is constant
except for a page number.

NOTE 67 A document can contain multiple simple-page-sequences. For example, each chapter of a document could
be a separate simple-page-sequence; this would allow the chapter title within a header or footer line.

The page shall be filled from top to bottom. The display-size for the contents of the simple-page-
sequence shall be the value of fage- wi dt h: less the value of theef t - mar gi n: and
ri ght - mar gi n: characteristics.

A simple-page-sequence flow object has the following characteristics:

— page- wi dt h: is a length specifying the total width of the page. The initial value is system-
dependent.

— page- hei ght : is a length specifying the total height of the page. The initial value is
system-dependent.

— |l eft-margi n: is a length specifying the left margin. The initial value is Opt.
—right-nmargin: is alength specifying the right margin. The initial value is Opt.

— t op- mar gi n: is a length specifying the distance from the top of the page to the top of the
area container used for the content of the simple-page-sequence. The initial value is Opt.

NOTE 68 The header line is within the top margin.

200

© ISO/IEC | SO/IEC 10179:1996(E)

— bott om mar gi n: is a length specifying the distance from the bottom of the page to the
bottom of the area container used for the content of the simple-page-sequence. The initial
value is Opt.

NOTE 69 The footer line is within the bottom margin.

— header - mar gi n: is a length specifying the distance from the top of the page to the
placement path for the header line. The initial value is Opt.

— f oot er-margi n: is alength specifying the distance from the bottom of the page to the
placement path for the footer line. The initial value is Opt.

— | ef t - header : is an unlabeled sosofo containing only inline flow objects that is aligned
with the left margin of the page in the header line. This characteristic is not inherited. The
default value is an empty sosofo.

— cent er - header : is an unlabeled sosofo containing only inline flow objects that is centered
between the left and right margins of the page in the header line. This characteristic is not
inherited. The default value is an empty sosofo.

—right - header: is an unlabeled sosofo containing only inline flow objects that is aligned
with the right margin of the page in the header line. This characteristic is not inherited. The
default value is an empty sosofo.

— l eft-footer: isan unlabeled sosofo containing only inline flow objects that is aligned
with the left margin of the page in the footer line. This characteristic is not inherited. The
default value is an empty sosofo.

— cent er-footer: isan unlabeled sosofo containing only inline flow objects that is centered
between the left and right margins of the page in the footer line. This characteristic is not
inherited. The default value is an empty sosofo.

—right-footer: isan unlabeled sosofo containing only inline flow objects that is aligned
with the right margin of the page in footer line. This characteristic is not inherited. The
default value is an empty sosofo.

— writing-node: isone of the symbolseft-to-right orright-to-left. This

determines the writing-mode of the header and footer lines. The initial valaétis t o-

right.
(page- nunber - sosof 0)
Returns an indirect-sosofo whose content is a sequence of character flow objects representing the
page number of the page on which the first area resulting from the indirect flow object specified
by the indirect-sosofo occurs.

(current - node- page- nunber - sosof 0)

201

| SO/IEC 10179:1996 © ISO/IEC

12.6.4

Returns an indirect-sosofo whose content is a sequence of character flow objects representing the
page number of the primary flow object of the current node.

NOTE 70 Thisisintended to handle cross references in conjunction with pr ocess- el ement -wi t h-i d.

Page-sequence Flow Object Class

A page-sequence flow object is formatted to produce a sequence of page areas. The structure and
positioning of the page areas shall be controlled by page-models.

A page-sequence flow object has the following characteristics:

—initial -page-nodel s: is a list of page-models used for the initial pages. The initial
value is the empty list.

— repeat - page- nodel s: is a list of page-models used for pages after the initial pages. The
initial value is the empty list.

— force-I| ast-page: is either #f or one of the symbdlsont orback specifying the
required type of the last page of the page-sequence. If the last page is not of the required type,
then an additional blank page shall be generated. A value of #f indicates that the last page
may be of either type. The initial value is #f.

— force-first-page: is either #f or one of the symbdlsont orback specifying the
required type of the first page of the page-sequence. If the value is not #f, then the parent
flow object shall be of type root; if there is a preceding flow object, then it shall be of type
page-sequence. If the value of fler ce- | ast - page: characteristic of the preceding
page-sequence is not #f, it shall have the opposite type to the specified value of the
characteristic. If the last page of the preceding page-sequence is not of the opposite type to
the value specified for this characteristic, then the preceding page-sequence shall have an
additional blank page added. If there is no preceding flow object and the value is not #f, then
it shall be an error if the specified type of the first page is not the actual type as determined by
thefirst - page-type: characteristic. The initial value is #f.

— first-page-type: is either one of the symbdis ont orback indicating that the first
page of the page-sequence is a front or back page, or the gyamtgoit indicating that the
type of the first page shall be determined by the parent flow object. The initial value is
par ent . A value ofpar ent shall be allowed only if the parent flow object is the root flow
object. In this case, if there is a preceding flow object, then it shall be of type page-sequence,
and the first page shall be a front or back page if the last page of the preceding page-sequence
was a back or front page; if there is no preceding flow object, then the first page shall be a
front page. This characteristic does not cause additional pages to be generated; it merely
states that this page will be of the specified type when it is printed and bound. The value shall
bepar ent unless the value of tHeor ce-fi r st - page: characteristic is #f.

NOTE 71 Thisinformation makesit possible to determine which pairs of pages are spreads.

202

© ISO/IEC

| SO/IEC 10179: 1996(E)

12.6.4.1

— bl ank- back- page- nodel : is a page-model that shall be used for the final page if it was a
back page and was required only because of thee- | ast - page: orforce-first-
page: characteristics, or it is #f if the normal page-model should be used for the final page.
The initial value is #f.

— bl ank-front - page- nodel : is a page-model that shall be used for the final page if it was
a front page and was required only because dfdthee- | ast - page: orforce-first-
page: characteristics, or it is #f if the normal page-model should be used for the final page.
The initial value is #f.

—justify-spread?: is aboolean specifying whether the bottom of each page in a spread
shall be justified. The initial value is #f.

— page- cat egor y: specifies the category of the page areas resulting from this page-
sequence flow object. It may be any expression language object for whetuake?
procedure is defined. The category of an area is used by procedures defined in 12.5.1.2.

— bi ndi ng- edge: is one of the symbolsef t, ri ght,t op, orbot t omspecifying the edge
of a front page to be bound. This affects whether a side of the page is considered to be on the
inside or outside. The initial valueligft .

There shall be an applicable page-model for every page produced by the page-sequence.

The ports of a page-sequence flow object are determined by the page-models.

Page-model

A page-model is the specification of a set of possible hierarchies of areas.

(page- nodel ? obj)

Returns #t ifobj is of type page-model, and otherwise returns #f.

[188] page-model-definition €def i ne- page- nodel page-model-name [[page-region-

specification+ | width-specification | height-specification | filling-direction-specification? |

decor ation-specification*]])

[189] page-model-namevariable

defi ne- page- nodel bindspage-model-name to a page-model object.

The top-level area is the page area. The page area contains a number of sub-argagesalled

regions. The layout order of the page-regions corresponds to the order of their specification in

the page-model-definition. Page-regions may overlap.

[190] page-region-specification(= egi on [[x-origin-specification | y-origin-specification |

width-specification | height-specification | decoration-specification* | filling-direction-
specification? |header-specification? |footer-specification? |page-region-flow-map?]])

203

| SO/IEC 10179:1996

© ISO/IEC

A page-region-specification specifies an area container with fixed dimensions that isfilled to
produce a page-region area. Each page-region has a single predominant filling-direction.

NOTE 72 Included-container-area flow objects may use a different filling direction.

It is possible to have display areas with different placement directions on the same page using
multiple page-regions, asillustrated in Figure 15.

. Startin
Page Region1 —— (a) edge o%
(Area Container 1) area A
Display Area A
< . . g
Display-Size
of Area A
Ending
edge of
area A

(O B

=
L

Display Area B

+

\ Boundary between

page region 1

~ and page region 2

o)
) o
N
N
g8
%E Ending
0o edge of

area B

Starting
edge of
area B

(a) Starting edge

of area container 1
(b) Ending edge

of area container 1

= Page Region 2
(Area Container 2)

Starting edge
of area container 2
Ending edge
of area container 2

Figure 15 — Multiple Filling Directions on a Single Page

[191] page-region-flow-map = (f | ow port-specifier+)

A page-region-flow-map specifies that areas resulting from formatting flow objects directed into
any of the ports identified by one of the port-specifiers may be assigned to this page-region.

If thereis no page-region-flow-map, then (f | ow #f) isthe default.

204

© ISO/IEC

| SO/IEC 10179: 1996(E)

If a port-specifier occurs in more than one page-region-flow-map in a page-region-specification
in a page-model-definition, then the page-regions shall be filled in the order in which their page-
region-specifications occur in the page-model-definition.

[192] port-specifier = identifier | #f

A port-specifier that is an identifier specifies a port with that name; a port-specifier of #f
specifies the principal port.

[193] header-specification = (header generated-area-clauses)

A header-specification specifies areas to be generated at the beginning of a page-region or
column.

[194] footer-specification = (f oot er generated-area-clauses)
A header-specification specifies areas to be generated at the end of a page-region or column.

[195] generated-area-clauses = [[height-specification? | width-specification? | filling-direction-
specification? | contents-alignment-specification? | generate-specification]]

gener ated-area-clauses specifies areas to be generated.

[196] generate-specification = (gener at e expression)

The expression shall evaluate to an unlabeled sosofo specifying only displayed flow objects.
[197] x-origin-specification = (x- or i gi n expression)

The expression shall evaluate to alength which specifies the x component of the origin of the
area container with respect to its parent’ s coordinate system.

[198] y-origin-specification = (y- ori gi n expression)

The expression shall evaluate to alength which specifies the y component of the origin of the
area container with respect to its parent’ s coordinate system.

[199] width-specification = (wi dt h expression)

The expression shall evaluate to alength which specifies the width (size in the positive x
direction) of the area container with respect to its parent’s coordinate system.

[200] height-specification = (hei ght expression)

The expression shall evaluate to alength which specifies the height (size in the positive y-
direction) of the area container with respect to its parent’s coordinate system.

[201] decoration-specification = (decor at e expression)

205

| SO/IEC 10179:1996 © ISO/IEC

The expression shall evaluate to a decoration-area object. The areais decorated by the object as
explained in 12.5.3.

[202] filling-direction-specification=(filling-directi on expression)

The expression shall evaluate to one of the symbolsl eft-to-ri ght,right-to-left,or
t op- t 0- bot t omspecifying the filling-direction of the area container.

If the filling-direction is not specified on the page-region, it shall be inherited from the page-
model. It shall be an error if it is not specified on either the page-region or the page-model.

[203] contents-alignment-specification = (cont ent s- al i gnnent expression)

The expression shall evaluate to one of the symbolsst art, end,center,orjustify
specifying the alignment of the child areas within the area container in the filling-direction of the
areacontainer. The defaultisstart .

12.6.5 Column-set-sequence Flow Object Class

A column-set-sequence flow object is formatted to produce a sequence of column-set areas. A
column-set areaisadisplay area. A column-set areais produced by creating and filling an area
container. A column-set area contains a set of paralel columns. Typically, column-set areas
may be used to fill page-regions, however, column-set areas may also be used to fill other
column-set areas. The structure and positioning of each column-set area shall be controlled by
the column-set-model to which it conforms. A column-set-sequence flow object shall only be
displayed.

A column-set-sequence has the following characteristics.

— col um- set - nodel - map: is a list of lists each with two members, the first a page-model
and the second a column-set-model; whenever an area from this column-set-sequence is
placed in an area whose nearest ancestor of type page-region uses the specified page-model,
then the specified column-set-model shall be used. The initial value is the empty list.

— col um- set - npodel : is a column-set-model specifying the default column-set-model to
use if none of the column-set-models specified inctleurm- set - nodel - map:
characteristic are applicable or #f if there is no default column-set-model. If the value is #f,
then it shall be an error if a result area is to be placed within a page-region whose page-model
is not listed in the value of tlewl umm- set - nodel - map: characteristic. The initial value
is #f.

— posi tion-preference: is either #f or one of the symbdlsp orbott om This applies
if the flow object is directed into a port on a column-set-sequence flow object that is flowed
into both the top-float and bottom-float zones of a column-subset and indicates whether the
areas from this flow object may be flowed into only one of the zones. This characteristic is not
inherited. The default value is #f.

206

© ISO/IEC | SO/IEC 10179:1996(E)

— span: is a strictly positive integer specifying the number of columns that the areas resulting
from this flow object shall span. This characteristic shall apply if the flow object is directed
into a port on a column-set-sequence flow object that is flowed into the top-float, bottom-
float, or body-text zone of a spannable column-subset. The initial value is 1.

— span-weak?: is a boolean specifying whether the areas resulting from this flow object span
weakly rather than strongly. See 12.6.5.1. This characteristic applies if the flow object is
directed into a port on a column-set-sequence flow object that is flowed into the top-float,
bottom-float, or body-text zone of a spannable column-subset andspas a characteristic
with a value greater than 1. The initial value is #f.

— space- bef or e: is an object of type display-space specifying space to be inserted before, in
the placement direction, the areas produced by the flow object. This characteristic is not
inherited. The default is for no space before to be inserted.

— space- af t er: is an object of type display-space specifying space to be inserted after, in
the placement direction, the areas produced by the flow object. This characteristic is not
inherited. The default is for no space after to be inserted.

— keep-wi t h- previ ous?: is a boolean specifying whether the flow object shall be kept in
the same area as the previous flow object. This characteristic is not inherited. The default
value is #f.

— keep-wi t h- next ?: is a boolean specifying whether the flow object shall be kept in the
same area as the next flow object. This characteristic is not inherited. The default value is #f.

— br eak- bef ore: is #f or one of the symbotsage, page- r egi on, col um, orcol umm-
set specifying that the flow object shall start an area of that type. This characteristic is not
inherited. The default is #f.

— br eak- af t er: is #f or one of the symbofsmge, page- r egi on, col um, orcol um-
set specifying that the flow object shall end an area of that type. This characteristic is not
inherited. The default is #f.

— keep: is one of the following:

— #t meaning that the areas produced by this flow object shall be kept together within the
smallest possible area.

— the symbopage indicating that the areas produced by the flow object shall lie within the
same page; in this case, the flow object shall have an ancestor flow object of class page-
sequence.

— the symbotol um- set indicating that the areas produced by the flow object shall lie
within the same column set; in this case, the flow object shall have an ancestor of class
column-set-sequence.

207

| SO/IEC 10179:1996 © ISO/IEC

12.6.5.1

— the symbotol um indicating that the areas produced by the flow object shall lie within
the same column set, and that the first column that each area spans in the column set shall
be the same.

— #f indicating that this characteristic is to be ignored.
This characteristic is not inherited. The default value is #f.

— may- vi ol at e- keep- bef ore?: is a boolean which, if true, specifies that constraints
imposed by thé&eep: characteristics of ancestor flow objects on the relative positioning of
this flow object and its previous flow object may not be respected. This characteristic is not
inherited. The default value is #f.

— may- vi ol at e- keep- af t er ?: is a boolean which, if true, specifies that constraints
imposed bykeep: characteristics of ancestor flow objects on the relative positioning of this
flow object and its next flow object may not be respected. This characteristic is not inherited.
The default value is #f.

A column-set-sequence flow object has a port for each port listecblaran-subset-flow-map
for any of its column-set-models.

Column-set-model

A column-set-model specifies the possible hierarchy of areas for each column-set. For some
possible examples of column-sets and column-subset configurations, see Figures 16 and 17.

208

© ISO/IEC

| SO/IEC 10179: 1996(E)

Column-Sets and Column-Sulbsets

Column 1

Column 2

Filling-direction
of column-set

Column A

Column B

Column-Subset 1

Column-Subset 2

Figure 16 — An Example of Column-Subsets

209

| SO/IEC 10179:1996

© ISO/IEC

20

1a

2b

b

20

1a

1o

2b

1 and 2 are column-subsets

a and b are consecutive columns

in the sefts

Figure 17 — Another Example of Column-Subsets

The top-level areain the hierarchy isthe column-set area. A column-set area shall have afilling-
direction. If the column-set-model-definition does not contain afilling-direction-specification,
then the filling-direction of the parent area shall be used. The size of the column-set area shall be
fixed in the direction perpendicular to the filling-direction. It can be fixed either by a width-
specification or a height-specification or because this direction is the direction perpendicular to
the area’ s placement direction. The size of a column-set areain the filling-direction may be

fixed, or it may grow according to the areas flowed into it.

The area container that produces the column-set shall be filled in a more complicated way than
normal area containers. Areas are placed in the column-set areain such away that they satisfy a

number of different constraints.

210

© ISO/IEC

| SO/IEC 10179: 1996(E)

The most basic constraint is that the areas shall not overlap. This constraint does not apply to
decoration areas.

Thereisapartia ordering defined on the areas that have been placed in a column-set area. This
is called the layout order.

NOTE 73 Thelayout order corresponds to the order in which the areas should be read.

A fundamental constraint on the filling of an area container isthat if two areas placed in the
column-set area container come from the same stream, then they shall be placed so that their
layout order is consistent with their order in the stream.

The column-set areais divided geometrically in adirection paralel to the filling-direction into a
number of columns.

NOTE 74 When an areais said to be divided in some direction, this means that it is divided in such away that the
dividing lineisin that direction.

A column is not an area container. Each column has an extent that is fixed in the direction
perpendicular to the filling-direction.

Each column is a member of exactly one column-subset. The layout order of columnsin a
column-subset is the order of the column-specifications in a column-subset specification. There
is no layout order defined between columns in different column-sets.

NOTE 75 Itisfor this reason that the layout order is a partial order.

211

| SO/IEC 10179:1996 © ISO/IEC

HA]
/ side-note L

synchronization

set
Main te xt
|

column-subset 2
column-subset 1

Figure 18 — Multiple Column-Subsets

A column-subset is defined to be spannable unless a column in the column-subset is
geometrically between any two other consecutive columns in the column-subset. For example,
see Figure 19.

212

© ISO/IEC

| SO/IEC 10179: 1996(E)

1a 1c 1b

Non-spannable
columnsina
column-subset

Q, b, and ¢ are consecutive
columns in the column-subset

Figure 19 — Non-spannable Column-Subsets

Each area to be placed in a column-set area shall be associated with a single column-subset. |If
the filling-direction of the column-set area is top-to-bottom, each areathat is placed in the
column-set area shall be placed so that the left edge is aligned with the left edge of acolumnin
the column-subset and the right edge is aligned with the right edge of a column in the same
column-subset. If the filling-direction of the column-set areais left-to-right or right-to-left, each
areathat is placed in the column-set area shall be placed so that its top edge is aligned with the
top edge of a column in the column-subset and its bottom edge is aligned with the bottom edge of
a column in the same column-subset. An area may span more than one column only if the
column-subset is spannable. The number of columnsin the column-subset that an area spans
shall be equal to the value of the span: characteristic of the flow object from which the area
comes.

An areathat is to be placed in a column-set area shall be created in such away that itssize in the
direction perpendicular to thefilling direction is such that it exactly spans the required number of
columns. In other words, the display-size of the area shall be equal to the distance between one
edge of the first column it spans and the opposite edge of the last column it spans.

213

| SO/IEC 10179:1996 © ISO/IEC

NOTE 76 Thisisan exception to the general principle that an areato be placed in an area container is created so that
the area’ s size in the direction perpendicular to the area’ s placement direction is equal to the size of the area container in
the direction perpendicular to the area container’ s filling-direction.

Each areathat isto be placed in a column-set area container is labeled with a zone, which
constrains the placement of the arearelative to other areas. The allowed zonesaret op- f | oat
body-t ext,bottomfl oat,and f oot not e. An arealabeled with one zone shall be
positioned so that it precedes, in the filling-direction, an areathat is labeled with a zone that is
later in thelist, unless there is no column that is spanned by both areas. For example, see Figure
20.

Page
| |
| |
Top-float zone

L
| |
| |
: : Body-text
: : zone
| G |

Body-text '+ [!

zone S
| e
| ' Bottom-float
: zone
|
|
|
|
|

Bottom-float

zone
Column Column

Figure 20 — Column-set areas

An area labeled with the footnote zone shall span exactly one column.

214

© ISO/IEC | SO/IEC 10179:1996(E)

NOTE 77 Full-width footnotes in a multi-column layout may be achieved using a nested-column-set.

An areathat spans more than one column may span either weakly or strongly depending on the
value of the span- weak?: characteristic on the flow object from which the area comes. An
area that spans more than one column strongly is defined to follow in the layout order any areas
that:

— are in the same column-subset as the area,

— precede the area geometrically in the filling-direction,

— have a span that is completely included in the span of the area, and
— are labeled with the same zone as the area.

An area that spans more than one column weakly is defined to follow in the layout order exactly
those areas that it would follow if it occupied only the first of the columns that it spans.

Two or more column-subsets maytieel together. Column-subsets that are tied together shall

have the same number of columns. When an area spans strongly more than one column of a
column-subset, then the layout order of each column-subset that is tied to that column-subset
shall be modified as if an empty area had been created and placed at the same position in the
filling-direction as the spanning area and with the same size in the filling-direction as the
spanning area so that it spans the corresponding columns of the tied-column-subset; this area car
overlap the spanning area.

NOTE 78 A sequence of columns containing sidenotesis usually tied to the sequence of columns containing the text
to which the sidenotes refer.

When the spanning area is synchronized usingitlie- sync procedure with an area in a tied-
column-subset that does not span, then it shall be placed in the first column in the tied column-
subset:

— whose corresponding column in the other column-subset is spanned by the spanning area, anc
— which is not covered by the spanning area.

[204] column-set-model-definition Edef i ne- col um- set - nodel variable [[column-
subset-specification* | fill-out-specification? |tied-column-subset-specification* | filling-
direction-specification? |width-specification? | height-specification? |decoration-

specification*]])

A column-set-model-definition definesvariable to be an object of type column-set-model.

(col umm-set - nodel ? obj)

Returns #t ifobj is of type column-set-model, and otherwise returns #f.

215

| SO/IEC 10179:1996 © ISO/IEC

[205] fill-out-specification=(fi |l - out expression)

The expression shall evaluate to aboolean. If it is#t, then each column-set area shall be filled
out in the filling-direction to the maximum size allowed by the areain which it is placed.

[206] column-subset-specification = (col um- subset [[column-specification+ | column-
subset-flow-mayp | top-fl oat-space-bel ow-specification? | bottom-fl oat-space-above-
specification? | balance-specification? | justify-specification? | justify-limit-specification? |
justify-last-limit-specification? | length-deviation-specification? | |length-decrease-order -
specification? | align-lines-specification?]])

For each column-subset in the column-set-model, there shall be a column-subset-specification.
[207] column-subset-flow-map = (f | ow ((port-specifier zone-namet))+)
[208] zone-name=t op-fl oat |body-text |bottomfl oat [footnote

A column-subset-flow-map specifies that areas resulting from flow objects directed in port-
specifier shall be labeled with one of the specified zone-names. Multiple zone-names may be
specified for a single port-specifier only if the zone-names aret op- f | oat and bott om
float.

[209] top-float-space-below-specification = (t op- f | oat - space- bel owexpression)

The expression shall evaluate to an object of type display-space specifying the size of a spaceto
be added. For each column in the column-set that is spanned by an areain the top-float zone, a
space of the specified size shall be added immediately after all the areas that span the column and
that are in the top-float zone.

[210] bottom-float-space-above-specification = (bot t om f | oat - space- above
expression)

The expression shall evaluate to an object of type display-space specifying the size of a spaceto
be added. For each column in the column-set that is spanned by an area in the bottom-float zone,
a space of the specified size shall be added immediately before all the areas that span the column
and that are in the bottom-float zone.

[211] balance-specification = (bal ance? expression)

The expression shall evaluate to a boolean. A value of #t indicates that a column-subset in the
last column-set produced by a column-set-sequence shall be balanced. A value of #f indicates
that it shall not be. If acolumn-subset is balanced, then free space shall be allocated evenly
among all the columns in the column-subset. If a column-subset is not balanced, then free space
shall be allocated to the columnsin reverse order. The default isfor the column-subset not to be
balanced.

[212] justify-specification = (j usti f y? expression)

216

© ISO/IEC

| SO/IEC 10179: 1996(E)

The expression shall evaluate to a boolean specifying whether the column-subset is to be
justified. If acolumn subset isto be justified, the free space shall be distributed before and after
the areas in the column-subset according to the minimum and maximum allowed space specified
in the display spaces. Otherwise, al free space shall be distributed at the end of each column.
The default is for the column-subset not to be justified. A column-subset may only be justified if
the fill-out-specification specifies that the column-set is to befilled out.

[213] justify-limit-specification = (j usti fy-1imt expression)

The expression shall evaluate to a number between 0 and 100. If the amount of free spacein a
column as a percentage of the total size of the column exceeds this, then that column shall not be
justified. The default is 100.

[214] justify-last-limit-specification = (j usti fy-last-1i m t expression)

The expression shall evaluate to a number between 0 and 100. A column shall not be justified if
the amount of free space in a column in the last column-set in a column-set-sequence as a
percentage of the total size of the column exceeds the number returned by the expression. The
default isO.

[215] length-deviation-specification = (| engt h- devi at i on expression)

The expression shall evaluate to a positive length. When a column-subset is being justified or
balanced, then the lengths of the columns may differ by up to this amount. The default is Opt.

[216] length-decrease-order-specification = (| engt h- decr ease- or der expression)
The expression shall evaluate to one of the following symbols:

— f orwar d specifying that as columns progress in the forward direction their length shall not
increase,

— backwar d specifying that as columns progress in the backward direction their length shall
not increase,

or #f implying no additional constraint on the relative length of the columns.
[217] align-lines-specification €al i gn- | i nes? expression)

Theexpression shall evaluate to a boolean specifying, if true, that an attempt shall be made in the
course of distributing free space to keep lines in different columns aligned.

[218] column-specification £col umm [[width-specification? |height-specification? |x-origin-
specification? |y-origin-specification? |footnote-separator-specification? |header-specification?
| footer -specification?]])

If the column-set filling-direction is top-to-bottom, then tiwbumn-specification shall contain a
width-specification and arx-origin-specification. If the column-set filling-direction is right-to-

217

| SO/IEC 10179:1996 © ISO/IEC

12.6.6

left or left-to-right, then the column-specification shall contain a height-specification and ay-
origin-specification. These specifications give the geometry of the column.

[219] footnote-separator-specification = (f oot not e- separ at or generated-area-clauses)

A footnote-separ ator - specification specifies areas that shall be generated immediately before the
areas in the footnote zone if the footnote zone contains any areas.

[220] tied-column-subset-specification = ('t i e column-subset-specification column-subset-
specification+)

A tied-column-subset-specification specifies two or more column-subsets that are tied together.
See Figure 18.

NOTE 79 This may be used, for example, with sidenotes.

Paragraph Flow Object Class

A paragraph flow object represents a paragraph. It has asingle principal port. The contents of
this port may be either inlined or displayed. Inline flow objects are formatted to produce line
areas. Displayed flow objects implicitly specify a break, and their areas shall be added to the
resulting sequence of areas. A paragraph flow object may only be displayed.

NOTE 80 Typically, abreak impliesthat anew lineisto be started.
The following characteristics are applicable:

— |i nes: is a symbol specifying how the content of the paragraph shall be broken into lines in
the formatted output, as follows:

— wr ap specifying that lines shall be broken so that they fit in the available space.

— asi s specifying that lines shall be broken only after character flow objects for which the
recor d- end?: characteristic is true.

— asi s-wr ap specifying that lines shall be broken after character flow objects for which
ther ecor d- end?: characteristic is true, and as necessary to make lines fit in the
available space.

— asi s-truncat e specifying that lines shall be broken only after character flow objects
for which ther ecor d- end?: characteristic is true, and that lines that do not fit the in the
available space shall be truncated.

— none specifying that lines shall not be broken at all.

NOTE 81 Thisisuseful in tableswhen thet abl e- aut o- wi dt h feature is present to ensure that the width
of acolumn is made large enough so that the content of acell fitson asingleline.

218

© ISO/IEC

| SO/IEC 10179: 1996(E)

In all cases, line breaks shall also be allowed where explicitly specified with thebr eak-
bef ore: or break- after: characteristics. Theinitial valueisw ap.

asi s-truncat e-char: is either #f or a char object that determines the glyph to be
inserted when thei nes: characteristic has the valasi s-truncat e and a line is
truncated. The initial value is #f.

asi s-wr ap- char: is either #f or a char object that determines the glyph to be inserted at
the end of a line when the nes: characteristic has the valasi s- wr ap and the line is
broken other than after a character flow object for which #eor d- end?: characteristic

is true. The initial value is #f.

asi s-wr ap-i ndent: is a length-spec giving an indent to be added to the start-indent when
thel i nes: characteristic has the valasi s- wr ap for a line following a break other than
after a character flow object for which thecor d- end?: characteristic is true. The initial
value is #f.

first-line-align: is either #f, #t, or a char object. Ifitis not #f, thendhaddi ng:

andl ast - | i ne- quaddi ng: characteristics are ignored for the first line of the paragraph,
and the first line shall be aligned using an alignment point in the line. If the value is a char
object, then the alignment point shall be the position point of the first area produced by the
first occurrence on the line of a character flow object withar : characteristic equal to

that char object; otherwise, the alignment point shall be the position of the first alignment-
point flow object in the line. &l i gnment - poi nt - of f set : is not #f, then the first line

of the paragraph shall be aligned so that the percentage of the line length (that is, the display-
size less the applicable start and end indents) before the alignment point is equal to the value
ofal i gnment - poi nt - of fset:. Ifal i gnment - poi nt - of f set : is #f, then the

paragraph is aaxternally aligned paragraph and shall have an ancestor of class table-cell or
aligned-column. Furthermore, the area container in which the areas from this paragraph are
placed shall be the same as the area container in which the areas from that ancestor are placec
in this case, the paragraph shall be aligned so that its alignment point is aligned with other
such paragraphs in the table-column or aligned-column. If an externally aligned paragraph
occurs in a table-cell, then thabl e- aut o- wi dt h feature shall be enabled. The initial

value is #f.

al i gnment - poi nt - of f set : is either #f or a number between 0 and 100 specifying the
percentage of the line length (that is, the display-size less the start and end indents) before the
alignment point. The initial value is 50.

i gnor e-record-end?: is a boolean specifying whether a record-end shall be ignored. If
this characteristic is true, then a character withr #heor d- end? property true shall be
ignored. The initial value is #f.

expand-t abs?: is either #f or a strictly positive integer specifying the tab interval. When

a tab interval is specified, each character flow object that hasthe -t ab?:

characteristic true shall be treated as equivalent to the smallest strictly positive number of
spaces that when added to the number of character flow objects following the last preceding
record-end character flow object shall be a multiple of the tab interval. The initial value is 8.

219

| SO/IEC 10179:1996 © ISO/IEC

— | i ne- spaci ng: is a length-spec giving the normal spacing between the placement paths of

lines in the paragraph as described in 12.6.6.1. The initial value is 12pt.

— i ne-spacing-priority: iseither an integer or the symidar ce specifying the

priority of any conditional space before the line. This shall be interpreted in the same manner
as thepri ori ty: argument for thei spl ay- space procedure. The initial value is 0.

— m n-pre-1line-spacing: is alength-spec specifying the minimum size of the line in the

placement direction before the placement path as described in 12.6.6.1. A value of #f shall
also be allowed, specifying that the value is determined from the paragraph's font. The initial
value is #f.

ni n- post-1ine-spaci ng: is a length-spec specifying the minimum size of the line in

the placement direction after the placement path as described in 12.6.6.1. A value of #f shall
also be allowed, specifying that the value is determined from the paragraph's font. The initial
value is #f.

ni n- | eadi ng: is either #f or a length-spec specifying the minimum space between the line
areas in the placement direction as described in 12.6.6.1. A value of #f means that the line
spacing shall not be automatically adjusted to take into account the size of the content of the
lines. The initial value is #f.

first-line-start-indent: isalength-spec giving an indent to be added to the start-
indent for the first line. The length may be negative. The initial value is Opt.

| ast-|i ne-end-i ndent: is alength-spec giving an indent to be added to the end-indent
for the last line. The length may be negative. The initial value is Opt.

hyphenat i on- char: is a char that is used to determine the glyph that is inserted when
hyphenation is performed. The characteristics of the character flow object preceding the
hyphenation point shall determine the mapping of the character to a glyph, as well as the font
resource and font-size of the glyph. The initial valug\is (the hyphen character).

hyphenati on-| adder - count : is a strictly positive integer specifying the maximum
number of consecutive lines ending with the same glyph as the glyph determined by the value
of thehyphenat i on- char: characteristic, or #f indicating that there is no limit. The

initial value is #f.

hyphenati on-r emai n- char - count : is a positive integer specifying the minimum
number of characters in a hyphenated word before the hyphenation character. This is the
minimum number of characters in the word left on the line ending with the hyphenation
character. The initial value is 2.

hyphenat i on- push- char - count : is a positive integer specifying the minimum number
of characters in a hyphenated word after the hyphenation character. This is the minimum
number of characters in the word pushed to the next line after the line ending with the
hyphenation character. The initial value is 2.

220

© ISO/IEC

| SO/IEC 10179: 1996(E)

— hyphenat i on- keep: is either #f or one of the following symbols:

— spread means that both parts of a hyphenated word shall lie within a single spread.
— page means that both parts of a hyphenated word shall lie within a single page.
— col utm means that both parts of a hyphenated word shall lie within a single column.

The initial value is #f.

— hyphenat i on- excepti ons: is alist of strings. Each string is a word which may contain

hyphen characterg) - , indicating where hyphenation may occur. If a word to be
hyphenated occurs in the list, it may only be hyphenated in the specified places. The initial
value is the empty list.

NOTE 82 The determination of aword is system-dependent.

I i ne- br eaki ng- met hod: is #f or a string specifying a public identifier for the line-
breaking-method to be used for this paragraph. The initial value is #f.

I i ne- conposi ti on-net hod: is #f or a string specifying a public identifier for the line-
composition-method to be used for this paragraph. The initial value is #f.

NOTE 83 Typicaly, thel i ne- conposi ti on- net hod: uses characteristics declared using an application-
characteristic-declaration or an application-char-characteristic+ property-declaration.

i mplicit-bidi-nmethod: is#f ora string specifying a public identifier for the method to
be used for implicitly determining the directionality of the content of the paragraph. This
includes both the writing-mode of characters, which, when this characteristic is #f, is
specified with the writing-mode characteristic, and how portions of content with a common
writing-mode are nested within each other, which, when this characteristic is #f, is specified
with embedded-text flow objects. It is part of the semantics of the method which
characteristics of character flow objects, if any, it uses. A method may be specific to a
particular character repertoire, in which case, it may not make use of any characteristics. It
may be part of the semantics of a method for certain glyph substitutions to be applied
depending on the writing-mode that is determined for a character, and possibly also on
characteristics of the character. The initial value is #f.

gl yph-al i gnnent - node: is one of the symbolsase, cent er,t op, bott om orf ont
specifying the alignment mode to be used for glypbsit means that the nominal alignment
mode of the font in the flow object's writing-mode should be used. The initial vefloats

—font-fam | y- nane: is either #f, indicating that any font family is acceptable, or a string

giving the font family name property of the desired font resource. The initial vals®is
serif.

NOTE 84 ISO/IEC 10180 defines a mandatory font set for interchange comprising the font familiesi so- seri f,
i so-sanserif,andi so- nbnospace.

221

| SO/IEC 10179:1996 © ISO/IEC

This characteristic is applicable when thegl yph- al i gnnent - node: isf ont or when
nm n-pre-line-spacing: orm n-post-1ine-spaci ng: are#f.

font - wei ght : is either #f, indicating that any font weight is acceptable, or one of the
symbolsnot - appl i cabl e,ul tra-1ight,extra-light,light,sem-Iight,

medi um seni - bol d, bol d, ext r a- bol d, orul tra- bol d, giving the weight property
of the desired font resource. The initial valueeslii um This characteristic is applicable
when thegl yph- al i gnnent - node: isfont or whenmi n- pre-Iine-spaci ng: or

nm n- post-1ine-spaci ng: is #f.

font-posture: is either #f, indicating that any posture is acceptable, or one of the symbols
not - appl i cabl e, upri ght, obl i que, back-sl ant ed- obl i que,italic, or

back-sl anted-italic, giving the posture property of the desired font resource. The
initial value isupri ght . This characteristic is applicable when tie/ph- al i gnnent -

node: isfont or whenni n- pre-1|ine-spaci ng: orm n-post-1|ine-spacing: is

#f.

font-structure: is either #f, indicating that any structure is applicable, or one of the
symbolsnot - appl i cabl e, sol i d, orout | i ne. The initial value isol i d. This
characteristic is applicable when tileyph- al i gnnment - node: isf ont or whenni n-
pre-line-spacing: orm n-post-1ine-spacing: is #f.

font-proportionate-w dth: is either #f, indicating that any proportionate width is
acceptable, or one of the symbotst - appl i cabl e, ul tra- condensed, extr a-
condensed, condensed, sem - condensed, nedi um semi - expanded, expanded,
extra- expanded, orul t r a- expanded. The initial value isredi um This characteristic
is applicable when thgl yph- al i gnment - node: isf ont or whenm n- pre-1i ne-
spaci ng: orm n-post-1|ine-spaci ng: is #f.

font - name: is either #f, indicating that any font name is acceptable, or a string which is the
public identifier for the font name property of the desired font resource. When the value is a
string, the values of thleont - f ami | y- name: , f ont - wei ght : , f ont - posture:,
font-structure:,andfont-proportionat e-w dth: characteristics are not used in
font selection. The initial value is #f. This characteristic is applicable whegl theh-

al i gnment - node: isf ont or whenni n- pre-|ine-spacing: orni n-post-1Iine-

spaci ng: is #f.

font - si ze: is alength specifying the body size to which the font resource should be
scaled. The initial value is 10pt. This characteristic is applicable wihenpr e- 1 i ne-
spaci ng: orm n-post-1|ine-spaci ng: is #f.

nunber ed- | i nes?: is #t if the lines produced by this paragraph shall be considered for the
purposes of line numbering, and #f otherwise. The initial value is #t.

I i ne- number : is either #f or an unlabeled sosofo containing only inline flow objects. If it

is a sosofo, then for each line in the paragraph, the sosofo is formatted to produce a single
inline area that is positioned as an attachment area for the line. See 12.3.4. The initial value
is #f.

222

© ISO/IEC | SO/IEC 10179:1996(E)

NOTES

85 The sosofo may include indirect flow objects that refer to the line's number by using thel i ne- nunber
procedure.

86 The rulesfor the positioning of an attachment area mean that line numbers are usually positioned so that the
edges nearest the line are aligned. Different alignments can be achieved by using the line-field flow object class.

— i ne- nunber - si de: is one of the symbolkst art , end, spread-i nsi de, spr ead-
out si de, page-i nsi de, orpage- out si de specifying the side of the line for the
attachment specified with the ne- nunber : characteristic. A value afpr ead- i nsi de
orspr ead- out si de shall be allowed only if the flow object has an ancestor of class page-
sequence. A value g@fage- i nsi de orpage- out si de shall be allowed only if the flow
object has an ancestor of column-set-sequence.

— | i ne- nuber - sep: is a length-spec specifying the separation for the attachment specified
with thel i ne- nunber : characteristic.

— quaddi ng: is one of the symbokst art , end, spr ead-i nsi de, spr ead- out si de,
page-i nsi de, page- out si de, cent er, orj usti f y specifying the alignment of lines
other than the last line in the paragraph in the direction determined by the writing-mode. A
value ofspr ead- i nsi de orspr ead- out si de shall be allowed only if the flow object
has an ancestor of class page-sequence. A vaheget i nsi de orpage- out si de shall
be allowed only if the flow object has an ancestor of column-set-sequence. The initial value is
start.

— last-1ine-quaddi ng: is one of the symbolsel ati ve,start, end, spread-
i nsi de, spread-out si de, page-i nsi de, page- out si de,center,orjustify
specifying the alignment of the last line of the paragraph in the direction determined by the
writing-mode. This shall apply also to any line in the paragraph that immediately precedes a
break. A value of el ati ve means that the value of theaddi ng: characteristic shall be
used, except when that valug isst i f y, in which case, a value et art shall be used. A
value ofspr ead- i nsi de orspr ead- out si de shall be allowed only if the flow object
has an ancestor of class page-sequence. A vaheget i nsi de orpage- out si de shall
be allowed only if the flow object has an ancestor of column-set-sequence. The initial value is
relative.

—last-line-justify-limt: isalength-spec specifying the maximum amount of free
space in the last line that shall cause the last line to be justified rather than aligned as specified
by thel ast - | i ne- quaddi ng: characteristic. The initial value is 0.

—justify-gl yph-space- max- add: is a length-spec specifying the maximum space that
may be added between glyphs in order to justify a line. The initial value is Opt.

—justify-gl yph-space-max-renpve: is alength-spec specifying the maximum space
that may be removed between glyphs in order to justify a line. The initial value is Opt.

223

| SO/IEC 10179:1996 © ISO/IEC

— hangi ng- punct ?: is a boolean specifying whether the paragraph shall be formatted with
the punctuation characters hanging into the margin or gutter of a column. The initial value is
#f.

— wi dow count : is a positive integer specifying the minimum number of lines of the
paragraph that shall be kept together at the beginning of an areawilfdine- count : is n,
then no break shall be allowed between therdstes of the paragraph. The initial value is 2.

— or phan- count : is a positive integer specifying the minimum number of lines of the
paragraph that shall be kept together at the end of an area.otfghan- count : isn, then
no break shall be allowed between the firdéines of the paragraph. The initial value is 2.

— | anguage: is #f or a symbol specifying the ISO 639 language code in upper-case. This
affects line composition in a system-dependent way. The initial value is #f.

— country: is #f or a symbol specifying the ISO 3166 country code in upper-case. This
affects line composition in a system-dependent way. The initial value is #f.

— posi tion-preference: is either #f or one of the symbdlsp orbott om This applies
if the flow object is directed into a port on a column-set-sequence flow object that is flowed
into both the top-float and bottom-float zones of a column-subset and indicates whether the
areas from this flow object may be flowed into only one of the zones. This characteristic is not
inherited. The default value is #f.

— writing-node: is one of the symbolseft-to-right,right-to-Ileft,ortop-
t o- bott om The direction determined by the writing-mode shall be perpendicular to the
placement direction. The initial valuelieft - t o- ri ght . This controls the orientation of
the placement path of the lines.

— start-indent: is alength-spec specifying the indent for the edge of the area at the start in
the direction of the writing-mode. The initial value is Opt. This applies only to lines from the
paragraph itself.

— end-i ndent : is alength-spec specifying the indent for the edge of the area at the end in the
direction of the writing-mode. The initial value is Opt. This applies only to lines from the
paragraph itself.

— span: is a strictly positive integer specifying the number of columns that the areas resulting
from this flow object shall span. This characteristic shall apply if the flow object is directed
into a port on a column-set-sequence flow object that is flowed into the top-float, bottom-
float, or body-text zone of a spannable column-subset. The initial value is 1.

— span- weak?: is a boolean specifying whether the areas resulting from this flow object span
weakly rather than strongly. See 12.6.5.1. This characteristic applies if the flow object is
directed into a port on a column-set-sequence flow object that is flowed into the top-float,
bottom-float, or body-text zone of a spannable column-subset andspas a characteristic
with a value greater than 1. The initial value is #f.

224

© ISO/IEC

| SO/IEC 10179: 1996(E)

— space- bef or e: is an object of type display-space specifying space to be inserted before, in

the placement direction, the areas produced by the flow object. This characteristic is not
inherited. The default is for no space before to be inserted.

space- af t er: is an object of type display-space specifying space to be inserted after, in
the placement direction, the areas produced by the flow object. This characteristic is not
inherited. The default is for no space after to be inserted.

keep-wi t h- previ ous?: is a boolean specifying whether the flow object shall be kept in
the same area as the previous flow object. This characteristic is not inherited. The default
value is #f.

keep-wi t h- next ?: is a boolean specifying whether the flow object shall be kept in the
same area as the next flow object. This characteristic is not inherited. The default value is #f.

br eak- bef or e: is #f or one of the symbofsmge, page- r egi on, col unm, orcol umm-
set specifying that the flow object shall start an area of that type. This characteristic is not
inherited. The default is #f.

br eak- aft er: is #f or one of the symbofmge, page- r egi on, col um, orcol um-
set specifying that the flow object shall end an area of that type. This characteristic is not
inherited. The default is #f.

keep: is one of the following:

— #t meaning that the areas produced by this flow object shall be kept together within the
smallest possible area.

— the symbopage indicating that the areas produced by the flow object shall lie within the
same page; in this case, the flow object shall have an ancestor flow object of class page-
sequence.

— the symbotol um- set indicating that the areas produced by the flow object shall lie
within the same column set; in this case, the flow object shall have an ancestor of class
column-set-sequence.

— the symbotol um indicating that the areas produced by the flow object shall lie within
the same column set, and that the first column that each area spans in the column set shall
be the same.

— #f indicating that this characteristic is to be ignored.

This characteristic is not inherited. The default value is #f.

may- Vi ol at e- keep- bef ore?: is a boolean which, if true, specifies that constraints
imposed by th&eep: characteristics of ancestor flow objects on the relative positioning of

this flow object and its previous flow object may not be respected. This characteristic is not
inherited. The default value is #f.

225

| SO/IEC 10179:1996 © ISO/IEC

12.6.6.1

12.6.7

12.6.8

— may- vi ol at e- keep- af t er ?: is a boolean which, if true, specifies that constraints
imposed bykeep: characteristics of ancestor flow objects on the relative positioning of this
flow object and its next flow object may not be respected. This characteristic is not inherited.
The default value is #f.

The line-progression direction for inline areas in the paragraph is the placement direction of the
paragraph.

Line Spacing

The size of the line areas produced by the paragraph shdllhber e- | i ne- spaci ng:

before the placement path amidn- post - | i ne- spaci ng: after the placement path. nif n-

| eadi ng: is not #f, the size of the line shall be increased to cover all the areas in the line. If the
previous area is a line, then conditional space shall be added, if necessary, before the line so that
the total distance between the previous line's placement path and this placement path is the value
of thel i ne- spaci ng: characteristic. If the previous area is not a line, then conditional space
shall be added, if necessary, before the line so that the total distance between the end of the
previous area and this placement path is the value of the- spaci ng: characteristic less the

value of them n- post - | i ne- spaci ng: characteristic. Ifi n-1 eadi ng: is not #f, then

additional conditional space shall be added, if required, to make the space between the previous
area and this one no less than the valug of | eadi ng: . The conditional space has the

priority specified by thé i ne- spaci ng- pri ority: characteristic.

Paragraph-break Flow Object Class

Paragraph-break flow objects can be used to make a paragraph flow object represent a sequence
of paragraphs. The paragraphs are separated by paragraph-break flow objects, which are atomic.
Paragraph-break flow objects are allowed only in paragraph flow objects. All the characteristics
that are applicable to a paragraph flow object are also applicable to a paragraph-break flow
object. The characteristics of a paragraph-break flow object determine how the portion of the
content of the paragraph flow object following that paragraph-break flow object up to the next
paragraph-break flow object, if any, is formatted.

NOTE 87 The paragraph-break flow object inherits from its containing paragraph flow object in the usual way.

Thefirst-line-start-indent: characteristic is applicable to the line following a
paragraph-break flow object, and thast - | i ne- end- i ndent : characteristic is applicable
to the line preceding a paragraph-break flow object.

NOTE 88 It isrecommended that paragraph-break flow objects be used only if there is no other way of specifying the
desired formatting.

Line-field Flow Object Class

The line-field flow object class is inlined and has inline content. It produces a single inline area.
The width of this area is equal to the value offthel d- wi dt h: characteristic. If the content

of a line-field area cannot fit in this width, then the area grows to accommodate the content and,
if the line-field occurs in a paragraph, there shall be a break after the line-field.

226

© ISO/IEC | SO/IEC 10179:1996(E)

It has a single principal port.
It has the following characteristics:

—field-w dth: is alength-spec specifying the width of the area produced by the flow
object. The initial value is Opt.

—field-align: isone of the symbolst art , end, orcent er specifying the alignment of
the contents of the field. The initial valuesisart .

— writing-node: isone of the symbolseft-to-right,right-to-left,ortop-
t o- bott om The direction determined by the writing-mode shall be perpendicular to the
placement direction. The initial valuelisft -t o-ri ght.

—inhibit-line-breaks?: is aboolean specifying whether line breaks shall be inhibited
before and after each area produced by this flow object. This applies only to line breaks
introduced by the formatter to make lines fit in the available space. The initial value is #f.

— break-before-priority: isan integer that affects whether a break is allowed before
this flow object. Thdreak priority of a potential breakpoint is the maximum of the break-
after-priority of the flow object immediately preceding the potential breakpoint and the break-
before-priorities of the flow object immediately following the potential breakpoint, and any
characters immediately following that character for whichdthep- af t er-1i ne-
br eak?: characteristic is true. A break shall be allowed at a potential breakpoint only if the
break priority is even. This characteristic is not inherited. The default value is O.

— break-after-priority: isan integer that affects whether a break is allowed after this
flow object as described in the specification oftheak- bef ore-priority:
characteristic. This characteristic is not inherited. The default value is 0.

A line-break shall be allowed immediately before and after a line-field used in a paragraph.

12.6.9 Sideline Flow Object Class

Use of this flow object requires tisé¢ del i ne feature.

A sideline flow object is used to contain flow objects that have an attachment area (see 12.3.4)
consisting of a line parallel to the placement direction. A sideline flow object has a single
principal port which can contain both inlined and displayed flow objects. For each display area
produced by its content, the sideline flow object adds an attachment. For each inline area
produced by its content, the sideline flow object annotates that area so as to cause the paragrapt
in which the flow object occurs to add an attachment area to the line in which that inline area
occurs.

NOTE 89 Sidelines are often used to mark changes.

This is illustrated in Figure 14.

227

| SO/IEC 10179:1996 © ISO/IEC

12.6.10

A sideline flow object has the following characteristics:

— si del i ne-si de: is one of the symbolst art , end, bot h, spr ead-i nsi de, spr ead-
out si de, page-i nsi de, orpage- out si de, specifying the side of the line area for the
sideline attachment. A value spr ead-i nsi de orspr ead- out si de is allowed only if
the flow object has an ancestor of class page-sequence. A valagesfi nsi de orpage-
out si de is allowed only if the flow object has an ancestor of column-set-sequence. A value
of bot h means that there shall be a sideline attachment on both sides of the line area
containing the text.

— si del i ne-sep: is a length-spec specifying the separation for the sideline attachment. A
negative value is allowed.

— col or: is an object of type color that specifies the color in which the flow object's marks
should be made. The initial value is the default color in the Device Gray color space.

— l ayer: is an integer specifying the layer of the marks of the areas resulting from the flow
object. An area shall be imaged after any area whose layer has a lower value. The initial
value is 0.

— i ne- cap: is one of the symbolsut t , r ound, orsquar e specifying the cap style for the
line. The initial value idutt .

— i ne-dash: is alist of one or more lengths that specifies the dash pattern of the line. The
first length specifies the number component of the CurrentDashPattern graphics state variable
in ISO/IEC 10180. The remaining lengths specify the vector component of the
CurrentDashPattern graphics state variable. The initial value is a list containing the length
Opt.

— line-thickness: is alength that specifies the thickness of the line or lines. The initial
value is 1pt.

— line-repeat: is a strictly positive integer that specifies the number of parallel lines to be
drawn. For example, a value of 2 indicates a double line. The initial value is 1.

— | i ne-sep: is alength that gives the distance between the centers of parallel lines. The
initial value is 1pt.

Sidelines on consecutive areas in a single area container which have no space between them
should be drawn as a single line.

Anchor Flow Object Class
Use of this flow object requires tipage feature.
An anchor flow object is atomic and serves only as a flow object to be synchronized. It may be

either inlined or displayed. If inlined, it produces a single area with zero size in the escapement
direction. If displayed, it produces a single area with zero size in the placement direction. The

228

© ISO/IEC

| SO/IEC 10179: 1996(E)

12.6.11

resulting area will be kept with the first area resulting from the flow object that follows unless the
anchor - keep-wi t h- previ ous?: characteristicistrue.

Anchor flow objects have the following characteristics:

— anchor - keep-wi t h- previ ous?: is a boolean specifying whether the resulting area
shall be kept with the last area of the previous flow object instead of the first area resulting
from the following flow object. The initial value is #f.

— di spl ay?: is a boolean specifying whether the flow object is displayed rather than inlined.
This characteristic is not inherited. The default value is #f.

— span: is a strictly positive integer specifying the number of columns that the areas resulting
from this flow object shall span. This characteristic shall apply if the flow object is directed
into a port on a column-set-sequence flow object that is flowed into the top-float, bottom-
float, or body-text zone of a spannable column-subset. The initial value is 1.

— span-weak?: is a boolean specifying whether the areas resulting from this flow object span
weakly rather than strongly. See 12.6.5.1. This characteristic applies if the flow object is
directed into a port on a column-set-sequence flow object that is flowed into the top-float,
bottom-float, or body-text zone of a spannable column-subset andspas a characteristic
with a value greater than 1. The initial value is #f.

—inhibit-line-breaks?: is aboolean specifying whether line breaks shall be inhibited
before and after each area produced by this flow object. This applies only to line breaks
introduced by the formatter to make lines fit in the available space. The initial value is #f.

— break-before-priority: isan integer that affects whether a break is allowed before
this flow object. Thdreak priority of a potential breakpoint is the maximum of the break-
after-priority of the flow object immediately preceding the potential breakpoint and the break-
before-priorities of the flow object immediately following the potential breakpoint, and any
characters immediately following that character for whichdthep- af t er-1i ne-
br eak?: characteristic is true. A break shall be allowed at a potential breakpoint only if the
break priority is even. This characteristic is not inherited. The default value is O.

— break-after-priority: isan integer that affects whether a break is allowed after this
flow object as described in the specification oftheak- bef ore-priority:
characteristic. This characteristic is not inherited. The default value is 0.

Character Flow Object Class

A character flow object is atomic. Flow objects of this class can only be inlined. Flow objects of
this class have the following characteristics:

— char: is an object of type char specifying the character. This characteristic is not inherited.
If it is not specified, and there is a current node, and the current node has property,
then the value of thehar property shall be used as the value of this characteristic. If the
value of thechar - map: characteristic is not #f, then it is applied to the value ottie

229

| SO/IEC 10179:1996 © ISO/IEC

property, and the result is used as the value of the characteristic. This characteristic may be
used to control hyphenation as well as possibly being used in the selection of the glyph.

— char - map: is either #f or a procedure that is applied in the construction of the default value
of thechar : characteristic. The initial value is #f.

— gl yph-i d: is an object of type glyph-id specifying the glyph that shall be imaged in the
resulting area or #f if no image is associated with the resulting area. This characteristic is not
inherited. If this characteristic is not specified, it is computed using the valuealidhe
characteristic: if thél ank? property of the character is true, then the value of the
characteristic shall be #f; otherwise, the value of the characteristic shall be the value of the
gl yph-i d property of the character, which shall not be #f in this case.

— gl yph-subst -t abl e: is either #f or a glyph-subst-table or a list of glyph-subst-tables
specifying substitutions to be performed on the glyph-id specified byl thph- i d:
characteristic. If the value is a list, then the substitutions shall be performed in the specified
order. The initial value is #f.

— gl yph-subst - et hod: is either #f or a string or a list of strings. Each string shall be a
public identifier specifying a method for performing glyph substitution. The initial value is #f.

NOTE 90 Thisallows for context-dependent glyph substitution and for glyph substitutions that involve multiple
glyphs.

— gl yph-reorder-nethod: is either #f or a string or a list of strings. Each string shall be a
public identifier specifying a method for reordering glyphs. The initial value is #f.

NOTE 91 Thisistypically used for Indic scripts.

— writing-node: is one of the symbolseft-to-right,right-to-left,ortop-
t 0- bott om The direction determined by the writing-mode shall be perpendicular to the
placement direction. The initial valuelieft - t o- ri ght . This controls which writing-
mode of the font resource is used for the metrics of the glyph.

—font-fam | y-nane: is either #f, indicating that any font family is acceptable, or a string
giving the font family name property of the desired font resource. The initial vals®is
serif.

NOTE 92 ISO/IEC 10180 defines a mandatory font set for interchange comprising the font familiesi so- seri f,
i so-sanserif,andi so- nbnospace.

— font -wei ght : is either #f, indicating that any font weight is acceptable, or one of the
symbolsnot - appl i cabl e,ultra-1ight,extra-light,light,sem -Iight,
medi um seni - bol d, bol d, ext r a- bol d, orul tra- bol d, giving the weight property
of the desired font resource. The initial valueesli um

— font - post ure: is either #f, indicating that any posture is acceptable, or one of the symbols
not - appl i cabl e, upri ght, obl i que, back-sl ant ed- obl i que,italic, or

230

© ISO/IEC | SO/IEC 10179:1996(E)

back- sl anted-itali c, giving the posture property of the desired font resource. The
initial valueisupri ght . In addition, the value mat h is allowed specifying that the font
posture shall be the value of the mat h- f ont - post ur e: characteristic.

— mat h- f ont - post ur e: specifies the posture property of the desired font resource to be
used when th&ont - post ur e: characteristic has the valmat h. It shall have the value #f
or one of the symbolsot - appl i cabl e, upri ght, obl i que, back- sl ant ed-
oblique,italic, orback-slanted-italic. This characteristic is not inherited. The
default value is the value of timat h- f ont - post ur e character property of thehar :
characteristic.

— font-structure: is either #f, indicating that any structure is applicable, or one of the
symbolsnot - appl i cabl e, sol i d, orout | i ne. The initial value isol i d.

— font-proportionate-w dt h: is either #f, indicating that any proportionate width is
acceptable, or one of the symbalst - appl i cabl e, ul tra- condensed, extr a-
condensed, condensed, sem - condensed, medi um semi - expanded, expanded,
extra- expanded, orul t r a- expanded. The initial value isredi um

— font - nane: is either #f, indicating that any font name is acceptable, or a string which is the
public identifier for the font name property of the desired font resource. When the value is a
string, the values of thleont - f ami | y- name: , f ont - wei ght : , f ont - post ure:,
font-structure:,andfont-proportionat e-w dth: characteristics are not used in
font selection. The initial value is #f.

— font-size: is alength specifying the body size to which the font resource should be
scaled. The initial value is 10pt.

— stretch-factor: isanumber specifying the factor by which the character should be
stretched. This characteristic is not inherited. The default is 1.

NOTES
93 It isimplementation- and font-dependent how thisis achieved.

94 Thisisdesigned primarily for math delimiters of various kinds. The size of the delimiter is determined by the
product of the font-size and the stretch-factor, but the visual appearance is designed to be consistent with glyphs
with that font-size.

— hyphenat e?: is a boolean specifying whether hyphenation is allowed. The initial value is
#f.

— hyphenat i on- net hod: is a string specifying a public identifier for a hyphenation method
or #f. The initial value is #f.

— kern?: is a boolean specifying whether kerning (escapement adjustment) is allowed. If true,
then kerning shall be performed as specified in 8.8.1.6 of ISO 9541-1 accordindséo the

231

| SO/IEC 10179:1996 © ISO/IEC

node: characteristic. Escapement adjustment is not performed for glyphs whose escapement
adjustment indicator property has the value non-adjusting. The initial value is#f.

— ker n- node: is one of the symbolsoose, nor nal , kern, ti ght, ort ouch specifying
the escapement adjustment mode. The initial valoerisral .

— i gature?: is a boolean specifying whether ligatures are allowed. The initial value is #f.

— al | owed- i gatures: is alist of allowed ligatures. Each member of the list shall be
either a glyph-id or a char. Only ligatures whose result is one of the glyph-ids in the list or is
equal to the glyph-id property of one of the chars in the list shall be used. The initial value is
the empty list.

— space?: is a boolean specifying whether the flow object is a space. This characteristic is
not inherited. This affects only whether the inline-space specified as the value of the
i nl i ne-space-space: characteristic is applicable to this flow object. The default value
is the value of thepace? character property of thehar : characteristic.

—inline-space-space: is an object of type inline-space which is applicable to the flow
object if it is a space. This is in addition to any space fronesglt@penent - space-
bef ore: andescapenent - space- af t er: characteristics.

— escapenent - space- bef or e: is an object of type inline-space specifying space to be
added before the first result area in the escapement direction. The initial alué isne-
space Opt).

— escapenent - space- af t er: is an object of type inline-space specifying space to be
added after the last result area in the escapement direction. The initial \@lué isne-
space Opt).

—record-end?: is a boolean specifying whether the flow object is a record-end. Flow
objects for which the ecor d- end?: characteristic is true shall be treated differently by
paragraphs for which tHe nes: characteristic has the valasi s or for which the
i gnor e-record-end?: characteristic is true. This characteristic is not inherited. The
default value is the value of thecor d- end? character property of thehar :
characteristic.

— i nput -t ab?: is a boolean specifying whether the flow object is a tab on input. This
characteristic is not inherited. Character flow objects that are tabs shall be treated differently
by paragraphs for which thexpand- t abs property is not #f. The default value is the value
of thei nput - t ab? character property of thehar : characteristic if thehar :
characteristic was not explicitly specified, and otherwise #f.

— i nput - whi t espace-treat nent: is one of the following symbols:

— preserve specifying no special action.

232

© ISO/IEC

| SO/IEC 10179: 1996(E)

— col I apse specifying that a character flow object for which itmgut -
whi t espace?: characteristic is true shall be ignored if the preceding flow object was a
character flow object also with theput - whi t espace?: characteristic true.

— i gnor e specifying that any character flow object for whichitn@ut - whi t espace?:
characteristic is true shall be ignored.

The initial value igr eser ve.

— i nput - whi t espace?: is a boolean specifying whether the character shall be considered

as whitespace on input. This characteristic is not inherited. The default value is the value of
thei nput - whi t espace? character property of trghar : characteristic if thehar :
characteristic was not explicitly specified, and otherwise #f.

punct ?: is a boolean specifying whether the character should be treated as punctuation for
the purposes of formatting the paragraph with hanging punctuation. This shall only take
effect if thehangi ng- punct ?: characteristic of the paragraph is true. This characteristic is
not inherited. The default value is the value ofgthact ? character property of thehar :
characteristic.

br eak- before-priority: isan integer that affects whether a break is allowed before

this character. Thiereak priority of a potential breakpoint is the maximum of the break-after-
priority of the character immediately preceding the potential breakpoint and the break-before-
priorities of the character immediately following the potential breakpoint, and any characters
immediately following that character for which theop- af t er - I i ne- br eak?:

characteristic is true. A break is allowed at a potential breakpoint only if the break priority is
even. This characteristic is not inherited. The default value is the valuelofahk-

bef ore-pri ority character property of thehar : characteristic.

NOTE 95 For example, for ideographs, the br eak- bef ore-priority: andbreak-after-priority:
characteristics would typically be 0 and O, for aLatin letter 1 and 1, and for a space character 2 and 3.

break-after-priority: isan integer that affects whether a break is allowed after this
character as described in the specification obtheak- bef ore-priority:

characteristic. This characteristic is not inherited. The default value is the value of the
break-after-priority character property of thehar : characteristic.

drop-after-1ine-break?: is aboolean specifying whether this character should be
discarded if it follows a line break. This characteristic is not inherited. The default value is
the value of thelr op- af t er - | i ne- br eak? character property of thehar :

characteristic.

dr op- unl ess-bef ore-1ine-break?: is a boolean specifying whether this character
shall be discarded unless it precedes a line break. This characteristic is not inherited. The
default value is the value of tlie op- unl ess- bef ore- | i ne- br eak? character

property of thechar : characteristic.

233

| SO/IEC 10179:1996 © ISO/IEC

— mat h- cl ass: is one of the symbolsr di nary, oper at or, bi nary,rel ati on,
openi ng, cl osi ng, punct uati on,i nner, orspace. This is used by the flow object
classes for mathematical formulae to adjust the spacing of the character. A \glae efis
used for character flow objects that specify additional space; flow objects with this math-class
should be ignored when adjusting the spacing of another character flow object. This
characteristic is not inherited. The default value is the value ofethb- cl ass character
property of thechar : characteristic.

— scri pt: is a string specifying a formal public identifier that identifies the character's script
or #f if the character is not associated with any single script. This characteristic is not
inherited. The default value is the value of $teg i pt character property of thehar :
characteristic.

— posi tion-point-shift: is alength-spec specifying a shift of the position point in the
line-progression direction. The initial value is Opt.

NOTE 96 Shifting the position point by a positive amount in the line-progression direction has the effect of
shifting the areas produced by flow object in the opposite direction to the line-progression direction.

— | anguage: is #f or a symbol specifying the ISO 639 language code in upper-case. This
affects line composition in a system-dependent way. The initial value is #f.

— country: is #f or a symbol specifying the ISO 3166 country code in upper-case. This
affects line composition in a system-dependent way. The initial value is #f.

— col or: is an object of type color that specifies the color in which the flow object's marks
should be made. The initial value is the default color in the Device Gray color space.

— l ayer: is an integer specifying the layer of the marks of the areas resulting from the flow
object. An area shall be imaged after any area whose layer has a lower value. The initial
value is 0.

—inhibit-line-breaks?: is aboolean specifying whether line breaks shall be inhibited
before and after each area produced by this flow object. This applies only to line breaks
introduced by the formatter to make lines fit in the available space. The initial value is #f.

A character flow object is formatted to produce a single inline area. This may be merged with
adjacent inline areas if the gat ur e?: property is true. The position point of the inline area is

the position point property of the glyph specified in the font resource for the specified writing-
mode. The escapement direction is the direction between the position point and escapement
points as specified in the font resource for the specified writing-mode. The size of the area in the
escapement direction is the distance between the position and escapement points. The size of the
area before and after the placement path in the line-progression direction is the smallest that will
enclose the extent of the glyph in those directions as specified in the font resource for the
specified writing-mode. If the nominal alignment mode of the font resource for the character
flow object's writing-mode is not the same as the paragraph'’s alignment mode, then the glyph
area is automatically adjusted as specified by the alignment mode property in the font resource
for the specified writing-mode.

234

© ISO/IEC

| SO/IEC 10179: 1996(E)

12.6.11.1

Character Properties

Character properties are used to determine the default values of certain non-inherited
characteristics of character flow objects. In addition, character properties are accessible with the
char - proper t y procedure. The properties of a character do not affect how the flow objects
are formatted. They are only used during the construction of the flow object tree and may affect
how the flow object tree is constructed.

NOTE 97 Character properties should not be confused with properties of nodes of classdat a- char .

The following character properties are pre-defined for the style language:

— space? is a boolean specifying whether the character is a space. The default value is #f.

—record- end? is a boolean specifying whether the character is a record-end. The default
value is #f. Both thepace? andr ecor d- end? properties are usually true for a record-end

character.

— bl ank? is a boolean which is true if the character has no glyph associated with it. The
default value is #f.

— i nput -t ab? is a boolean specifying whether the character is a tab on input. The default
value is #f.

— i nput - whi t espace? is a boolean specifying whether the character should be considered
as whitespace on input. The default value is #f.

— punct ? is a boolean which is true if the character is treated as a punctuation character for the
purposes of hanging punctuation. The default value is #f.

— scri pt is a string specifying a formal public identifier that identifies the character's script or
#1 if the character is not associated with any single script. The following script public
identifiers are defined in this International Standard:

ISO/IEC 10179:1996//Script::Latin

— ISO/IEC 10179:1996//Script::Greek

— ISO/IEC 10179:1996//Script::Cyrillic

— ISO/IEC 10179:1996//Script::Arabic

— ISO/IEC 10179:1996//Script::Hebrew
— ISO/IEC 10179:1996//Script::Armenian

— ISO/IEC 10179:1996//Script::Georgian

235

| SO/IEC 10179:1996

© ISO/IEC

ISO/IEC 10179:1996//Script::
ISO/IEC 10179:1996//Script::
ISO/IEC 10179:1996//Script::
ISO/IEC 10179:1996//Script::
ISO/IEC 10179:1996//Script::
ISO/IEC 10179:1996//Script::
ISO/IEC 10179:1996//Script::
ISO/IEC 10179:1996//Script::
ISO/IEC 10179:1996//Script::
ISO/IEC 10179:1996//Script::
ISO/IEC 10179:1996//Script::
ISO/IEC 10179:1996//Script::
ISO/IEC 10179:1996//Script::
ISO/IEC 10179:1996//Script::
ISO/IEC 10179:1996//Script::
ISO/IEC 10179:1996//Script::
ISO/IEC 10179:1996//Script::
ISO/IEC 10179:1996//Script::
ISO/IEC 10179:1996//Script::
ISO/IEC 10179:1996//Script::
ISO/IEC 10179:1996//Script::
ISO/IEC 10179:1996//Script::
ISO/IEC 10179:1996//Script::

ISO/IEC 10179:1996//Script::

Devanagari
Guijarati
Gurmukhi
Bengali
Oriya
Telugu
Tamil
Kannada
Malayalam
Thai

Lao

Han
Bopomofo
Hiragana
Katakana
Hangul
Burmese
Khmer
Mongolian
Ethiopian
Sinhala
Tibetan
Punctuation

Symbol

236

© ISO/IEC

| SO/IEC 10179: 1996(E)

12.6.12

— ISO/IEC 10179:1996//Script::Digit
NOTE 98 Characters representing punctuation and symbols typically haveascri pt vaue of #f.

— gl yph-i d is an object of type glyph-id representing the nominal glyph to be used for this
character or #f if the character has no glyph. If the character was declared using the
st andar d- char s architectural form, then the default value is the glyph-id for the nominal
glyph for that character, if there is one, and otherwise #f. Otherwise, the default value is #f.

NOTE 99 The nominal glyph-id may be transformed using one or more glyph-substitution-tables. This allows for
selective mapping to, for example, small caps or old style glyphs.

—drop-after-Iline-break? is aboolean specifying whether the character is dropped
when it immediately follows a line break. The default value is #f.

NOTE 100 Thisisusually true for a space character.

— drop-unl ess-before-1ine-break?: is aboolean specifying whether this character
shall be discarded unless it precedes a line break. The default value is #f.

NOTE 101 Thisis usually true for a soft hyphen.

— break-before-priority is an integer that affects whether a break is allowed before this
character in the manner described in the specification fdsrthaek- bef ore-priority:
characteristic of the character flow object. The default value is 0.

— break-after-priority is an integer that affects whether a break is allowed after this
character in the manner described in the specification fdsrthak- after-priority:
characteristic of the character flow object. The default value is 0.

— mat h- cl ass is one of the symbolsr di nary, oper at or,bi nary,rel ati on,
openi ng, cl osi ng, punct uat i on, ori nner. The default value isr di nary.

— mat h- f ont - post ur e is either #f, meaning that any posture is acceptable, or one of the
symbolsnot - appl i cabl e, upri ght, obl i que, back- sl ant ed- obl i que,italic,
back-sl anted-italic, ormat h giving the posture property of the font resource to be
used when théont - post ur e: characteristic has the valuat h.

NOTE 102 This set of character propertiesis not exhaustive. Additional properties may be added using an added-
char-properties-declaration.

Leader Flow Object Class

A leader flow object can only be inlined. A leader flow object has a single principal port
containing the inline flow objects to be repeated. A leader flow object class has the following
characteristics:

— | engt h: is a length-spec specifying the length of the leader. This characteristic is not
inherited. If this characteristic is not specified, the length of the leader shall be determined by

237

| SO/IEC 10179:1996 © ISO/IEC

12.6.13

the context in which it is used. The length shall be specified for aleader in a paragraph unless
the leader occurs on the last line.

—truncat e-1 eader ?: is a boolean specifying whether the final repetition of the sequence
of inline flow objects that is the content of this flow object may be truncated. The initial value
is #f.

—al i gn-1 eader ?: is a boolean specifying whether the leaders shall be aligned against an
imaginary grid associated with the page. The initial value is #t.

— i n-1 eader - repeat : is a strictly positive integer specifying the minimum number of
times that the pattern shall be repeated. This characteristic is applicablel @rgtfh: is
not specified. If the available space is insufficient for the leader to be repeated this number of
times, then the leader shall be blank. When a leader occurs in a paragraph, the available space
consists of the display-size of the paragraph less the sum of the start-indent applicable to the
last line, the last-line-end-indent, the total length of everything following the leader in the
paragraph, and the smallest portion of the paragraph preceding the leader that shall be kept
with the leader. The initial value is 1.

—inhibit-line-breaks?: is aboolean specifying whether line breaks shall be inhibited
before and after each area produced by this flow object. This applies only to line breaks
introduced by the formatter to make lines fit in the available space. The initial value is #f.

— break-before-priority: isan integer that affects whether a break is allowed before
this flow object. Thdreak priority of a potential breakpoint is the maximum of the break-
after-priority of the flow object immediately preceding the potential breakpoint and the break-
before-priorities of the flow object immediately following the potential breakpoint, and any
characters immediately following that character for whichdthep- af t er - 1 i ne-
br eak?: characteristic is true. A break shall be allowed at a potential breakpoint only if the
break priority is even. This characteristic is not inherited. The default value is O.

— break-after-priority: isan integer that affects whether a break is allowed after this
flow object as described in the specification ofthe@ak- bef ore-priority:
characteristic. This characteristic is not inherited. The default value is 0.

Embedded-text Flow Object Class

The embedded-text flow object class is used for embedding right-to-left text within left-to-right
text or vice-versa. This flow object class shall only be inlined. It has a single principal port.

An embedded text flow object has the following characteristics:
—direction: is one of the symbolseft-to-right orright-to-Ileft.Itshall be
parallel to the writing-mode of the paragraph. This characteristic is not inherited and shall be

specified.

— | anguage: is #f or a symbol specifying the ISO 639 language code in upper-case. This
affects line composition in a system-dependent way. The initial value is #f.

238

© ISO/IEC

| SO/IEC 10179: 1996(E)

12.6.14

— country: is #f or a symbol specifying the ISO 3166 country code in upper-case. This
affects line composition in a system-dependent way. The initial value is #f.

—inhibit-line-breaks?: is aboolean specifying whether line breaks shall be inhibited
before and after each area produced by this flow object. This applies only to line breaks
introduced by the formatter to make lines fit in the available space. The initial value is #f.

The effect of the embedded text flow object is to make any line fragments that contain the
content of the embedded text flow object use the specified direction as their inline-progression
direction. For example, suppose a line contains four inline areas whose order (in the flow object
stream) is A, B, C, D, where the B and C were contained in an embedded text flow object whose
direction was the reverse of the paragraph's writing-mode. Then the line shall be built up as
follows: first a partial line shall be built up containing B and C by placing the position point of C
on the escapement point of B. Then the resulting partial line area shall be treated as an inline
area whose position point is the escapement point of C and whose escapement point is the
position point of B. The line shall then consist of A, then the inline partial line area produced
from B and C, and finally D all placed using the writing-mode of the paragraph. See Figure 12.

Rule Flow Object Class

A rule is used to specify a straight line. Rules may be inlined or displayed. A rule flow object
class has the following characteristics:

— orientation: isone of the symbolsori zont al ,verti cal ,escapenent, orl i ne-
pr ogr essi on which specifies the orientation of the rule and also determines whether the
rule is inlined or displayed. This characteristic is not inherited. It has no default value and so
it shall be specified.

If the orientation idor i zont al orverti cal, then the rule is displayed. In this case, if

the orientation of the rule is perpendicular to the placement direction, then the size of the area
in the placement direction shall be 0; otherwise, the size of the area in the placement direction
shall be equal to the length of the rule.

NOTE 103 The size of the areais distinct from the thickness of the rule.

If the orientation iescapenent , then the rule shall be inlined. In this case, the rule shall be
centered in the line-progression direction about the position point, and the escapement shall
be equal to the length of the rule. The rule may be offset in the line-progression direction
using theposi ti on- poi nt - shi ft: characteristic. If the orientationli$ ne-

pr ogr essi on, the rule shall be inlined. In this case, the rule shall start at the position point
and extend in the line-progression direction the length of the rule. The escapement shall be 0.

NOTE 104 Thus, arule whose orientationis| i ne- pr ogr essi on does not affect the positioning of subsequent
flow objects.

— | engt h: is a length specifying the length of the rule. This characteristic is not inherited. If
this characteristic is not specified, the length of the rule shall be determined by the context in
which it is used.

239

| SO/IEC 10179:1996 © ISO/IEC

— col or: is an object of type color that specifies the color in which the flow object's marks
should be made. The initial value is the default color in the Device Gray color space.

— l ayer: is an integer specifying the layer of the marks of the areas resulting from the flow
object. An area shall be imaged after any area whose layer has a lower value. The initial
value is 0.

— i ne- cap: is one of the symbolsut t , r ound, orsquar e specifying the cap style for the
line. The initial value idutt.

— i ne-dash: is alist of one or more lengths that specifies the dash pattern of the line. The
first length specifies the number component of the CurrentDashPattern graphics state variable
in ISO/IEC 10180. The remaining lengths specify the vector component of the
CurrentDashPattern graphics state variable. The initial value is a list containing the length
Opt.

— line-thickness: is alength that specifies the thickness of the line or lines. The initial
value is 1pt.

— line-repeat: is a strictly positive integer that specifies the number of parallel lines to be
drawn. For example, a value of 2 indicates a double line. The initial value is 1.

— | i ne- sep: is alength that gives the distance between the centers of parallel lines. The
initial value is 1pt.

— posi tion-point-shift: isalength-spec specifying a shift of the position point in the
line-progression direction. The initial value is Opt. This applies only if the flow object is
inlined.

NOTE 105 shifting the position point by a positive amount in the line-progression direction has the effect of
shifting the areas produced by flow object in the opposite direction to the line-progression direction.

—inhibit-line-breaks?: is aboolean specifying whether line breaks shall be inhibited
before and after each area produced by this flow object. This applies only to line breaks
introduced by the formatter to make lines fit in the available space. The initial value is #f.

— break-before-priority: isan integer that affects whether a break is allowed before
this flow object. Thdreak priority of a potential breakpoint is the maximum of the break-
after-priority of the flow object immediately preceding the potential breakpoint and the break-
before-priorities of the flow object immediately following the potential breakpoint, and any
characters immediately following that character for whichdthep- af t er - 1 i ne-
br eak?: characteristic is true. A break shall be allowed at a potential breakpoint only if the
break priority is even. This characteristic is not inherited. The default value is 0. This applies
only if the flow object is inlined.

— break-after-priority: isan integer that affects whether a break is allowed after this
flow object as described in the specification ofth@ak- bef ore-priority:

240

© ISO/IEC | SO/IEC 10179:1996(E)

characteristic. This characteristic is not inherited. The default valueis 0. This applies only if
the flow object isinlined.

— posi tion-preference: is either #f or one of the symbdlsp orbott om This applies
if the flow object is directed into a port on a column-set-sequence flow object that is flowed
into both the top-float and bottom-float zones of a column-subset and indicates whether the
areas from this flow object may be flowed into only one of the zones. This characteristic is not
inherited. The default value is #f.

— di spl ay-al i gnnent : is one of the symbolst art, cent er, end, i nsi de, or
out si de specifying the alignment of the areas resulting from the flow object in the direction
of the writing-mode. The initial value & ar t . This determines how the flow object
expands its areas so their size is equal to the display size in the direction perpendicular to the
area container's filling-direction. First space is added to the area so that its size is equal to the
display size less the sum of the start and end indents:

— ifthe alignment ist ar t , the space is all added at the end in the direction of the writing-
mode;

— if the alignment i®nd, the space is all added at the start in the direction of the writing-
mode;

— ifthe alignment i€ent er, the space is added equally at the start and the end in the
direction of the writing-mode;

— if the alignment i$ nsi de, then the flow object shall have an ancestor of class page-
sequence, the direction of the writing-mode shall be perpendicular ibo tlaé ng-
edge: of the page-sequence, and the space shall be added on the edge that is outside with
respect to the spread;

— if the alignment imut si de, then the flow object shall have an ancestor of class page-
sequence, the direction determined by the writing-mode shall be perpendicular to the
bi ndi ng- edge: of the page-sequence, and the space shall be added on the edge that is
inside with respect to the spread.

Then an amount of space equal to the start-indent is added at the start in the direction of the
writing-mode, and an amount of space equal to the end-indent is added at the end in the
direction of the writing-mode. This applies only if the flow object is displayed.

— start-indent: is alength-spec specifying the indent for the edge of the area at the start in
the direction of the writing-mode. The initial value is Opt. This applies only if the flow object
is displayed.

— end-i ndent : is a length-spec specifying the indent for the edge of the area at the end in the
direction of the writing-mode. The initial value is Opt. This applies only if the flow object is
displayed.

241

| SO/IEC 10179:1996 © ISO/IEC

— writing-node: is one of the symbolseft-to-right,right-to-left,ortop-

t o- bott om The direction determined by the writing-mode shall be perpendicular to the
placement direction. The initial valuelisft -t o- ri ght . This applies only if the flow
object is displayed.

span: is a strictly positive integer specifying the number of columns that the areas resulting
from this flow object shall span. This characteristic shall apply if the flow object is directed
into a port on a column-set-sequence flow object that is flowed into the top-float, bottom-
float, or body-text zone of a spannable column-subset. The initial value is 1. This applies
only if the flow object is displayed.

span- weak?: is a boolean specifying whether the areas resulting from this flow object span
weakly rather than strongly. See 12.6.5.1. This characteristic applies if the flow object is
directed into a port on a column-set-sequence flow object that is flowed into the top-float,
bottom-float, or body-text zone of a spannable column-subset andspas a characteristic

with a value greater than 1. The initial value is #f. This applies only if the flow object is
displayed.

space- bef ore: is an object of type display-space specifying space to be inserted before, in
the placement direction, the areas produced by the flow object. This characteristic is not
inherited. The default is for no space before to be inserted. This applies only if the flow object
is displayed.

space- af t er: is an object of type display-space specifying space to be inserted after, in
the placement direction, the areas produced by the flow object. This characteristic is not
inherited. The default is for no space after to be inserted. This applies only if the flow object is
displayed.

keep-wi t h- previ ous?: is a boolean specifying whether the flow object shall be kept in
the same area as the previous flow object. This characteristic is not inherited. The default
value is #f. This applies only if the flow object is displayed.

keep-wi t h- next ?: is a boolean specifying whether the flow object shall be kept in the
same area as the next flow object. This characteristic is not inherited. The default value is #f.
This applies only if the flow object is displayed.

br eak- bef or e: is #f or one of the symbofsmge, page- r egi on, col um, orcol umm-
set specifying that the flow object shall start an area of that type. This characteristic is not
inherited. The default is #f. This applies only if the flow object is displayed.

— break- af t er: is #f or one of the symbofsmge, page- r egi on, col um, orcol um-

set specifying that the flow object shall end an area of that type. This characteristic is not
inherited. The default is #f. This applies only if the flow object is displayed.

— keep: is one of the following:

— #t meaning that the areas produced by this flow object shall be kept together within the
smallest possible area.

242

© ISO/IEC

| SO/IEC 10179: 1996(E)

12.6.15

— the symbopage indicating that the areas produced by the flow object shall lie within the
same page; in this case, the flow object shall have an ancestor flow object of class page-
sequence.

— the symbotol um- set indicating that the areas produced by the flow object shall lie
within the same column set; in this case, the flow object shall have an ancestor of class
column-set-sequence.

— the symbotol um indicating that the areas produced by the flow object shall lie within
the same column set, and that the first column that each area spans in the column set shall
be the same.

— #f indicating that this characteristic is to be ignored.

This characteristic is not inherited. The default value is #f. This applies only if the flow object
is displayed.

may- vi ol at e- keep- bef ore?: is a boolean which, if true, specifies that constraints
imposed by th&eep: characteristics of ancestor flow objects on the relative positioning of
this flow object and its previous flow object may not be respected. This characteristic is not
inherited. The default value is #f. This applies only if the flow object is displayed.

may- vi ol at e- keep- aft er ?: is a boolean which, if true, specifies that constraints
imposed bykeep: characteristics of ancestor flow objects on the relative positioning of this
flow object and its next flow object may not be respected. This characteristic is not inherited.
The default value is #f. This applies only if the flow object is displayed.

External-graphic Flow Object Class
The external-graphic flow object class is used for graphics contained in an external entity. Flow
objects of this class may be inlined or displayed. This flow object is atomic. Flow objects of this
class have the following characteristics:

— di spl ay?: is a boolean specifying whether the flow object shall be displayed rather than

inlined. This characteristic is not inherited. The default value is #f.

— scal e: is either a number or a list of two numbers or one of the symipalor max-

uni f orm Ifitis a number, then the graphic shall be scaled by that factor in both the
horizontal and vertical directions. If it is a list of two numbers, then the graphic shall be
scaled by the factor specified by the first number in the horizontal direction and by the factor
specified by the second number in the vertical direction. If it is the symalxeluni f or m

then it shall be scaled uniformly in the horizontal and vertical directions so that its size in
either the horizontal or vertical direction is as large as allowed. If it is the symbpthen it

shall be scaled in the horizontal and vertical directions so that its size in the horizontal and
vertical directions is as large as allowed. This characteristic is not inherited. The default
value ismax- uni f orm

243

| SO/IEC 10179:1996 © ISO/IEC

— max- wi dt h: is a length-spec specifying the maximum allowed width of the resulting area

whenscal e: ismax ormax- uni f or m This characteristic is not inherited.

— max- hei ght : is a length-spec specifying the maximum allowed height of the resulting area

whenscal e: ismax ormax- uni f or m This characteristic is not inherited.

—entity-systemi d: is a string specifying the system identifier of the entity containing

the external graphic or #f if the entity has no system identifier. This characteristic is not
inherited and shall be specified.

NOTE 106 The external identifier specified in an entity declaration in the source document shall be resolved into
asystem identifier by the entity manager of the SGML system. The resulting system identifier is available as the
ef f ecti ve- syst em i d node property in the source grove.

not ati on-systemi d: is a string specifying the system identifier of the notation of the
external graphic. This characteristic is not inherited and shall be specified.

NOTE 107 The external identifier specified in a notation declaration in the source document shall be resolved into
asystem identifier by the entity manager of the SGML system. The resulting system identifier is available as the
ef fecti ve-notation-systemi d node property in the source grove. The manner in which this system
identifier identifies the processor for the notation is system-dependent.

col or: is an object of type color that specifies the color in which the flow object's marks
should be made. The initial value is the default color in the Device Gray color space.

| ayer: is an integer specifying the layer of the marks of the areas resulting from the flow
object. An area shall be imaged after any area whose layer has a lower value. The initial
value is 0.

posi tion-preference: is either #f or one of the symbdlsp orbott om This applies

if the flow object is directed into a port on a column-set-sequence flow object that is flowed
into both the top-float and bottom-float zones of a column-subset and indicates whether the
areas from this flow object may be flowed into only one of the zones. This characteristic is not
inherited. The default value is #f.

di spl ay-al i gnment : is one of the symbolst art, cent er, end, i nsi de, or

out si de specifying the alignment of the areas resulting from the flow object in the direction

of the writing-mode. The initial value & ar t . This determines how the flow object

expands its areas so their size is equal to the display size in the direction perpendicular to the
area container's filling-direction. First space is added to the area so that its size is equal to the
display size less the sum of the start and end indents:

— ifthe alignment ist art , the space is all added at the end in the direction of the writing-
mode;

— if the alignment i®nd, the space is all added at the start in the direction of the writing-
mode;

244

© ISO/IEC | SO/IEC 10179:1996(E)

— if the alignment izent er, the space is added equally at the start and the end in the
direction of the writing-mode;

— if the alignment i$ nsi de, then the flow object shall have an ancestor of class page-
sequence, the direction of the writing-mode shall be perpendicular ibd ta ng-
edge: of the page-sequence, and the space shall be added on the edge that is outside with
respect to the spread;

— if the alignment i®ut si de, then the flow object shall have an ancestor of class page-
sequence, the direction determined by the writing-mode shall be perpendicular to the
bi ndi ng- edge: of the page-sequence, and the space shall be added on the edge that is
inside with respect to the spread.

Then an amount of space equal to the start-indent is added at the start in the direction of the
writing-mode, and an amount of space equal to the end-indent is added at the end in the
direction of the writing-mode. This applies only if the flow object is displayed.

— start-indent: isalength-spec specifying the indent for the edge of the area at the start in
the direction of the writing-mode. The initial value is Opt. This applies only if the flow object
is displayed.

— end-i ndent : is a length-spec specifying the indent for the edge of the area at the end in the
direction of the writing-mode. The initial value is Opt. This applies only if the flow object is
displayed.

— writing-node: isone of the symbolseft-to-right,right-to-left,ortop-
t o- bott om The direction determined by the writing-mode shall be perpendicular to the
placement direction. The initial valuelieft - t o- ri ght . This applies only if the flow
object is displayed.

— span: is a strictly positive integer specifying the number of columns that the areas resulting
from this flow object shall span. This characteristic shall apply if the flow object is directed
into a port on a column-set-sequence flow object that is flowed into the top-float, bottom-
float, or body-text zone of a spannable column-subset. The initial value is 1. This applies
only if the flow object is displayed.

— span-weak?: is a boolean specifying whether the areas resulting from this flow object span
weakly rather than strongly. See 12.6.5.1. This characteristic applies if the flow object is
directed into a port on a column-set-sequence flow object that is flowed into the top-float,
bottom-float, or body-text zone of a spannable column-subset andspas a characteristic
with a value greater than 1. The initial value is #f. This applies only if the flow object is
displayed.

— space- bef or e: is an object of type display-space specifying space to be inserted before, in
the placement direction, the areas produced by the flow object. This characteristic is not
inherited. The default is for no space before to be inserted. This applies only if the flow object
is displayed.

245

| SO/IEC 10179:1996 © ISO/IEC

— space- af t er: is an object of type display-space specifying space to be inserted after, in

the placement direction, the areas produced by the flow object. This characteristic is not
inherited. The default is for no space after to be inserted. This applies only if the flow object is
displayed.

keep-wi t h- previ ous?: is a boolean specifying whether the flow object shall be kept in
the same area as the previous flow object. This characteristic is not inherited. The default
value is #f. This applies only if the flow object is displayed.

keep-wi t h- next ?: is a boolean specifying whether the flow object shall be kept in the
same area as the next flow object. This characteristic is not inherited. The default value is #f.
This applies only if the flow object is displayed.

br eak- bef or e: is #f or one of the symbofsmge, page- r egi on, col um, orcol umm-
set specifying that the flow object shall start an area of that type. This characteristic is not
inherited. The default is #f. This applies only if the flow object is displayed.

br eak- aft er: is #f or one of the symbofmge, page- r egi on, col um, orcol um-
set specifying that the flow object shall end an area of that type. This characteristic is not
inherited. The default is #f. This applies only if the flow object is displayed.

keep: is one of the following:

— #t meaning that the areas produced by this flow object shall be kept together within the
smallest possible area.

— the symbopage indicating that the areas produced by the flow object shall lie within the
same page; in this case, the flow object shall have an ancestor flow object of class page-
sequence.

— the symbotol um- set indicating that the areas produced by the flow object shall lie
within the same column set; in this case, the flow object shall have an ancestor of class
column-set-sequence.

— the symbotol um indicating that the areas produced by the flow object shall lie within
the same column set, and that the first column that each area spans in the column set shall
be the same.

— #f indicating that this characteristic is to be ignored.

This characteristic is not inherited. The default value is #f. This applies only if the flow object
is displayed.

may- vi ol at e- keep- bef ore?: is a boolean which, if true, specifies that constraints
imposed by thé&eep: characteristics of ancestor flow objects on the relative positioning of
this flow object and its previous flow object may not be respected. This characteristic is not
inherited. The default value is #f. This applies only if the flow object is displayed.

246

© ISO/IEC

| SO/IEC 10179: 1996(E)

— may- vi ol at e- keep- af t er ?: is a boolean which, if true, specifies that constraints

imposed bykeep: characteristics of ancestor flow objects on the relative positioning of this
flow object and its next flow object may not be respected. This characteristic is not inherited.
The default value is #f. This applies only if the flow object is displayed.

posi ti on-poi nt-x: is alength-spec giving the x-coordinate of the position point of the
resulting area in the area's coordinate system. For this purpose, the area is considered to have
a coordinate system in the same way as an area container. This shall apply only when the
flow object is inlined. This characteristic is not inherited. If this characteristic is not

specified and ther i t i ng- node: characteristiciseft-to-right orright-to-

| ef t, then the value shall default to O.

posi tion-point-y: is alength-spec giving the y-coordinate of the position point of the
resulting area in the area's coordinate system. For this purpose, the area is considered to have
a coordinate system in the same way as an area container. This applies only when the flow
object is inlined. This characteristic is not inherited. If this characteristic is not specified and
thewri ti ng- node: characteristic is op-t 0- bot t om then the value shall default to 0.

escapenent -di recti on: is one of the symboltsop-t o- bottom | eft-to-right,
bottomto-top,orright-to-I|eft specifying the escapement direction of the resulting
area relative to the area's coordinate system. For this purpose, the area is considered to have
coordinate system in the same way as an area container. This applies only when the flow
object is inlined. This characteristic is not inherited. If this characteristic is not specified,

then its value shall default to the value of #lne t i ng- mode: characteristic.

i nhi bit-Iine-breaks?: is aboolean specifying whether line breaks shall be inhibited
before and after each area produced by this flow object. This applies only to line breaks
introduced by the formatter to make lines fit in the available space. The initial value is #f.
This applies only if the flow object is inlined.

br eak- before-priority: isan integer that affects whether a break is allowed before
this flow object. Thdreak priority of a potential breakpoint is the maximum of the break-
after-priority of the flow object immediately preceding the potential breakpoint and the break-
before-priorities of the flow object immediately following the potential breakpoint, and any
characters immediately following that character for whichdthep- af t er-1i ne-

br eak?: characteristic is true. A break shall be allowed at a potential breakpoint only if the
break priority is even. This characteristic is not inherited. The default value is 0. This applies
only if the flow object is inlined.

break-after-priority: isan integer that affects whether a break is allowed after this
flow object as described in the specification oftheak- bef ore-priority:

characteristic. This characteristic is not inherited. The default value is 0. This applies only if
the flow object is inlined.

247

| SO/IEC 10179:1996 © ISO/IEC

12.6.16 Included-container-area Flow Object Class

An included-container-area flow object results in a sequence of one or more areas each of which
is specified as an area container. An included-container-area flow object has a single principal
port. The contents of this port shall be displayed.

Flow objects of the included-container-area class may be inlined or displayed.

The size of the container shall be fixed in the direction perpendicular to the area container’s
filling-direction. It shall be specified unless the flow object is being displayed and the filling-
direction is the same as the placement direction, in which case the sizeis the display-size. It need
not be specified in the filling-direction. In this case, it shall be determined by the size of the child
areas. |If the included-container-area flow object is displayed and its placement direction is
parallel to the area container’ sfilling-direction and the size in the filling-direction is not
specified, then the size in the filling-direction shall be limited by the size of its parent in that
direction. If the flow object is being displayed and its placement direction is perpendicular to the
area container’ sfilling direction and the size in the filling-direction is not specified, then the size
in the filling-direction shall be limited to the display-size.

An included-container-area has the following characteristics:

— di spl ay?: is a boolean specifying whether the flow object shall be displayed rather than
inlined. This characteristic is not inherited. The default value is #f.

— filling-direction: isone of the symbolsop-to-bottomleft-to-right, or
right-to-Ieft. Itspecifies the filling-direction of the area container. The filling-
direction of the area container may be perpendicular to the placement direction. The initial
value ist op-t o- bott om

— wi dt h: is a length specifying the width of the area container. This characteristic is not
inherited.

— hei ght : is a length specifying the height of the area container. This characteristic is not
inherited.

— contents-al i gnnent : is one of the symbolst art , end, center, orjustify
specifying the alignment of the child areas within the area container in the filling-direction of
the area container. The initial valuesisart .

—overfl ow acti on: is one of the symbolsr uncat e, error, orr epeat specifying the
action to be taken if the content of the area container does not fit within the dimensions
specified for the area container. The initial valueepeat .

— contents-rotation: isone of the integers 0, 90, 180, or 270 specifying the counter-
clockwise rotation to be applied to the area contents. This characteristic is not inherited. The
default is 0.

248

© ISO/IEC | SO/IEC 10179:1996(E)

— scal e: is a number specifying a scaling factor to be applied to the content of the area.
Numbers less than 1 shall make the content smaller. Numbers greater than 1 shall make it
larger. This characteristic is not inherited. If not specified, it shall default to 1.

— posi tion-preference: is either #f or one of the symbdlsp orbott om This applies
if the flow object is directed into a port on a column-set-sequence flow object that is flowed
into both the top-float and bottom-float zones of a column-subset and indicates whether the
areas from this flow object may be flowed into only one of the zones. This characteristic is not
inherited. The default value is #f.

— di spl ay-al i gnnent: is one of the symbolst art, cent er, end, i nsi de, or
out si de specifying the alignment of the areas resulting from the flow object in the direction
of the writing-mode. The initial value & ar t . This determines how the flow object
expands its areas so their size is equal to the display size in the direction perpendicular to the
area container's filling-direction. First space is added to the area so that its size is equal to the
display size less the sum of the start and end indents:

— ifthe alignment ist ar t , the space is all added at the end in the direction of the writing-
mode;

— if the alignment i®nd, the space is all added at the start in the direction of the writing-
mode;

— ifthe alignment i€ent er, the space is added equally at the start and the end in the
direction of the writing-mode;

— if the alignment i$ nsi de, then the flow object shall have an ancestor of class page-
sequence, the direction of the writing-mode shall be perpendicular ibo tlag ng-
edge: of the page-sequence, and the space shall be added on the edge that is outside with
respect to the spread;

— if the alignment i®ut si de, then the flow object shall have an ancestor of class page-
sequence, the direction determined by the writing-mode shall be perpendicular to the
bi ndi ng- edge: of the page-sequence, and the space shall be added on the edge that is
inside with respect to the spread.

Then an amount of space equal to the start-indent is added at the start in the direction of the
writing-mode, and an amount of space equal to the end-indent is added at the end in the
direction of the writing-mode. This applies only if the flow object is displayed.

— start-indent: isalength-spec specifying the indent for the edge of the area at the start in
the direction of the writing-mode. The initial value is Opt. This applies only if the flow object
is displayed.

— end-i ndent : is a length-spec specifying the indent for the edge of the area at the end in the
direction of the writing-mode. The initial value is Opt. This applies only if the flow object is
displayed.

249

| SO/IEC 10179:1996 © ISO/IEC

— writing-node: is one of the symbolseft-to-right,right-to-left,ortop-

t o- bott om The direction determined by the writing-mode shall be perpendicular to the
placement direction. The initial valuelisft -t o- ri ght . This applies only if the flow
object is displayed.

span: is a strictly positive integer specifying the number of columns that the areas resulting
from this flow object shall span. This characteristic shall apply if the flow object is directed
into a port on a column-set-sequence flow object that is flowed into the top-float, bottom-
float, or body-text zone of a spannable column-subset. The initial value is 1. This applies
only if the flow object is displayed.

span- weak?: is a boolean specifying whether the areas resulting from this flow object span
weakly rather than strongly. See 12.6.5.1. This characteristic applies if the flow object is
directed into a port on a column-set-sequence flow object that is flowed into the top-float,
bottom-float, or body-text zone of a spannable column-subset andspas a characteristic

with a value greater than 1. The initial value is #f. This applies only if the flow object is
displayed.

space- bef ore: is an object of type display-space specifying space to be inserted before, in
the placement direction, the areas produced by the flow object. This characteristic is not
inherited. The default is for no space before to be inserted. This applies only if the flow object
is displayed.

space- af t er: is an object of type display-space specifying space to be inserted after, in
the placement direction, the areas produced by the flow object. This characteristic is not
inherited. The default is for no space after to be inserted. This applies only if the flow object is
displayed.

keep-wi t h- previ ous?: is a boolean specifying whether the flow object shall be kept in
the same area as the previous flow object. This characteristic is not inherited. The default
value is #f. This applies only if the flow object is displayed.

keep-wi t h- next ?: is a boolean specifying whether the flow object shall be kept in the
same area as the next flow object. This characteristic is not inherited. The default value is #f.
This applies only if the flow object is displayed.

br eak- bef or e: is #f or one of the symbofsmge, page- r egi on, col um, orcol umm-
set specifying that the flow object shall start an area of that type. This characteristic is not
inherited. The default is #f. This applies only if the flow object is displayed.

— break- af t er: is #f or one of the symbofsmge, page- r egi on, col um, orcol um-

set specifying that the flow object shall end an area of that type. This characteristic is not
inherited. The default is #f. This applies only if the flow object is displayed.

— keep: is one of the following:

— #t meaning that the areas produced by this flow object shall be kept together within the
smallest possible area.

250

© ISO/IEC

| SO/IEC 10179: 1996(E)

— the symbopage indicating that the areas produced by the flow object shall lie within the
same page; in this case, the flow object shall have an ancestor flow object of class page-
sequence.

— the symbotol um- set indicating that the areas produced by the flow object shall lie
within the same column set; in this case, the flow object shall have an ancestor of class
column-set-sequence.

— the symbotol um indicating that the areas produced by the flow object shall lie within
the same column set, and that the first column that each area spans in the column set shall
be the same.

— #f indicating that this characteristic is to be ignored.

This characteristic is not inherited. The default value is #f. This applies only if the flow object
is displayed.

may- vi ol at e- keep- bef ore?: is a boolean which, if true, specifies that constraints
imposed by th&eep: characteristics of ancestor flow objects on the relative positioning of
this flow object and its previous flow object may not be respected. This characteristic is not
inherited. The default value is #f. This applies only if the flow object is displayed.

may- vi ol at e- keep- aft er ?: is a boolean which, if true, specifies that constraints
imposed bykeep: characteristics of ancestor flow objects on the relative positioning of this
flow object and its next flow object may not be respected. This characteristic is not inherited.
The default value is #f. This applies only if the flow object is displayed.

posi ti on-poi nt-x: is alength-spec giving the x-coordinate of the position point of the
resulting area in the area's coordinate system. For this purpose, the area is considered to have
a coordinate system in the same way as an area container. This shall apply only when the
flow object is inlined. This characteristic is not inherited. If this characteristic is not

specified and ther i t i ng- node: characteristiciseft-to-right orright-to-

| ef t, then the value shall default to O.

posi tion-point-y: is alength-spec giving the y-coordinate of the position point of the
resulting area in the area's coordinate system. For this purpose, the area is considered to have
a coordinate system in the same way as an area container. This applies only when the flow
object is inlined. This characteristic is not inherited. If this characteristic is not specified and
thewri ti ng- node: characteristic is op-t 0- bot t om then the value shall default to 0.

escapenent -di recti on: is one of the symboltsop-t o- bottom| eft-to-right,
bottomto-top,orright-to-I|eft specifying the escapement direction of the resulting
area relative to the area's coordinate system. For this purpose, the area is considered to have
coordinate system in the same way as an area container. This applies only when the flow
object is inlined. This characteristic is not inherited. If this characteristic is not specified,

then its value shall default to the value of #ne t i ng- mode: characteristic.

251

| SO/IEC 10179:1996 © ISO/IEC

—inhibit-line-breaks?: is aboolean specifying whether line breaks shall be inhibited
before and after each area produced by this flow object. This applies only to line breaks
introduced by the formatter to make lines fit in the available space. The initial value is #f.
This applies only if the flow object is inlined.

— break-before-priority: isan integer that affects whether a break is allowed before
this flow object. Thdreak priority of a potential breakpoint is the maximum of the break-
after-priority of the flow object immediately preceding the potential breakpoint and the break-
before-priorities of the flow object immediately following the potential breakpoint, and any
characters immediately following that character for whichdthep- af t er - 1 i ne-
br eak?: characteristic is true. A break shall be allowed at a potential breakpoint only if the
break priority is even. This characteristic is not inherited. The default value is 0. This applies
only if the flow object is inlined.

— break-after-priority: isan integer that affects whether a break is allowed after this
flow object as described in the specification oftheak- bef ore-priority:
characteristic. This characteristic is not inherited. The default value is 0. This applies only if
the flow object is inlined.

12.6.17 Score Flow Object Class

The score flow object has a single principal port. The content of this port is scored. The port can
contain only inlined flow objects.

NOTE 108 Kendot scoring is achieved using the emphasizing-mark flow object class.
The applicable characteristics are:
—type: is one of

— the symbobef or e specifying that a score should be drawn parallel to the placement path
and at a position specified by the font of the score flow object for scores that are before the
placement path in the line-progression direction.

— the symbot hr ough specifying that a score should be drawn parallel to the placement
path and at a position specified by the font of the score flow object for scores that are
drawn through the characters of the font.

— the symbohf t er specifying that a score shall be drawn parallel to the placement path
and at a position specified by the font of the score flow object for scores that are after the
placement path in the line-progression direction.

— alength-spec specifying that a score shall be drawn parallel to the placement path such
that the distance in the line-progression direction from the center of the score to the
placement path is the specified length; a positive value shall cause the score to be after the
placement path in the line-progression direction.

— a character, which means that each glyph shall be overstruck with that character.

252

© ISO/IEC | SO/IEC 10179:1996(E)

This characteristic is non-inherited and shall be specified.

— scor e-spaces?: is a boolean specifying whether the scoring shall be applied to spaces.
The initial value is #t.

— col or: is an object of type color that specifies the color in which the flow object's marks
should be made. The initial value is the default color in the Device Gray color space.

— l ayer: is an integer specifying the layer of the marks of the areas resulting from the flow
object. An area shall be imaged after any area whose layer has a lower value. The initial
value is 0.

— i ne-cap: is one of the symbolsut t, r ound, orsquar e specifying the cap style for the
line. The initial value idbut t . This applies only whenype: is a length-spec.

— |'i ne-dash: is alist of one or more lengths that specifies the dash pattern of the line. The
first length specifies the number component of the CurrentDashPattern graphics state variable
in ISO/IEC 10180. The remaining lengths specify the vector component of the
CurrentDashPattern graphics state variable. The initial value is a list containing the length
Opt. This applies only whetnype: is a length-spec.

— line-thickness: is alength that specifies the thickness of the line or lines. The initial
value is 1pt. This applies only wheémgpe: is a length-spec.

— line-repeat: is a strictly positive integer that specifies the number of parallel lines to be
drawn. For example, a value of 2 indicates a double line. The initial value is 1. This applies
only whent ype: is a length-spec.

— | i ne-sep: is alength that gives the distance between the centers of parallel lines. The
initial value is 1pt. This applies only whegpe: is a length-spec.

—inhibit-line-breaks?: is aboolean specifying whether line breaks shall be inhibited
before and after each area produced by this flow object. This applies only to line breaks
introduced by the formatter to make lines fit in the available space. The initial value is #f.

—font-fam | y-nane: is either #f, indicating that any font family is acceptable, or a string
giving the font family name property of the desired font resource. The initial vals®is
serif.

NOTE 109 1SO/IEC 10180 defines a mandatory font set for interchange comprising the font familiesi so-
serif,iso-sanserif,andi so- nonospace.

— font -wei ght : is either #f, indicating that any font weight is acceptable, or one of the
symbolsnot - appl i cabl e,ultra-1ight,extra-light,light,sem -Iight,
nmedi um seni - bol d, bol d, ext r a- bol d, orul tra- bol d, giving the weight property
of the desired font resource. The initial valueesli um

253

| SO/IEC 10179:1996 © ISO/IEC

12.6.18

— font - post ure: is either #f, indicating that any posture is acceptable, or one of the symbols
not - appl i cabl e, upri ght, obl i que, back-sl ant ed- obl i que,italic, or
back-sl anted-italic, giving the posture property of the desired font resource. The
initial value isupri ght.

— font-structure: is either #f, indicating that any structure is applicable, or one of the
symbolsnot - appl i cabl e, sol i d, orout | i ne. The initial value isol i d.

— font-proportionate-w dth: is either #f, indicating that any proportionate width is
acceptable, or one of the symbotst - appl i cabl e, ul tra- condensed, extr a-
condensed, condensed, sem - condensed, nedi um semi - expanded, expanded,
ext ra- expanded, orul tr a- expanded. The initial value isredi um

— font - nane: is either #f, indicating that any font name is acceptable, or a string which is the
public identifier for the font name property of the desired font resource. When the value is a
string, the values of thleont - f ami | y- name: , f ont - wei ght : , f ont - posture:,
font-structure:,andfont-proportionate-w dth: characteristics are not used in
font selection. The initial value is #f.

— font-size: is alength specifying the body size to which the font resource should be
scaled. The initial value is 10pt.

When thet ype: isbefore, after, ort hr ough, the font characteristics shall determine the
positioning of the score. When thgpe: is a character, the font characteristics shall determine
the glyph used.

Box Flow Object Class

The box flow object may be used to put a box around a sequence of flow objects. The box flow
object is either displayed or inlined depending on the value afitepl ay?: characteristic.

The box flow object has a single principal port. If the box is displayed, then the port shall accept
any displayed flow objects. If the box is inlined, then the port shall accept any inlined flow
objects.

The box flow object may result in more than one area. In this case, the border of the box adjacent
to the break may be omitted if thex- open- end?: characteristic is true.

If the box is inlined, then this border shall be perpendicular to the writing-mode. If the box is
displayed, then this border shall be parallel to the writing-mode.

When the box is displayed, the size of the box (that is, the distance between the positions of the
borders) in the direction determined by the writing-mode shall be equal to the display-size of the
box less the start and end indents. The display-size for the content of the box shall be equal to the
size of the box.

NOTE 110 Thus, thestart-i ndent: andend-i ndent : characteristics for the content of the box shall be set to
give the desired separation between the border of the box and its content. Thereis no automatic separation to take
account of the thickness of border.

254

© ISO/IEC | SO/IEC 10179:1996(E)

The applicable characteristics are:

— di spl ay?: is a boolean that specifies whether the box shall be displayed rather than inlined.
This characteristic is not inherited. The default value is #f.

— box-type: is one of the following symbols:
— border specifying that the box shall have a border.
— backgr ound specifying that the box shall have a background.
— bot h specifying that the box shall have both a border and a background.
The initial value idor der .

— box- open-end?: is a boolean that specifies whether a broken box shall have an open end.
If the value is #t, the ending edge of the area before the line break shall not have the visible
border, and the starting edge of the area after the line break shall not have the visible border.
If the value is #f, broken box areas shall have the visible borders as usual. The initial value is
#f.

— backgr ound- col or: is either #f or an object of type color that specifies the color in which
the marks for the flow object's background should be made. The initial value is #f. This
applies only if thebox- t ype: characteristic does not have the vdioe der .

— background- I ayer: is an integer specifying the layer of the marks of the areas resulting
from the background of a flow object. The initial value is -1. This applies only fdke
t ype: characteristic does not have the vaoe der .

— box- cor ner - rounded: specifies whether the corners of the box shall be drawn as quarter
circles as follows:

— #f indicating that no corners shall be rounded.
— #t indicating that all corners shall be rounded.

— a list of the symbols identifying the individual corners that shall be rounded; each symbol
shall be of the fornx- y wherex andy arebef or e oraf t er; if the box is displayed then
x specifies whether the corner is before or after the box in the direction determined by the
writing-mode, and/ specifies whether the corner is before or after the box in the
placement direction of the area's coordinate system; if the box is inlined theicates
whether the corner is before or after the box in the escapement directigninaichtes
whether the corner is before or after the box in the line-progression direction.

The initial value is #f.

— box- corner-radi us: is alength-spec specifying the radius of the quarter circles to be
used wherbox- cor ner - r ounded: is not #f. A negative value indicates that the center of

255

| SO/IEC 10179:1996 © ISO/IEC

the circleis at the point where the edges intersect; in this case, the corners shall be concave.
Theinitia valueis 3pt.

— box- bor der-al i gnnment : is a symbol specifying the alignment of the border's line
relative to the position of the border, as follows:

— cent er specifying that the line shall be centered with respect to the position of the
border.

— out si de specifying that the edge of the line that is an outer edge of the box shall be
aligned with the position of the border.

— i nsi de specifying that the edge of the line that is an inner edge of the box shall be
aligned with the position of the border.

The initial value iout si de.

— box- si ze- bef or e: is a length that specifies the distance from the placement path to the
edge of the box that is before the placement path in the line-progression direction. This shall
apply only if the flow object is inline. The initial value is 8pt.

— box- si ze-after: is alength that specifies the distance from the placement path to the
edge of the box that is after the placement path in the line-progression direction. This shall
apply only if the flow object is inline. The initial value is 4pt.

— col or: is an object of type color that specifies the color in which the flow object's marks
should be made. The initial value is the default color in the Device Gray color space. This
applies to the box's border.

— l ayer: is an integer specifying the layer of the marks of the areas resulting from the flow
object. An area shall be imaged after any area whose layer has a lower value. The initial
value is 0. This applies to the box's border.

— i ne- cap: is one of the symbolsut t , r ound, orsquar e specifying the cap style for the
line. The initial value idbut t . This applies to the box's border.

— i ne-dash: is alist of one or more lengths that specifies the dash pattern of the line. The
first length specifies the number component of the CurrentDashPattern graphics state variable
in ISO/IEC 10180. The remaining lengths specify the vector component of the
CurrentDashPattern graphics state variable. The initial value is a list containing the length
Opt. This applies to the box's border.

— line-thickness: is alength that specifies the thickness of the line or lines. The initial
value is 1pt. This applies to the box's border.

— line-repeat: is a strictly positive integer that specifies the number of parallel lines to be
drawn. For example, a value of 2 indicates a double line. The initial value is 1. This applies to
the box's border.

256

© ISO/IEC

| SO/IEC 10179: 1996(E)

— | i ne-sep: is alength that gives the distance between the centers of parallel lines. The

initial value is 1pt. This applies to the box's border.

—Iline-mter-limt: isanumber that specifies the miter limit for line joins. The

semantics of the miter limit are described in ISO/IEC 10180. The initial value is 10. This
applies to the box's border.

I i ne-j oi n: is one of the symboilsi t er, round, orbevel specifying the join style of
the line. The initial value isi t er . This applies to the box's border.

writing-nmode: is one of the symbolseft-to-right,right-to-left,ortop-

t o- bott om The direction determined by the writing-mode shall be perpendicular to the
placement direction. The initial valuelisft -t o- ri ght . When the box is inline, this
determines the placement of flow objects in the box.

posi tion-preference: is either #f or one of the symbdlsp orbott om This applies

if the flow object is directed into a port on a column-set-sequence flow object that is flowed
into both the top-float and bottom-float zones of a column-subset and indicates whether the
areas from this flow object may be flowed into only one of the zones. This characteristic is not
inherited. The default value is #f.

i nhi bit-Iine-breaks?: is aboolean specifying whether line breaks shall be inhibited
before and after each area produced by this flow object. This applies only to line breaks
introduced by the formatter to make lines fit in the available space. The initial value is #f.
This applies only if the flow object is inlined.

br eak- before-priority: isan integer that affects whether a break is allowed before
this flow object. Thdreak priority of a potential breakpoint is the maximum of the break-
after-priority of the flow object immediately preceding the potential breakpoint and the break-
before-priorities of the flow object immediately following the potential breakpoint, and any
characters immediately following that character for whichdthep- af t er-1i ne-

br eak?: characteristic is true. A break shall be allowed at a potential breakpoint only if the
break priority is even. This characteristic is not inherited. The default value is 0. This applies
only if the flow object is inlined.

break-after-priority: isan integer that affects whether a break is allowed after this
flow object as described in the specification oftheak- bef ore-priority:

characteristic. This characteristic is not inherited. The default value is 0. This applies only if
the flow object is inlined.

start-indent: is alength-spec specifying the indent for the edge of the area at the start in
the direction of the writing-mode. The initial value is Opt. This applies only if the flow object
is displayed.

— end-i ndent : is a length-spec specifying the indent for the edge of the area at the end in the

direction of the writing-mode. The initial value is Opt. This applies only if the flow object is
displayed.

257

| SO/IEC 10179:1996 © ISO/IEC

— span: is a strictly positive integer specifying the number of columns that the areas resulting
from this flow object shall span. This characteristic shall apply if the flow object is directed
into a port on a column-set-sequence flow object that is flowed into the top-float, bottom-
float, or body-text zone of a spannable column-subset. The initial value is 1. This applies
only if the flow object is displayed.

— span- weak?: is a boolean specifying whether the areas resulting from this flow object span
weakly rather than strongly. See 12.6.5.1. This characteristic applies if the flow object is
directed into a port on a column-set-sequence flow object that is flowed into the top-float,
bottom-float, or body-text zone of a spannable column-subset andspas a characteristic
with a value greater than 1. The initial value is #f. This applies only if the flow object is
displayed.

— space- bef or e: is an object of type display-space specifying space to be inserted before, in
the placement direction, the areas produced by the flow object. This characteristic is not
inherited. The default is for no space before to be inserted. This applies only if the flow object
is displayed.

— space- af t er: is an object of type display-space specifying space to be inserted after, in
the placement direction, the areas produced by the flow object. This characteristic is not
inherited. The default is for no space after to be inserted. This applies only if the flow object is
displayed.

— keep-wi t h- previ ous?: is a boolean specifying whether the flow object shall be kept in
the same area as the previous flow object. This characteristic is not inherited. The default
value is #f. This applies only if the flow object is displayed.

— keep-wi t h- next ?: is a boolean specifying whether the flow object shall be kept in the
same area as the next flow object. This characteristic is not inherited. The default value is #f.
This applies only if the flow object is displayed.

— br eak- bef ore: is #f or one of the symbofsge, page- r egi on, col um, orcol umm-
set specifying that the flow object shall start an area of that type. This characteristic is not
inherited. The default is #f. This applies only if the flow object is displayed.

— br eak- af t er: is #f or one of the symbofsmge, page- r egi on, col um, orcol um-
set specifying that the flow object shall end an area of that type. This characteristic is not
inherited. The default is #f. This applies only if the flow object is displayed.

— keep: is one of the following:

— #t meaning that the areas produced by this flow object shall be kept together within the
smallest possible area.

— the symbopage indicating that the areas produced by the flow object shall lie within the
same page; in this case, the flow object shall have an ancestor flow object of class page-
sequence.

258

© ISO/IEC

| SO/IEC 10179: 1996(E)

12.6.19

— the symbotol um- set indicating that the areas produced by the flow object shall lie
within the same column set; in this case, the flow object shall have an ancestor of class
column-set-sequence.

— the symbotol um indicating that the areas produced by the flow object shall lie within
the same column set, and that the first column that each area spans in the column set shall
be the same.

— #f indicating that this characteristic is to be ignored.

This characteristic is not inherited. The default value is #f. This applies only if the flow object
is displayed.

— may- Vi ol at e- keep- bef or e?: is a boolean which, if true, specifies that constraints
imposed by th&eep: characteristics of ancestor flow objects on the relative positioning of
this flow object and its previous flow object may not be respected. This characteristic is not
inherited. The default value is #f. This applies only if the flow object is displayed.

— may- vi ol at e- keep- af t er ?: is a boolean which, if true, specifies that constraints
imposed bykeep: characteristics of ancestor flow objects on the relative positioning of this
flow object and its next flow object may not be respected. This characteristic is not inherited.
The default value is #f. This applies only if the flow object is displayed.

Side-by-side Flow Object Class
Use of this flow object requires tlsé de- by- si de feature.

A side-by-side flow object is always displayed. It has a single port whose contents are side-by-
side-item flow objects that are potentially aligned with each other in the placement direction of
the side-by-side.

NOTE 111 When two objects are aligned in some direction, then their relative position is adjusted in that direction so
that their alignment points lie on aline that is perpendicular to that direction.

The following characteristics are applicable:

— si de- by-si de-overl ap-control : is one of the symbolsone ori ndent
determining how the side-by-side handles the possibility of its side-by-side-items overlapping
each other. The initial valueisident .

— posi tion-preference: is either #f or one of the symbdlsp orbott om This applies
if the flow object is directed into a port on a column-set-sequence flow object that is flowed
into both the top-float and bottom-float zones of a column-subset and indicates whether the
areas from this flow object may be flowed into only one of the zones. This characteristic is not
inherited. The default value is #f.

259

| SO/IEC 10179:1996 © ISO/IEC

— space- bef or e: is an object of type display-space specifying space to be inserted before, in
the placement direction, the areas produced by the flow object. This characteristic is not
inherited. The default is for no space before to be inserted.

— space- af t er: is an object of type display-space specifying space to be inserted after, in
the placement direction, the areas produced by the flow object. This characteristic is not
inherited. The default is for no space after to be inserted.

— keep-wi t h- previ ous?: is a boolean specifying whether the flow object shall be kept in
the same area as the previous flow object. This characteristic is not inherited. The default
value is #f.

— keep-wi t h- next ?: is a boolean specifying whether the flow object shall be kept in the
same area as the next flow object. This characteristic is not inherited. The default value is #f.

— br eak- bef ore: is #f or one of the symbofsge, page- r egi on, col um, orcol umm-
set specifying that the flow object shall start an area of that type. This characteristic is not
inherited. The default is #f.

— break- af t er: is #f or one of the symbofsmge, page- r egi on, col um, orcol um-
set specifying that the flow object shall end an area of that type. This characteristic is not
inherited. The default is #f.

— keep: is one of the following:

#t meaning that the areas produced by this flow object shall be kept together within the
smallest possible area.

the symbopage indicating that the areas produced by the flow object shall lie within the
same page; in this case, the flow object shall have an ancestor flow object of class page-
sequence.

the symboktol um- set indicating that the areas produced by the flow object shall lie
within the same column set; in this case, the flow object shall have an ancestor of class
column-set-sequence.

the symboktol um indicating that the areas produced by the flow object shall lie within
the same column set, and that the first column that each area spans in the column set shall
be the same.

#f indicating that this characteristic is to be ignored.

This characteristic is not inherited. The default value is #f.

may- Vi ol at e- keep- bef ore?: is a boolean which, if true, specifies that constraints

imposed by thé&eep: characteristics of ancestor flow objects on the relative positioning of
this flow object and its previous flow object may not be respected. This characteristic is not
inherited. The default value is #f.

260

© ISO/IEC | SO/IEC 10179:1996(E)

— may- vi ol at e- keep- af t er ?: is a boolean which, if true, specifies that constraints
imposed bykeep: characteristics of ancestor flow objects on the relative positioning of this
flow object and its next flow object may not be respected. This characteristic is not inherited.
The default value is #f.

12.6.20 Side-by-side-item Flow Object Class

Use of this flow object requires tlsé de- by- si de feature.

A side-by-side-item flow object is always displayed. It has a single principal port whose
contents are displayed. The display-size of the content is the same as the display-size of the side
by-side. A side-by-side-item flow object shall be allowed only in a side-by-side flow object.

The following characteristics are applicable:

— start-indent: isalength-spec specifying the indent for the edge of the area at the start in
the direction of the writing-mode. The initial value is Opt. This determines only whether
adjacent side-by-side-items overlap whenghde- by- si de- over| ap-control :
characteristic of the containirgj de- by- si de has the valuendent .

— end-i ndent : is a length-spec specifying the indent for the edge of the area at the end in the
direction of the writing-mode. The initial value is Opt. This determines only whether adjacent
side-by-side-items overlap when thiede- by- si de- over | ap- control : characteristic
of the containingi de- by- si de has the valuendent .

— si de- by-si de-pre-align: isasymbol specifying the point that shall be used to align
this item with the preceding side-by-side-item as follows:

— start meaning the beginning edge in the placement direction of the first area produced
by this side-by-side-item flow object;

— initial meaning the placement path of the first line area produced by this side-by-side-
item flow object;

— final meaning the placement path of the last line area produced by this side-by-side-item
flow object;

— end meaning the ending edge in the placement direction of the last line area produced by
this side-by-side-item flow object.

The initial value is ni ti al .
— si de- by-si de- post - al i gn: is a symbol specifying the point that shall be used to align

this item with the following side-by-side-item, in the same manner de- by- si de-
pre-align:. Theinitial valueig niti al .

261

| SO/IEC 10179:1996 © ISO/IEC

The side-by-side-items are positioned so that, for each side-by-side-item except the first, its side-
by-side-pre-align point is aligned in the placement direction with the side-by-side-post-align
point of the preceding side-by-side-item.

If si de- by-si de-over| ap-control : hasthevaluei ndent, and if the start-indent of a
side-by-side-item in a side-by-side flow object is |ess than the difference between the display-
size and the end-indent of the previous side-by-side-item in the side-by-side, then it shall be
positioned after the previous side-by-side-item in the placement direction.

Any space- bef or e: applicable to the first area produced by a side-by-side-item and any
space- af t er: applicable to the last area produced by a side-by-side-item shall be ignored.

12.6.21 Glyph-annotation Flow Object Class

Flow objects of class glyph-annotation are mainly used for characters, words, or phrases that
have an associated description of their meaning or pronunciation. The annotation is placed on the
before side in the line-progression direction of the annotated glyphs. A glyph-annotation flow
object that has more than one annotated glyph shall not be broken between lines.

NOTE 112 Users should explicitly divide long annotations between several glyph-annotation flow objects.
A glyph-annotation flow object has the following ports:

— the principal port is used for the annotated glyph. Only character flow objects shall be flowed
into this port.

— annot at i on is used for the annotating glyph or glyphs that are placed on the annotated
glyph or glyphs. Only character flow objects shall be flowed into this port.

The applicable characteristics are:
— annot ati on- gl yph- pl acenent : is a symbol that specifies the nominal placement rule
of the annotating glyph. Thehoul der ed placement shall be applied only for a glyph-
annotation flow object that has exactly one annotated glyph. Permitted values are:
— cent er ed indicating that annotating glyphs shall be centered,
— shoul der ed indicating that annotating glyphs shall be placed in relation to the number
of annotating glyphs and the starting edge of the annotated glyph. There shall be exactly
one annotated glyph with this placement. The precise placement of the annotating glyph is
determined by the annotation-glyph-style.

The initial value ient er ed.

— annot ation- gl yph-styl e: is #f or a string that specifies a public identifier for
additional rules to be applied in formatting. The initial value is #f.

262

© ISO/IEC

| SO/IEC 10179: 1996(E)

12.6.22

12.6.23

NOTE 113 These rules might, for example, control details about placement, different forms at the start and end of
theline, or space adjustment in the line.

—inhibit-line-breaks?: is aboolean specifying whether line breaks shall be inhibited
before and after each area produced by this flow object. This applies only to line breaks
introduced by the formatter to make lines fit in the available space. The initial value is #f.

— break-before-priority: isan integer that affects whether a break is allowed before
this flow object. Théreak priority of a potential breakpoint is the maximum of the break-
after-priority of the flow object immediately preceding the potential breakpoint and the break-
before-priorities of the flow object immediately following the potential breakpoint, and any
characters immediately following that character for whichdthep- af t er-1i ne-
br eak?: characteristic is true. A break shall be allowed at a potential breakpoint only if the
break priority is even. This characteristic is not inherited. The default value is O.

— break-after-priority: isan integer that affects whether a break is allowed after this
flow object as described in the specification oftheak- bef ore-priority:
characteristic. This characteristic is not inherited. The default value is 0.

Alignment-point Flow Object Class

An alignment-point flow object specifies an explicit alignment point for paragraphs with a
first-1ine-align: characteristic equal to #t. It is atomic and inlined.

Aligned-column Flow Object Class

Use of this flow object requires tla¢ i gned- col urm feature.

An aligned-column flow object is used for grouping together externally aligned paragraphs. An
aligned-column is displayed. It has a single principal port that may contain any displayed flow
objects. Displayed flow objects in the port that are not externally aligned paragraphs shall be
formatted normally. The externally aligned paragraphs in the content or in side-by-side flow
objects in the content are aligned in the direction of the writing-mode so that their alignment
points lie on a line in the placement direction. The resulting group of aligned lines is then
positioned according to thad spl ay-al i gnnent: ,start-i ndent:, andend-i ndent:
characteristics.

The following characteristics are applicable:

— di spl ay-al i gnnent : is one of the symbolst art, cent er, end, i nsi de, or
out si de specifying the alignment of the areas resulting from the flow object in the direction
of the writing-mode. The initial value & ar t . This determines how the flow object
expands its areas so their size is equal to the display size in the direction perpendicular to the
area container's filling-direction. First space is added to the area so that its size is equal to the
display size less the sum of the start and end indents:

— ifthe alignment ist ar t , the space is all added at the end in the direction of the writing-
mode;

263

| SO/IEC 10179:1996 © ISO/IEC

— if the alignment i®nd, the space is all added at the start in the direction of the writing-
mode;

— if the alignment i€ent er, the space is added equally at the start and the end in the
direction of the writing-mode;

— if the alignment i$ nsi de, then the flow object shall have an ancestor of class page-
sequence, the direction of the writing-mode shall be perpendicular b tiag ng-
edge: of the page-sequence, and the space shall be added on the edge that is outside with
respect to the spread;

— if the alignment i®ut si de, then the flow object shall have an ancestor of class page-
sequence, the direction determined by the writing-mode shall be perpendicular to the
bi ndi ng- edge: of the page-sequence, and the space shall be added on the edge that is
inside with respect to the spread.

Then an amount of space equal to the start-indent is added at the start in the direction of the
writing-mode, and an amount of space equal to the end-indent is added at the end in the
direction of the writing-mode. This is used for aligning the first line of each externally aligned
paragraph.

— start-indent: is alength-spec specifying the indent for the edge of the area at the start in
the direction of the writing-mode. The initial value is Opt. This is used for aligning the first
line of each externally aligned paragraph.

— end-i ndent: is alength-spec specifying the indent for the edge of the area at the end in the
direction of the writing-mode. The initial value is Opt. This is used for aligning the first line of
each externally aligned paragraph.

— writing-node: is one of the symbolseft-to-right,right-to-Ileft,ortop-
t 0- bott om The direction determined by the writing-mode shall be perpendicular to the
placement direction. The initial valuelisft -t o-ri ght.

— posi tion-preference: is either #f or one of the symbdlsp orbott om This applies
if the flow object is directed into a port on a column-set-sequence flow object that is flowed
into both the top-float and bottom-float zones of a column-subset and indicates whether the
areas from this flow object may be flowed into only one of the zones. This characteristic is not
inherited. The default value is #f.

— space- bef or e: is an object of type display-space specifying space to be inserted before, in
the placement direction, the areas produced by the flow object. This characteristic is not
inherited. The default is for no space before to be inserted.

— space- af t er: is an object of type display-space specifying space to be inserted after, in
the placement direction, the areas produced by the flow object. This characteristic is not
inherited. The default is for no space after to be inserted.

264

© ISO/IEC

| SO/IEC 10179: 1996(E)

— keep-wi t h- previ ous?: is a boolean specifying whether the flow object shall be kept in
the same area as the previous flow object. This characteristic is not inherited. The default
value is #f.

— keep-wi t h- next ?: is a boolean specifying whether the flow object shall be kept in the
same area as the next flow object. This characteristic is not inherited. The default value is #f.

— br eak- bef ore: is #f or one of the symbotsage, page- r egi on, col utm, orcol umm-
set specifying that the flow object shall start an area of that type. This characteristic is not
inherited. The default is #f.

— break- af t er: is #f or one of the symbofsmge, page- r egi on, col um, orcol um-
set specifying that the flow object shall end an area of that type. This characteristic is not
inherited. The default is #f.

— keep: is one of the following:

#t meaning that the areas produced by this flow object shall be kept together within the
smallest possible area.

the symbopage indicating that the areas produced by the flow object shall lie within the
same page; in this case, the flow object shall have an ancestor flow object of class page-
sequence.

the symboktol um- set indicating that the areas produced by the flow object shall lie
within the same column set; in this case, the flow object shall have an ancestor of class
column-set-sequence.

the symbotol um indicating that the areas produced by the flow object shall lie within
the same column set, and that the first column that each area spans in the column set shall
be the same.

#f indicating that this characteristic is to be ignored.

This characteristic is not inherited. The default value is #f.

— may- vi ol at e- keep- bef ore?: is a boolean which, if true, specifies that constraints
imposed by th&eep: characteristics of ancestor flow objects on the relative positioning of
this flow object and its previous flow object may not be respected. This characteristic is not
inherited. The default value is #f.

— may- vi ol at e- keep- af t er ?: is a boolean which, if true, specifies that constraints
imposed bykeep: characteristics of ancestor flow objects on the relative positioning of this
flow object and its next flow object may not be respected. This characteristic is not inherited.
The default value is #f.

265

| SO/IEC 10179:1996 © ISO/IEC

12.6.24

Multi-line-inline-note Flow Object Class

Flow objects of class multi-line-inline-note are used for placing anote inline. A multi-line-inline-
note isinlined. Typically, a multi-line-inline-note consists of the following:

a) an open parenthesis in approximately the same size as the glyphs before the note;

b) two lines placed one before the other in the line-progression direction with the contentsin a
smaller size than the surrounding glyphs; the content shall be used to fill the first line and then
the second line so that the length of the two linesis approximately equal;

C) aclose parenthesisin the same size as the open parenthesis.

The multi-line-inline-note may be broken between two or more lines. In this case, the contents
shall be used to fill each fragment of the multi-line-inline-note in turn. For example, a character
occurring on the second line of the first part of a broken multi-line-inline-note shall have
occurred in the content before a character that occursin the first line of the second part of the
note. In addition, the breaking may be affected by thei nl i ne- not e- st yl e: characteristic.

This flow object has a single principal port containing the content of the inline note. It shall
accept any inlined flow objects.

NOTE 114 Usually, asmaller point-sizeis specified for the content.
The applicable characteristics are:

— open: is an unlabeled sosofo which is used to open the multi-line-inline-note. The sosofo
shall contain only inline flow objects. This characteristic is not inherited. If not specified, the
default shall be the result of evaluatifigi teral " (").

— cl ose: is an unlabeled sosofo which is used to close the multi-line-inline-note. The sosofo
shall contain only inline flow objects. This characteristic is not inherited. If not specified, the
default shall be the result of evaluatifigi teral ")").

—inline-note-line-count: is a positive integer that specifies the number of lines in the
note. The initial value is 2.

—inline-note-styl e: is #f or a string specifying the public identifier of the additional or
detailed rules to be applied in formatting the flow object. The initial value is #f.

NOTE 115 These rules might control details of placement or breaking.
—inhibit-line-breaks?: is aboolean specifying whether line breaks shall be inhibited

before and after each area produced by this flow object. This applies only to line breaks
introduced by the formatter to make lines fit in the available space. The initial value is #f.

— break-before-priority: isan integer that affects whether a break is allowed before
this flow object. Thdreak priority of a potential breakpoint is the maximum of the break-

266

© ISO/IEC

| SO/IEC 10179: 1996(E)

12.6.25

after-priority of the flow object immediately preceding the potential breakpoint and the break-
before-priorities of the flow object immediately following the potential breakpoint, and any
characters immediately following that character for which thedr op- after-11i ne-

br eak?: characteristicistrue. A break shall be allowed at a potential breakpoint only if the
break priority iseven. This characteristic is not inherited. The default valueisO.

— break-after-priority: isan integer that affects whether a break is allowed after this
flow object as described in the specification oftheak- bef ore-priority:
characteristic. This characteristic is not inherited. The default value is 0.

Emphasizing-Mark Flow Object Class

Flow objects of class emphasizing-mark are used for emphasizing characters, words, or phrases.
Each emphasizing-mark shall be placed on a path that is perpendicular to the line-progression
direction and that lies before the placement path in the line-progression direction. This path is
called the emphasizing-mark placement path.

NOTE 116 The emphasizing-mark flow object class can be used to handle the Kendot feature of Japanese typesetting
in ageneralized way.

The emphasizing-marks are distributed in the following ways:

— With gl yph distribution, the emphasizing-mark shall be placed on the emphasizing-mark
placement path so that it is centered with respect to the glyph.

NOTE 117 This distribution should be used for emphasizing characters, words, or phrases in a monospaced font.

— With even distribution, emphasizing-marks shall be distributed evenly along the
emphasizing-mark placement path of the area or areas resulting from the content of the flow
object.

For both distributions, the details of the formatting of the flow object shall be affected by the
rules identified by the public identifier specified by tier k- st yl e characteristic.

The applicable characteristics are:
— mar k: is an unlabeled sosofo specifying the areas that shall be used as the emphasizing-
mark. The sosofo shall contain only inline flow objects. This characteristic is not inherited.

This characteristic shall not be defaulted.

— mar k- di stri bution: is one of the symbolgl yph oreven specifying the distribution
of the emphasizing-marks. The initial valugisyph.

— mar k- styl e: is #f or a string that specifies the public identifier of the additional or detailed
rules that shall be applied in formatting the flow object. The initial value is #f.

NOTE 118 For example, details of the placing rules or breaking rules.

267

| SO/IEC 10179:1996 © ISO/IEC

—inhibit-line-breaks?: is aboolean specifying whether line breaks shall be inhibited
before and after each area produced by this flow object. This applies only to line breaks
introduced by the formatter to make lines fit in the available space. The initial value is #f.

— break-before-priority: isan integer that affects whether a break is allowed before
this flow object. Théreak priority of a potential breakpoint is the maximum of the break-
after-priority of the flow object immediately preceding the potential breakpoint and the break-
before-priorities of the flow object immediately following the potential breakpoint, and any
characters immediately following that character for whichdthep- af t er - 1 i ne-
br eak?: characteristic is true. A break shall be allowed at a potential breakpoint only if the
break priority is even. This characteristic is not inherited. The default value is O.

— break-after-priority: isan integer that affects whether a break is allowed after this
flow object as described in the specification oftheak- bef ore-priority:
characteristic. This characteristic is not inherited. The default value is O.

12.6.26 Flow Object Classes for Mathematical Formulae

The flow object classes for mathematical formulae are math-sequence, unmath, subscript,
superscript, script, mark, fence, fraction, radical, math-operator, and grid.

NOTE 119 These flow objects may also be used for ‘linear’ chemical formulae.

Character flow objects are used for characters in mathematical formulae; there is no special flow
object class for this. Characteristics such asf ont - si ze: or f ont - post ur e: are determined
in the usual way by the characteristics of the character flow object. These characteristics are not
automatically changed by the mathematical formulae flow object classes. However, the mat h
valuefor thef ont - post ur e: characteristic may be used to make different characters within
math formulae have different font postures.

12.6.26.1 Math-sequence Flow Object Class
A math-sequence flow object produces asingle area.

The flow object has asingle principal port used for the content of the area. The port shall accept
flow objects of the following classes: math-sequence, unmath, subscript, superscript, script,
mark, fence, fraction, radical, math-operator, grid, character, or alignment-point. The spacing
between the flow objects in the contents may be adjusted based on their class and characteristics.
The applicable characteristics are:

— mat h-di spl ay- node: is one of the symbol$i spl ay ori nl i ne specifying the style of
formatting. The initial value idi spl ay.

When one of the mathematical formulae flow object classes has a port that accepts the same
classes as a math-sequence flow object, then the spacing between the flow objects is adjusted as
if it were in a math-sequence flow object.

268

© ISO/IEC

| SO/IEC 10179: 1996(E)

12.6.26.2

Unmath Flow Object Class

An unmath flow object is used to get words of natural language within a mathematical formula.
The charactersin such words are spaced differently from adjacent characters in a mathematical
formula. The flow object has a single principal port. The port shall accept any inline flow
objects. These flow objects are positioned in the normal way.

The following characteristics are applicable:

— writing-node: isone of the symbolseft-to-right,right-to-left,ortop-
t o- bott om The direction determined by the writing-mode shall be perpendicular to the
placement direction. The initial valuelisft -t o-ri ght.

— gl yph-al i gnment - node: is one of the symbolsase, cent er,t op, bot t om orf ont
specifying the alignment mode to be used for glypbsit means that the nominal alignment
mode of the font in the flow object's writing-mode should be used. The initial vefloats

—font-fam | y-nane: is either #f, indicating that any font family is acceptable, or a string
giving the font family name property of the desired font resource. The initial vals®is
serif.

NOTE 120 1SO/IEC 10180 defines a mandatory font set for interchange comprising the font familiesi so-
serif,iso-sanserif,andi so- nonospace.

This is applicable when th yph- al i gnnent - node: isfont.

— font -wei ght : is either #f, indicating that any font weight is acceptable, or one of the
symbolsnot - appl i cabl e,ultra-1ight,extra-light,light,sem -Iight,
nmedi um seni - bol d, bol d, ext r a- bol d, orul tra- bol d, giving the weight property
of the desired font resource. The initial valueesli um This is applicable when the
gl yph-al i gnnent - node: isfont.

— font - post ur e: is either #f, indicating that any posture is acceptable, or one of the symbols
not - appl i cabl e, upri ght, obl i que, back- sl ant ed- obl i que,italic,or
back-sl anted-italic, giving the posture property of the desired font resource. The
initial value isupri ght . This is applicable when tigg yph- al i gnnent - node: isf ont.

— font-structure: is either #f, indicating that any structure is applicable, or one of the
symbolsnot - appl i cabl e, sol i d, orout | i ne. The initial value isol i d. This is
applicable when thgl yph- al i gnnent - node: isf ont.

— font-proportionate-w dt h: is either #f, indicating that any proportionate width is
acceptable, or one of the symbalst - appl i cabl e, ul tra- condensed, extr a-
condensed, condensed, sem - condensed, medi um semi - expanded, expanded,
extra- expanded, orul t ra- expanded. The initial value isredi um This is applicable
when thegl yph-al i gnnent - node: isfont.

269

| SO/IEC 10179:1996 © ISO/IEC

12.6.26.3

12.6.26.4

12.6.26.5

— font - nane: is either #f, indicating that any font name is acceptable, or a string which is the
public identifier for the font name property of the desired font resource. When the value is a
string, the values of thleont - f ami | y- nan®e: , f ont - wei ght : , f ont - post ure: ,
font-structure:,andfont-proportionate-w dth: characteristics are not used in
font selection. The initial value is #f. This is applicable whergthgph- al i gnnent -
node: isfont.

Subscript Flow Object Class

A subscript flow object is allowed in a math-sequence or in a port on a math flow object that
accepts the same flow object classes as a math-sequence. A subscript flow object causes its
parent to position the content of the subscript flow object as a subscript on the preceding area. It
has a single principal port.

Superscript Flow Object Class

A superscript flow object is allowed in a math-sequence or in a port on a math flow object that
accepts the same flow object classes as a math-sequence. A superscript flow object causes its
parent to position the content of the superscript flow object as a superscript on the preceding
area. It has a single principal port.

Script Flow Object Class

The script flow object describes a seven-part area. The parts described are:

— the base area,

— the pre-superscript area,

— the pre-subscript area,

— the mid-superscript area,

— the mid-subscript area,

— the post-superscript area,

— the post-subscript area.

The applicable ports are:

— the principal port, which is used for the main content of the flow object.

— pr e- sup, which is used for a superscript that shall be placed before the base content in the
direction determined by the writing-mode.

— pr e- sub, which is used for a subscript that shall be placed before the base content in the
direction determined by the writing-mode.

270

© ISO/IEC | SO/IEC 10179:1996(E)

— post - sup, which is used for a superscript that shall be placed after the base content in the
direction determined by the writing-mode.

— post - sub, which is used for a subscript that shall be placed after the base content in the
direction determined by the writing-mode.

— i d- sup, which is used for a superscript that shall be placed above the base content.

— i d- sub, which is used for a subscript that shall be placed below the base content.

Each port shall accept flow objects of the same class as the port of a math-sequence flow object.
The applicable characteristics are:

— script-pre-align: isasymbol that specifies the alignment of the pre-superscript and
pre-subscript areas. Permitted values are:

i ndependent specifying that the pre-subscript and pre-superscript areas shall be aligned
independently of each other.

— pi | e specifying that the trailing edges of the areas shall be aligned.

— sup- out specifying that the trailing edge of the area associated with the pre-sup port
shall be aligned with the leading edge of the area associated with the pre-sub port.

— sub- out specifying that the trailing edge of the area associated with the pre-sub port
shall be aligned with the leading edge of the area associated with the pre-sup port.

The initial value is ndependent .

— scri pt-post-align: isasymbol that specifies the alignment of the post-superscript and
post-subscript areas. Permitted values are:

i ndependent specifying that the post-subscript and post-superscript areas shall be
aligned independently of each other.

— pi | e specifying that the leading edges of the areas shall be aligned.

— sup- out specifying that the leading edge of the area associated with the post-sup port
shall be aligned with the trailing edge of the area associated with the post-sub port.

— sub- out specifying that the leading edge of the area associated with the post-sub port
shall be aligned with the trailing edge of the area associated with the post-sup port.

The initial value is ndependent .

— scri pt-md-sup-align: is asymbol that specifies the alignment of the mid-superscript
and base areas. Permitted values are:

271

| SO/IEC 10179:1996 © ISO/IEC

— | ead- edge specifying that the leading edges of the areas shall be aligned.
— trail - edge specifying that the trailing edges of the areas shall be aligned.

— cent er specifying that the center points of the areas in the direction determined by the
writing-mode shall be aligned.

The initial value isent er.

— scri pt-md-sub-align: is asymbol that specifies the alignment of the mid-subscript
and base areas. Permitted values are:

— | ead- edge specifying that the leading edges of the areas shall be aligned.
— trail - edge specifying that the trailing edges of the areas shall be aligned.

— cent er specifying that the center points of the areas in the direction determined by the
writing-mode shall be aligned.

The initial value isent er.

— mat h-di spl ay- node: is one of the symbol$i spl ay ori nl i ne specifying the style of
formatting. The initial value idi spl ay.

12.6.26.6 Mark Flow Object Class
The mark flow object describes a three-part area. The parts described are:
— the base area,
— the over-mark area,
— the under-mark area.
The applicable ports are:
— the principal port, which is used for the main content of the flow object.
— over - mar k, which is used for the flow objects that shall be placed in the over-mark area.
— under - mar k, which is used for the flow objects that shall be placed in the under-mark area.

If the over-mark or under-mark port contains exactly one flow object of class character, rule, or
leader, then that flow object shall be extended to cover the full width of the base area.

NOTE 121 It isimplementation- and font-dependent how character flow objects are extended.

272

©ISO/IEC | SO/IEC 10179:1996(E)

Each port shall accept flow objects of the same class as the port of a math-sequence flow object.

The applicable characteristics are:

— mat h-di spl ay- node: is one of the symbol$i spl ay ori nl i ne specifying the style of
formatting. The initial value idi spl ay.

12.6.26.7 Fence Flow Object Class

The fence flow object describes a three-part area. The parts described are:

— the base area,

— the open-fence area,

— the close-fence area.

The fences should be extended according to the height of the base area.

NOTE 122 It isimplementation- and font-dependent how thisis achieved.

The flow object has the following ports:

— the principal port, which is used for the main content of the flow object. It shall accept flow
objects of the same class as the port of a math-sequence flow object.

— open, which is used for the open-fence area. It shall accept a single flow object of type
character.

— cl ose, which is used for the close-fence area. It shall accept a single flow object of type
character.

The applicable characteristics are:

— mat h-di spl ay- node: is one of the symbol$i spl ay ori nl i ne specifying the style of
formatting. The initial value idi spl ay.

12.6.26.8 Fraction Flow Object Class

The fraction flow object class describes a three-part area. The parts described are:
— the numerator area,

— the fraction-bar area,

— the denominator area.

The flow object has the following ports:

273

| SO/IEC 10179:1996 © ISO/IEC

— nuner at or, which is used for the content that shall be placed in the numerator area.
— denoni nat or, which is used for the content that shall be placed in the denominator area.
Each port shall accept flow objects of the same class as the port of a math-sequence flow object.
The applicable characteristics are:
— fraction-bar: is an unlabeled sosofo containing a single rule flow object to be used for

the fraction-bar. The initial value is a rule with all applicable inherited characteristics equal to

their initial values.

— nuner at or - al i gn: is a symbol that specifies the alignment of the numerator area and the
fraction-bar area. Permitted values are:

— | ead- edge specifying that the leading edges of the areas shall be aligned.
— trail - edge specifying that the trailing edges of the areas shall be aligned.

— cent er specifying that the center points of the areas in the direction determined by the
writing-mode shall be aligned.

The initial value ient er.

— denomi nat or - al i gn: is a symbol that specifies the alignment of the denominator area
and the fraction-bar area. Permitted values are:

— | ead- edge specifying that the leading edges of the areas shall be aligned.
— trail - edge specifying that the trailing edges of the areas shall be aligned.

— cent er specifying that the center points of the areas in the direction determined by the
writing-mode shall be aligned.

The initial value ient er.

— mat h-di spl ay- node: is one of the symbol$i spl ay ori nl i ne specifying the style of
formatting. The initial value idi spl ay.

12.6.26.9 Radical Flow Object Class
The radical flow object describes a three-part area. The parts described are:
— the base area,
— the degree area,

— the radical-glyph area.

274

© ISO/IEC

| SO/IEC 10179: 1996(E)

12.6.26.10

The flow object has the following ports:

— the principal port, which is used for the main content of the flow object.

— degr ee, which is used for the degree of the root of the flow object.

Each port shall accept flow objects of the same class as the port of a math-sequence flow object.
The applicable characteristics are:

— mat h-di spl ay- node: is one of the symbol$i spl ay ori nl i ne specifying the style of
formatting. The initial value idi spl ay.

—radi cal : is an unlabeled sosofo containing a single character flow object to be used for the
radical glyph. This characteristic is not inherited. If not specified, it is defaulted in a system-
dependent way.

Math-operator Flow Object Class

The math-operator flow object describes a four-part area. The parts described are:

— the base area,

— the lower-limit area,

— the upper-limit area,

— the operator-symbol area.

The flow object has the following ports:

— the principal port, which is used for the main content of the flow object.

— oper at or, which is used for the operator symbol.

— lower-1init,which is used for the lower-limit content of the flow object.

— upper-1imt,which is used for the upper-limit content of the flow object.

Each port shall accept flow objects of the same class as the port of a math-sequence flow object.

The applicable characteristics are:

— mat h-di spl ay- node: is one of the symbol$i spl ay ori nl i ne specifying the style of
formatting. The initial value idi spl ay.

275

| SO/IEC 10179:1996 © ISO/IEC

12.6.26.11

NOTE 123 di spl ay indicates that the limits are typically placed before or after the operator-symbol in the line-
progression direction. i nl i ne indicates that the limits are typically placed after the operator-symbol in the inline-
progression direction.

Grid Flow Object Class

The grid flow object describes a series of areas arranged in a grid. The column-progression
direction for the grid is the escapement direction, and the row-progression direction is the line-
progression direction.

NOTE 124 A matrix is handled by enclosing a grid flow object in afence flow object.

The flow object has asingle principal port used for all content. It shall accept flow objects of the
class grid-cell.

The applicable characteristics are:

—grid-position-cell-type: is asymbol specifying how the positioning of cells in the
grid is determined as follows:

— explicit indicating that each grid-cell has an explicit row- and column-number.

— row- mmj or indicating that the position of each cell is determined by where it occurs in
the content of the grid; the cells in one row occur before the cells in subsequent rows.

— col um- maj or indicating that the position of each cell is determined by where it occurs
in the content of the grid; the cells in one column occur before the cells in subsequent
columns.

The initial value ig ow naj or .

—grid-n-col ums: is a strictly positive integer that specifies the number of columns in the
grid. This characteristic is not inherited and shall be specifigdiifi- posi ti on-cel | -
type: isrowmaj or orexplicit.

—grid-n-rows: is a strictly positive integer that specifies the number of rows in the grid.
This characteristic is not inherited and shall be specifigdiid- posi ti on-cel | -t ype:
iscol um-maj or orexplicit.

—grid-colum-alignment: is asymbol that specifies the alignment of the areas in the
grid in the grid's column-progression direction. Permitted valuestaxet , cent er, and
end. The initial value izent er.

—grid-rowal i gnnent: is asymbol that specifies the alignment of the areas in the grid in
the grid's row-progression direction. Permitted valuesteg t, cent er, andend. The
initial value iscent er .

276

© ISO/IEC

| SO/IEC 10179: 1996(E)

12.6.26.12

12.6.27

—grid-equidistant-rows?: is aboolean that specifies whether the areas in the grid shall
be positioned so that their centers are equidistant in the grid's row-progression direction. The
initial value is #f.

— grid-equidistant-col ums?: is a boolean that specifies whether the areas in the grid
shall be positioned so that their centers are equidistant in the grid's column-progression
direction. The initial value is #f.

— mat h-di spl ay- node: is one of the symbol$i spl ay ori nl i ne specifying the style of
formatting. The initial value idi spl ay.

Grid-cell Flow Object Class
The grid-cell flow object is a container for the content of each cell in a grid.

The flow object has a single principal port used for all content. It shall accept flow objects of the
same class as the port of a math-sequence flow object.

The applicable characteristics are:

— col um- nunber : is a strictly positive integer specifying the column for this cell. This
characteristic is not inherited. This characteristic shall be specified if and only if it occurs in a
grid with agri d- posi tion-cel | -type: ofexplicit. The value shall not exceed the
value specified for thgr i d- n- col ums: characteristic of the grid in which it occurs. The
number of the first column is 1.

— row nunber : is a strictly positive integer specifying the row for this cell. This
characteristic is not inherited. This characteristic shall be specified if and only if it occurs in a
grid with agri d- posi tion-cel | -type: ofexplicit. The value shall not exceed the
value specified for thgri d- n-r ows: characteristic of the grid in which it occurs. The
number of the first row is 1.

In any grid, there shall not be two or more grid cells that have both thecehmen- nunber :
and the sameow nunber : characteristic.

Flow Object Classes for Tables

Specification of tabular formatting makes use of the following flow object classes:
— table,

— table-part,

— table-column,

— table-row,

— table-cell,

277

| SO/IEC 10179:1996 © ISO/IEC

12.6.27.1

— table-border.

Table Flow Object Class

A table flow object has a single principal port. The contents of this port shall be either:
— all of class table-part, or

— all of class table-column, table-row, or table-cell.

If it contains flow objects of class table-column, they shall occur before all flow objects of other
classes. A table flow object can only be displayed.

A table has two directions associated with it, a row-progression direction and a column-
progression direction. The row-progression direction is equal to the placement direction of the
table flow object. The column-progression direction is given by the value of the ng-

node: characteristic of the table flow object. These shall be perpendicular.

A table flow object has the following characteristics:

— t abl e-wi dt h: is a length-spec that specifies the size of the table in the column-progression
direction, or, if the abl e- aut o- wi dt h feature is used, #f indicating that the width of the
table should be the minimum that will accommodate its content. This characteristic is not
inherited. The default value is the display-size less any applicable indent.

— t abl e- aut o-wi dt h- met hod: is #f or a string specifying a public identifier for the
method to be used to determine the widths of columns. This applies only dlthe-
aut o- wi dt h feature is present. The initial value is #f.

— t abl e- border: is an unlabeled sosofo containing a single table-border flow object. A
value of #t or #f is also allowed; this is equivalent to a table-border vitin der -
present ?: characteristic equal to #t or #f, respectively, and all other characteristics
inherited from the table. This characteristic determines the default value fieftbee-
row border:,after-row border:,before-col um-border:, andafter-
col um- bor der: characteristics. The initial value is #f.

— bef ore-row border: is an unlabeled sosofo containing a single table-border flow object
to be used as the border on the side of the table that is before the table in the row-progression
direction. A value of #t or #f is also allowed; this is equivalent to a table-border with a
bor der - present ?: characteristic equal to #t or #f, respectively, and all other
characteristics inherited from the table. This characteristic is not inherited. The default value
is the value of théabl e- bor der: characteristic.

— after-row border: isthe same dsef or e-r ow bor der: but applies to the side of
the table that is after the table in the row-progression direction.

— bef or e- col um- bor der : is the same dsef or e-r ow bor der : but applies to the side
of the table that is before the table in the column-progression direction.

278

© ISO/IEC | SO/IEC 10179:1996(E)

— after-col um-border: isthe same asef or e-r ow bor der: but applies to the side
of the table that is after the table in the column-progression direction.

—t abl e-corner-rounded: specifies whether the corners of the table shall be drawn as
quarter circles as follows:

— #f indicating that no corners shall be rounded.
— #t indicating that all corners shall be rounded.

— a list of the symbols identifying the individual corners that shall be rounded; each symbol
shall be of the fornx- y wherex isbef or e oraf t er specifying whether the corner is
before or after the table in the column-progression directioryasntief or e oraft er
specifying whether the corner is before or after the table in the row-progression direction.

The initial value is #f.

—tabl e-corner-radi us: is alength-spec specifying the radius of the quarter circles to be
used when abl e- cor ner - rounded: is not #f. A negative value indicates that the center
of the circle is at the point where the edges intersect; in this case, the corners shall be concave.
The initial value is 3pt.

— posi tion-preference: is either #f or one of the symbdlsp orbott om This applies
if the flow object is directed into a port on a column-set-sequence flow object that is flowed
into both the top-float and bottom-float zones of a column-subset and indicates whether the
areas from this flow object may be flowed into only one of the zones. This characteristic is not
inherited. The default value is #f.

— di spl ay-al i gnnent : is one of the symbolst art, cent er, end, i nsi de, or
out si de specifying the alignment of the areas resulting from the flow object in the direction
of the writing-mode. The initial value & ar t . This determines how the flow object
expands its areas so their size is equal to the display size in the direction perpendicular to the
area container's filling-direction. First space is added to the area so that its size is equal to the
display size less the sum of the start and end indents:

— ifthe alignment ist ar t , the space is all added at the end in the direction of the writing-
mode;

— if the alignment i®nd, the space is all added at the start in the direction of the writing-
mode;

— ifthe alignment izent er, the space is added equally at the start and the end in the
direction of the writing-mode;

— if the alignment i$ nsi de, then the flow object shall have an ancestor of class page-
sequence, the direction of the writing-mode shall be perpendicular b tia ng-
edge: of the page-sequence, and the space shall be added on the edge that is outside with
respect to the spread;

279

| SO/IEC 10179:1996 © ISO/IEC

— if the alignment i®ut si de, then the flow object shall have an ancestor of class page-
sequence, the direction determined by the writing-mode shall be perpendicular to the
bi ndi ng- edge: of the page-sequence, and the space shall be added on the edge that is
inside with respect to the spread.

Then an amount of space equal to the start-indent is added at the start in the direction of the
writing-mode, and an amount of space equal to the end-indent is added at the end in the
direction of the writing-mode.

— start-indent: is alength-spec specifying the indent for the edge of the area at the start in
the direction of the writing-mode. The initial value is Opt.

— end-i ndent: is alength-spec specifying the indent for the edge of the area at the end in the
direction of the writing-mode. The initial value is Opt.

— writing-node: is one of the symbolseft-to-right,right-to-left,ortop-
t o- bott om The direction determined by the writing-mode shall be perpendicular to the
placement direction. The initial valuelisft -t o-ri ght.

— span: is a strictly positive integer specifying the number of columns that the areas resulting
from this flow object shall span. This characteristic shall apply if the flow object is directed
into a port on a column-set-sequence flow object that is flowed into the top-float, bottom-
float, or body-text zone of a spannable column-subset. The initial value is 1.

— span- weak?: is a boolean specifying whether the areas resulting from this flow object span
weakly rather than strongly. See 12.6.5.1. This characteristic applies if the flow object is
directed into a port on a column-set-sequence flow object that is flowed into the top-float,
bottom-float, or body-text zone of a spannable column-subset andspas a characteristic
with a value greater than 1. The initial value is #f.

— space- bef or e: is an object of type display-space specifying space to be inserted before, in
the placement direction, the areas produced by the flow object. This characteristic is not
inherited. The default is for no space before to be inserted.

— space- af t er: is an object of type display-space specifying space to be inserted after, in
the placement direction, the areas produced by the flow object. This characteristic is not
inherited. The default is for no space after to be inserted.

— keep-wi t h- previ ous?: is a boolean specifying whether the flow object shall be kept in
the same area as the previous flow object. This characteristic is not inherited. The default
value is #f.

— keep-wi t h- next ?: is a boolean specifying whether the flow object shall be kept in the
same area as the next flow object. This characteristic is not inherited. The default value is #f.

— br eak- bef ore: is #f or one of the symbofsge, page- r egi on, col um, orcol umm-
set specifying that the flow object shall start an area of that type. This characteristic is not
inherited. The default is #f.

280

© ISO/IEC

| SO/IEC 10179: 1996(E)

12.6.27.2

— br eak- af t er: is #f or one of the symbofsmge, page- r egi on, col um, orcol um-
set specifying that the flow object shall end an area of that type. This characteristic is not
inherited. The default is #f.

— keep: is one of the following:

#t meaning that the areas produced by this flow object shall be kept together within the
smallest possible area.

the symbopage indicating that the areas produced by the flow object shall lie within the
same page; in this case, the flow object shall have an ancestor flow object of class page-
sequence.

the symboktol um- set indicating that the areas produced by the flow object shall lie
within the same column set; in this case, the flow object shall have an ancestor of class
column-set-sequence.

the symbotol um indicating that the areas produced by the flow object shall lie within
the same column set, and that the first column that each area spans in the column set shall
be the same.

#f indicating that this characteristic is to be ignored.

This characteristic is not inherited. The default value is #f.

may- vi ol at e- keep- bef ore?: is a boolean which, if true, specifies that constraints
imposed by th&eep: characteristics of ancestor flow objects on the relative positioning of
this flow object and its previous flow object may not be respected. This characteristic is not
inherited. The default value is #f.

may- vi ol at e- keep- aft er ?: is a boolean which, if true, specifies that constraints
imposed bykeep: characteristics of ancestor flow objects on the relative positioning of this
flow object and its next flow object may not be respected. This characteristic is not inherited.
The default value is #f.

Table-part Flow Object Class

A table-part flow object is allowed only within a table flow object. A table-part flow object has
three ports:

— the principal port, which is used for the table body.
— header, which is used for the table header.
— f oot er, which is used for the table footer.

The flow objects that are allowed in the ports of a table-part flow object shall be only those
explicitly specified herein. Flow objects of class table-column are allowed in the principal port;

281

| SO/IEC 10179:1996 © ISO/IEC

they shall occur before flow objects of any other class. All ports shall accept flow objects of class
table-row and table-cell.

The result of formatting a table-part flow object is a sequence of areas. Each area consists of the
content of the header port (unless omitted because of thet abl e- part - om t - m ddl e-
header ?: characteristic), followed by some portion of the content of the principal port,
followed by the content of the footer port (unless omitted because of thet abl e- part - oni t -
m ddl e- f oot er ?: characteristic). Each row in the principal port occurs exactly once, and the
order of the rows shall be preserved. The rowsin the header and footer ports shall be replicated
for each result area.

All table-parts in a table have the same width.
The following characteristics are applicable:

—tabl e-part-onit-m ddl e- header ?: is a boolean which if true specifies that a table-
part whose first area is not at the beginning of an area produced by the table shall not start
with the content of its header port. The initial value is #f.

—table-part-onit-mddl e-footer?: isaboolean which if true specifies that a table-
part whose last area is not at the end of an area produced by the table shall not end with the
content of its footer port. The initial value is #f.

— space- bef ore: is an object of type display-space specifying space to be inserted before, in
the placement direction, the areas produced by the flow object. This characteristic is not
inherited. The default is for no space before to be inserted.

— space- af t er: is an object of type display-space specifying space to be inserted after, in
the placement direction, the areas produced by the flow object. This characteristic is not
inherited. The default is for no space after to be inserted.

— keep-wi t h- previ ous?: is a boolean specifying whether the flow object shall be kept in
the same area as the previous flow object. This characteristic is not inherited. The default
value is #f.

— keep-wi t h- next ?: is a boolean specifying whether the flow object shall be kept in the
same area as the next flow object. This characteristic is not inherited. The default value is #f.

— br eak- bef ore: is #f or one of the symbofsge, page- r egi on, col um, orcol umm-
set specifying that the flow object shall start an area of that type. This characteristic is not
inherited. The default is #f.

— br eak- af t er: is #f or one of the symbofsmge, page- r egi on, col um, orcol um-
set specifying that the flow object shall end an area of that type. This characteristic is not
inherited. The default is #f.

— keep: is one of the following:

282

© ISO/IEC | SO/IEC 10179:1996(E)

— #t meaning that the areas produced by this flow object shall be kept together within the
smallest possible area.

— the symbopage indicating that the areas produced by the flow object shall lie within the
same page; in this case, the flow object shall have an ancestor flow object of class page-
sequence.

— the symbotol um- set indicating that the areas produced by the flow object shall lie
within the same column set; in this case, the flow object shall have an ancestor of class
column-set-sequence.

— the symbotol um indicating that the areas produced by the flow object shall lie within
the same column set, and that the first column that each area spans in the column set shall
be the same.

— #f indicating that this characteristic is to be ignored.
This characteristic is not inherited. The default value is #f.

— may- vi ol at e- keep- bef ore?: is a boolean which, if true, specifies that constraints
imposed by th&eep: characteristics of ancestor flow objects on the relative positioning of
this flow object and its previous flow object may not be respected. This characteristic is not
inherited. The default value is #f.

— may- vi ol at e- keep- af t er ?: is a boolean which, if true, specifies that constraints
imposed bykeep: characteristics of ancestor flow objects on the relative positioning of this
flow object and its next flow object may not be respected. This characteristic is not inherited.
The default value is #f.

12.6.27.3 Table-column flow object

A table-column flow object is an atomic flow object that specifies characteristics applicable to
table-cells that have the same column and span.

It has the following characteristics:

— col um- nunber : is a strictly positive integer specifying the column number of the table-
cells that are to inherit their characteristics from this table-column flow object. The default is
1 plus thecol um- nunber : of the previous table-column flow object, if there is a previous
table-column, and otherwise 1. This characteristic is not inherited.

— n- col ums- spanned: is a strictly positive integer specifying the number of columns
spanned by table-cells that are to inherit their characteristics from this table-column flow
object. This characteristic is not inherited. The default value is 1.

— wi dt h: is a length-spec specifying the width of this column. This characteristic is not
inherited. This characteristic shall not be specified for table-column flow objects for which

283

| SO/IEC 10179:1996 © ISO/IEC

then- col utms- spanned: characteristic is greater than 1. Thewi dt h: characteristic shall
be specified for every column unlessthe t abl e- aut o- wi dt h featureis present.

di spl ay-al i gnment : is one of the symbolst art, cent er, end, i nsi de, or

out si de specifying the alignment of the areas resulting from the flow object in the direction

of the writing-mode. The initial value & ar t . This determines how the flow object

expands its areas so their size is equal to the display size in the direction perpendicular to the
area container's filling-direction. First space is added to the area so that its size is equal to the
display size less the sum of the start and end indents:

— if the alignment ist ar t , the space is all added at the end in the direction of the writing-
mode;

— if the alignment i®nd, the space is all added at the start in the direction of the writing-
mode;

— if the alignment i€ent er, the space is added equally at the start and the end in the
direction of the writing-mode;

— if the alignment i$ nsi de, then the flow object shall have an ancestor of class page-
sequence, the direction of the writing-mode shall be perpendicular ibo tlaé ng-
edge: of the page-sequence, and the space shall be added on the edge that is outside with
respect to the spread;

— if the alignment imut si de, then the flow object shall have an ancestor of class page-
sequence, the direction determined by the writing-mode shall be perpendicular to the
bi ndi ng- edge: of the page-sequence, and the space shall be added on the edge that is
inside with respect to the spread.

Then an amount of space equal to the start-indent is added at the start in the direction of the
writing-mode, and an amount of space equal to the end-indent is added at the end in the
direction of the writing-mode. This is used for aligning the first line of each externally aligned
paragraph in the column.

start-indent: is alength-spec specifying the indent for the edge of the area at the start in
the direction of the writing-mode. The initial value is Opt. This is used for aligning the first
line of each externally aligned paragraph in the column.

— end-i ndent : is alength-spec specifying the indent for the edge of the area at the end in the

direction of the writing-mode. The initial value is Opt. This is used for aligning the first line of
each externally aligned paragraph in the column.

Any inherited characteristic that is specified on a table-column flow object may be inherited by
table-cells (or indirectly by the content of table-cells) as described in 12.4.

If thet abl e- aut o- wi dt h feature is not enabled, the number of columns in a table-part or in a
table that contains no table-parts is determined by the table-column flow objects in its principal
port. For every cell in the content, and for every column spanned by that cell, there shall be a

284

©ISO/IEC | SO/IEC 10179:1996(E)

table-column flow object whose column-number is equal to the number of that column. If the
t abl e- aut o- wi dt h featureis enabled, then the number of columns is determined
automatically from the content of the table.
(tabl e-unit k)
Returns alength-spec that specifies k units of proportional measure. This may be used in the
value of thewi dt h: characteristic. The value of aunit of proportional measure for a particul ar
table is chosen so that the total width of the columnsis equal to the specified width of the table.
NOTE 125 This alows the width of a column to be specified proportionally.

12.6.27.4 Automatic Table-width Computation
This clause applieswhen thet abl e- aut o- wi dt h feature is enabled.
The width of a column for which no width is specified shall be at least as great as the maximum
of the minimum possible widths of the content of any table-cells that span exactly that column.
NOTE 126 When atable-cell includes a paragraph for which thel i nes: characteristic has avalue of wr ap, the
minimum possible width of that paragraph is determined in a system-dependent manner. It might, for example, be the
length of the longest word.
If atable-cell spans more than one column, then the sum of the widths of the columns that it
spans shall be at least as great as the width of the content of the table-cell.
If alength-spec is specified for a column’ s width, then the column shall be exactly that wide, and
that length shall be used as the display-size for any table-cells which span exactly that column.
Other aspects of the width computation method can be controlled with the t abl e- aut o-
wi dt h- met hod: characteristic.

12.6.27.5 Table-row Flow Object Class
A table-row flow object servesto group table-cellsinto rows: all table-cellsin atable-row start in
the same geometric row.
A table-row has a single principal port, which accepts flow objects of class table-cell.
A table-row flow abject can only occur as the child of atable-part or table flow object.
When flow objects of class table-cell occur directly in atable-part or table, then cells are grouped
intorowsusingthest art s-row?: and ends-r ow?: characteristics.

12.6.27.6 Table-cell Flow Object Class

A table-cell has asingle principal port. It shall accept any flow object that can be displayed. A
table-cell flow object shall only occur as the child of atable-row, table-part, or table flow object.

285

| SO/IEC 10179:1996 © ISO/IEC

A table-cell hasthe following characteristics:

— col um- nunber : is a strictly positive integer specifying the number of the first column to
be spanned by this table-cell. This characteristic is not inherited. The default value is the
current column-number. For the first table-cell in a table-row, the current column-number is
1. For other table-cells, the current column-number is the column-number of the previous
table-cell in the row plus the number of columns spanned by that previous table-cell.

NOTE 127 When an earlier table-row has table-cells that span more than one row, then table-cells in subsequent
table-rows shall usethe col um- nunber : characteristic to avoid conflict.

— n- col ums- spanned: is a strictly positive integer specifying the number of columns
which this cell spans in the column-progression direction starting with the current column.
This characteristic is not inherited. The default value is 1.

— n-rows- spanned: is a strictly positive integer specifying the number of rows which this
cell spans in the row-progression direction starting with the current row. This characteristic is
not inherited. The default value is 1.

—cel | - bef ore-row mar gi n: is a length giving the margin before the row in row-
progression direction. The initial value is Opt.

—cel | -after-row margin: is alength giving the margin after the row in row-progression
direction. The initial value is Opt.

— cel | - bef ore- col uim- mar gi n: is a length giving the margin before the column in
column-progression direction. The initial value is Opt. The display-size for the content of the
cell is equal to the width of the cell less the sum ofctlel - bef or e- col um- nar gi n:
andcel | -aft er- col utm- mar gi n: characteristics.

—cel | -after-col um-nargi n: is a length giving the margin after the column in the
column-progression direction. The initial value is Opt.

—cell -row al i gnnent : is one of the symbolst art , end, orcent er specifying the
alignment of the content of the cell in the row-progression direction. The initial value is
start.

— cel I - background?: is a boolean specifying whether the cell has a solid background. If it
does, then thbackgr ound- col or: characteristic specifies the color to be used for the
background. The initial value is #f.

— backgr ound- col or: is either #f or an object of type color that specifies the color in which
the marks for the flow object's background should be made. The initial value is #f. This
applies only if thecel | - backgr ound?: characteristic is true.

— background- | ayer : is an integer specifying the layer of the marks of the areas resulting
from the background of a flow object. The initial value is -1. This applies only dehé-
background?: characteristic is true.

286

© ISO/IEC | SO/IEC 10179:1996(E)

— cel | - bef ore-row border: is an unlabeled sosofo containing a single table-border flow
object to be used as the border on the side of the table that is before the cell in the row-
progression direction. A value of #t or #f is also allowed,; this is equivalent to a table-border
with abor der - pr esent ?: characteristic equal to #t or #f, respectively, with all other
characteristics inherited from the table-cell. The initial value is #f.

—cell -after-row border: isthe same asel | - bef or e-r ow bor der: but applies
to the side of the cell that is after the cell in the row-progression direction.

—cel | - bef ore-col um- border: isthe same asel | - bef or e-r ow bor der: but
applies to the side of the cell that is before the cell in the column-progression direction.

—cel I -after-col um-border: isthe same asel | - bef or e- r ow bor der: but
applies to the side of the cell that is after the cell in the column-progression direction.

— starts-row?: is aboolean specifying whether this cell starts a row. This is allowed only
for table-cells that are not in table-rows. The default value is #f. This characteristic is not
inherited. A cell that is not part of a table-row will start a row ifghart s- r ow?:
characteristic is true, or if there is no previous flow object, or if the previous flow object is not
a table-cell, or if the previous flow object is a table-cell withehds- r ow?: characteristic
true.

— ends-row?: is a boolean specifying whether this cell ends a row. This is allowed only for
table-cells that are not in table-rows. The default value is #f. This characteristic is not
inherited.

— cel | -crossed: is either #f or one of the following symbols:

— Wi t h specifying that a single diagonal line shall be drawn through the cell from the corner
that is first in both the row- and column-progression directions to the diagonally opposite
corner.

— agai nst specifying that a single diagonal line shall be drawn from the corner that is first
in the row-progression direction and last in the column-progression direction to the
diagonally opposite corner.

— bot h specifying that a pair of lines shall be drawn through the cell from each corner to the
diagonally opposite corner.

The initial value is #f. The appearance of the lines is determined by the values of the
following line characteristics for the table-cell.

— i ne-cap: is one of the symbolsut t, r ound, orsquar e specifying the cap style for the
line. The initial value idbut t . This applies to the lines drawn when e | - cr ossed:
characteristic is true.

— i ne-dash: is alist of one or more lengths that specifies the dash pattern of the line. The
first length specifies the number component of the CurrentDashPattern graphics state variable

287

| SO/IEC 10179:1996 © ISO/IEC

12.6.27.7

in ISO/IEC 10180. The remaining lengths specify the vector component of the
CurrentDashPattern graphics state variable. The initial value isalist containing the length
Opt. This appliesto the lines drawn whenthecel | - cr ossed: characteristicistrue.

— line-thickness: is alength that specifies the thickness of the line or lines. The initial
value is 1pt. This applies to the lines drawn wherctid - cr ossed: characteristic is true.

— i ne-repeat : is a strictly positive integer that specifies the number of parallel lines to be
drawn. For example, a value of 2 indicates a double line. The initial value is 1. This applies to
the lines drawn when theel | - cr ossed: characteristic is true.

— | i ne-sep: is alength that gives the distance between the centers of parallel lines. The
initial value is 1pt. This applies to the lines drawn whenctblel - cr ossed: characteristic
is true.

— fl oat - out - si del i nes?: is a boolean which if true specifies that sideline attachments on
the content of a cell shall be detached from the cell and attached to the table instead. The
initial value is #f.

— fl oat - out - mar gi nal i a?: is a boolean which if true specifies that marginalia
attachments on the content of a cell shall be detached from the cell and attached to the table
instead. The initial value is #f.

— fl oat-out-1line-nunbers?: is aboolean which if true specifies that line-number
attachments on the content of a cell shall be detached from the cell and attached to the table
instead. The initial value is #f.

NOTE 128 The alignment of the content of atable-cell in the column-progression direction (e.g., horizontal alignment
for left-to-right, top-to-bottom text) shall be controlled by thedi spl ay- al i gnnent : or quaddi ng:
characteristics of the content of the table-cell.

Table-border Flow Object Class

A table-border flow object is an atomic flow object used to specify the border of a table-cell or of
the table as a whole. A table-border flow object is not allowed in the content of any flow object.
The following characteristics are applicable:

— border-priority: isan integer that determines how conflicts between border
specifications are resolved. When there are two table-border flow objects that apply to a
particular segment of a border, then the one that has the larger priority shall be used. It shall
be an error if there are two such table-borders that have the same priority but are not identical.
The initial value is 0.

NOTE 129 This characteristic resolves conflicts between the specification of the border of the table and the
specification of the border of cells as well as between the specifications of the borders of adjacent cells.

— border-al i gnnment : is a symbol specifying the alignment of the border's line relative to
the position of the border, as follows:

288

© ISO/IEC | SO/IEC 10179:1996(E)

— cent er specifying that the line shall be centered with respect to the position of the
border.

— start specifying that the edge of the line that is the starting edge in the row- or column-
progression direction shall be aligned with the position of the border.

— end specifying that the edge of the line that is the ending edge in the row- or column-
progression direction shall be aligned with the position of the border.

— out si de specifying that the edge of the line that is an outer edge of the table shall be
aligned with the position of the border. This is allowed only for borders that are at the edge
of the table.

— i nsi de specifying that the edge of the line that is not the outer edge of the table shall be
aligned with the position of the border. This is allowed only for borders that are at the
edge of the table.

The initial value ient er.

— bor der - present ?: is a boolean specifying whether the border shall be present. The initial
value is #t.

— border-onit-at-break?: is aboolean specifying whether this border shall be omitted
if adjacent to a break in the table. A border shall be omitted if either this characteristic or the
bor der - present ?: characteristic is #f. This is applicable only to borders that are parallel
to the row-progression direction. The initial value is #f.

— col or: is an object of type color that specifies the color in which the flow object's marks
should be made. The initial value is the default color in the Device Gray color space.

— l ayer: is an integer specifying the layer of the marks of the areas resulting from the flow
object. An area shall be imaged after any area whose layer has a lower value. The initial
value is 0.

— i ne-cap: is one of the symbolsut t , r ound, orsquar e specifying the cap style for the
line. The initial value ibutt.

— |'i ne-dash: is alist of one or more lengths that specifies the dash pattern of the line. The
first length specifies the number component of the CurrentDashPattern graphics state variable
in ISO/IEC 10180. The remaining lengths specify the vector component of the
CurrentDashPattern graphics state variable. The initial value is a list containing the length
Opt.

— line-thickness: is alength that specifies the thickness of the line or lines. The initial
value is 1pt.

— line-repeat: is a strictly positive integer that specifies the number of parallel lines to be
drawn. For example, a value of 2 indicates a double line. The initial value is 1.

289

| SO/IEC 10179:1996 © ISO/IEC

12.6.28

12.6.28.1

— | i ne-sep: is alength that gives the distance between the centers of parallel lines. The
initial value is 1pt.

—line-mter-1imt: isanumber that specifies the miter limit for line joins. The
semantics of the miter limit are described in ISO/IEC 10180. The initial value is 10.

— i ne-j oi n: is one of the symbolsi t er, round, orbevel specifying the join style of
the line. The initial value isi t er .

The width of borders does not affect the width of cells, nor the positioning of the contents of
cells, nor the width of the table, nor the size of the area produced by the table. In particular, the
width of the table, as specified by thabl e- wi dt h: characteristic on the table, is equal to the
sum of the widths of the cells.

Flow Object Classes for Online Display

The facilities described in this clause requiredhéi ne feature.

Scroll Flow Object Class

A scroll flow object class is used as the top-level flow object for online display that does not
divide output into pages.

It has a single principal port, which accepts displayed flow objects.

The size of the flow object in the direction perpendicular to the filling-direction is determined by
the viewing environment.

This flow object has the following characteristics:

— filling-direction: isone of the symbolsop-to-bottomleft-to-right, or
right-to-Ieft. Itspecifies the filling-direction of the area container. The filling-
direction of the area container may be perpendicular to the placement direction. The initial
value ist op-t o- bott om

— writing-node: is one of the symbolseft-to-right,right-to-left,ortop-
t o- bott om The direction determined by the writing-mode shall be perpendicular to the
placement direction. The initial valuelieft - t o- ri ght . This is used to determine which
side of the flow object thet art - mar gi n: andend- mar gi n: characteristics apply to.

— backgr ound- col or: is either #f or an object of type color that specifies the color in which
the marks for the flow object's background should be made. The initial value is #f.

— background- | ayer: is an integer specifying the layer of the marks of the areas resulting
from the background of a flow object. The initial value is -1.

— background-til e: is either #f or a public identifier specifying an image that should be
repeated to cover the background of the scroll. The initial value is #f.

290

© ISO/IEC

| SO/IEC 10179: 1996(E)

12.6.28.2

12.6.28.3

— start-margin: is alength-spec specifying the distance from the edge of the resulting area
that is first in the writing-mode direction to the nearest edge of the text area. The initial value
is Opt.

— end- mar gi n: is a length-spec specifying the distance from the edge of the resulting area
that is last in the writing-mode direction to the nearest edge of the text area. The initial value
is Opt.

Multi-mode Flow Object Class

A multi-mode flow object is a flow object with two or more modes of presentation. The flow
object can be switched between these modes of presentation in a system-dependent way.

NOTE 130 Animplementation might present a menu of the different modes. Alternatively, clicking on the formatted
flow object might cycle through the modes.

This flow object is inlined or displayed according to its content and mode of presentation.
This flow object has the following characteristics:

— nul ti-nodes: is alist. The number of members of the list gives the number of modes of
presentation. The list shall have at least two members. Each member of the list can be a
specification of a port or a list consisting of a specification of a port and a string giving a
description of the mode. The specification of a port is either #f specifying the principal port or
a symbol specifying a named port. A port specification shall not occur more than once in the
list. There shall be one port specification of #f in the list. The corresponding mode is the
principal mode.

NOTE 131 The string might be displayed in a menu.
This characteristic is not inherited and shall be specified.

— princi pal - node-si mul t aneous?: is a boolean specifying whether the principal mode
is simultaneous with the other modes. If it is, then when the current presentation mode is a
mode other than the principal mode, both the content of the port for the principal mode and
the content of the port for the current mode shall be displayed. The initial value is #f.

The flow object has one port for each mode. The content of that port specifies the presentation in
the corresponding mode. Initially, the flow object shall be displayed using the principal mode.

NOTE 132 For example, an icon which when clicked causes a window to be popped up could be represented by a
multi-mode flow object with two ports, the first containing a character flow object representing an icon and the second
containing a scroll flow object. In thiscase, thepri nci pal - node- si mul t aneous?: characteristic would be true.

Link Flow Object Class

A link flow object represents a hypertext link that can be interactively traversed, typically by
clicking on the areas representing the flow object and its content. A link has a single principal

291

| SO/IEC 10179:1996 © ISO/IEC

12.6.28.4

port, which can contain both inlined and displayed flow objects. Link flow objects can be nested,
and the innermost link is effective. It has the following characteristic:

— dest i nation: is either #f or an object of type address or a list of one or more objects of
type address. See 12.5.8. This characteristic is not inherited and shall be specified. A value
of #f is used for a nested link and indicates that the contents of the flow object shall not be
considered part of the containing link.

Marginalia Flow Object Class

The marginalia flow object class is used to contain flow objects whose resulting areas shall be
attachment areas for the line in which the marginalia flow object occurs. See 12.3.4. The
marginalia flow object has a single principal port which shall contain only inlined flow objects.
A marginalia flow object shall have an ancestor flow object that is of class paragraph.

The behavior when there is more than one marginalia area attached to a single line is system-
dependent.

A marginalia flow object has the following characteristics:

— mar gi nal i a- sep: is a length-spec specifying the separation for the attachment. The initial
value is Opt.

— mar gi nal i a- si de: is one of the symbolst art orend specifying which side of the line
the marginalia area shall be attached to. The initial valsieast .

— mar gi nal i a- keep-w t h- previ ous?: specifies whether the marginalia area shall be
associated with the last area of the previous flow object instead of the first area resulting from
the following flow object. The initial value is #f.

292

© ISO/IEC | SO/IEC 10179:1996(E)

Annex A: Further Information

For examples, tutorials, production cross reference list, and other relevant material for the
understanding and implementation of DSSSL see the following web site and ftp address:

http://ww. ornl.gov/sgnm / W&/ wg8hone. ht m

ftp.ornl.gov/sgm /wg8/ dsssl

293

